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Abstract

Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors,
guards of the intracellular redox state, and ‘‘antioxidants’’. Today, these redox catalysts are increasingly recognized
for their specific role in redox signaling. The number of publications published on the functions of these proteins
continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general
redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized,
rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of
research on these proteins, focusing primarily on data from vertebrates andmammals. The role of Trx fold proteins in
redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications
of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are
exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs,
and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions
in different cell types, tissues, and various pathological conditions. Antioxid. Redox Signal. 19, 1539–1605.
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I. Introduction

Redox reactions—the transfer of electrons—are an es-
sential requirement for cell metabolism, most notably in

the form of biological energy transduction in the inner mito-
chondrial and plastidal membranes. As a consequence, nu-
merous cellular compounds undergo redox modifications,
and some of these redox-modified molecules function in sig-
nal transduction. Redox modifications have long been dis-
cussed to be the result of increased levels of pro-oxidants, for
instance, due to irradiation or decreased levels of antioxidants

(14, 714, 715). These conditions, defined as oxidative stress,
were often visualized in the form of a scale and an imbalance
between pro-oxidants in one pan and antioxidants in the other
pan. Up to now, this dis-equilibrium has been correlated with
many disorders and pathologies, including cancer, neuro- and
cardiovascular diseases (86, 126, 229, 500, 561).

Often, oxidative stress was attributed to the formation of
reactive oxygen species (ROS) and/or reactive nitrogen spe-
cies (RNS). The biological effects of ROS were first demon-
strated by Henry John Horstman Fenton in 1894 (182). He
demonstrated that hydrogen peroxide (H2O2), previously
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isolated by Louis Jacques Thénard in 1818 as ‘‘eau oxygenée’’
(772), in combination with ferrous iron, was able to oxidize
biomolecules. This ‘‘Fenton reaction’’ leads to the formation of
the hydroxyl radical, which was described by Fritz Haber and
Richard Willstätter in 1931 only 2 years after Fenton had
passed away (249). It took until 1971 for H2O2 production to
be measured in respirating mammalian mitochondria from
rat liver and pigeon heart (110, 449).

The biological activity of nitric oxide ($NO), the RNS pro-
totype, was recognized early and repeatedly, but its physio-
logical importance remained unnoticed for many decades. In
1867, the British physician Lauder Brunton found that organic
nitrates were effective in relieving pain in angina pectoris (79),
a disease from which also Alfred Nobel, the inventor of the
nitroglycerin-based explosive dynamite and the founder of
the Nobel awards, suffered. When in the 1890s Nobel’s phy-
sicians recommended nitroglycerin as a remedy for his heart
disease, he declined it. In a letter to Ragnar Sohlman, his as-
sistant and later executor of his testamentary dispositions, he
noted, ‘‘Isn’t it the irony of fate that I have been prescribed N/
G 1 [nitroglycerin], to be taken internally! They call it Trinitrin,
so as not to scare the chemist and the public.’’ (727). In 1979,
Louis J. Ignarro and his coworkers demonstrated that$NO
and$NO-releasing drugs induce the relaxation of the coronary
artery through the activation of guanylate cyclase (245).
However, it was not before 1986 that Robert Francis Furchgott
demonstrated that the blood vessel dilating ‘‘endothelium-
derived relaxing factor’’ which he had proposed in 1978 was,
in fact, endogenously produced$NO (217). It took another
decade before the reaction of NO with thiol groups was rec-
ognized as specific redox modification. As early as 1925, John
Scott Haldane and coworkers presented a case in which the
death of amanwhowas employed in a colliery was suspected
to be caused by carbon monoxide poisoning. However, the
victim’s blood did not contain CO-modified hemoglobin but
‘‘NO-haemoglobin’’ (39). Eventually, in 1996, Jonathan S.
Stamler demonstrated that $NO may react not only with the
heme moiety, but also specifically with thiols in the form of S-
nitrosothiols on the cysteine residue at position 93 of hemo-
globin’s b-chain, implying new regulatory functions through
the release of $NO during arterial-venous transit (341).

The major intracellular thiol compound glutathione (GSH),
c-L-glutamyl-cysteinyl-glycine, was likely first isolated
around 1888. J. de Rey-Pailhade described a nearly ubiquitous
substance that he had isolated from yeast, bovine, sheep, fish,
egg, and asparagus. It released hydrogen sulfide (H2S),
bleached several dyes, and reacted with halogenates. Hence,
de Rey-Pailhade suggested the name philothion—‘‘sulfur-
loving’’ (637–639). In 1921, Frederick Gowland Hopkins re-
described the compound as an ‘‘autooxidizable constituent of
the cell.’’ He originally assumed it to be a dipeptide between
glutamate and cysteine and, therefore, named it ‘‘glutathione’’
(294); he also characterized it as an ‘‘oxidation-reduction
system’’ (296). In 1927, George Hunter and Blythe Alfred
Eagles presented evidence for the conjugation of glutamine
and cysteine with additional amino acids (313). Hopkins re-
sponded that their preparationwas likely impure and insisted
on the dipeptide nature of GSH. Nevertheless, he ended his
response letter with the words: ‘‘In any case, although I have
myself no doubts as to the [dipetide] nature of GSH, the ap-
pearance of Hunter and Eagle’s papers make it desirable that I
should if possible give greater precision to the account of its

isolation. This I hope to do in the near future’’ (295). It took
Hopkins 2 years and 12 additional preparations of GSH, each
from *50 kg of yeast, to confirm: ‘‘The tripeptide has been
shown to constitute a large portion of the preparation [.].
The description of the substance as dipeptide was therefore
erroneous’’ (297). More than 40 years after the discovery of
GSH, it was the pioneering work of Alton Meister that un-
raveled the enzymology and regulation of GSH metabolism,
for example, (488, 489). Meister’s discoveries opened up sev-
eral new lines of research into the functions of GSH, for in-
stance, its involvement in detoxification reactions (273), its
role as electron donor (184, 778), and its part in redox regu-
lation and homeostasis (495).

Over the past decade, our view of redox biochemistry
evolved rapidly, realizing and establishing redox changes as
physiological, rapid, specific, and reversible cell signaling
events and a form that regulated the activity of key proteins
(227, 354). Moreover, redox signaling was shown to be local-
ized to distinct regions within a cell or even a compartment at
a given time point, affecting distinct redox couples such as
GSH/glutathione disulfide (GSSG) or NADH/NAD + differ-
ently (239, 254). This so-called ‘‘compartmentalized redox
signaling,’’ therefore, stands in opposition to the view of an
overall cellular redox balance, which implies that all cellular
redox couples are reduced or oxidized to a similar degree by
the same stimuli.

Many key regulators of redox signaling and thus of the in-
tracellular effects of ROS and RNS are members of the thior-
edoxin (Trx)-fold family of proteins, among them the proteins
highlighted in this review: Trxs, glutaredoxins (Grxs), and
peroxiredoxins (Prxs) (12, 432, 434, 554, 643). Members of these
protein families are ubiquitously expressed in all organisms,
tissues, cell types, and organelles. Some of these proteins can
even shuttle between cellular compartments and the extracel-
lular space.

Trxs, the first branch and the name-giving proteins of the
Trx family of proteins, were discovered by Peter Reichard and
coworkers in 1964 in their quest to discover the electron/
hydrogen donor for ribonucleotide reductase (RNR) in
Escherichia coli (418) (Fig. 1). The characteristic dithiol active
site motif, Cys-Gly-Pro-Cys, which facilitates the reduction of
the disulfide formed in the catalytic cycle of RNR, was de-
termined by protein sequencing in 1968 (284). This motif is,
with rare exceptions, conserved throughout all kingdoms of
life. In 1976–77, Bob Buchanan and coworkers established the
concept of redox regulation by identifying Trx as activator of
metabolic enzymes in phototrophic organisms after light
exposure (82, 291). The proteins from the second branch of the
Trx family were identified as GSH-linked enzymes function-
ing in thiol-disulfide exchange reactions by Bengt Mannervik
and coworkers around 1974 and, despite the oxidation-
reduction nature of this reaction, were named ‘‘thiol-
transferases’’ (170). In parallel, Arne Holmgren faced the
challenge to identify alternative electron donors for RNR,
because E. coli mutants lacking Trx were still viable, despite
the essential nature of RNR (285). In his studies, published
between 1976 and 1979, he characterized this new group of
GSH-dependent oxidoreductases as electron donors for RNR
and named them Grxs (287, 288, 455). In contrast to Trxs and
Grxs, Prxs reduce peroxides rather than protein disulfides.
Prxs were not discovered because of their enzymatic activity.
It was because of their high abundance and their distinct
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quaternary structure that the first Prx, isolated from human
erythrocytes, became known under the name of ‘‘torin’’ in
1968 (265). It was not until 1993 that the previously identified
thiol-specific antioxidant activity (380) could be assigned to
the torin-homolog from yeast (103). The name Prx was coined
by Sue Goo Rhee and coworkers in 1994 in a ‘‘note added in
proof’’ (104).

In this review, we summarized the past 50 years of research
on Trxs, Grxs, and Prxs, focusing primarily on recent data
from vertebrates and mammals (Fig. 1). We discussed redox
signaling by looking at reaction mechanisms, oxidative post-
translational protein modifications, and interaction partners
of the proteins. In the second part of this review,we addressed
the importance of Trxs, Grxs, and Prxs for human health,
emphasizing the potential impact and functions of redoxins in
different cell types, pathways, and pathological conditions.

A. Trx family of proteins

1. Structure and reaction mechanisms. Members of the
Trx fold family share a common structural motif, which, in its
most basic representation, consists of three a-helices sur-
rounding a central core of a four-stranded b-sheet (Fig. 2A, B)
(471). In higher organisms, the motif may contain additional
a-helices or b-sheets (Figs. 1A, B and 2C, D). In addition, Grxs
display two unique features in their Trx-fold structures: an
active site environment that favors the attack of GSHmoieties
and a hydrophobic surface area for the interaction with pro-
tein substrates (85, 831). Trx family proteins are moreover
characterized by their active site motifs, containing either
one or two cysteinyl residues. These thiol groups are essential
for (i) the reduction of protein disulfides, (ii) protein de-/
glutathionylation and de-/trans-/nitrosylation, or (iii) the

reduction of H2O2. Distinct reaction mechanisms have been
described for these processes (Figs. 3 and 4). The reduction of
protein disulfides depends on the active site motif Cys-X-X-
Cys and is catalyzed by Trxs and Grxs via the so-called dithiol
mechanism (Fig. 3). The N-terminal active site thiol has a low
pKa value, allowing the initiation of a nucleophilic attack on a
target disulfide and the formation of a transient covalently
boundmixed disulfide intermediate (Fig. 4A, B, reaction 1). In
the second step, the C-terminal active site thiol reduces the
mixed disulfide, yielding the reduced substrate and an oxi-
dized thio- or Grx (Fig. 4A, B, reaction 2). The protein disulfide
in the active site of Trx is reduced by thioredoxin reductase
(TrxR), receiving electrons from NADPH (Figs. 3 and 4A, re-
actions 3–4) (290), whereas the oxidized Grx is reduced by
NADPH via glutathione reductase (GR) and GSH (Figs. 3 and
4B, reactions 3–4) (289). Reversible (de-)glutathionylation is
catalyzed by the monothiol mechanism. This mechanism is
unique to Grxs and depends only on the N-terminal active site
cysteinyl residue (Fig. 4B, reaction 5), which forms a GSH-
mixed disulfide intermediate. Thus, the substrate is reduced.
The oxidized, Grx-GSH mixed disulfide is reduced by a sec-
ond molecule of GSH (Fig. 4B, reaction 4) (240, 286).

Similarly, the reduction of H2O2 by Prxs is a multi-step
reaction, reviewed for instance in (641). In the first step, H2O2

is partially reduced to water, leaving a sulfenic acid inter-
mediate at the peroxidatic, N-terminal active site cysteinyl
residue (Fig. 4C, reaction 1). In the second step, a resolving
cysteinyl residue, outside the classical Trx family active site,
forms a disulfide with the N-terminal thiol in a nucleophilic
displacement reactionwithwater as leaving group. In the case
of the 2-Cys Prxs (human Prx 1–4), the conserved releasing
cysteinyl residue is located in the C-terminus of the proteins.
However, these Prxs do not form intramolecular disulfides,

FIG. 1. A brief history of ‘‘redoxin’’ research. The figure highlights some milestones of Trx, Grx, and Prx research and (in the
background) the number of publications listed in pubmedwith the query ‘‘TrxORGrxOR thioltransferaseORPrx’’. Black: Trx, dark
gray: Grx, and light gray: Prx-related findings. Insets: (A) The first structure ofEscherichia coliTrx at 4–5 Å resolution, photography of
the balsa model (Söderberg et al. 1974) (723). (B)Drawing of the first high-resolution structure of E. coli Trx at 2.8 Å (Holmgren et al.
1975) (293). The work by Krimsky and Racker in 1952 (408) on GSH and glyceralaldehyde-3-phosphate dehydrogenase did not
decipher the redox nature of this interaction, but first emphasized the regulatory functions of GSH. GSH, glutathione; Trx, thior-
edoxin; Grx, glutaredoxin; Prx, peroxiredoxin; ADF, adult T-cell leukemia-derived factor; TSA, thiol-specific antioxidant.
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but intermolecular disulfides between two adjacent subunits
of the homo-dimeric proteins (Fig. 4C, reaction 2). In contrast,
atypical 2-Cys Prxs (e.g., human Prx5) form an intramolecular
disulfide, as the releasing cysteinyl residue is located in the C-
terminus of the same subunit. The disulfides in both types of

2-Cys Prxs are reduced primarily by Trxs, in the dithiol re-
actions mechanism outlined earlier, see also Figure 4C, reac-
tions 3–4. Members of the 1-Cys Prx family (human Prx6) lack
the additional resolving cysteinyl residue and can be reduced
by GSH (121). In yeast, this reduction also involves a dithiol
Grx (583).

In the access of substrate, Prxs may be over-oxidized by
formation of sulfinic and sulfonic acids on the peroxidatic N-
terminal active site thiol (Fig. 4C, reactions 5 and 9). In most
cases, the formation of sulfonic acids is an irreversible modi-
fication under physiological conditions, see section I.C.1. Prxs
are, so far, the only class of proteins for which a specific re-
ductase of the sulfinic acid has been described—sulfiredoxin
(Srx); for an elaborate discussion on this topic, see Ref. (640).
In brief, Srx is an ATP-dependent enzyme that activates the
sulfinic acid to a sulfinic phosphoryl ester (355) (Fig. 4C, re-
action 6), which subsequently reacts to a thiosulfinatewith Srx
(Fig. 4C, reaction 7) (356). This intermediate is reduced to a
sulfenic acid on the peroxidatic cysteinyl residue of Prx, a
reaction that depends on the disulfide formation between Srx
and other thiols (Fig. 4C, reaction 8) (64). In addition, Srx has
also been reported to specifically catalyze the de-glutathio-
nylation of 2-Cys Prxs (576).

2. Trx, Grx, and Prx family proteins in mammals. The
Trx fold family of proteins comprises numerous proteins.
Besides the name-giving Trxs, glutathione peroxidases
(GPxs), Grxs, protein disulfide isomerases (PDIs), and Prxs
share both the Trx fold and oxidoreductase activity.

FIG. 2. The Trx fold. (A) Schematic representation of the Trx fold, the asterisk marks the position of the proximal active site
cysteinyl residue, helices are shown in dark, sheets in light gray. Bacterial Grxs, such as (B) E. coli Grx1 (PDB accession
number: 1EGR), are the most basic representations of the fold. (C) Human Trx1 (PDB: 3TRX) contains an additional N-
terminal sheet and helix. (D, E) The 2-Cys Prx1 is shown as monomer (D) and (E) decameric torin.

FIG. 3. Electron flow from NADPH to substrates via the
Trx and GSH/Grx systems. NADPH as the main electron
source reduces the selenoprotein thioredoxin reductase
(TrxR), which delivers electrons to Trx, which then reduces
protein (P) disulfides. NADPH also donates electrons to
glutathione reductase (GR), which reduces glutathione dis-
ulfide (GSSG), thereby generating two molecules of reduced
GSH. Electrons can then be delivered to oxidized Grx, which
either possesses an active site disulfide bridge due to re-
duction of protein disulfides or a glutathionylated N-termi-
nal active site Cys from reducing a GSH-mixed disulfide.
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Moreover, various eukaryotic proteins containing one or
more domains are evolutionary related to Trx, Grx, or PDI. All
these proteins share similar structural motifs, but most of
them have unique functions, which do not necessarily depend
on the catalysis of redox reactions. Table 1 lists the more than
50 human proteins that contain Trx, Grx, or Prx domains with
putative or confirmed redox activity, including their locali-
zation, structural domains, and active site motifs. Figure 5
depicts the compartmentalization of a cell into nucleus, cy-

tosol, mitochondrium, and peroxisome as well as the locali-
zation, structural motifs, and the electron transfer between
members of the Trx, Grx, and Prx systems.

a. Trx systems. In the Trx system, electrons (in conjunction
with protons) are transferred from NADPH to the flavo- and
selenoprotein TrxR to the oxidoreductase Trx and are ulti-
mately used to reduce disulfides in target proteins (Fig. 3). The
12 kDa Trx contains the active site motif Cys-Gly-Pro-Cys,

FIG. 4. Reaction mechanisms of Trx family proteins. (A) Trxs reduce protein disulfides via the dithiol mechanism,
depending on both active site cysteines. The N-terminal active site Cys forms a covalently bound mixed disulfide interme-
diate (A 1), which is reduced by the C-terminal active site Cys, releasing the reduced protein (A 2). Oxidized Trx is reduced
by TrxR in a similar reaction sequence (A 3–4). (B) Grxs also reduce protein disulfides via the dithiol mechanism, being
reduced by two GSH molecules (B 1–4). In addition, they reduce glutathionylated proteins via the monothiol mechanism (B
5–4), only depending on the N-terminal active site Cys, that attacks the GSH moiety and forms a GSH-mixed disulfide
intermediate (B 5), which is reduced by another GSH molecule (B 4). (C) During the reduction of H2O2 by Prxs, the redox-
active, peroxidatic Cys (labeled p) is oxidized to sulfenic acid (C 1), which either forms an inter-(2-Cys Prxs) (C 2) or an
intramolecular disulfide (atypical 2-Cys Prxs) (not shown) with the resolving Cys residue (labeled r), with both being reduced
by Trx as outlined in (A) (C 3–4). 1-Cys Prxs lack an additional resolving cysteine and are reduced by GSH (not shown). In the
presence of H2O2, the sulfenic acid can be further oxidized (‘‘over-oxidized’’) to sulfinic acid [5] and sulfonic acid [9]. Sulfinic
acid-modified Prxs can be recovered by the ATP-dependent action of sulfiredoxin (Srx) [6–8]. For a detailed discussion, see
section I.A.1. H2O2, hydrogen peroxide.
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which is highly conserved throughout different species from
bacteria to humans (165). Due to the variety of substrates, the
Trx system is required for DNA synthesis via the reduction
of RNR (418), proliferation (see section II.B.2), and protec-
tion against apoptosis via for example, the reduction of the
mitogen-activated protein (MAP) kinase kinase kinase ap-
optosis signal-regulating kinase 1 (ASK1) and initiated
downstream cascades (479, 670) (see also section II.A.1), reg-
ulation of transcription by controlling the activity of nuclear
factor kappa B (NF-jB) or activating protein 1 (AP-1) (1, 480),
modulation of the immune response via for example, cytokine
expression (685) (see also section II.B.8.b), and the H2O2 and
lipid hydroperoxide levels via Prxs (55, 196, 642).

Trx1 itself is regulated both by hypoxia (54) and by oxi-
dative conditions via binding of nuclear factor E2-related
factor 2 (Nrf2) to an antioxidant responsive element in the Trx
promotor (384, 761). Knockout of p53 and DJ-1 in mice re-
sulted in either up- or down-regulation of Trx1, and also via
increased or decreased levels of Nrf2, respectively (41, 320).

TrxR exists as a 55–60 kDa homo-dimer in a head-to-tail
conformation, with every subunit containing a flavin adenine
dinucleotide (FAD) domain, anNADPHbinding domain, and
an interface domain. It possesses two active site motifs; Gly-
Cys-Sec-Gly at the C-terminus and Cys-Val-Asn-Val-Gly-Cys
at the N-terminus, adjacent to the FAD domain (28). TrxR is
known for its broad substrate specificity, which can be ex-
plained by the high accessibility and reactivity of selenocys-
teine. Moreover, different isoforms of TrxR have been
described, giving rise to different proteins with distinct
functions (657, 785). Besides its main substrate Trx, it was
shown to reduce other targets, including PDI (454), Grx2
(349), and dehydroascorbate (482).

Mammalian genomes encode two Trx systems. Trx1 and
TrxR1 constitute the cytosolic system (Fig. 5). Trx1 was also
shown to translocate into the nucleus on various stimuli (280)
or to be secreted (655) (see also section II.B.8.b). Mitochondria
contain Trx2 and TrxR2 (Fig. 5). In addition, there is a third
testis-specific TrxR3, also named thioredoxin glutathione re-
ductase (TGR), which is mainly expressed in germ cells (see
section II.B.10.c). Trx1 and Trx2 share 35% sequence homol-
ogy and similar catalytic properties in vitro (736) with mito-
chondrial Trx2 possessing the active site motif of Trx1, but
lacking additional structural cysteines. Another proteinworth
mentioning is the 43–44 kDa Trx interacting protein (Txnip)
(Fig. 5), also named thioredoxin-binding protein 2 (TBP2) or
Vitamin D up-regulated protein 1 (VDUP1), which does not
possess a Trx fold, but belongs to the arrestin superfamily of
regulatory proteins. It was found as an interaction partner for
Trx in a yeast two-hybrid system (548, 689, 839). Txnip binds
to the active site of Trx, inhibiting its disulfide reductase ac-
tivity, and it was, thus, suggested to be an endogenous Trx
inhibitor. Txnip is involved in various cellular processes, such
as the regulation of the Trx1/ASK1-dependent apoptosis
pathway (115). Knock-down of single components of the Trx
systems, that is, Trx1, Trx2, TrxR1, or TrxR2, results in em-
bryonic lethality (135, 270, 474, 759); however, Txnip is not
essential (see also section II.B.1).

b. Grx systems. Grxs are, depending on the number of ac-
tive site Cys residues, divided into dithiol (Cys-X-X-Cys) and
monothiol (Cys-X-X-Ser) Grxs, the latter being moreover
classified as single- and multi-domain monothiol Grxs (277,

432). Dithiol Grxs act in a system in which electrons are
transferred fromNADPH, viaGR and GSH to Grx (Fig. 3) and
subsequently to the oxidized target, conducting similar
functions as the Trx system. They act in the regulation of
proliferation (see section II.A.2) and differentiation via the
MAP kinase ASK1 and downstream targets (82, 529), apo-
ptosis (see section II.A.1) by inhibiting caspase activation (571)
and cytochrome c release from mitochondria (167), tran-
scription via modulating the activity of NF-jB (140), and
levels of H2O2 via some Prxs (258).

Monothiol Grxs, on the other hand, have so far not been
shown to be catalytically active in the Grx-specific HED assay
(277). However, recent studies clearly demonstrate that they
function primarily in both iron homeostasis and the biosyn-
thesis of FeS proteins (647) (Section II.A.3.a). So far, four Grxs
have been discovered in mammals: Grx1, Grx2, Grx3 (also
known as protein interacting cousin of Trx—PICOT), and
Grx5 (Fig. 5). The dithiol 12 kDa Grx1 is mainly localized in
the cytosol, but can be translocated into the nucleus, exported
from the cell, and was found in the intermembrane space of
mitochondria (187, 453, 456, 565). The dithiol Grx2 is located
in mitochondria, but different cancer/testis-specific isoforms,
restricted to the cytosol, have been described in mouse and
human (310, 447). The 14 kDa Grx2 shares 34% sequence ho-
mology with Grx1. It does not possess the active site motif
Cys-Pro-Tyr-Cys, but instead Cys-Ser-Tyr-Cys. This single
amino acid change is essential for the coordination of a
[2Fe2S] cluster (56) (see also section II.A.3.a) and enables the
protein to receive electrons from TrxR (349). TrxR is, com-
pared with GSH, a poor electron donor for Grx2 (218); how-
ever, when GSSG levels increase, the reaction may become
significant (349). The 38 kDa monothiol Grx3 is a multi-
domain protein that contains two N-terminal monothiol Grx
domains with the active site Cys-Gly-Phe-Ser and an addi-
tional C-terminal Trx domain with the active site motif Ala-
Pro-Gln-Cys. It is localized in the cytosol and the nucleus.
Grx3 was identified as a potential binding partner of protein
kinase C-h in a yeast-two hybrid screening (819) and was
furthermore described as an FeS protein, with two monomers
coordinating two [2Fe2S] clusters (271). The monothiol Grx5
has amolecular weight of around 17 kDa, has amitochondrial
translocation signal, shares the active site motif of Grx3, and
has the ability to bind a [2Fe2S] cluster (350, 647). So far, no
disulfide reductase activity was observed for the mitochon-
drial Grx5. Knock-down of Grxs shows severe phenotypes;
however, only knockout of Grx3 in mice is embryonically le-
thal (105) (see also section II.B.1).

c. Peroxiredoxins. Prxs are 20–30 kDa proteins, which are
expressed as different isoforms, that are located in different
cellular compartments (283, 822). They are high abundance
proteins that can account for up to 1% of soluble cellular
proteins (102, 822). In addition to their peroxidase activity,
alternative functions have been proposed, for instance, as
molecular chaperones and phospholipase A2 (121, 333, 413).

Mammalian cells contain six Prxs (Fig. 5), which are di-
vided into three groups, based on their structure and the
catalytic mechanisms described earlier: 2-Cys Prxs (Prx1–4),
atypical 2-Cys Prxs (Prx5), and 1-Cys Prx (Prx6) (641, 698).
Most Prxs function as homo-dimers, the 2-Cys Prxs also form
decamers, and the different conformations are linked to
switches in function (42).
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Prx1 is mainly localized in the cytosol, the nucleus, and
peroxisomes, but it was also found in serum (112, 321). Prx2 is
present in the cytosol and the nucleus and was shown to bind
to cell membranes (109). Prx3 is exclusively located in mito-
chondria (98, 805). Prx4 is found in both the cytosol and the
endoplasmic reticulum. It contains a leader peptide that is
believed to be essential for protein secretion (558). Prx5 is
localized in cytosol, mitochondria, and peroxisomes (98, 870).
Prx6 is located in the cytosol, vesicles, and lysosomes (734,
735), reviewed in (195). Expression of some Prxs is regulated
by hyperoxia (378, 379). Knockout mice for peroxiredoxins
(Prx1–4, 6) generally showed increased ROS levels, but were
viable; for details, see section II.A.1.

d. Trx-like proteins. Many multi-domain proteins contain at
least one Trx fold domain. In fact, at least 723 proteins may
contain at least one Trx fold domain, some with additional
secondary structure elements that extend the common Trx
motif (614). Various proteins share the active site motif Cys-X-
X-Cys and were shown to possess oxidoreductase activity.
However, there are Trx-like proteins that lack the active site
and any oxidoreductase activity. Functions in disulfide bond
formation, intracellular signaling, and protection from perox-
ides have been described (281). Until now, numerous proteins
have not been analyzed thoroughly, the nomenclature is not
clear, andphysiological functions are rare; therefore, the impact
of most of these proteins is generally not well understood.

In humans, there are various Trx-like proteins, including
nucleoredoxin (Nrx), Thioredoxin-like protein (Txl) 1 and 2,
the latter also known as thioredoxin domain-containing pro-
tein (TXNDC) 6, sperm-specific thioredoxin (Sp-Trx) 1–3, also
known as TXNDC 2, 3, and 8 (Table 1). PDIs (180, 244, 405),
GSTs (627, 673), andGPxs (199, 778) are also Trx-fold proteins,
but are not a part of this review.

Nrx is characterized by two N-terminal Trx-like domains
with the active site motif Cys-Pro-Pro-Cys and a C-terminal
PDI-like domain without any redox active Cys residues (215).

The 55 kDa protein is located in both the cytosol and the nu-
cleus (Fig. 5), even though no nuclear localization sequence
was identified. Nrx was shown to reduce insulin and seems to
regulate distinct transcription factors, including NF-jB and
AP-1 (279). It suppresses the Wnt/b-catenin pathway, essen-
tial for embryonic development, via redox-dependent asso-
ciated interaction with Dishevelled (213), and regulates
Toll-like receptor 4 (TLR-4) signaling (272) (see also section
II.B.1). Moreover, Nrx-like protein 1 (Txl6) and 2 have been
proposed (Table 1).

The ubiquitously expressed Txl1 is a two-domain protein,
composed of a N-terminal Trx-domain and a C-terminal do-
main with unknown function (497), which was shown to re-
ceive electrons from TrxR1 (344). Due to the findings that (i)
Txl1 expression is highest in tissues with high metabolic rate
including stomach, testis, bone marrow (497), and the central
nervous system (CNS) (344) and that (ii) Txl1 over-expression
protects cells against glucose-starvation induced cytotoxicity,
the protein might function in the cellular response to sugar
deprivation (344). TXNDC6 (Txl2) is also ubiquitously ex-
pressed and possesses two domains, the N-terminal Trx-do-
main and a C-terminal domain, that are typical of the
nucleoside-diphosphate (NDP) kinase family. The highest
expression was detected in testis and lung. Interestingly, the
protein was shown to be associated to microtubular struc-
tures, potentially regulating microtubuli physiology (664).

TXNDC2/Sp-Trx1 is exclusively located in spermatozoa. It
reduces insulin in the presence of NADPH and TrxR (498).
Moreover, TXNDC2/Sp-Trx1 can oxidize a specific substrate,
in the presence of the electron acceptor selenite. Acting as an
oxidase, TXNDC2/Sp-Trx1 might be essential for stabilizing
different structures in the developing spermatid-tails via dis-
ulfide bond formation (343). TXNDC3/Sp-Trx2 is also a testis-
specific protein, consisting of a N-terminal Trx-domain and
three consecutive NDP kinase domains. Recombinantly ex-
pressed TXNDC3/Sp-Trx2 in E. coli does not show any oxi-
doreductase activity (663). TXNDC8/Sp-Trx3 comprises a

FIG. 5. Mammalian Trxs,
Grxs, and Prxs. Isoforms,
subcellular localization, and
confirmed interactions be-
tween the various redox pro-
teins discussed in this review.
The active site sequences and
the classes of proteins, re-
spectively, are indicated in
white. C, cytosol; M, mi-
tochondrium; N, nucleus; P,
peroxisome; S, secreted. The
secretory compartments, that
is, endoplasmatic reticulum,
Golgi apparatus, and lyso-
somes, were excluded for rea-
sons of clarity; however, these
compartments contain Trx
family proteins; see Table 1.
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unique Trx domain, which is highly homologous to Trx1. The
protein is exclusively found in male germ cells, where it is
located in the Golgi apparatus, even though no transit se-
quence was found. The protein might regulate proteins via
post-translational modifications, controlling germ-cell spe-
cific functions. However, no reduction of insulin was detected
in enzymatic assays (345).

B. The concept of redox signaling

The concept of cell signaling was developed from the
ground-breaking analysis of signal transduction of extracel-
lular signals to intracellular effector molecules via G-protein
coupled receptors by Martin Rodbell and Alfred Goodman
Gilman (232, 646). In the first step, an extracellular signal acti-
vates a receptor protein or protein complex. In the second step,
this activation promotes the conversion, production or release
of second-messenger molecules. These molecules might act on
transducer proteins, for example, protein kinases, activate the
production or release of third messenger molecules, or directly
activate effector molecules. In some cases, the receptor itself
might act directly as the effector molecule.

Redox regulation of cellular processes has most commonly
been characterized using redox potentials, for instance, by
determination of the [GSH] (or more correctly, the [GSH]2) to
[GSSG] ratio. DE, the difference in redox potentials between
products and reactants, is a measure of the change in free
energy DG, as DG equals -n$F$DE, with n being the number
of electrons and F being the Faraday constant. In a biological
system held at constant pressure and temperature, DG de-
termines whether a chemical reaction or reaction sequence is
thermodynamically favorable and, therefore, the direction of
the reaction. However, DG does not determine the reaction
kinetics, it leaves no clues whether and at what rate the re-
action actually takes place. This rate is determined by the
number of molecules in the transition state, which is depen-
dent on the activation energy. Even thermodynamically fa-
vorable reactions cannot occur if the activation energy is too
high. Enzymes accelerate reaction rates by lowering this ac-
tivation energy. Therefore, DE values by themselves are not
suitable to describe or model dynamic cellular redox pro-
cesses, such as transient modifications of transducer proteins
in signaling pathways. The activities of the enzymes that
catalyze the generation of the signals and the modifications of
the effector molecules determine the transduction of the in-
formation, as long as the reactions are thermodynamically
favorable. By analogy, the action of protein kinases and
phosphatases in signal transduction pathways such as the
MAP kinase cascades cannot be described or modeled on
the basis of the DG values of the phosphorylation and de-
phosphorylation reactions.

Redox signaling requires the active adjustment of the levels
of redox active second messengers in response to the activa-
tion of a receptor or sensor molecule. Figure 6 summarizes
potential pathways for the production, reaction, and break-
down of such redox active compounds, namely reactive ox-
ygen, nitrogen, and sulfur species; for details, see, for instance,
(311, 352, 738, 791). The key compounds, that is, the metab-
olites which hold the potential to induce reversible post-
translational redox modifications on proteins, are H2O2, $NO,
peroxynitrite/peroxynitrous acid (ONOO -/ONOOH), and,
possibly, H2S. These compounds are produced enzymatically,

either as primary products of specialized enzymes, for in-
stance, $NO produced by nitric oxide synthase (NOS) or as
by-products of enzymes, such as superoxide (O2

-
$) produced

by complex I of the inner mitochondrial membrane and a
number of other enzymes (see below). The decay of these
compounds is controlled by other, independent enzymes, for
instance, H2O2 and ONOOH are reduced by GPxs and Prxs.
The levels of these redox-active second messengers are, thus,
enzymatically regulated on both the production and the
elimination side, similar to, for example, adenylate cyclases
and phosphodiesterases whose combined activities determine
the level of the second-messenger molecule cAMP.

In the next section, we will discuss how the redox second-
messenger molecules mentioned earlier may transduce their
information to effector proteins in the form of post-transla-
tional redox modifications and how the proteins from the Trx
family might be involved in these processes.

C. Reversible post-translational redox modifications

of protein thiols

Proteins can be regulated post-translationally via reversible
redox modifications of susceptible amino acid side chains or
cofactors. The thiol groups of cysteinyl side chains constitute
the major targets, even though methionyl and selenocysteinyl
residues undergo reversible redox modifications as well.
Cysteinyl residues are often essential, for instance, in the form
of active side residues, or for the tertiary and quaternary
structure of proteins. The number of homologous proteins
containing at least one cysteine expanded along with evolu-
tion, highlighting the importance of their signaling and reg-
ulatory functions in increasingly complex organisms (499).

Thiol groups can be oxidized in various ways (Figs. 6 and
7). Two protein thiols can be oxidized to a disulfide, forming a
strong inter- or intramolecular bridge. A single protein thiol
may also form a disulfide with GSH, termed glutathionyla-
tion, or free cysteine, termed cysteinylation or thiolation.
Cysteinyl thiols may also react with H2S to form persulfides,
ROS or RNS to form sulfenic acids, or nitric oxide resulting
in nitroso thiols, a process named S-nitrosylation. Not
every surface-exposed, cysteinyl residue can undergo any or
all of these oxidative modifications. It was repeatedly
demonstrated that distinct thiol groups undergo specific
modifications, such as glutathionylation, S-nitrosylation, or
sulfenylation, in response to specific oxidants; see, for in-
stance, (200, 202, 233, 257, 699, 765). In proximity to basic
amino acids, the pKa of the SH-group is lowered from usually
eight to between five and seven. At physiological pH, these
thiols with lower pKa will be dissociated. The resulting thio-
lates are efficient nucleophiles, and their reactivity toward
electrophilic targets increases by orders of magnitude. The
susceptibility of cysteinyl side chains to undergo S-nitrosyla-
tion is determined by the electrostatic and hydrophobic en-
vironment of the thiol. Two motifs have been proposed that
determine this specificity, the ‘‘acid-base motif,’’ or the ‘‘hy-
drophobic motif’’; for details, we refer to (278). It is thus the
micro-environment of the cysteinyl side chains that deter-
mines their reactivity toward different redox compounds and,
therefore, the specificity of redox signaling in general.

1. Sulfenylation. Oxidation of thiol groups to sulfenic
acids may occur directly by a reaction of susceptible thiols/
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thiolates with H2O2, ONOO - , or ONOOH (Fig. 6). Outside
peroxisomes, H2O2 may primarily be the product of super-
oxide dismutases (SOD), metal cofactor-dependent enzymes
that are present in the cytosol (SOD1, Cu/Zn-dependent), and
the mitochondrial matrix (SOD2, Mn-dependent), catalyzing
the alternate reduction and oxidation of O2

-
$ to H2O2 and O2

(212, 484, 859). O2
-
$ is produced both actively and as by-

product by numerous enzymes in the cell, for instance, com-
plex I, complex III, NADH oxidases, cyclooxygenases,
xanthine oxidase, or cytochrome p450 enzymes (73, 88, 208,
485, 547, 821). It may also be produced through the reaction of
iron sulfur clusters with oxygen (560). ONOO- and ONOOH
are the product of the, only diffusion limited, chemical reac-
tion of O2

-
$ and $NO (325), an RNS that is actively produced

by three isoforms of NOS (358, 792).
The reactivity of most cysteinyl side chains toward H2O2 or

ONOO -/ONOOH is low; however, if present in the thiolate
form, some may react with H2O2 or ONOOH to form the
sulfenic acid intermediates. The formation of sulfenic acids on
cysteinyl side chains is, via the formation and subsequent re-
duction of a disulfide formed with another thiol, a reversible

reaction. However, in excess of H2O2 or ONOO -/ONOOH,
these intermediates may be oxidized further to sulfinic and
sulfonic acids (Figs. 6 and 7) (606). With the exception of
sulfinic acid formation on Prxs, these reactions are irreversible
(see section I.A.2.c). Both H2O2 and ONOOH are substrates
for peroxidases, that is, GPxs and Prxs (outside peroxisomes).
During catalysis, these enzymes form sulfenic intermediates
on their selenolate (GPx1–4 & 6) or thiolate (GPx5 & 7–8,
Prx1–6) active site themselves, which are subsequently re-
duced to H2O along with the formation of a disulfide, that is,
GSSG or protein disulfides (199).

The topic of sulfenylation in redox regulation has been
comprehensively summarized by others earlier, for example,
(377).

2. Protein disulfides. ‘‘Thiol redox control’’ via the re-
versible formation of intra- and intermolecular disulfide
bridges was first conceptualized by Bob Buchanan and co-
workers, following their studies on the regulation of photo-
synthesis (81). In nonphotosynthetic organisms, disulfides
(outside the secretory pathway) may be formed by the

FIG. 6. Production and reactivity of reactive nitrogen, oxygen, and sulfur species. RNS (bio-)chemistry, left side: [1]
Production of nitric oxide by nitric oxide synthase (NOS). [2–3] S-nitrosylation of protein thiols. [4] Trans-nitrosylation
between protein thiols. [5] Reaction of nitric oxide with metals, for example, heme iron. [6] Nitric oxide reacts spontaneously
with superoxide yielding peroxynitrite. [7] Reversible protonation of peroxynitrite to peroxynitrous acid. [8] Reduction of
peroxynitrous acid by glutathione peroxidases (GPxs) or PRX. [9] Peroxynitrous acid reacts with protein thiolates, yielding
protein sulfenic acids. [10] Spontaneous decomposition of peroxynitrous acid yielding nitrite anion. [11] Spontaneous de-
composition of peroxynitrous acid to hydroxy radicals and NO2$. [12] Peroxynitrite can (metal catalyzed) lead to the nitration
of, for instance, protein tyrosyl residues. [13] Peroxynitrite and carbon dioxide react spontaneously to nitrosoperox-
ycarbonate. [14] Spontaneous decay of nitrosoperoxycarbonate to carbonate radical anions and nitrite radicals. [15] Spon-
taneous decay of nitrosoperoxycarbonate to carbon dioxide and nitrate. [16] Nitration may also be initiated by NO2$. ROS
(bio-)chemistry, bmiddle: [17] Production of superoxide by, for instance, mitochondrial complex I (CI), NADH oxidase (NOX),
cyclooxygenases (COX), xanthine oxidase (XO), or cytochrome P450 enzymes (Cp450). [18] Superoxide is either reduced to
H2O2 or oxidized to molecular oxygen (not shown) by superoxide dismutases (SOD). [19] H2O2 can be reduced to water by
GPxs or PRX. [20] H2O2 may react directly with specific thiols, yielding sulfenic acids. [21] Sulfenic acids can react with other
thiols, yielding disulfides. These disulfides are direct substrates of Trxs and Grxs (not depicted). [22] Sulfenic acids may be
further irreversibly oxidized, for example, by H2O2, to sulfinic and sulfonic acids. [23] H2O2 may react with chloride anions,
yielding hypochlorous acid. [24] The metal-catalyzed Fenton reaction yields hydroxyl anions and hydroxy radicals. [25]
Hydroxy radicals remove hydrogen from volatile organic compounds, yielding water and alkyl radicals. [26–27] Alkyl
radicals may react with molecular oxygen and other compounds, eventually resulting in the peroxidation, carbonylation, or
cleavage of the organic molecules, for example, proteins. [28] Hypochloric acid may lead to the chlorination of organic
compounds. RSS biochemistry, right side: [29–32] Hydrogen sulfide may be the product of cystathionine b-synthase [29, CBS],
cystathionine c-lyase [30, CSE], or via 3-mercaptopyruvate sulfurtransferase [31–32, MST]. [33] Hydrogen sulfide may react
with thiols in the presence of an electron and hydrogen acceptor to persulfides. Modifications labeled with a light gray
background are reversible and important in redox signaling, and modifications with a dark gray background are irreversible
modifications; hence, ‘‘oxidative damage.’’ ROS, reactive oxygen species; RNS, reactive nitrogen species; RSS, reactive sulfur
species.
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reaction of a cysteinyl thiol with the sulfenic acid of a second
cysteinyl residue (Figs. 6 and 7), or by direct thiol-disulfide
exchange reactions. Both Trxs and Grxs catalyze the reduction
of protein disulfides and have been implied in numerous
regulatory processes that rely on this post-translational redox
modification (432, 434, 703).

In the context of redox signaling, the most efficient way of
protein disulfide formation would be via specialized trans-
ducer proteins, that is, proteins which show a very high re-
activity toward, for instance, H2O2, leading to oxidation and
disulfide formation on the transducer protein. This disulfide
could subsequently be transferred to effector proteins. Such
disulfide relay systems have been described in bacteria and
lower eukaryotes; for an introduction, see (77). Although ex-
perimental evidence is missing, it is tempting to speculate
about similar functions for human Prxs and Trxs with their
specificities for peroxides and target proteins, respectively.

3. Glutathionylation and cysteinylation. Cysteinyl side
chains may not only form disulfides with other protein thiols,
but some form disulfides with low-molecular thiol com-
pounds, such as GSH or cysteine. These post-translational
redox modifications have been termed glutathionylation and
cysteinylation, or, more generally, thiolation. Hundreds of
proteins have been reported to undergo glutathionylation at
specific cysteinyl residues, and the topic has been reviewed
extensively earlier; see, for instance, (142, 205, 495, 833). Si-
milar to protein disulfides, these disulfides may not only form

via sulfenic acid intermediates and subsequent reactions with
the reduced low-molecular-weight thiol (Figs. 6 and 7), but
they may also result from a nucleophilic attack of a cysteinyl
thiolate on the low-molecular-weight disulfide, that is, GSSG
or cystine. In addition, radical pathways have been suggested
to result in thiolation. Grxs have a very high affinity for the
GSHmoiety. They catalyze the reduction of mixed disulfides,
the de-glutathionylation, with very high efficiency (240, 703),
as well as, if thermodynamically favorable, the forward re-
action, that is, the glutathionylation of protein thiols (658).
Therefore, Grxs are central for signal transduction via glu-
tathionylation.

4. S-nitrosylation. $NO is best known for its relaxing
function in smooth muscle cells surrounding the vasculature,
through the activation of guanylate cyclases by modification
of their heme iron cofactor (607). In addition, it was recog-
nized early on that $NO leads to the reversible modification of
cysteinyl residues by the formation of S-nitroso thiols (Figs. 6
and 7). By today, hundreds of proteins with susceptible cy-
steinyl residues have been identified; for detailed discussions
on the topic, see, for instance, (203, 699). The reaction of $NO
with thiols to S-nitroso thiols is an oxidation that requires the
transfer of one electron to an acceptor molecule, and thus
catalysis, for instance, by protein-bound transition metals.
Despite the direct modification of thiols by $NO, redox signals
may also be transduced by the transfer of S-nitroso groups
between thiol groups, a process termed trans-nitrosylation
(467). A source for such nitroso groups may be S-nitrosylated
glutathione (GSNO). The formation of GSNO is catalyzed, for
instance, by ceruloplasmin, the decay by GSNO reductases
(203). Thus, GSNO may qualify as a second-messenger mol-
ecule in redox signaling (Fig. 7), although experimental evi-
dence for this role is still incomplete. Trx and TrxR have been
implied in trans-nitrosylation reactions, as well as in specific
reductases of S-nitroso thiols and may thus take part in both
the transduction and termination of such signaling events
(697).

5. Other reversible redox modifications.

a. Persulfide formation. H2S is, similar to NO, an endoge-
nously produced gaseous signaling molecule. It is produced
enzymatically by three different enzymes (Fig. 6), cystathio-
nine b-synthase, cystathionine c-lyase, and 3-mercaptopyr-
uvate sulfurtransferase (MST), all of which depend on
pyridoxal-5¢-phosphate as cofactor (168, 241, 706, 740, 749),
reviewed in (160, 382, 720). The formation of persulfides
of protein thiols exposed to H2S has been reported for ATP-
sensitive K+ channels, it leads to the inhibition of phos-
phodiesterases (801), and shows a number of additional
physiological effects; see, for instance, (43, 157, 274, 650, 813).
Recently, Francoleon et al. reported that protein persulfides
are easily generated by a reaction of H2S with disulfides and
are relatively stable (204). It remains to be established as to
what extent these modifications occur in vivo, whether they
modify transducer or effector molecules, and whether Trx
family proteins take part in persulfide reduction or ‘‘trans-
persulfidation’’ reactions.

b. Methionine sulfoxidation. In addition to cysteinyl resi-
dues, ROS may also react directly with methionyl residues
to form protein methionine sulfoxides. This oxidation is

FIG. 7. Redox modifications at cysteinyl residues. Free
thiol groups (R-SH) can be reversibly modified by ROS,
leading to the formation of protein disulfides (R-S-S-R),
which can be reduced by the Trx and Grx systems. Thiols can
also be glutathionylated (R-S-SG) by oxidized glutathione
(GSSG) or S-nitroso glutathione (GSNO). The de-glutathio-
nylation is exclusively catalyzed by Grxs. GSNO or $NO, in
general, can lead to the nitrosylation of cysteinyl residues,
which can be reversed by GSH or transferred to other thiols
such as the active site of Trx1 (53) (trans-nitrosylation, not
shown). Another modification, induced by peroxides, is the
formation of sulfenic acid (R-SOH). In the presence of an-
other free thiol, it can be modified to a protein disulfide.
However, in the presence of excessive peroxides, it can be
irreversibly over-oxidized to sulfinic (R-SO2H) and sulfonic
acid (R-SO3H). *The reduction of sulfinic acids to sulfenic
acids, catalyzed by Srxs, is specific for Prxs; in addition, Srxs
have been reported to catalyze the de-glutathionylation of
Prxs.
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reversible through the action of the Trx-dependent methio-
nine sulfoxide reductases (Msr), reviewed in (739). This post-
translational modification is discussed to be involved in
metabolic regulation and cell signaling; for more elaborate
discussions on this topic, we refer to Refs. (62, 519, 520, 739).

D. Oxidative stress in the concept of redox signaling

As outlined earlier, oxidizing second-messenger molecules,
also known as ‘‘pro-oxidants,’’ are produced both constitu-
tively and in response to signals as primary or side products
of specific enzymes and are eliminated by reactions with
target or transducer proteins. How can these regulatory cir-
cuits be brought into accordance with the oxidative damage
that was demonstrated in numerous pathological conditions?
If the redox circuity was disturbed, for instance by continuous
activation of such signaling pathways in response to a specific
pathological condition, oxidative second-messenger mole-
cules could accumulate to such a degree that biomolecules
become irreversibly modified, as outlined in Figure 6. Ex-
cessive peroxynitrite might, via different pathways, lead to the
nitration of, for instance, protein tyrosyl residues. Further
oxidation of sulfenic acids will lead to sulfinic and sulfonic
acids. Decomposition of peroxynitrous acid or the Fenton
reaction of H2O2 with metal ions may lead to the formation of
the hydroxyl radical. This molecule will, only limited by dif-
fusion, subtract hydrogen atoms from various biomolecules;
subsequent reactions of the radical products will lead to
peroxidation, carbonylation, or decomposition of these mol-
ecules. Catalyzed by myeloperoxidase, excess H2O2 may also
react with chloride ions, yielding hypochlorous acid that may
lead to the chlorination of various building blocks of the cell.
These irreversible modifications do not occur randomly, in-
stead various proteomic screenings suggest both target and
side chain specificity for them as well, summarized, for in-
stance, in (114, 242, 458, 622, 788).

Although the concept of ‘‘oxidative stress’’ as damage that
arises from disturbed redox signaling/regulation reactions is
based on an overwhelming body of knowledge and evolved
for a long time, it was not explicitly written out before 2005/
2006 (227, 354).

II. Mammalian Trx Family Proteins in Health and Disease

A. Specific pathways

1. Apoptosis. Trxs, Grxs, and Prxs have been implied in
many aspects of programmed cell death prevention and in-
duction, as mentioned earlier and as exemplified next. Please
see also section II.B.12 for their role in degenerative disorders.

a. Cytosolic pathways. ASK1 is a MAP kinase kinase kinase
that leads to the activation of JNK and p38 MAP kinase
pathways, for instance, during tumor necrosis factor (TNF) a-
induced apoptosis (317). ASK1 is activated by ROS through
signal transduction via Trx1 and/or Grx1. Reduced Trx1 and
Grx1 bind to N- and C-terminal domains of ASK1, respec-
tively, thereby inhibiting its kinase activity (Fig. 8). Oxidation
of Trx1 or Grx1 leads to the dissociation of the complex and
activation of the kinase (670, 731, 732). In addition, binding of
reduced Trx1 to ASK1 targets the kinase for ubiquitination
and degradation (443). In agreement with a function as en-
dogenous Trx1 inhibitor, silencing of Txnip expression at-
tenuated high glucose-induced apoptosis and activation of

ASK1 in mouse mesangial cells (710) and dexamethason-
mediated apoptosis of insulin-producing cells (631). Thus,
Trx1 and Grx1 act as redox signal transducers for the induc-
tion of apoptosis via the JNK and p38 MAPK pathways.

Caspases, the executors of apoptosis, belong to the class of
cysteine proteases, whose activity critically depends on the
presence of a thiolate in their active site (72). This requirement
makes them vulnerable to redox modifications such as S-ni-
trosylation and S-glutathionylation (307, 465). Trx1 catalyzes
the trans-nitrosylation or denitrosylation of caspase-3, there-
by regulating protease activity (53, 502). Silencing of Grx1
significantly inhibited TNF-a-induced endothelial cell death
because of attenuated caspase-3 cleavage, for example, by
caspase 8, concomitant with increased caspase-3 glutathio-
nylation, apparently also of cysteinyl residues outside the
active site (571).

Increasing evidence suggests diverse functions of the cy-
tosolic Prxs in redox signal-induced apoptosis. Cisplatin is a
chemotherapeutic that is effective in the treatment of several
tumors. Prx1-deficient embryonic fibroblasts were sensitized
to cisplatin-induced apoptosis, displayed an increased acti-
vation of p38 and JNK, and reduced extracellular signal-reg-
ulated kinase (ERK) activation. Thus, Prx1 modulated the
cisplatin-induced MAP kinase activation that leads to apo-
ptosis (459). Mammalian Ste20-like kinase-1 (MST1) mediates
p53-dependent H2O2-induced cell death. Morinaka et al.
showed that H2O2 generation by cisplatin caused Prx1 olig-
omer formation, dependent on the presence of p53, and sub-
sequently MST1 activation (517). Inhibition of Prx1 by a
recombinant antibody induced apoptosis in A549 lung carci-
noma cells and sensitized these cells to radiation (248). Prx2
inhibited granulosa cell apoptosis during follicle atresia
through the NF-jB pathway (844). Down-regulation of Prx2
expression contributed to angiotensin II-mediated podocyte
apoptosis (304). Transgenic over-expression of Prx4 protected
mice against high-dose streptozotocin-induced death of
pancreatic b-cells (154). TNF-related apoptosis-inducing li-
gand (TRAIL) signaling repressed Prx4 at the transcriptional
level, and over-expression of Prx4 suppressed TRAIL-in-
duced apoptosis. Deficiency of Prx6 in lens epithelial cells
evoked unfolded protein response and apoptosis (179) and
over-expression attenuated cisplatin-induced apoptosis in
human ovarian cancer cells (566).

b. Mitochondrial pathways. Cardiolipin is a phospholipid
that is specific for energy transducing membranes such as the
inner mitochondrial membrane and is important for the ac-
tivity of the complexes of the electron chain (209, 282, 645).
Importantly, cardiolipin anchors cytochrome c to the inner
mitochondrial membrane (644); loss of this lipid causes the
release of cytochrome c and to the induction of apoptosis as
monitored by activation of distinct caspases (69, 330, 745).
Short interfering RNA silencing of mitochondrial Grx2 in
HeLa cells sensitized these cells to cell death induced by
doxorubicin (50-fold) and phenylarsine oxide (40-fold), but
the cells did not show signs of a general increase in oxida-
tive damage, that is, protein carbonylation (435). HeLa cells
over-expressing Grx2 were less susceptible to apoptosis in-
duced by 2-deoxy D-glucose and doxorubicin. Grx2 pre-
vented the loss of cardiolipin and, therefore, cytochrome c
release and caspase activation (167). Corroboratively, trans-
genic mice over-expressing Grx2 displayed an attenuation of
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doxorubicin-induced cardiac inquiry, which was accompa-
nied by an increase in protein S-glutathionylation (155).

Trx2-deficient DT 40 cells derived from chicken undergo
apoptosis mediated by cytochrome c release and subsequent
caspase-9 and caspase-3 activation (759). Trx2-/- mouse em-
bryos showed massively increased apoptosis at 10.5 days and
died before day 12.5 along with the maturation of mitochon-
dria. It should be noted that even embryonic fibroblasts cul-
tured from Trx-/- embryos were not viable (552). WEHI7.2
thymoma cells with stable over-expression of Prx3 showed a
marked resistance to hypoxia-, H2O2-, tert-butyl hydroperox-
ide-, and imexon-induced apoptosis (551). Over-expression of
Prx3 also protected pancreatic b cells from apoptosis induced
by pro-inflammatory cytokines or streptozotocin (820).

2. Proliferation. Both Trxs and Grxs were initially dis-
covered as electron donors for RNR (Fig. 1), an essential en-
zyme for DNA synthesis and thus proliferation.

Dysregulated proliferation is one hallmark of tumor for-
mation. Several members of the Trx family, that is, Trxs, Grxs,
and Prxs, have been suggested to fulfill crucial functions
during carcinogenesis, including promotion of proliferation
and thereby tumor growth (see section II.B.12). This function
as growth factor has been determined not only in cancer cells,
but also in normal hepatocytes and lymphocytes as well as in
murine fibroblasts (540, 555, 798). Proliferation of human
adipose tissue-derivedmesenchymal stem cells was increased
by over-expression of both Trx1 and Trx2, whereas knockout
of these proteins inhibited proliferation (733). However,
treatment with recombinant Trx1 and high expression of Trx1
was also described to induce growth arrest in liver cells (656).
Extracellular applied Trx1—alone or in concert with inter-
leukins (ILs)—stimulated the proliferation of human B cells
immortalized by the Epstein-Barr virus via activation of pro-
tein kinase C, indicating an important role of Trx1 not only in
the permanent growth of Epstein-Barr virus-infected B cells,

FIG. 8. Trx, Txnip, and Grx in MAP kinase and NF-jB signaling. Txnip, whose expression is promoted by glucose via
MondoA:MLX signaling and repressed by FOXO1a, was suggested to be a negative regulator of reduced Trx1. Left side: Trx and
Grx as negative regulators of apoptosis signal-regulating kinase 1 (ASK1)–ASK1 is a mitogen-activated protein (MAP) kinase
kinase kinase that signals downstream to the c-Jun N-terminal kinase ( JNK) and the p38 MAP kinase pathways viaMAP kinase
kinases 3, 4, 6, and 7. Reduced Trx1 and Grx1 can bind to ASK1, leading to an inactive complex. Oxidation of Trx1 and/or Grx1
by various redox signals leads to dissociation of the complex and activation of ASK1. Moreover, the Trx1/ASK1 complex is
targeted for ubiquitination and degradation. Right side: Redox regulation of NF-jB activation–the NF-jB subunit p50 contains a
cysteine (Cys 62) in its DNA binding site that is susceptible to oxidation. After dissociation of the I-jB/NF-jB complex, which is
not only promoted by phosphorylation of I-jB in response to a variety of signals but also inhibited by reduced Trx1, NF-jB is
translocated to the nucleus. In the nucleus, reduction of Cys62 in the p50 subunit of NF-jB is necessary for binding of the
transcription factor to its target site in the DNA. In the nucleus, Trx1, Grx1, and Nrx (not shown) have been reported to promote
NF-jB binding to the jB site in the DNA. NF-jB, nuclear factor kappa B; Nrx, nucleoredoxin; Txnip, trx interacting protein.
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but also for cell growth of Epstein-Barr virus negative cell
lines (47, 63, 798). Trx1 might promote proliferation by in-
creased expression and stimulation of different growth factors
and proliferation-associated transcription factors such as ILs,
FGF, ERK1/2, TNF-alpha, p53, NF-jB, AP-1, or Nrf2 (206,
480, 509, 609, 685, 733, 751, 787). Although it remains elusive
whether all interactions with the listed factors are directly
connected to the proliferative effect of Trx1, a crucial role of
Trx1 during cell cycle progression appears likely (509).

Usually, Trx1 activity depends on the presence of TrxR1.
Mouse hepatocytes lacking TrxR1 displayed normal supply of
electrons to RNR to support DNA replication and normal
proliferative growth, indicating that TrxR1 might be dis-
pensable under certain conditions (649). In mouse liver lack-
ing TrxR1, GSH was essential, indicating that the GSH- and
TrxR1-dependent pathways constitute complementary sys-
tems of supporting RNR in this organ (611). The important
role of GSH for the cellular proliferation was recognized de-
cades earlier (403, 440); depletion of total GSH induced cell
cycle arrest (171). GSH, when transported into the nucleus,
seems to have a profound impact on cell cycle progression
and gene expression; for details, see (153, 468).

Grx1 was suggested to be involved in controlling cell pro-
liferation in mouse primary lens epithelial cells (445). Grx3-
deficient mouse embryonic fibroblasts exhibited defects in cell
cycle progression during late mitosis, one potential reason for
early embryonic lethality of Grx3 knockout (116).

In human mammary epithelial cell lines, higher expression
of Prx1 positively correlated with the proliferation rate (612).
c-Abl and c-Myc were identified as interaction partners of
Prx1, suggesting that Prx1 promotes proliferation via these
important cell cycle regulating proteins (531, 810). Indeed,
over-expression of Prx1 altered the transcription profile of c-
Myc target genes (531). Moreover, it was proposed that
phosphorylation of Prx1 by cyclin-dependent kinase 2 is an
important regulatory mechanism during cell cycle progres-
sion, as the modified Prx1 was detectable during mitosis, but
not during interphase (113).

Nrx inhibits activity of the Wnt/b-catenin pathway, a sig-
naling pathway promoting proliferation. Not surprisingly,
Nrx silencing accelerated proliferation (213).

3. Iron metabolism. Iron is an essential trace element that
is required for a number of protein co-factors, including, for
instance, heme and iron-sulfur centers. On the down side,
ferrous iron in its free form is an efficient catalyst of the Fenton
reaction, generating OH$ radicals from H2O2. The reaction of
OH$ radicals with proteins, lipids, and nucleic acids generates
other radical species that subsequently lead to peroxidation,
carbonylation, or fragmentation of these biomolecules (Fig. 6).
It is, therefore, not surprising that the dysregulation of iron
metabolism was implied in the pathophysiology of various
human diseases, including Alzheimer’s disease (AD) (5, 460),
Friedreich’s Ataxia (570, 816), hemochromatosis (59, 94), and
Parkinson’s disease (PD) (60, 126).

a. Iron sulfur Grxs. Human mitochondrial Grx2 was the
first Grx that was identified to complex a [FeS] cluster (433).
This, in many aspects unusual Grx (active site Cys-Ser-Tyr-
Cys), contains a redox inactive [2Fe2S]2 + cluster that bridges
two Grx2 molecules to form a dimeric holo Grx2 complex
(Fig. 9). The [FeS]-bridged dimer lacks enzymatic activity, but

degradation of the cluster and dissociation of the holo com-
plex activated the protein. Slow degradation of the complex
under aerobic conditions was efficiently prevented by GSH.
GSSG promoted cluster degradation and thereby activation of
Grx2 (433). The biochemical analysis of several mutants
demonstrated that the iron-sulfur cluster is complexed by the
two N-terminal active site thiols of two Grx2 monomers and
two molecules of GSH which are bound noncovalently to the
proteins and in equilibrium with GSH in solution (56). The
structure of the dimeric holo Grx2 complexwas solved by X-ray
diffraction (Fig. 9A) (348). Astonishingly, hardly any direct
molecular interactions between the two protein monomers
could be identified. Besides one hydrogen bond and two small
hydrophobic interactions, all molecular interactions contribut-
ing to the holo complex involve the GSH molecules. The two
GSHmolecules efficiently shield the iron from the solvent. Only
one of the sulfur atoms of the [FeS] cluster is solvent exposed.
Hence, the [2Fe2S] cluster may not be able to react with redox
compounds that require direct molecular interactions with iron
such as H2O2. Instead, degradation of the cluster in response to
oxidative signals more likely occurs through the formation of
GSSG (see above). Similar to human Grx2, many, if not all,
monothiol Grxs (active site Cys-Gly-Phe-Ser) can form the di-
meric holo [FeS] complex (Fig. 9B–D) (271, 490, 603). The
properties that permit some Grxs to form the [FeS] bridged
dimeric holo complex are likely due to the exchange of the active
site Pro. This exchange allows a higher flexibility of the main
chain in the active site area, providing enough room for the
noncovalent binding ofGSHand cluster coordination (181, 348).
For human Grx2, a function as redox sensor of the [FeS] cluster
was suggested, because redox-induced cluster decay activated
the oxidoreductase (56, 433); the functions of themonothiolGrxs
appear to lie primarily in iron metabolism (see below).

Another amino acidwhose presence preventsmetal binding
in the active site of Trx family proteins is the cis-proline (743).
Exchange of this prolyl residue not only in human Grx1, but
also in human Trx1 resulted in a [FeS] cluster coordinating
protein. Moreover, mutation of the Thr-X-X-Cys active site in a
Prx, Prxs do not contain the cis-proline, to a Cys-X-X-Cys active
site resulted in a [FeS] cluster coordinating protein as well.

b. Biogenesis of iron-sulfur centers. The biogenesis of iron-
sulfur centers in eukaryotic cells is an essential function of
mitochondria (436). Initially, iron-sulfur centers are synthe-
sized on the scaffold protein Isu (IscU or NifU in bacteria). In
the next step, these newly assembled [FeS] units are trans-
ferred to apo-proteins with the help of a DnaK- and DnaJ-type
chaperone couple (437).

Knockout of mitochondrial monothiol Grx5 in yeast led to
iron accumulation in the cell and inactivation of iron-sulfur
center-containing enzymes (647). These defects could be
suppressed by over-expression of the Hsp70/DnaK-type
chaperone Ssq1 and the potential alternative [FeS] scaffold
Isa2. Moreover, depletion of Grx5 led to an accumulation of
iron loaded onto the scaffold protein Isu1, implying a function
of Grx5 in the transfer of [FeS] clusters from the scaffold to
apo-target proteins (521). A hypochromic anemia mutant of
zebrafish (Shiraz) lacking Grx5 and a human sideroblastic-
like microcytic anemia patient with reduced Grx5 levels
provided strong evidence that this function of yeast Grx5 was
conserved in vertebrate species; in both cases, impaired [FeS]
cluster assembly resulted in defects in heme biosynthesis (95,
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817). The exact biochemical function of Grx5 in [FeS] center
biosynthesis, however, remains to be established.

The lack of both mitochondrial Prx and mitochondrial/
cytosolic dithiol Grx in yeast led to the induction the Aft1 iron
regulon, despite optimal mitochondrial [FeS] biogenesis. A
crosstalk between the dysfunction of mitochondrial redox
homeostasis and the cytosolic iron regulation was thus sug-
gested (486).

c. Regulation of iron metabolism. Vertebrate cells evolved a
post-transcriptional regulatory mechanism for the expression
of proteins involved in iron homeostasis and iron cofactor
biosynthesis based on iron regulatory proteins (IRP) 1 and 2,
reviewed for instance in Refs. (276, 572, 652). Loss of Grx5 in
the zebrafish Shiraz mutant impaired mitochondrial [FeS]
cluster assembly and promoted activation of IRP1. To some
extent, knock-down of IRP1 restored hemoglobin synthesis in
the Grx5 mutant, demonstrating a crosstalk between hemo-
globin production and the mitochondrial [FeS] cluster as-
sembly machinery (817) (Fig. 9E).

During exposure to nitric oxide the iron regulating function
of both IRP1 and IRP2 is disrupted (161, 808). This dysregu-
lation of $NO-modified IRPs was restored by Trx1 in vitro and

in cell cultures, indicating a crucial role of Trx as a modulator
of IRP activity (559).

d. Intracellular iron distribution. As late as 2 years earlier,
essentially nothing was known on how cells manage to pas-
sage iron safely to the various iron-dependent processes in the
different subcellular compartments. Only recently, strong evi-
dence was presented for an essential function of the cytosolic
multi-domain monothiol glutaredoxins Grx3 and Grx4 in cel-
lular iron trafficking in yeast (522). Combineddepletion ofGrx3
and Grx4 specifically impaired all iron-dependent reactions in
the cytosol, mitochondria, and nucleus. These defects were
caused by insufficient iron insertion into proteins and organ-
elles, despite accumulation of cytosolic iron. Thus, in the ab-
sence of Grx3 and Grx4 iron, even though sufficient amounts
were taken up into the cells, iron was not bioavailable. The
ability of the monothiol Grxs to bind a [FeS] cluster themselves
was an absolute requirement for this function (522).

B. Tissues, organ systems, and diseases

1. Development. Oxygen concentrations and ROS levels
are known to affect cell fate and embryonic development. The

FIG. 9. [FeS]-Grxs in cellular iron metabolism. (A) Structure of the holo-Grx2 complex consisting of two monomers Grx2
(cartoon graphics), two GSH molecules (ball and stick model), and the [2Fe2S] cluster (calotte model), derived from PDB
entry 2HT9 (348). (B, C) Structures of the holo-Grx5 complex depicted as dimer (B) and tetrameric holo complexes (C),
derived from PDB entry 2WUL (350). (D) Hypothetical model of the dimeric Grx3 holo complex (271). (E) Iron taken up into
the cell, simplified in [1], is shuttled through the cytosol, presumably involving Grx3 [2]. Inside mitochondria, iron is used, for
instance, for the biogenesis of iron-sulfur clusters [3] on a scaffold protein and transferred to target apo-proteins [4] in a
reaction that requires Grx5. The export of iron-sulfur clusters in a hitherto unknown form requires GSH [5]. This compound X
is used by the cytosolic iron-sulfur cluster assembly machinery for the synthesis of cytosolic and nuclear FeS proteins [6]. [7]
Grx2 is usually present in the enzymatically inactive FeS-bridged dimeric holo form. On redox signals, the FeS cluster
dissociates, yielding active monomeric Grx2.
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expression of proteins of the Trx family was also shown to be
important, because protein deficiency is correlated with se-
vere and often fatal phenotypes (Table 2). Trx1 knockout in
mice was lethal due to its importance in early differentiation
and morphogenesis. These mice died already at embryonic
day E3.5 (474). Deletion of mitochondrial Trx2 was also lethal.
Due to increased apoptosis, homozygous mice die between
E10.5 and E12.5, which coincides with maturation of mito-
chondria (552). In contrast, Txnip, the suggested endogenous
inhibitor of the Trxs, was not essential for embryonic devel-
opment (856). Grx1 knockout mice were viable (301), while in
zebrafish, Grx2 has an important impact on embryonic brain
development. Knock-down inhibited the outgrowth of axons
and leads to neuronal apoptosis and subsequent impaired
formation of a functional neuronal network (75). Grx3
knockout is lethal between E12.5 and E14 (105, 116). Most
likely, Grx3 deficiency induces defects in cell cycle progres-
sion during late mitosis (116). Grx3 was identified as a direct
target of serum response factor, indicating that Grx3 is im-
portant during early embryonic development of cardiac tissue
(865). The mitochondrial monothiol Grx5 is also important for
embryonic development and essential for [FeS] cluster and
heme biosynthesis (section II.A.3) (817).

Transgenic mice lacking Prx1–4 and 6 were viable, but
showed signs of increased ROS levels (328, 422, 438, 545, 802).
In addition, Prx1 controls motor neuron differentiation in the
spinal cord of chick embryos via redox-dependent regulation
of glycerophosphodiester phosphodiesterase 2 (GDE2) activ-
ity, a transmembrane protein that is essential for motor neu-
ron differentiation (846).

Nrx knockout mice show skeletal and cardiovascular de-
fects and die around birth (216). In Xenopus embryos, it was
shown earlier that Nrx interacts with dishevelled to regulate
both Wnt/b-catenin and Wnt/planar cell polarity pathways
during embryonic development (Fig. 10) (213, 214). Wnt sig-
naling is one of the central pathways during embryogenesis

(750). In addition, Nrx also regulates via an interaction with
Flightless-1 (Fli-1) TLR-4 signaling, another important path-
way during embryogenesis (272).

The electron donors of both the Trx and Grx system, TrxR
and GSH, were essential for embryonic development. Mouse
embryos lacking TrxR1 died between E8.5 and E10.5 because
of impaired cell proliferation or gastrulation, respectively
(332). TrxR2-/- mice displayed a severe anemic phenotype
and partial growth retardation and died between E13.5 and
E15.5 (135). However, these phenotypes were less severe
compared with Trx1 or Trx2 knockout mice (see above), in-
dicating that Trx functions during embryonic development
are not entirely dependent on the respective TrxR. GSH, the
electron donor of Grxs, is synthesized in two steps. Mice
lacking either c-glutamylcysteine synthetase or GSH synthase
died latest at E8.5 (711, 818). Lack of GSH resulted in failed
gastrulation, impaired formation of the mesoderm, and death
because of increased apoptosis rather than reduced cell pro-
liferation (711), confirming earlier studies claiming crucial
functions for GSH during early embryonic development
(221).

2. Central nervous system.

a. Expression profile of Trxs, Grxs, Prxs, and related proteins
in the CNS. Cells of the nervous system are particularly sus-
ceptible to oxidative damage due to their high oxygen con-
sumption and metabolic activity that are accompanied by a
reduced cellular regeneration capacity and the presence of
redox sensitive molecules such as neurotransmitters and
polyunsaturated lipids. Indicators of ROS-induced damage
have been reported in the three most widespread neurode-
generative diseases, that is, PD (17, 146, 152, 684), AD (525,
620), and amyotrophic lateral sclerosis (ALS) (40, 188).

Trx family proteins are expressed in various areas of the
mouse, rat, and human brain (for a more detailed comparison

Table 2. KnockOut Phenotypes of Trx Family (and Related) Proteins

Gene Protein Embryonically lethal? Phenotype(s) References

TXN1 Thioredoxin 1 Yes Died before implantation (474)
TXN2 Thioredoxin 2 Yes, E10.5–12.5 Massive apoptosis at the onset of respiration;

open anterior neural tube
(552)

TRXR1 Thioredoxin
reductase 1

Yes, E9.5–10.5 Reduced proliferation; reduced body size;
cerebellar hypoplasia

(332, 552)

TRXR2 Thioredoxin
reductase 2

Yes, E13.5–15.5 Reduced in size; anemic; reduced hematopoiesis;
thinning of the ventricular myocardium, septum,
and trabeculae; pleiomorphic and spongiform liver

(135, 298)

TXNIP Thioredoxin
interacting protein

No Hypoglycemic; hypoinsulinemic; defects in the
glucose metabolism of hepatocytes

(856)

NXN Nucleoredoxin No Skeletal and cardiovascular defects (216)
GLRX1 Glutaredoxin 1 No No obvious phenotype (301)
GLRX2 Glutaredoxin 2 No Mouse—unpublished; loss of neurons and axonal

scaffolds in zebrafish embryos
(75, 826)

GLRX3 Glutaredoxin 3 Yes, E12.5–E14.5 Reduced body size; hemorrhage in the brain (105)
GLRX5 Glutaredoxin 5 (Yes in D. rerio) Anemia; iron overload (817)
PRDX1 Peroxiredoxin 1 No Hemolytic anemia at 9 months; more oxidative

damage; more malignant tumors
(393)

PRDX2 Peroxiredoxin 2 No Splenomegaly; abnormal erythrocyte morphology (369)
PRDX3 Peroxiredoxin 3 No Reduced body weight (438)
PRDX4 Peroxiredoxin 4 No Atrophic testes; otherwise, no obvious phenotypes (328)
PRDX6 Peroxiredoxin 6 No No obvious phenotype (802)
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of the expression patterns, see Table 3). With certain excep-
tions, for instance the mouse striatum, the redox proteins
seem to be ubiquitously expressed in the murine and human
brain. Certain redox proteins show strong nuclear staining in
different brain regions, as described for Trx1, Grx1, Grx3, and
Nrx in the mouse. Other proteins such as Prx2, Prx3, and,
most notably, Prx6 show a typical astroglial staining in dif-
ferent areas of the brain (26, 143, 235). Prx1 was reported to be
localized in glial cells of several human brain regions, whereas
in neurons, it was essentially not present (678). The same
study described a reciprocal staining pattern for Prx2, which
was exclusively expressed in neurons but not in glia. Mizu-
sawa et al. identified the localization of Prx1 to be restricted to
oligodendroglia and Schwann cells, whereas most neurons
appeared to be negative (508). In an earlier study, Prx1 im-
munoreactivity was detected in oligodendrocytes in several
regions of the brain (347). Prx2 is highly expressed in the

hippocampus and cerebral cortex of rats and humans (26, 143)
and was previously reported to be present in NeuN-positive
cells in the CA3 region of the hippocampus and thalamus, as
well as in neurons of the gray matter in the hippocampus,
cerebral cortex, and thalamus of themouse (347). In themouse
CNS, Trx2 was specifically detected in axonal fibers in the
cerebral cortex, striatum, and white matters of the cerebellum
and spinal cord, in contrast to the functional-related protein
TrxR2, which was present in the cell bodies (235). This ob-
servation may imply more specific functions of Trx2 inde-
pendently of its reductase, for instance, in mitochondria that
are distributed along axons. Using in situ hybridization, Lip-
poldt et al. demonstrated transcription of Trx1 in neurons of
the cerebral cortex, the piriform cortex, the medial preoptic
area, the CA3/CA4 region of the hippocampal formation, the
dentate gyrus, the paraventricular nucleus of the hypothala-
mus, the arcuate nucleus, the substantia nigra pars compacta,
the locus coeruleus, the ependyma of the 4th ventricle, and the
epithelial cells of the choroid plexus (441).

Padilla et al. reported the immunolocalization of Trx1 and
Grx1 in the hypophysis (563). Trx1 and Grx1 were promi-
nently detected in the folliculo-stellatae cells of the adenohy-
pophysis, while only aminor proportion of the glandular cells
were stained. In the pituicytes and the clusters of synaptic
terminals of the neurohypophysis, Trx1was intensely stained.
Grx1 immunoreactivity, in contrast, was detected in the
neurosecretory terminals and Herring bodies.

In the dopaminergic neurons of the substantia nigra from
mouse and rat, strong immunoreactivities were reported for
Trx1, Trx2, Grx1, and Grx2 (26, 235). Using confocal micros-
copy, co-localization of these proteinswith the specificmarker
tyrosine hydroxylase (TH) was demonstrated (Godoy and
Lillig, unpublished data). The most notable observation was
the high correlation between Grx2 and the cytosolic-localized
TH, pointing out the presence of a cytosolic isoform of Grx2 in
these neurons, likely Grx2c. By in situ hybridization and im-
munofluorescence, Grx2 was identified in both neurons and
glia cells of mouse brain and co-localized with TH in the
substantia nigra as well (371).

In the Purkinje cells as well as in different layers of the
cerebellum, Trx1, TrxR2, and Prx1 were strongly detected (26,
143, 235).

Some of the Trx-related redox proteins were detected in
areas of the central nervous system where active secretion
takes place. In the plexus coroideus of themouse, Grx3, Prx3,
Prx5, Nrx, and Trx1 were notably expressed. Trx1 and Nrx
are also strongly expressed in the ependymal cells of the
cerebral ventricles (235). Active secretion of Trx1 was re-
ported for a variety of cells (655), and increased Trx1 plasma
levels have been detected in many diseases (342, 363, 542,
543). The putative presence of Trx1 in the cerebrospinal
fluid might contribute to the defense of the central nervous
system.

Trx1, Prx1, and Prx5 were strongly expressed in the motor
neurons of the mouse and rat spinal cord (26, 235). In the
mouse spinal cord, some of the proteins (i.e., Grx1, Prx3, and
Nrx) were abundantly present in both the gray and the white
matter; whereas other, such as Trx2, showed a clear regional
distribution, beingmost notably expressed in thewhitematter
(235). Prx2was detected in the cytoplasm, proximal dendrites,
and nuclei of anterior horn neurons of human, rats, and mice
(374).

FIG. 10. Nrx in Wnt/Dvl and Toll-like receptor 4 (TLR4)
signaling. Nrx was shown to suppress the Wnt/b-catenin
pathway, which is involved in embryonic development and
cancer. Secreted Wnt proteins bind to receptors of the Friz-
zled family and activate a signaling cascade. This process
involves the cytosolic dishevelled (Dvl) protein, which in-
hibits the glycogen synthase kinase-3 (GSK3)-containing
destruction apparatus and thereby phosphorylation and
degradation of beta-catenin (b-cat). b-cat translocates into the
nucleus and activates the transcription of Wnt-regulated
target genes. Reduced Nrx binds to Dvl and suppresses
Wnt/b-catenin signaling, whereas via ‘‘redox signals’’ oxi-
dized Nrx does not. Similarly, reduced Nrx can inhibit TLR4
signaling, which is essential for embryonic development and
the innate immune response. Lipopolysaccharide (LPS)
stimulates the oligomerization of TLR4, inducing the re-
cruitment of signal transduction adaptor proteins, such as
myeloid differentiation primary response protein (MyD88).
MyD88 activates a cascade of IKK and MAP kinases, leading
to the phosphorylation and degradation of the inhibitor
protein IjB, translocation of NF-jB (comprising subunits p65
and p50) into the nucleus, and activation of target genes.
Reduced Nrx binds to Flightless-1 (Fli-1), forming an inhib-
itory complex with Myd88, suppressing TLR4-signaling.
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b. Trxs, Grxs, Prxs, and pathologies of the CNS. In this sec-
tion, we summarized the role of Trx family members in cel-
lular and animal models, as well as in patients suffering, from
AD, PD, ALS, ischemia/stroke (see also section II.B.11 for
details on hypoxic insults), and neuroinflammation.

Amyloid b treatment, a common model for AD, led to ox-
idation of Trx1 in the neuroblastoma cell line SH-SY5Y (16).
Over-expression of Trx1 protected SH-SY5Y cells aswell as rat
primary hippocampal neurons against amyloid b-induced cell
death (16, 450). Trx1 expression was suppressed in a rat
pheochromocytoma cell line (PC12) after treatment with
1-methyl-4-phenylpyridinium (MPP+ ), an active metabolite
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which
causes Parkinsonism (36). Over-expression of Trx1 attenuated
MPP + -induced neurotoxicity of PC12 cells (36). Trx1 is also
induced after cerebral ischemia induced by middle cerebral
artery occlusion (399), andmice over-expressing Trx1 showed
attenuation of apoptosis and thereby neuroprotection after
both permanent and transient focal ischemia (752, 868). Infarct
volume and neurological deficits after transient focal ischemia
were also ameliorated by an intravenous injection of recom-
binant human Trx1 in mice (269). In patients, during amnestic
mild cognitive impairment, a transition stage between normal
aging and AD, as well as in several regions of Alzheimer’s
brains, Trx1 protein levels were markedly decreased (16, 159,
450). In contrast, Cumming et al. reported no significant dif-
ferences in Trx levels between control and AD patients (138).
Trx1 levels were elevated in diseases associated with neu-
roinflammation, for example, in cerebrospinal fluid and blood
of multiple sclerosis patients (592), and in spinal cords of ALS
patients (462).

Although mitochondrial integrity is crucial for the pro-
gression of most of the neurological diseases, almost nothing
is known about the role of the mitochondrial Trx2, except for
the finding that Trx2 levels increased in hippocampus of
gerbils after ischemia reperfusion (316). The electron donor of
Trx2, TrxR2, is not essential for the development of the central
nervous system. Mice lacking TrxR2 specifically in the ner-
vous system developed normally, whereas nervous system-
specific deletion of TrxR1 displayed massive malformation of
the hippocampus and cerebellum, resulting in ataxia and
tremor (724). Treatment of rat primary hippocampal neurons
with TrxR1 attenuated amyloid b-mediated toxicity (450). In
Alzheimer’s patients, TrxR1 activity was generally enhanced
compared with controls (450), whereas TrxR1 levels in the
cerebrospinal fluid and blood of multiple sclerosis patients
were decreased (592). Moreover, single-nucleotide polymor-
phisms of the TRNRD1 gene were significantly associated
with familial ALS (503).

Amyloid b treatment of SH-SY5Y cells led to the oxidized of
both Trx1 and Grx1. Over-expression of Grx1 protected SH-
SY5Y cells against amyloid b-induced cell death (16). Several
proteins have been described to be involved in PD develop-
ment and progression. The expression of one of these proteins,
DJ-1 (137), correlates with the expression of Grx1 (665). In a
mouse model for PD based on MPTP toxicity, loss of dopa-
minergic neurons was associated with inactivation of mito-
chondrial complex I, a hallmark of the disease. Recovery of
complex I activity correlated with an increase of Grx activity
after MPTP treatment (376). Although knockout of both Grx1
andGrx2 inhibited this recovery (371, 376), over-expression of
Grx2 diminished MPTP-nduced neuronal apoptosis via de-

creased complex I activity (371, 419). Aggregation of mutant
SOD1 has been proposed as one reason for the degeneration
of motoneurons during ALS. Over-expression of both Grx1
and Grx2 in immortalized motoneurons increased solubility
of mutant SOD1, but only Grx2 protected against subsequent
apoptosis (191). After induction of focal ischemia in rat brains,
Grx1 levels decreased parallel to the rate of neuronal damage
(752). In Alzheimer’s brain tissue, Grx1 was up-regulated in
healthy neurons of the hippocampus and the frontal cortex,
but down-regulated in degenerating neurons (16).

De-/glutathionylation, specifically catalyzed by Grxs (see
also section I.C.3), is associated with several aspects of neu-
rodegeneration, such as apoptosis, mitochondrial function,
and plaque formation, summarized for instance in (661).
Several studies demonstrated the important role of GSH in
pathologies of the central nervous system. Amyloid b treat-
ment of SH-SY5Y cells decreased the total cellular GSH
amount (16). In the substantia nigra of Parkinson patients, not
only total GSH levels were decreased, but also GSH was
virtually absent. This loss of GSH is one of the first signs of the
disease (597, 598). Knock-down of GSH synthesis in PC12
cells, rat dopaminergic N27 cells, as well as in mice by cate-
cholaminergic neuron-specific down-regulation of c-glutamyl
cysteine ligase, the rate-limiting enzyme in the de novo GSH
synthesis, resulted in inhibition of complex I activity (127, 305,
340, 419). These data highlight the importance of the GSH/
Grx system in the maintenance of mitochondrial function in
the early onset of PD.

In amyloid b-resistant clones of the PC12 cell line, Prxs1, 2,
and 6 expression was significantly increased. PC12 cells and
primary neurons over-expressing Prx1 exhibited attenuated
amyloid b and MPP+/MPTP toxicity (138, 615). Treatment
with 6-hydroxydopamine (6-OHDA) led to an oxidation of
Prx1. Increased levels of Prx1 as well as Prx2 protected do-
paminergic cells both in vitro and in vivo against 6-OHDA-
induced apoptosis, whereas silencing of Prx1 sensitized the
cells (315, 423). In addition, elevated Prx2 levels protected
against amyloid b toxicity in a transgenic mouse model for
AD (847). In whole brain samples, the expression levels of
Prx1 and Prx2 were elevated in Alzheimer’s patients (138,
381). Two other studies, however, could not confirm a higher
Prx1 expression in Alzheimer’s brains (406, 746). Prx2 levels
were also increased in the hippocampus and the frontal cortex
of AD patients (746), in substantia nigra of PD patients (44),
and in motor neurons during ALS (374). Prx3 expression was
decreased in the brains of Alzheimer’s patients and in the
motor neurons of ALS patients (381, 391). In addition, Prx4
was down-regulated inmotor neurons during ALS (391). Prx6
was up-regulated in astrocytes of AD patients and familial
ALS (608, 741). In PD patients, peroxidase activity of Prx2 was
inhibited by S-nitrosylation (174) and phosphorylation (615).
The redox states of Prx2 and Prx6 were more oxidized in the
brains and serum of Alzheimer’s patients (138, 853). In cir-
culating endothelial progenitor cells of ischemia stroke pa-
tients, Prx1 was tenfold higher expressed than in healthy
controls (76). Prx2, in rat brains down-regulated after cerebral
ischemia (399), protected against stroke-related insults, such
as ischemia and glutamate treatment in vitro and in vivo (70,
624). Prx3 was increased in the hippocampus of gerbils after
cerebral ischemia reperfusion and protected against ischemic
damage (316). Inflammation is known to be a characteristic for
several neurological diseases such as multiple sclerosis, ALS,
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and PD. Thus, the protection of Prx2 against neuroin-
flammation via suppression of pro-inflammatory signaling
pathways inmicroglia (556) may be become helpful to combat
these diseases. Based on the importance of the Trx family
proteins in other inflammatory processes (see section II.B.8), it
is likely that more of these proteins may protect against
neuroinflammation.

3. Sensory organs.

a. Expression profile of Trx-related proteins in sensory organs.
Sensory organs are directly exposed to various sources of
ROS. In this section, we will discuss expression patterns and
pathological implications of Trx family proteins in different
sensory organs, with emphasis on the eye, which has been the
most intensively studied so far. The ear, tongue, and olfactory
part of the nose have up to now only been sparsely investi-
gated with regard to the Trx, Grx, and Prx systems.

Both Trx1 and Grx1 were detected after E13.5 in the mouse
lens and retina (396). Trx1 and TrxR1 expression was also
demonstrated in neurons and photoreceptor cells in the de-
veloping rat retina (259). In adult rats, Trx1 was detected in
the outer and inner plexiform layers with especially strong
expression in the ganglionar cell layer but only faint staining
in the photoreceptors. In contrast, TrxR1 was primarily ob-
served in the photoreceptors (26). In the same study, no or
only weak immunoreactivities were detected for Grx2 and
Grx3 in photoreceptor cells. In the mouse eye, with the ex-
ception of cGCS, Trx family proteins were abundantly ex-
pressed in the corneal epithelium and stroma, the lens, ciliary
body, retina, and the underlying pigmented epithelium (235)
(Fig. 11A). In the retina, the layer of rods and cones showed
clear differences in the localization of certain Trx-related
proteins. The inner segment of the photoreceptors is rich in
mitochondria and was intensely stained for Grx1, Grx5, Prx5,
Trx2, and TrxR2. TrxR2 also displayed the strongest immu-
noreactivity in the outer photoreceptor segment (235). An eye-
specific Trx-like protein, the rod-derived cone viability factor
(RDCVF or Nrx-like protein 1, Nxnl1, see Table 1), was de-
tected in photoreceptor outer segments and the inter-
photoreceptor matrix (428). The outermost layer of the retina,
the retinal pigmented epithelium, functions in photoreceptor

nourishment and contributes to the formation of the blood-
retinal barrier (162). Several Trx-related proteins have been
detected in this epithelium, with the strongest staining de-
tected for Nrx (Fig. 11A). However, the high content of mel-
anin in these cells makes qualitative analyses of
immunoreactivities generally difficult.

Several Trx family proteins were detected in themouse lens
and cornea; Grx5 immunoreactivity was the strongest of all
analyzed proteins in the lens fibers (Fig. 11A) (235).

Most Trxs, Grxs, and Prxs have been observed in the
stratified squamous epithelium of the mouse tongue and the
underlying skeletal muscles (235). Grx1 was also detected in
the calf tongue by immunohistochemistry (653).

The olfactory epithelium of the developing mouse was in-
tensely stained for Trx1 and Grx1 at E13.5 (396). With the
exception of Prx2, proteins of the Trx family were abundantly
distributed in both the olfactory and the respiratory epithe-
lium of the mouse nose. An apparently nuclear staining was
described for Trx1, Prx1, and Prx6 but only in the outermost
cell layer of this epithelium (Fig. 11A). Protein expression of
Prx3 and Trx1 appeared very strong in ganglion cells, whereas
Prx4 and Prx6 were prominently stained in olfactory nerve
bundles (Fig. 11A) (235). Immunoreactivities for both Trx1
and TrxR1 were seen in epithelial cells, glands, and vascular
endothelium of human nasal mucosa and nasal polyps (421).

In the cochlea of guinea pigs, TrxR1 was expressed in the
inner and outer hair cells of the organ of Corti as well as in the
lateral wall and the neurons of spiral ganglion (275).

b. Pathologies of the eye. The next section focuses on the role
of Trxs, Grxs, and Prxs in pathological features that are
common for several diseases of the eye, for example, glau-
coma, age-related macular degeneration (AMD), retinopathy,
and cataract. Glaucoma is one of the leading causes of
blindness in the world that is connected to selective death of
retinal ganglion cells. The disease is characterized by an ele-
vation in intraocular pressure (IOP), which leads to increased
levels of glutamate and pro-inflammatory cytokines and
subsequently to deleterious formation of ROS (771). Diabetic
retinopathy and AMD are associated with hypertension-
induced oxidative stress and inflammation, causing loss of
vision (360, 448). Formation of cataracts, opaque areas of the

FIG. 11. Expression pattern of selected members of the Trx family in various organs of the mouse. (A) Sensory organs.
Upper panel: In the mouse eye, Trx1 is highly expressed in the corneal epithelium; Grx5 is intensely stained the lens fibers.
Prx6 immunoreactivities were detected in several layers of the retina (from the bottom up: layer of rods and cones, outer
nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, and ganglionar cells). Lower panel: Despite the
high melanin content in the retinal pigmented epithelium, Nrx staining in this layer is evident (arrows). Grx1 and Prx6 were
abundantly detected in the olfactory epithelium of the nose (arrows). Prx6 showed intense nuclear staining patterns in the
outermost layer of the olfactory epithelium and also appeared distributed in the olfactory nerve bundles (arrows). (B) Lymph
nodes and spleen. Upper panel: In contrast to the other members of the Trx family, which appear to be uniformly expressed in
the lymph nodes (Trx1 was weakly expressed, and Grx5 particular strongly expressed), Grx3 yielded a strong immunore-
activity that was concentrated in the germinal centers. Lower panel: Trx1, Grx5, and Grx3 immunoreactivity suggests nuclear
localization in the megakaryocytes of the mouse spleen (arrows). (C) Pancreas and duodenum. Trx1 and Grx5 show intense
nuclear staining in the islets cells (arrows). Prx2 was abundantly detected in intercellular spaces of both endocrine and
exocrine components of the mouse pancreas (arrows). In contrast to other tissues, where cGCS was weakly detected, the islets
of Langerhans show intense immunoreactivities. Note that this enzyme is absent from the exocrine part of the pancreas. In the
duodenal epithelium, Trx family proteins show a high variability in the compartmentalization. Trx1 and Prx5 appear
homogenously distributed within the cells, Whereas Grx5 and Nrx immunoreactivities seem to be concentrated in specific
areas of the cells, that is, the apical pole for Grx5 and the lateral sides for Nrx. As in the pancreas, Trx1 also shows a consistent
nuclear staining pattern in the duodenal epithelium (arrows). All pictures are derived from the freely accessible redox atlas of
the mouse (www.lillig.de/redoxatlas). INS, islets of Langerhans.
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lens, is mainly based on oxidative stress that is induced by
intrinsic factors such as hypertension, or by extrinsic factors
such as UV light exposure (782).

In the retina of albino rats, as well as inmice exposed to cell-
damaging high light, Trx1 and TrxR1 were increased (762,
764). In line, Trx1 expression and activity were increased in

the lens of a mouse model for human cataract after the
induction of photochemical oxidative stress (630). Over-
expression of Trx1 inmice, aswell as an intravitreous injection
of recombinant human Trx1, suppressed the reduction of
photoreceptors and the apoptosis induced by high light ex-
posure in mice retina (401, 763). Trx1 was down-regulated
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after IOP in a rat glaucoma model. Consistently, over-
expression of Trx1 attenuated cell death after IOP (526). Ad-
ministration of N-methyl-D-aspartate (NMDA) to mamma-
lian eyes stimulated glutamate receptors and induced retinal
damage, mimicking retinal ischemia and glaucoma (717). An
intravitreous injection of Trx1 effectively attenuated NMDA-
induced retinal cell damage (323). An NMDA injection into
the rat retina increased the levels of Txnip, the proposed Trx1
antagonist, which may contribute to inflammation and sub-
sequent apoptosis (19). Moreover, decreased levels of Txnip
attenuated early signs of diabetic retinopathy (595), and Txnip
expression levels increased after IOP (528). Over-expression
of Trx2 in the retina and the optic nerve attenuated degener-
ation after intra-ocular pressure (526, 527).

The absence of Grx1 worsened cataract morphology in
mouse lens after exposure to ultraviolet radiation (409, 493).
Knockout of Grx1 in rat Müller cells exposed to hyperglyce-
mia increased the pro-inflammatory response. Corrobora-
tively, over-expression showed the opposite effect. Grx1 may,
thus, be important for the protection against diabetic reti-
nopathy by regulating both autocrine and paracrine pro-in-
flammatory responses (704, 705). In general, knockout of Grx1
(445) and Grx2 (826, 827) in human lens epithel cells increased
oxidative stress-induced apoptosis; over-expression of Grx2
protected the cells (185, 827).

GSH was implied in several pathologies of the eye. GSH
levels were decreased in the retina of mice exposed to dam-
aging light (764), in rats with glaucoma (514), and both de-
creased and oxidized in the cataractous lens (107). Plasma and
whole blood of patients with AMD displayed reduced levels
of the total GSH pool and an increase of the GSH/GSSG redox
potential (136, 674); GSH treatment of cultured retinal endo-
thelial cells protected against oxidative damage (91).

In patients with diabetic retinopathy (see also section
II.B.9.a), Prx1 was increased in the vitreous (219). Nipradilol
and timolol, two drugs used in glaucoma therapy, induced
the expression of Prx2, thereby protecting cells of the tabe-
cular meshwork, the tissue surrounding the base of the cor-
nea, against H2O2-induced apoptosis (506). Prx3 was induced
in human and mouse lens cells after treatment with H2O2

(420). Over-expression of Prx5 in Xenopus embryos reduced
alcohol-induced eyemalformation, indicating that Prx5might
be involved in protection against alcohol-induced fetal ocular
injury (590). Over-expression of Prx6 attenuated hypoxia-in-
duced retinal ganglion cell death (784), and treatment of ret-
inal ganglion cells with Prx6 decreased glutamate and TNF-a
induced cell death (177). In primary human cells of the tabe-
cular meshwork, Prx6 levels were enhanced in glaucoma
patients with increased signs of inflammation (178). Prx6
levels were 10-fold decreased in cataractous lenses of rats and
mice (410). In addition, in patients, a negative correlation
between severity of cataracts and Prx6 expression was re-
ported (266, 567). Prx6-deficient lens epithelial cells were
sensitized to apoptotic cell death that was induced by UV-B
exposure, a major cause of the development of cataracts (411).
Over-expression of Prx6 delayed development of cataracts in
rat and mouse lenses (410).

c. Pathologies related to tongue, olfactory system, and ear. Trx1
was significantly increased in tongue squamous cell carci-
noma tissue (773, 871). TrxR1, as well as Prx1 and Prx6 levels
were also elevated in this type of malignancy (306, 842, 871).

For more details on Trx-fold proteins in cancer, see section
II.B.12.a.

No significant change of expression of Trx1 and TrxR1 was
detected in nasal polyps compared with normal human nasal
mucosa (421), whereas Grx1 was reported to be over-
expressed in nasal polyps, that is, in the surface epithelial cells
and the submucosal glandular cells (823). Levels of Trx1 were
positively correlated with the respiratory disturbance in pa-
tients with obstructive sleep apnea. After nasal continuous
positive airway pressure therapy, Trx1 levels significantly
decreased (754).

Several anticancer drugs induce ototoxicity. Cisplatin is
strongly ototoxic to cochlea hair cells in a guinea pig model,
likely by targeting TrxR1 (275). In these cochlea hair cells,
ototoxicity is induced not only by cisplatin, but also by gen-
tamicin. The toxicity was increased after depletion of Prx3
(128). Ménière’s disease is characterized by fluctuating hear-
ing loss and tinnitus. In patients with this disease, decreased
levels of Trx1 and the GSH/GSSG ratio were reported
(93). In families with sensorineural autosomal-recessive non-
syndromic hearing impairment, a splice-site mutation was
found, which leads to an impaired expression of the GRXCR1
gene (see Table 1) and that resulted in a protein with partial or
complete loss of its Grx domain (686). Interestingly, a muta-
tion in the same gene region was determined as a reason for
hearing loss in the pirouette mouse mutant (557).

4. Cardiovascular system.

a. Expression pattern of Trxs, Grxs, and Prxs in cardiovascular
tissue. In 1978, Trx1 was detected in hearts and erythrocytes
from a calf by a radioimmunoassay (292). Seven years later,
both Trx1 and TrxR1 were detected by immunohistochemis-
try in the cytosol of epithelial cells in adult rats (654). More
recently, investigations revealed that as early as embryonic
day E8.5, Trx1 and Grx1 are detectable in the heart and great
vessels of the mouse embryo, whereas most tissues were still
negative for these proteins. The myocardium and the wall of
great vessels showed strong immunoreactivities for Trx1 and
Grx1 and remained positive until adulthood (396). Recently,
several members of the Trx family have been detected in the
adult mouse and human heart (143, 235). In the mouse car-
diomyocytes, Trx1 and Grx3 showed a typical nuclear stain-
ing pattern, whereas Prx2 and TrxR2 were localized in the
intercellular space of cardiomyocytes, most probably in the
connective tissue (235). In the human heart, this expression
pattern of TrxR2 was not confirmed. The mitochondrial re-
ductase, as well as Prx1, was the only redox protein out of the
14 proteins analyzed as being absent from heart muscle cells
(143).

b. Trxs, Grxs, and Prxs in pathologies of the cardiovascular
system. The anti-apoptotic functions of Trx1 (see section
II.A.1) are related to its role in protecting cardiac tissue against
ischemia/reperfusion injury (see section II.B.11). This func-
tion is inhibited by nitration of Trx1 (769) as detected in dia-
betic (849) and aged hearts (864). In contrast, S-nitrosylation of
Trx1 increases protective effects (767). Since Trx1 knockout is
embryonically lethal for mice (see section II.B.1), the group of
Sadoshima decreased the activity of Trx1 in mice via expres-
sion of a dominant negative form of Trx1 in the cardiovascular
system (838). These mice displayed cardiac hypertrophy, a
risk factor for sudden death caused by heart failure, already
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without induction of this disease. In contrast, mice with car-
diac-specific over-expression of wildtype Trx1 were protected
against hypertrophy. Recently, the same group described that
Trx1 modulates cardiac hypertrophy via up-regulation of
miR98 transcription, which down-regulates cyclin D2, an es-
sential mediator of angiotensin II-induced cardiac hyperto-
phy (845). Trx1 activity potentially depends on the presence of
the endogenous inhibitor Txnip. Not surprisingly, modula-
tion of Txnip has opposite effects on the development of
cardiac hypertrophy as described for Trx1 (856, 857), although
Txnip-dependent regulation of cardiac hypertrophy is not
only related to Trx1 inhibition (856). Besides attenuated car-
diac hypertrophy, Txnip knockout mice display reduced in-
farct size after reversible coronary ligation (855, 856).
Interestingly, a recent genetic study revealed that individuals
carrying polymorphisms up-regulating Txnip expression
show increased susceptibility to hypertension (190). After
infarction, Trx1 is important for neovascularization, as seen
not only in over-expressing mice (6), but also in infarcted
myocardium in diabetic rat hearts in which Trx1 was in-
creased via intramyocardial administration of an adenoviral
vector encoding for Trx1 (675). This Trx1 gene delivery also
protected rats against cardiac failures associated with hyper-
tension (400). Over-expression of human Trx1 inmouse hearts
conferred protection against doxorubicin-induced cardio-
toxicity (707). It is important to mention that doxorubicin
(Adriamycin) is one of the most effective drugs in the treat-
ment of several types of cancers; however, its therapeutic use
is limited due to its high cardiotoxicity (873). Moreover, Trx1
prevented damage of cardiac tissue via inhibition of pro-in-
flammatory cytokine expression, adhesion of neutrophils (see
also section II.B.8), and subsequent inflammatory injury of
hearts occurring in response to ischemia/reperfusion (166). In
addition, severity ofmyocarditis, an inflammation of the heart
most likely due to virus infection (395), is correlated to Trx1. In
mouse models and patients, Trx1 was up-regulated in the
acute stage (505, 708) and enhanced in plasma in more severe
forms of myocarditis, respectively (129, 546). Temocapril
treatment of rats in the beginning of experimental autoim-
mune myocarditis ameliorated the severity via up-regulation
of Trx1 in the acute phase (858). As described earlier, in-
creased levels of Trx1 protect against several pathological
conditions in the cardiovascular system. Even though Trx1
was down-regulated after ischemia/reperfusion in isolated
rat hearts, it is up-regulated in adapted hearts after ischemic
preconditioning (IPC) (786) (see also section II.B.11), poten-
tially explaining the protective effects of this powerful tech-
nique for cardioprotection (166, 530). In line with this aspect, it
is not surprising that treatmentwith human recombinant Trx1
attenuated several pathological processes affecting the car-
diovascular system. It attenuated cardiac hypertrophy in aged
mice (9), reduced infarct size after reperfusion inmice and rats
(768, 829), lowered inflammatory cell infiltration in rats (829),
diminished severity of myocarditis (442), and protected
against reperfusion-induced arrhythmias in isolated rat hearts
(27). Recent studies related the protective effect against ar-
rhythmias with Trx1-dependent regulation of expression of
ventricular K + channels (429, 444, 760). Trx1 levels in blood
and serum of patients with dilated cardiomyopathy, acute
coronary syndrome, or chronic heart failure were higher
compared with controls, which correlated to the severity of
the diseases (335, 392).

Surprisingly, knockout of TrxR1 had no effect on heart
formation. TrxR1 seemed to be essential for development of
most tissues, except for the heart, as heart-specific deletion of
TrxR1 resulted in normally developed and viable mice (332).
However, cardiac-specific knockout of mitochondrial TrxR2
resulted in embryonic lethality due to dilated cardiomyopa-
thy and congestive heart failure (135). Moreover, knockout of
TrxR2 attenuated myocardial protection after ischemia/re-
perfusion (298). Recently, it was described that mutations in
the TXNRD2 gene may correlate with dilated cardiomyopa-
thy in patients. The resulting proteins were not able to restore
TrxR2 function in mouse fibroblasts lacking TrxR2 (713).

Although the role of Trx1 in cardiovascular pathology has
been extensively investigated, only little is known about mi-
tochondrial Trx2. Mice over-expressing Trx2 were protected
against angiotensin II-induced cardiac hypertrophy and hy-
pertension (814), generated less arteriolosclerotic lesions
(863), and displayed enhanced arteriogenesis as well as an-
giogenesis (141).

In Grx1 knockout mice, attenuated cardiac hypertrophy
was detected after induction via angiotensin II infusion (35).
Grx1 knockout inhibited functional recovery and increased
infarct size in coronary occlusion/reperfusionmodels of heart
infarction (464); whereas in an earlier study, no role of Grx1 in
this animal model was identified (301). In agreement, Grx1
over-expressing mice exhibited a reduced infarct size, as seen
for increased Grx1 expression after IPC or gene therapy
(426, 464). In addition, over-expression of Grx2 in myocardial
mitochondria reduced infarct size (535). Similar to Trx1,
over-expression of Grx2 protected mice against doxorubicin-
induced cardiotoxicity (155). Grx3 over-expression in
cardiomyocytes inhibited cardiac hypertrophy induced by
treatment with enthothelin-1 and phenylephrine (337). In
hearts of adult rats as well as in neonatal rat cardiomyocytes,
Grx3was up-regulated after treatment with enthothelin-1 and
phenylephrine (337). This effect was mediated by interference
of Grx3 with calcineurin-nuclear factor of activated T cells
(NFAT) signaling (338). UsingGrx3 -/+ gene-targetedmice as
well as Grx3 over-expressing mice as models, this specific
function was confirmed in vivo (105, 338). A patient with re-
duced levels of Grx5 exhibited sideroblastic-like hypochromic
anemia (95) (see also section II.A.3).

Both Prx1 and Prx2 knock-out mice developed hemolytic
anemia (422, 545), and exacerbate formation of atherosclerotic
plaques (393, 575). Prx2 deficiency suppressed angiogenesis
during tumor development, supporting the important role of
Prxs in cancer progression (see also section II.B.12) (368). In
mice over-expressing Prx3, cardiac failure after myocardial
infarction was inhibited (476); a similar phenotype was ob-
served in Prx6 knockout mice. In an ischemia-reperfusion
model, mice lacking Prx6 were more susceptible to ischemia-
reperfusion injury such as increased infarct size (534). In
contrast, neither mice with elevated Prx6 levels nor those with
reduced Prx6 levels yielded hints for an involvement of this
protein in the development of atherosclerosis (601, 803).

Mice with the targeted disruption of the Nrx gene dis-
played several cardiovascular defects, for example, a ven-
tricular septal defect and persistent truncus arteriosus (216).

5. Skin. The skin is exposed to several chemical and
physical injuries. Oxidative equivalents in the skin are pro-
duced, among others, by gaseous airborne environmental
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pollutants, UV radiation, cosmetic products, drugs, and cer-
tain food constituents/contaminants (32, 61). Trx-related
proteins are already present in the skin of the fetal organism,
even though they are not detectable in the surface ectoderm
frommouse embryos at E8.5 and only faintly in the epidermis
at E10.5. Trx1 and Grx1 immunoreactivities become very
prominent in the epidermis and hair follicles of mouse fetuses
at E16.5 (396). Later, in the adult mouse, 16 members of the
Trx family of proteins have been identified in the different
layers of the epidermis (235). In the outermost layer of the
epidermis, the stratum corneum, Trx1 is the most abundantly
detected Trx family protein. The three layers underneath the
stratum corneum (i.e., stratum granulosum, stratum spino-
sum, and stratum basale) were uniformly and strongly
stained for Grx2, Grx5, Nrx, Prx3, Prx4, Prx6, and Trx1. In the
hair follicles and sebaceous glands, Grx2 and Grx5, Prx5 and
Prx6, and Trx1 displayed strong immunoreactivities (235). In
the epidermal cells of the human skin, Trx1 and TrxR1_v3
were strongly expressed; whereas mitochondrial Trx2 dis-
played low or no staining (143). In bovine, Grx1 was promi-
nently detected in the epithelium, and the expression pattern
suggested functions during differentiation (653).

6. Skeletal muscle. ROS and RNS are continuously
generated in skeletal muscle cells and increased during
contraction and fatigue (189, 267, 397). In older rats, skeletal
muscles are the main sources of ROS and RNS generation
(404). With the exception of Trx1 and TrxR2, all Trxs and
Prxs are present in the human skeletal myocytes; the stron-
gest expression was detected for Prx2 (143). In mouse skel-
etal muscle, Grx2, Nrx, Prx1, and Prx5 displayed the
strongest staining. Prx5 imunoreactivity was localized in the
periphery of the myocytes, close to the plasma membrane;
whereas Prx2 and TrxR2 were more diffusely detected in the
intercellular space, which was reported as a characteristic
attribute for these proteins in several tissues (235). Sup-
ported by the findings in other tissues (for instance, mam-
mary gland), localization of Prx2 and TrxR2 was detected in
the connective tissue. In the case of TrxR2 and in contrast to
other analyzed members of the Trx system, a significantly
reduced expression in aging skeletal and cardiac muscle was
demonstrated, which could be renormalized by caloric re-
striction (648).

Trx family proteins have been implied in muscular and
joint diseases. Protein levels of Trx1 and Prx3 were decreased
in the late phase of disuse muscle atrophy in rats. In the same
study, the mRNA level of Txnip was significantly increased
before the muscle loss and the concomitant decrease in Trx1
levels (478).

Human chondrocytes constitutively express Prx5, an ex-
pression that was increased in osteoarthritis (800). The cyto-
solic Trx system seemed to be more implicated in rheumatoid
arthritis than in osteoarthritis. Trx1 was significantly in-
creased in the synovial fluid of rheumatoid arthritis patients,
and also along with TrxR1 in synovial tissues of the same
patients (481). In rheumatoid arthritis patients, Trx1 was de-
tected on the surface of the synovial lining layer and in
mononuclear cells of the synovial sublining layer. Trx1 levels
in synovial fluids from rheumatoid arthritis were significantly
higher compared with those from osteoarthritis patients and
were correlated with inflammatory indicators in the serum
and synovial fluid (342).

7. Respiratory system.

a. Expression of Trx family proteins in the respiratory system.
The airway system is the main oxygen delivering interface
between the host and the environment and is, consequently,
especially susceptible to oxygen-mediated injury. The con-
stant and combined exposure of airborne gases and particles
and endogenously produced ROS and RNS requires so-
phisticated lines of defense. GSH plays a vital role here. The
first and probably most important protective barrier is the
highly heterogeneous layer of respiratory-tract lining fluid
covering the respiratory epithelium. An about 100-fold
higher concentration of GSH compared with serum levels
underlines its general importance, combined with GSH-
dependent oxidoreductases, that is, Prx6 and/or GPx3
(253). In fetal mice, Trx1 and Grx1 were detected in the
epithelial cells of the airway (future bronchial and alveolar
epithelia) and the lung parenchyme at E13.5, increasing at
later developmental stages (396). Postnatal exposure to ox-
ygen induces elevated expression of Trx and TrxR (148). In
combination with the ROS-evoked chronic rise of intracel-
lular buffer capacity, it supports the role of Trx and related
molecules as key activators for oxidative stress-inactivated
proteins and during development of the human lung (186).
In the human lung, Trx1 is detected from week 35 onward
and is located in the bronchial epithelium, alveolar macro-
phages, chondroid cells, and cells of the bronchial glandular
epithelium (361). However, in the mature, adult lung, Trx1
and TrxR1 immunoreactivities were reported to be weak or
moderate only in pneumocytes, macrophages, and bron-
chial epithelial cells (774). In a recent study, some redox
proteins were detected in alveolar cells (i.e., TrxR1, GR,
Prx2, and Prx6) as well as in macrophages of human lungs
(i.e., Trx2, TrxR1, TrxR1_v3, TrxR2, Prx2, and Prx3) (143).
Grxs have not been intensively investigated in the human
lung. In a study analyzing Grx1 and Grx2 expression, only
the former showed strong immunoreactivities in the alve-
olar macrophages and weakly positive signals in the bron-
chial epithelium (589).

In the adult mouse and rat, only the mitochondrial Trx
system along with the cytosolic peroxiredoxins, Prx2 and
Prx6, were detected in pneumocytes; whereas Grxs and Trx2
were either not or onlyweakly expressed (235, 359, 654). In the
upper respiratory tract of the mouse, only Prx6 was highly
expressed in the pseudostratified epithelium of the trachea
(235).

b. Trxs, Grxs, and Prxs in pathologies of the lung—interplay
between ROS and inflammation. Many airway-related disor-
ders, including acute lung injury, asthma bronchiale, chronic
obstructive pulmonary disease (COPD), and pulmonary fi-
brosis, display an alteration of the cellular redox profile (71,
147). Asthma has an approximate prevalence of 5% of the
worldwide population and is one of the most common
chronic inflammatory airway diseases (809). In several stud-
ies, a direct correlation between oxidative damage as a fun-
damental consequence of characteristic-reversible airway
obstruction and airway hyper-responsiveness and the sever-
ity of asthma was found (532, 662, 672).

GSH was attributed a key role in the maintenance of the
integrity of the epithelial barrier. Not surprisingly, inflam-
matory airway diseases such as asthma or COPD show
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altered ratios of GSH to GSSG (198, 617) and its biosynthe-
sizing enzyme cGCS (261, 618). An increase of cGCS, espe-
cially in the epithelium, might be a counter-regulation of
ongoing inflammatory responses in pulmonary diseases
(626), and an external augmentation of GSH levels in the lung
appears to be a logical therapeutic approach to combat COPD
or asthma (74).

Asthma is a mainly a type-2 helper T-cell (Th2)-driven
disease that is characterized by eosinophilia and the activa-
tion of a broad array of inflammatory cells such as macro-
phages, neutrophils, and mast cells. GSH depletion in mouse
T-cells and macrophages leads to an impaired interferon-
gamma production and favors a Th2 response, underlining its
vital importance in the polarization of the immune system
(599). High concentrations of circulating Trx1 were found in
infectious and inflammatory diseases, inhibiting monocyte
and neutrophil responses to chemokines by acting down-
stream of the chemokine receptors eotaxin and CCR3 (538,
564). In patients, Trx serum concentrations correlated with
increasing serum eosinophil cationic protein concentrations
and were conversely proportionate to the expiratory peak
flow rate during asthmatic attacks (835). Mouse models
demonstrated that both exogenous application of Trx1 and
transgenic over-expression suppress asthmatic key features
such as airway hyperresponsiveness and inflammation. The
combined role as regulator/transducer of ROS and regulator
of the macrophage inhibitory factor (MIF) (see also section
II.B.8.b) might be the key to maintaining the integrity of the
epithelial cell and, subsequently, of the healthy lung (318,
779), reviewed in (327). In addition, an intraperitoneal injec-
tion of recombinant human Trx 1 suppressed bleomycin-
induced or inflammatory cytokine-induced acute interstitial
pneumonia in mice, suppressed lipopolysaccharide (LPS)- or
bleomycin-induced acute lung injury (539), and was also
shown to efficiently prevent elastase-induced emphysema
(390).

In the case of COPD, which is highly induced by smoking,
an up-regulation of Trx1 and TrxR1 in epithelial cells was
detected (251, 604). Grx1 was up-regulated during monocytic
differentiation and highly expressed in macrophages (589,
755). The expression in sarcoidosis and allergic alveolitis pa-
tient samples is decreased, implying further functions in both
inflammatory and fibrotic lung diseases. In an ovalbumin-
inducedmurinemodel of allergic airway disease, an increased
amount of Grx1 and total Grx-activity was detected (636).
Prxs exert a broad spectrum of peroxidase activity in the lung
and show a cell-type specific expression (389). Prx1 was in-
duced inmouse peritoneal macrophages exposed to oxidative
stress and in endothelial cells, fibroblasts, and leukocytes (324,
326). It functions not only as amere ROS scavenger in the Th2-
driven asthmatic phenotype, but also by suppressing the IL4
cytokine. High expression of Prx1 and Prx3 in granulomas
and alveolar macrophages of sarcoidosis parenchyma suggest
a significant role in the control of the oxidant burden and the
progression of lung injury (389). KO-mice of Prx2 displayed
an increased asthmatic phenotype along with a decreased
expression of the LPS-detecting TLR-4 (512). In addition, Prx3,
Prx5, and Prx6 were abundantly expressed in the bronchial
epithelium, protecting epithelial cells from oxidative stress-
induced cell death (34, 389). COPD patient lungs appear to
express all Prxs at equal levels, and only Prx6 was found to be
induced in sputum supernatant (424).

8. Infection, inflammation, and immune response.

a. Expression pattern of Trx-related proteins in lymphoid tis-
sues. The cytosolic Trx system has been detected in lymphoid
cells of human lymph nodes (143). In mouse lymph nodes,
Trx1 was not so strongly present, compared with the spleen,
where it appeared in both functional areas: the white and the
red pulp (235). In contrast, certain Trx-related proteins
showed more intense immunoreactivities in defined areas.
Grx2 and TrxR2 signals were more pronounced in the red
pulp than in the white pulp; whereas Grx1, Grx3, Grx5, and
TrxR1 immunoreactivites were more significant in the white
pulp. Moreover, a difference in the subcellular localization in
both zones was reported. Using confocal microscopy, Grx2a
was demonstrated in the mitochondria of red pulp cells;
whereas in white pulp cells, mainly cytosolic Grx2c was de-
tected (310). In mouse lymph nodes, the expression of 16 Trx
family proteins has been described (235). Grx5 and Prx2 were
strongly expressed in the cortex and medulla. Grx3 was the
only protein of the family that showed a specific staining
pattern in the germinal centers of the lymph nodes (Fig. 11B).

b. Immune system. An adequate host immune response to
viral, bacterial, and parasitic infections and airborne macro-
molecules is vital to regulate effector mechanisms. A proper
activation of cells of the innate immune system via their so-
called pattern recognition receptors has been demonstrated to
play a crucial role in early shaping of the immune system. A
fine balancing of Th1, Th2, and regulatory T-cell responses
triggered by altered or missing innate immune cell activation
depends on the reduction–oxidation equilibriumof tissues, and
disturbances are implied in a broad array of diseases (231). The
phagocytic cells of the innate immune system, including mac-
rophages, monocytes, dendritic cells (DCs), and neutrophils,
destroy pathogens via the NADPH oxidase-dependent for-
mation of ROS. NADPH oxidases are membrane-spanning
enzyme complexes that transfer electrons from NADPH
across biological membranes to molecular oxygen, forming
superoxide and its downstreammetaboliteH2O2 (414), aswell
as other radical species in the presence of myeloperoxidase,
nitric oxide, or iron. Potential mechanisms killing pathogens
involve changes in the phagosomal pH and ion concentra-
tions as well as the inactivation of virulence factors, for in-
stance, redox-sensitive elements, as described for bacterial
pheromones (651), reviewed in (51). ROS can activate an in-
creased immune response via redox-sensitive signaling
pathways, including, for example, NF-jB-activation and ex-
pression of pro-inflammatory cytokines such as IL-1b and
TNF-a (494, 687). This is especially important for the activa-
tion of the adaptive immunity, established by antibody-
producing B cells and T cells, which depends on the binding of
the T-cell receptor to a peptide bound to the major histo-
compatibility complex on antigen-presenting cells and addi-
tional co-stimulating and pro-inflammatory signals (139, 336).
In addition, it was shown that ROS levels increase in T cells in
the presence of mitogenic stimuli and during activation, for
example, on antigen presentation. On the contrary, in the
presence of ROS-scavenging enzymes, T cells lose their ability
to respond to cytokine- or receptor-mediated signaling (473,
783). Similarly, DCs also produce ROS during antigen pre-
sentation, which is essential for cytokine production (473).
Moreover, they generate cysteine from imported cystine after
LPS- or TNF-a-stimulation and secrete Trx1 on interaction
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with T cells. Interestingly, DC activation can be inhibited by
glutamate, prohibiting cystine uptake, or antagonistic anti-
bodies against Trx. The authors hypothesized that DCs may
activate T cells, which lack cystine transporters, by creating a
reducing milieu in the immunological synapse, providing
them with free thiols (25). This is especially important, be-
cause intracellular GSH, which is generated from cysteine, is
essential in the response to mitogenic and antigenic stimuli
(491). This is also valid in the case of polymorphonuclear
leukocytes, reviewed in (780). GSH can inhibit the binding of
NF-jB to DNA by specific glutathionylation of the p50 (605)
and the p65 subunit (613).

Cytosolic proteins of the Trx family have been shown to be
secreted in various cell and animal models as well as in var-
ious clinical conditions. This section summarizes these find-
ings and discusses potential functions in the modulation of
the immune response. The extracellular environment is more
oxidizing than the intracellular room; the GSH plasma levels,
for instance, range between 2 and 20 lM compared with cel-
lular levels in the millimolar range (353). Therefore, the redox
state of the individual proteins is believed to be rather oxi-
dized than reduced; which is also underlined by the lack of
sufficient electron donors such as NADPH or TrxR. However,
a few studies show that the latter can also be secreted by some
cell types (23, 722).

Besides the missing information on the specific redox state
of the individual proteins and thereby their enzymatic activ-
ity, not many specific targets and mechanisms have been re-
vealed and analyzed. It is possible that extracellular functions
are not based on the reduction of disulfides, but rather the
transfer of disulfides to target-soluble proteins or surface-
exposed cellular structures.

Trx1 was shown to be secreted by various cell lines, in-
cluding primary and cancer cells, following a secretory
pathway independent from ER and the Golgi apparatus (655).
The oxidoreductase was detected in blood plasma in various
clinical conditions, such as cancer (541), rheumatoid arthritis
(342), type-2 diabetes (363), and HIV infection (543). Indeed,
Trx, secreted from human T-lymphotropic virus-1 trans-
formed T cells, was originally identified as T-cell leukemia-
derived factor, inducing the expression of the IL-2 receptor
(751). B and T cells secrete detectable levels of Trx1 when
activated by specific compounds. Ericson and coworkers
demonstrated that activated B cells, isolated from B-type
chronic lymphocytic leukemia patients and healthy donors,
strongly increased the expression of Trx1, with two thirds
being secreted (169). Potential functions include the reduc-
tion of ROS, which can freely pass or leak through the
membranes of phagosomes, via endogenous GPx3 (66) or
Prxs. Extracellular Trx1 was also shown to act as a cytokine
or chemokine, that is, signaling molecules, which can either
alter the cellular expression of distinct genes and transcrip-
tion factors or attract and activate immune cells, respec-
tively. Even though no specific receptor has been identified
so far, exogenous administered Trx1 was shown to induce
the expression of antioxidant genes, including Grx1, Grx2,
SOD2, and Prx4 in human lens epithelial cells (848), of var-
ious cytokines, such as TNF-a, IL-1, IL-2, and IL-8 in
monocytes and dose dependently of IL-6 in fibrosarcoma
and endothelial cells (685). Furthermore, Trx regulates
NF-jB activation. Trx1 translocates from the cytosol into the
nucleus on TNF-a treatment and was shown to suppress

NF-jB activation induced by TNF-a, phorbol myristate ac-
etate (PMA), or IL-1 (279, 757).

Controversially, Trx1 was also shown to reduce a general
inflammatory response (58). Wu and coworkers showed that
the injection of recombinant Trx1 in a rat model for myocar-
dial ischemia (see also section II.B.11), significantly reduced
the number of infiltrating immune cells after 24 h of reperfu-
sion (829). The anti-inflammatory function could be explained
by regulating or rather inhibiting the macrophage migration
inhibitor factor, a pro-inflammatory protein released from
immune cells. MIF is characterized by the active site motif
Cys-Ala-Leu-Cys and exhibits disulfide reductase activity in
the insulin and the HED assay (394). Various studies have
analyzed Trx1 and MIF, demonstrating potential regulatory
mechanisms. Son and coworkers, for instance, showed a di-
rect association between the two proteins (730), inhibiting the
release of MIF or directly regulating protein expression,
thereby inhibiting, for example, a general inflammatory re-
sponse against cigarette smoking (537, 681).

The third described function as a chemoattractant in the
nanomolar range also depends on the redox-active cysteine
residues and was revealed as a receptor- and G protein-in-
dependent process in monocytes, polymorphonuclear leuko-
cytes, and T cells. Trx1 might act as a redox sensor on a yet
unknown substrate protein, promoting the transmigration of
immune cells by its disulfide isomerase activity or generally
amplifying the cellular response at a site of inflammation (58).
Higher chemokine levels potentially have the oppositional
effect, leading to impaired leukocyte migration and an en-
hanced infection rate, as described for IL-8 (718), human
monocyte chemoattractant protein 1 (660), or murine CXC
chemokine KC (815). Bertini and coworkers discuss that ele-
vated, exogenous Trx levels might inhibit leukocytemigration
and enhance the general infection rate, which could explain
the early mortality rate of HIV patients with elevated, plasma
Trx levels (> 30 ng/ml), compared with patients with similar
symptoms, but regular Trx levels (58, 543).

The truncated Trx80 comprises the N-terminal first 80–84
amino acids of the cytosolic Trx1 andwas originally described
as an eosinophil cytotoxicity-enhancing factor, which was
detected in the plasma of humans infected with chronic
schistosomiasis mansoni infection (150). Trx80 was detected
in human B and T lymphocytes, monocytes, granulocytes,
and melanomas (667), and it was shown to be secreted by
monocytes and transformed leukocytes (666, 716), but is
preferably localized or rather incorporated into the plasma
membrane, which is externally oriented. Only minor levels of
Trx1 are located to the membrane (667). The truncated protein
differs from the full-length protein, because it is not a sub-
strate for TrxR, lacks parts of the active site, and, thus, does
not exhibit oxidoreductase activity (587). Nonetheless, both
proteins share similar functions, such as proliferative effects
on peripheral blood mononuclear cells (PBMCs) and mono-
cytes (586, 587), induction and secretion of pro-inflammatory
mediators into the plasma, role as a chemoattractant for
monocytes and polymorphonuclear cells (65), and the acti-
vation of MAPK signaling pathways (585). It furthermore
induces the expression of numerous ‘‘cluster of differentia-
tion’’ (CD) surface antigens (584) and is involved in the pro-
duction of the anti-inflammatory cytokine IL-10 (585).

The Trx-like protein Nrx functions in the innate immune
response via the stabilization of the interaction of flightless
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homolog 1 and myeloid differentiation primary response
protein MyD88, suppressing LPS-induced NF-jB activity
(272). In addition, potential regulatory functions of gene ex-
pression were determined. Nrx over-expression in HEK293
cells led to an increased NF-jB activation, following stimu-
lation by TNF-a or PMA (279).

Prx1, Prx2, and Prx4 were extracellularly detected. Prx1
was secreted from lung cancer adenocarcinoma cells and was
also detected in the serum of patients suffering from nonsmall
cell lung cancer, as well as through specific antibodies against
the peroxidase (112). Prx2 was detected in plasma, potentially
due to endogenous hemolysis or secretion by T cells, of pa-
tients suffering from multiple sclerosis with severe acute re-
spiratory syndrome (118). Prx1 and Prx2 are also known
under the name ‘‘natural killer cell enhancing factors A and
B,’’ because they increase the cytotoxicity of natural killer
cells, which belong to the innate immune system (682, 683,
701). Prx4 possesses a leader peptide and is processed and
secreted from the cell via the ER and Golgi apparatus within
minutes. The secreted form is potentially enzymatically active
and might act in scavenging extracellular ROS or regulating
biological processes via binding heparan sulfate attached to
cell surfaces or the extracellular matrix (558). It regulates
H2O2-induced signaling pathways, for instance, the H2O2-
mediated activation of NF-jB viamodulation of the inhibitory
protein IjB, modulating specific gene expression and the
immune response (346). Macrophages with depleted levels of
Prx6 displayed increased levels of H2O2 and an elevated ap-
optosis rate (804).

In addition, the cytosolic Grx1 was demonstrated in the
extracellular compartment. Lundberg et al. detected Grx1 in
human plasma and demonstrated that the protein was se-
creted by unstimulated PBMCs, suggesting general extracel-
lular functions (453). Peltoniemi et al. showed that alveolar
macrophages expressed Grx1 and that Grx1 levels were de-
creased in homogenates of the lung and increased in the
sputum of patients with COPD, with the levels correlating to
the stage of the disease and lung function (588). Grx1 -/ - mice
were characterized by lower levels of pro-inflammatory
markers, after LPS stimulation, potentially due to a disruption
of redox signaling via de-glutathionylation of specific proteins
and signaling pathways (8). On the contrary, over-expression
of Grx1 in HEK293 cells led to an increased TNF-a-and PMA-
induced NF-jB activation (279). Furthermore, intracellular
Grx1 was shown to affect the NF-jB-dependent expression of
intercellular adhesion molecule 1 (ICAM-1), an adhesion
molecule in endothelial- and immune cells, that facilitates cell-
cell interactions and leukocyte transmigration into tissues.
Furthermore, over-expression of Grx1 increases the secretion
of IL6. Administering IL6 itself to the medium of cells also
induces Grx1 and ICAM-1 expression, revealing pro-inflam-
matory functions in both autocrine and paracrine signaling
(704). Another proposed function includes the decomposition
of peroxides via the reduction of plasma GPx3 (66). Unlike
Trx1, Grx1 does not seem to act as a chemokine (58).

Grx3 was identified as an interaction partner of protein
kinase C-h (819), which regulates TCR-mediated signaling
and the activation of transcription factors, including NF-jB
and AP-1 in antigen-stimulated T cells, reviewed in (747).
Over-expression of Grx3 in T cells led to decreased phos-
phorylation and activation of c-Jun N-terminal kinase ( JNK)
and NF-jB (819). In another study, Grx3 over-expressing

RBL-2H3 cells were characterized by increased degranula-
tion, elevated activation of the transcription factor NFAT and
the expression of IL-4 and TNF-a, a decreased phosphoryla-
tion state of JNK, and no changes in the phosphorylation state
of ERK and NF-jB activation, implying new functions in
FceRI-mediated mast cell activation (373).

Down-regulation of Grx3 in HeLa cells affected the ex-
pression of numerous genes involved in the organization of
the cytosceleton, cytokine secretion, and processes, including
apoptosis, differentiation, and migration; that is, for instance,
ICAM-1, IL-8, IL receptor 4, or the dual-specific phosphatases
DUSP4 and DUSP6, which regulate MAP kinase signaling
(unpublished data, P. Haunhorst and C.H. Lillig).

c. Infectious diseases. Infectious diseases arise from the
presence of pathogenic organisms such as bacteria, fungi,
parasites and viruses, or pathogenic agents called prions.
Consequently, human defense mechanisms such as the for-
mation of ROS, pore-forming immune toxins (PFTs), and
pathogen-binding immunoglobulines evolved. To overcome
continuous ROS exposure by the infected host and to main-
tain their own intracellular redox conditions, many bacterial
and parasite-specific Trx systems have developed, reviewed,
for instance, in (616, 860). The pivotal role of GPx1 in viral and
bacterial infections was summarized in (49). It is worth
mentioning that parasitic protozoa of the order Kinetoplastida,
such as trypanosomes and leishmania, lack the eukaryotic
(GSH)/GR and (Trx)/TrxR system and have instead devel-
oped a tryparedoxin/trypanothione [bis(glutathionyl) sper-
midine; T(SH)2]/trypanothione reductase system (407, 550).
However, trypanosomatids contain not only the parasite-
specific tryparedoxin (451, 629), but also prominent levels of
GSH and various monothiol and dithiol Grxs (101, 193, 407,
469).

Trx secreted by the host performs a variety of physiological
and pathophysiological functions (see also section II.B.8.b). In
addition, its role as an antibiotic agent, on the one hand, and
species-specific expression as a counter-measurement to
adapt to changing environmental conditions, on the other
hand, are quite diverse, affecting the outcome of an infection.
Numerous bacteria that multiply extracellularly, including
Staphylococcus species, secrete PFTs to alter host cell mem-
branes. Extracellular TrxR and Trx can modulate the activity
of the pore-forming cysteine-containing NK-lysin, an effector
peptide of T-lymphocytes (23, 722). Furthermore, secreted Trx
exerts differential regulatory functions on circulating immu-
noglobulins by reducing intermolecular disulfides between
heavy and light chains, thereby affecting the adaptive im-
mune response (461). The potent antimicrobial peptide hu-
man b-defensin 1 is activated by Trx (688), which shows that
secreted Trx from both host and intruding agents is being
used to counteract respective defense mechanisms. In-
tracellular bacterial Trxs function as hydrogen donors, affect
DNA synthesis in cell division, and regulate the tran-
scriptome, phage assembly, and propagation (860). For in-
stance, Mycobacterium tuberculosis resides in mononuclear
phagocytes and, as most bacteria, has developed an individ-
ual set of Trxs to counteract intracellular oxidative killing (15).
Prxs can detoxify cells from ROS and RNS. In M. tuberculosis,
the alkyl hydroperoxide reductase AhpC and a thioredoxin
peroxidase appear to play leading roles in the detoxification
process (331). In the case of the diphteria toxin, secreted by
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Corynebacterium diphteriae, TrxR1 is essential as a part of the
so-called ‘‘cytosolic translocation factor complex,’’ which en-
ables receptor-mediated endocytosis of the A domain of the
toxin (625). Due to the central role of TrxR as an effector en-
zyme for bacteria, parasites, and cancerous cells, a vast
number of inhibitors was developed to trigger lethal effects
(28, 48, 616).

As for viral infections, the Trx andGrx systems play amajor
part in both life cycle and virus-host interaction. Species-
specific Grxs function in viral DNA biosynthesis when levels
of the corresponding host cell proteins are depleted (619). The
cytoplasmic vaccinia virus encodes its own Grx, which func-
tions as a redox shuttle between membrane-associated en-
zymes that play an essential role in virion morphogenesis,
assembly, and growth circle (11, 811, 812). An unusual
monothiol Grx has been found in the Chlorella virus PBCV-1
genome; the fact that it is expressed throughout the entire
virus life cycle implies its importance in viral replication (197).
Moreover, Trx is relevant for DNA replication as a subunit of
the T7 bacteriophage DNA polymerase and filamentous
phage assembly (308, 659). The infection of bacteria by viruses
or so-called ‘‘bacteriophages’’ was reviewed in (659).

Enzyme expression involved in GSH homeostasis affects
host susceptibility and progression of many diseases such as
cancer, neurodegenerative diseases, cystic fibrosis, and hu-
man immunodeficient virus (HIV) (780). GSH levels of HIV-
infected individuals and in AIDS patients are depleted in
plasma, epithelial lining fluid, PBMCs, and monocytes (83).
Decreased GSH levels in viral-affected CD4+ T lymphocytes
and NF-jB-dependent HIV gene activation underlines the
importance of a specific GSH/GSSG ratio in HIV-positive
cells (737). Oral application of N-acetyl cysteine (NAC) pro-
vided beneficial effects for HIV-infected patients andmight be
a sufficient tool to counteract virus-related apoptosis in lym-
phocytes (230). HIV has amajor impact on Trx expression and
distribution. Decreased expression of the Trx system corre-
latedwith a decreased rate of activatedmacrophages andDCs
and a general higher apoptosis rate of CD4 + cells (22, 238),
thereby preventing an effective immune mounting against
virus-infected cells. An initial down-regulation of the pro-
apoptotic Bcl-2 and Trx allows a replication boost; subsequent
up-regulation might reflect a way of inducing a persistent
infection (13). Innate immune mechanisms are further com-
promised by elevated Trx serum levels that impair CD4+ cell
survival by blocking pathogen-induced chemotaxis (542).
Concordantly, TrxR was found to negatively regulate HIV-1
encoded transcriptional activator Tat in human macrophages
(364). Grx1 was identified at the HI-virus surface, and a reg-
ulation and/or maintenance of protease activity in HIV-1 in-
fected cells was suggested (149). Lundberg and co-workers
have demonstrated that the interaction between the viral
glycoprotein gp120 and the host cell receptor CD4 is modu-
lated by both Grx1 and Trx1. Blocking antibodies could re-
duce the disulfide-dependent HIV-1 entry and could,
therefore, constitute novel pharmacological therapeutic tar-
gets (33, 633). Prx1 and Prx2 can be up-regulated in activated
CD8 + T cells and are found in the plasma of HIV-infected
patients. However, the secretion seems to be independent of
the state of T cell activation (223). T cells over-expressing ei-
ther Prx1 or Prx2 were resistant to HIV-1 infection, and HIV-1
replication was inhibited by the presence of the recombinant
proteins in HIV-1 cultures (223, 501). This could be explained

by the peroxidase function, because H2O2 promotes the NF-
jB-dependent expression and replication of HIV-1 in Jurkat
cells, which has been shown for cytoplasmic Prx4 and its ef-
fects on HIV infection (346).

9. Metabolic and digestive system. In the mouse liver,
both Trx1 and Grx1 are already detectable by immunohisto-
chemistry at E11.5. In contrast to Grx1, which is expressed
continuously in the liver during the adult life, Trx1 expression
was reported to decrease (396). Sixteen members of the Trx
family were detected in the adult mouse liver. Trx1 and Grx5
were abundantly distributed in the cytosol of hepatocytes
(235). In this study, clear differences in immunoreactivities
between the areas surrounding the portal and central veins
were reported, with the latter stronger stained for themajority
of the analyzed proteins (e.g., Trx2, Grx1, Grx3, and Prx3).
Other Trx family proteins, such as Grx2, Prx4, and TrxR2,
appeared to be uniformly distributed in both areas. In the
Kupffer cells, the specialized macrophages of the liver, Grx1,
Grx3, and Prx5, were significantly stained. Prx6 was also de-
tected in hepatocytes, Kupffer cells, and endothelial cells in
the mouse liver (802). Prx6 along with Prx2, Prx3, and Trx2
were also detected in human hepatocytes (143).

During embryonic development, Trx1 and Grx1 were not
detectable in acini and islet cells of the pancreas before E16.5.
Both proteins are distributed through the nucleus of acinous
and islet cells and also in the cytoplasm of islet cells (396).
cGCS, which was weakly detected in most tissues of the adult
mice, including the exocrine component of the pancreas,
showed the strongest staining in the endocrine cells of the
Langerhans’ islets (Fig. 11C). Trx1 was detected in the cyto-
plasm but not in nuclei of endocrine and exocrine cells. In
the same study, TrxR1 staining was more pronounced in the
endocrine cells of the islets. Both Trx1 and TrxR1 expression
was affected in starving mice (260). In our expression analysis
of the mouse pancreas, Trx1 along with Grx3 and Grx5
showed clear nuclear staining patterns. Prx2 and TrxR2 were
detected in the intercellular spaces in both the endocrine and
the exocrine components of the pancreas (see Fig. 11C) (235).
In the human exocrine part of the pancreas, Trx2, TrxR1, GR,
and Prx2, Prx4, and Prx6 showed the most evident staining.
TrxR1 and its transcript variant v3 displayed reversed ex-
pression patterns. TrxR1_v3 showed a stronger staining in the
central part of the acinus cells, whereas TrxR1 staining was
weak (143).

The intestinal epithelium represents a barrier between the
body and the luminal environment and is exposed to oxidants
generated both in the intestinal mucosa and in the lumen (e.g.,
ingesta and bacterial metabolites/toxins) (52, 133). Although
faintly positive in the mouse intestinal epithelium at E11.5
(Trx1) and E13.5 (Grx1), immunoreactivities of Trx1 and Grx1
were very strong in the villous epithelium of the fetal intestine
at E16.5 (396). Trx family proteins have been intensively an-
alyzed in the gastrointestinal tract of adult mice (235). Since
Trx family proteins are abundantly present in the different
layers along the gastrointestinal tract (for details please see
Table 4 and Fig. 11C), we will focus on the intestinal epithe-
lium, where interesting expression patterns were observed
(Fig. 11C). This epithelium harbors different populations of
specialized cells, and the redox protein levels seem to be es-
pecially strong in some of them. Probably the most evident
staining pattern has been observed in the enteroendocrine
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cells. These hormone-secreting cells were found to be strongly
stained for Trx2, TrxR2, Grx1, Grx2, Prx2, and Nrx in the
mouse stomach epithelium (235). In the duodenal enterocytes,
strong immunoreactivities were detected for Grx2, Nrx, Prx5,
Trx2, and TrxR1. Especially interesting is the localization
pattern of certain Trx-related proteins in the intestinal epi-
thelium (see Fig. 11C). Grx5 and Prx4 accumulated in the
apical membrane, whereas Nrxwas the only analyzed protein
that was located at the lateral side of the enterocytes (Fig.
11C). The implication of such a ‘‘polarization’’ in the intestinal
epithelium has to be investigated, as well as potential secre-
tory pathways and extracellular functions of the proteins
should be explored.

Serum Trx1 levels are significantly higher in patients with
inflammatory bowel disease compared with controls, and
over-expression of Trx1 ameliorated dextran sulfate sodium-
induced colitis (758). Grx3 was reported to be strongly ex-
pressed in colon and lung cancer cells. mRNA and protein
levels of Grx3 in colon cancer were the highest among several
analyzed Grxs, Trxs, and Prxs (108).

a. Diabetes mellitus. The chronic disease diabetes mellitus is
an increasing health issue with 220 million cases worldwide
as stated by the World Health Organization in 2010. Type-I or
juvenile diabetes is an autoimmune disease (207). The im-
mune system attacks pancreatic b-cells, attenuating the syn-
thesis and release of the hormone insulin into the portal vein.
Type-II diabetes arises from constant glucose uptake and
emerging insulin resistance, a condition in which insulin
cannot be efficiently used anymore and b-cells progressively
die frommetabolic stress (721). The pivotal role of ROS/redox
signaling was highlighted by the development of type-II di-
abetes in mice over-expressing GPx1; for an overview and
details, see (425).

Consequently, both conditions prohibit the regulation
and cellular uptake of glucose and lead to hyperglycemia.
Long-term, chronic hyperglycemia or ‘‘glucose toxicity’’
can affect various tissues, manifesting, for instance, in
increased susceptibility to infections, micro-vascular com-
plications as in retinopathy and neuropathy, atherosclero-
sis, and cardiovascular and neurological damage (375, 850).
Generation of ROS potentially via the reduction of sugars
(366), the hexosamine pathway (367), and/or the mito-
chondrial respiratory chain (671) seems to be correlated to
chronic hyperglycemia and the establishment of diabetes
(78, 375) and diabetic complications (388). Moreover, mi-
tochondrial dysfunction plays an essential role. Increases in
mitochondrial ROS levels seem to lead to morphologically
and functionally altered mitochondria, attenuating ATP
production, glucose-dependent insulin secretion and po-
tentially lead to apoptosis and b-cell mass reduction, re-
viewed in (483, 851).

Insulin secretion was shown to be inhibited by ROS; a
process that could be restored by treatment with N-acet-
ylcysteine (475) and GSH (247). In addition, NADPH was
shown to stimulate exocytosis of insulin in pancreatic b cells.
Cytosolic Grx1 increased this effect, whereas Trx1 counter-
acted the secretion (329). Knock-down of Grx1 inhibited glu-
cose-mediated insulin secretion in distinct b-cell models,
whereas knock-down of Trx1 did not do so. Furthermore, the
authors showed that the excitatory effects of NADPH de-
pended on the expression of Grx1 (632).

NADPH levels were decreased by 32%, and the general
NADPH/NADP was significantly lower in streptozotocin-
induced diabetic rats even though the pentose phosphate
shunt did not seem to be affected. Streptozotocin is a b-cell
toxin that is experimentally used to induce a phenotype re-
sembling type-1 diabetes. Within this study, the total GSH
level and the GSH/GSSG ratio were also significantly de-
creased (246). However, there are studies showing the oppo-
site or no significant effect onGSH (691, 719). The Langerhans’
islets of the pancreas showed the highest expression of cGCS,
compared with all other analyzed mouse tissues (235). In di-
abetes patients, the GSH synthesis itself did not seem to be
impaired; however, a lack of the GSH precursors cysteine and
glycine was detected. Dietary supplementation of these ami-
no acids or N-acetylcysteine restored GSH synthesis in
platelets of diabetic patients and decreased ROS levels and,
accordingly, oxidative modifications (228, 692). The expres-
sion of GR is especially high in islets and inhibition of the
enzyme sensitizes b-cells to streptozotocin-induced diabetes
(533). Furthermore, it was shown to be increased in diabetic
patients (691, 719).

Grx1 expression and activity were decreased in platelets of
diabetic patients (691, 719). Over-expression of Grx1 via gene
therapy, that is, lentivirus-mediated over-expression in mice,
attenuated diabetes-related cardiac pathologies in diabetic
hearts exposed to ischemia-reperfusion (I/R) (426). Grx1 is
known to regulate NF-jB via deglutathionylation, a hallmark
in the generation of insulin resistance (712) and in various di-
abetes-related diseases, implying regulatory functions for Grx1
in various diabetic complications (96, 704). For instance, Grx1
was shown to be induced by glucose in rat retinal Müller cells,
inducing NF-jB activation, ICAM-1 expression, and poten-
tially diabetic retinopathy (705). Various other proteins have
been shown to be regulated viade-/glutathionylation andwere
implicated in diabetes, for instance, aldose reductase, a sub-
strate for Grx1, which catalyzes the conversion of glucose to
sorbitol, or potassium and calcium channels, reviewed in (495).

Over-expression of Trx1 in models for type-I and type-II
diabetes minimized cellular damage and improved the sur-
vival of b-cells (300, 837). Moreover, it reduced and prevented
associated conditions such as diabetic embryopathy (365) and
diabetic osteopenia (255). An intravenous administration of
recombinant Trx1 into nonobese diabetic (NOD) mice pro-
tected islets and prevented the development of type-1 diabe-
tes by modulating or inhibiting aberrant reactions of the
immune system (125). In addition, administering recombi-
nant Trx1 to diabetic mice exposed tomyocardial I/R reduced
apoptosis, infarct size, and had a positive impact on the
overall cardiac function (849). This was confirmed in a dif-
ferent study by myocardial over-expression of Trx1 using a
specific adenoviral vector in diabetic rats. Over-expression of
Trx1 induced heme oxygenase (HO)-1, VEGF, and p38
MAPK-b expression; decreased the levels of phosphorylated
p38MAPK-a and JNK; and reduced the overall apoptosis rate
of cardiomyocytes and endothelial cells (675). So far, not
much is known about the role of the mitochondrial Trx-sys-
tem. Development of diabetes induced in rats by streptozo-
tocin led to a reduction in Trx2 mRNA in the aorta after 2
weeks, which was normalized via insulin treatment. In addi-
tion, human umbilical vein endothelial cells (HUVEC) cul-
tured at high glucose concentrations showed around 20%
reduced Trx2 mRNA levels. Knock-down of Trx2-sensitized
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HUVEC to glucose-induced cellular alterations, including
decreased levels of free thiols, increased lipid peroxidation
and increased cytochrome c expression, probably due to ele-
vated glucose transporter 1-mediated glucose uptake and
metabolism (430). Mice with the impaired ability to incorpo-
rate selenocysteine in proteins, for instance TrxR, did not seem
to exacerbate streptozotocin-induced nephropathy (67).

Generally, decreased intracellular levels or inactivation of
Trx1 has been correlated to increased diabetes susceptibility.
Increased secretion of Trx1 or rather elevated plasma levels
were detected in patients with increased glucose tolerance
and manifested diabetes (507), with the latter correlating to
increased nonesterified fatty acid levels (363). Nitrative inac-
tivation of the oxidoreductase sensitives streptozotocin-in-
duced diabetic mouse hearts to myocardial I/R injury (849).
In addition, a genetic analysis revealed distinct Trx1 poly-
morphisms correlating with the development of diabetes
(319). Especially the endogenous inhibitor of Trx1, Txnip, has
gained a lot of attention in the diabetes field. Txnip has been
shown to be dramatically induced by glucose, a process that is
p38 dependent and mediated via inhibition of the PI3-kinase/
Akt pathway during hyperglycemia (690), suppressed by in-
sulin (700), and strongly up-regulated in diabetic animal
models and patients, inhibiting Trx activity (573, 690). It is not
induced by the presence of fatty acids (117). Txnip was actu-
ally the highest changing transcript in models of diabetes
(623). Glucose-induced Txnip expression was associated with
increased transcription of IL-1b and its precursor, aswell as an
elevated secretion rate (398) and induction of the intrinsic
mitochondrial apoptosis pathway (120). Deletion of the pro-
tein enhanced insulin sensitivity and glucose-mediated insu-
lin secretion, promoting adipositas but protecting against
diabetes (119, 132, 621, 854). Txnip expression was moreover
induced and involved in diabetic complications such as dia-
betic retinopathy (595, 596), diabetic nephropathy (7, 623,
766), and by glucocorticoid hormones used as treatment of
numerous inflammatory and immune diseases, which in the
long run can lead to glucose intolerance and diabetes (631).

Streptozotocin, H2O2, and cytokines induce the transcrip-
tion of Prx1 and Prx2 mRNA in the rat insulinoma cell line
INS-1 (45). Furthermore, Prx1 protein levels were shown to be
elevated in erythrocytes of type-2 diabetes patients (510).Wolf
and colleagues stated that down-regulation of Prx3 in rat in-
sulinoma cells led to insufficient insulin secretion, while over-
expression protected the cells against various agents, includ-
ing H2O2, NO, proinflammatory cytokines, and the b-cell
toxin streptozotocin (820). Transgenic mice over-expressing
Prx3, on the other hand, were characterized by lower mito-
chondrial H2O2 concentrations and were protected against
hyperglycemia and glucose intolerance (122). Prx4 over-ex-
pressing mice were generally less susceptible to streptozoto-
cin-induced diabetes, showed less hyperglycemia and glucose
tolerance, down-regulation of various inflammatory-related
proteins, less infiltration of CD3 + lymphocytes, and a lower
apoptosis rate (154).

It is known that not only several transcriptional and sig-
naling pathways which are important for islet cell develop-
ment, including PI3K, Wnt/b-catenin, PDX-1, TGF/Smad,
and notch [for an overview on the topic see, for instance, (357)]
can be redox modified, but also protocols for b-cell culture
and differentiation depend on redox control; for instance, by
adding reductants to the cell medium. The formation of de-

finitive endoderm is controlled by TGF-b. By defining con-
ditions of b-cell differentiation, it might be possible to
improve the promising therapeutic strategy of b-cell trans-
plantation. However, ROS are generated during islet isolation
and transplantation, as well as general inflammation reac-
tions, which may prevent long-term survival and regenera-
tion of b-cells and the restored insulin secretion. Chou and
Sytwu transfected healthy mouse islets with a lentivirus
vector coding for Trx1, before transplantation into NODmice.
Trx1 over-expressing islets were resistant against inflamma-
tory processes and significantly prolonged islet survival after
transplantation, without showing any differences in the glu-
cose-dependent insulin secretion in vitro (131).

Regular exercise is a preventive and, in a way, therapeutic
strategy against diabetes. General exercise training was
shown to affect GSH levels and enzyme activities in a tissue-
dependent way in various animal- and disease models, in-
cluding catalase, GPx, GR, and SOD (151, 416, 729). Trx1
levels were also shown to be increased in healthy animals on
exercise, an effect that was attenuated in diabetic animals,
potentially due to the increase in Txnip mRNA (417). Fur-
thermore, exercise was shown to significantly increase Prx2
expression in obese type-2 diabetes patients (510).

10. Urinary tract and reproductive systems.

a. Kidney. The kidney exhibits a high complexity due to
different functional areas and segments of the nephron that
execute special functions. Described expression patterns of
Trx family proteins reflect this complexity; several of the ox-
idoreductases show segment-specific distributions. In the
glomeruli of fetal and adult mice, both Trx1 and Grx1 im-
munoreactivities could not be detected (396). In calf, Grx1
imunoreactivity was also absent from the glomerulus, but
strong staining of juxtaglomerular cells was reported, sug-
gesting functions in the renin-angiotensin system (653). Ka-
suno et al. analyzed the effects of Trx1 in a renal ischemia and
reperfusion model (372). In sham-operated mice, Trx1
showed strong immunoreactivity in the cortex, but weak
staining in the medulla. The same expression pattern was
observed while analyzing Trx1 mRNA and protein in rat and
human kidneys, with a strong expression in the cortex, par-
ticularly in the proximal tubules, compared with the distal
segments of the nephron (7). Txnip mRNA and protein levels
were, in contrast to Trx1, most abundantly expressed in the
glomeruli and in the distal nephron of rats and human kid-
neys. Recently, an exhaustive expression analysis of the Trx
family in the mouse kidney confirmed this expression profile
(see also section II.B.11). Although Trx1 staining was abun-
dantly distributed over the whole mouse kidney, it was par-
ticularly strong in the cortex, specifically in the proximal
tubule cells (235). Such a regional strong distribution was also
observed for Grx2 and Prx3 in the cortex and the medulla. In
contrast, Prx2 was more abundant in the medulla, and cGCS
immunoreactivity was especially strong in the outer medul-
lary area. Prx2 and TrxR2 immunoreactivites were described
as the strongest in glomeruli and renal connective tissue. Prx2
was also detected in podocytes of rat kidneys (304). All pro-
teins were present in the proximal tubule cells, where Grx3
and Prx1 display strong nuclear localization. In the human
kidney, several Trxs and Prxs have been detected in glomeruli
and tubule cells. Prx5 was found in endothelial cells, forming
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the lining of the Bowman’s capsule (143). Prx6 was abun-
dantly detected in renal cells (802).

The clinical involvement of Trx family proteins in the kid-
ney has been analyzed in renal ischemia and reperfusion (236,
372); see section II.B.11, in diabetic nephropathy (7, 256) and
in angiotensin II-induced podocyte injury (304). The Trx sys-
tem seems to play a role in the progression of diabetic ne-
phropathy, because the over-expression of Trx1 in mice led to
the suppression of pathophysiological changes after strepto-
zotocin-induced diabetes (see also section II.B.9.a) (256). The
increased mRNA levels of Txnip after the induction of dia-
betes in rats supports these findings (7). The podocytes are
essential components of the glomerular filtration barrier. In
rats, angiotensin II treatment and podocyte-specific over-ex-
pression of angiotensin II type-1 receptors led to a decrease in
Prx2 expression, implying a role of the peroxidase or rather
increased H2O2 levels in angiotensin II-induced podocyte in-
jury (304).

b. Urinary bladder. Members of the Trx family are also
significantly expressed in the urinary bladder. The epithelial
cells of uriniferous tubules express Trx1 and Grx1 from day
E11.5 onward up to adult age (396). In the urothelium, most
Trx family proteins showed stronger immunoreactivities in
the basal cells as compared with the superficial cells, where
only Grx2 and Grx5 showed strong immunoreactivity (235).

c. Male reproductive system. Tissues of the reproductive
system are generally diverse due to distinct functions, hor-
monal status, high differentiation rates, and the stage of
cellular development of primary reproductive cells. Interest-
ingly, reproductive organs, especially testis, are equipped
with distinct sets and even specific isoforms of antioxidants
and Trx family proteins (see Table 5). However, not much is
known about the specific functions of these proteins in the
testis, even though disulfide formation and isomerization are
important during sperm development and maturation (744).
Selenium was shown to be essential for this process, which
was confirmed by the findings that the selenoproteins GPx4
and TrxR3/TGR function in the disulfide-dependent sperm
formation (549, 744, 794), thereby being essential for fertility.

In addition, TXNDC2/Sp-Trx1 might also play a role in dis-
ulfide formation (343); whereas TXNDC8/Sp-Trx3 seems to
regulate proteins via post-translational modifications, con-
trolling germ-cell-specific functions (345).

The seminiferous tubules of the testis show a high of rate
cell division, and Trx family proteins are present in these tu-
bules in mice, as well as in the interstitial cells. The Trx fold
proteins display a high variability in the testicular tissue, as
several testis-specific proteins have been detected in distinct
cell types. In Leydig cells, which function in the testosterone
production, several proteins were strongly expressed, that is,
Grx2, Prx2, Prx3, Prx5, Trx1, Trx2, and TrxR2 (235). Trx1 was
highly expressed in these cells, showing a strong correlation
with nuclei; a similar strong Trx1 immunoreactivity was also
reported for calf Lydig cells (653). In contrast, virtually no
signals were detected for the analyzed proteins in Sertoli cells,
a specialized cell type that harbors the spermatogenesis. In
contrast, strong staining for Grx1 was reported in bovine
Sertoli cells (653). In mice, Grx1 displayed a strong staining
mainly in the nuclei of progenitors cells, that is, spermato-
gonia. The developing spermatocytes abundantly express
Grxs, Trxs, and Prxs. In early spermatids, Grx2 staining is
characterized by a cup-like pattern capping the nucleus (235,
309). Further analyses will have to define the localization of
Grx2 in this cellular stadium, for instance, in the acrosome, the
anterior end of the head of a spermatide, which is essential for
ovum penetration during fertilization. Grx3 also showed a
notably strong nuclear staining in the early spermatids. In
elongated spermatids, Prx5 and Trx2 were highly expressed
in the mitochondrial rich tail region; whereas Grx2 and TrxR1
signals were situated in the acrosomal region (235).

In the human prostate, only TrxR1, GR, Prx3, and Prx6
were reported to display strong staining in both glandular
cells and stroma (143). Malignant transformation of cells from
the reproductive systemdisplayed characteristic alterations of
the redox systems (795). The invasiveness of human prostate
carcinoma cell lines was shown to correlate to levels of ROS/
RNS and the GSH/GSSG ratio. The invasive PC3 cells were
characterized by a comparably lower amount of ROS/RNS,
lower lipid peroxidation, and an increased GSH/GSSG ratio

Table 5. Testis-Specific Proteins and Isoforms from the Trx Family

Protein isoform Cell types Specific properties Reference(s)

mouse Grx2c and
Grx2d

Spermatogonia, spermatids Unlike Grx2c, Grx2d is inactive and does not
form iron-sulfur cluster bridged dimers

(310)

human Grx2b
and Grx2c

Spermatids, Sertoli cells,
cancer cells

Unlike Grx2c, Grx2b does not form iron-sulfur
cluster bridged dimers

(447)

TXNRD1_v3 Leydig cells, cancer cells TXNRD1_v3 guides actin polymerization in
relation to cell membrane restructuring

(144)

TGR and TGR-1 Elongating spermatids CUG serves as an inefficient start codon in mouse and rat (224, 744)
TXNDC2/Sp-Trx1 Spermatids Nucleation center in fibrous sheath (suspected) (498)
TXNDC3/Sp-Trx2 Spermatids Structural component of fibrous sheath (suspected) (663)
TXNDC8/Sp-Trx3 Spermatids Likely required in later steps of spermiogenesis

or mature spermatozoa
(345)

Txl-2 Mainly associated with cilia
and flagella

Novel regulator of microtubule physiology (suspected) (664)

snGPx Spermatocytes and early
spermatids

Restricted to late stages of spermatogenesis (515)

Prx4 31kda Membrane bound in the
elongating spermatid
and the residual body

Acrosome formation during vesicular
reorganization in spermiogenesis

(558, 679)
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during cell growth (523). An up-regulation of the Trx system
may play important roles in prostate cancer progression
and responses to personalized cancer therapies. The majority
of androgen-independent or hormone refractory prostate
cancers expressing androgen receptors and Prx1–4 were up-
regulated, regulating the receptor’s activity (46, 578, 709).

d. Female reproductive system. As mentioned earlier, ROS
are essential for reproductive processes. It was shown that
ROS play an important role during ovulation and that sup-
pression of an inflammatory response, as well as SOD or
catalase, inhibit ovulation (210). Several members of the Trx
family of proteins have been identified in the stroma and
follicles cells of the mouse ovary as well as in the oviduct
(235), with the highest expression detected for Trx1 and
TrxR2. TrxR2, as well as Prx2, which was absent in these cell
types, was expressed in the extracellular matrix of the ovarian
stroma and the corpus luteum. In calf, Trx1, but not Grx1, was
demonstrated immunohistochemically in follicular cells in the
ovary. Grx1 immunoreactivity was particularly strong in both
bovine and rat oocytes (237, 653). Grx1 was also suggested to
play a role in corpus luteum regulation, because it was de-
tected at different periods of the luteal phase in the human
corpus luteum (220).

Trx family proteins have been shown to correlate with poor
prognosis in ovarian cancers. A low cytoplasmic expression of
Trx correlated significantly with better progression-free sur-
vival (824). In ovarian carcinomas, cytoplasmic Prx4 expres-
sion was associated with a better prognosis, whereas
cytoplasmic Prx5 and 6 were associated with a higher stage
(370).

In themouse uterus, the expression pattern of 16 Trx family
proteins was described in the endometrium (235). Several
proteins showed stronger expression signals in specific areas,
such as the uterine gland epithelium (Grx3, Prx3, Prx4, Prx6,
and Trx1) compared with the surface epithelium. In term
pregnant women, both Trx1 and Grx1 expression was in-
creased in the cervix compared with nonpregnant individu-
als; the proteins are believed to be involved in cervical
ripening (457, 668).

11. Ischemia and hypoxia. Conditions of insufficient
oxygen supply to the whole organism or to single organs or
tissues, for instance by insufficient blood supply, were im-
plicated in various pathologies due to the general inhibition of
proliferation and induction of apoptosis. However, oxygen
concentrations are especially important in the regulation of
embryonic development, often determing cell fate. Hypoxia
regulates the survival and promotes proliferation and differ-
entiation of some cell types, including neural crest stem cells
(518) and CNS precursors (742). Human embryonic stem cells
cultured under low oxygen concentrations proliferate, but do
not differentiate, a process that in this case depends on hy-
peroxia (172). The same is valid for placental development (3).
The formation of the vascular system is also oxygen depen-
dent, because the proliferation of endothelial cells (602) and
hematopoietic progenitors (145) depends on low oxygen
concentrations. Of course, oxygen levels also regulate the
development of the fetal and postnatal lung. Hypoxia mod-
ulates the expression of angiogenic factors and potentially
affects lung microvascular development and lung morpho-
genesis (696). Transitional changes that occur in the pulmo-

nary blood vessels at birth and with the postnatal
adaptation to the extra-uterine environment are accompanied
by an abrupt increase of NOS activity (30) and the Trx/TrxR
system (148), as well as the differential regulation of Prxs (211,
378).

Cells have developed response mechanisms to cope with
low oxygen concentrations. Hypoxia-inducible factors (HIF) 1
and 2 constitute transcription factors that regulate the ex-
pression of more than 180 genes under hypoxic conditions.
HIF comprises two subunits, HIF-1a and the nuclear trans-
locatorHIF-1b. On normoxia, the a-subunit is degraded by the
proteasome after hydroxylation of oxygen-sensing prolyl
hydroxylases (PHD); while HIF-1b is constitutively ex-
pressed. On hypoxia, PHDs are inhibited, preventing HIF-1a
ubiquitination and degradation, and the protein accumulates.
The a-subunit translocates into the nucleus, dimerizes with
HIF-1b, forming HIF-1, which can then regulate gene ex-
pression by binding to hypoxia-responsive elements, regu-
lating angiogenesis, erythropoiess, vasomotor control, energy
metabolism, and cell survival (4, 492, 694, 695). The HIF-1
target anti-TNFa-induced-apoptosis was shown to protect
cells against hypoxia-induced apoptosis via Trx2 and the
generation of ROS (130). Moreover, hypoxia-induced mito-
chondrial ROS are essential for stabilizing HIF-1a andHIF-1b,
ensuring HIF activation (466, 677). Among others, they also
regulate inflammatory responses via IL-6 production (581)
and apoptosis via p38 phosphorylation (412). Increasing mi-
tochondrial ROS, as well as exposing cells to H2O2, induced
an activation of HIF-1 under normoxic conditions (111).
Controversial reports state that nitric oxide is involved in the
regulation of HIF-1, either by inhibiting HIF-1 activation (725)
or by stabilizing and increasing the levels of the active HIF-1a
subunit and theDNAbinding capacity of HIF-1 under oxygen
deprivation (38, 383) and normoxia (569), with the latter being
potentially important on inflammation (676). NO potentially
inactivates PHDs via nitrosylation, as seen in HEK293 cells
treated with S-nitroso glutathione (492), or can nitrosylate
HIF-1a at a Cys residue within the degradation domain,
preventing its destruction (431). Another regulatory mecha-
nism of HIF-1 is the generally increased translation due to
phosphorylation of essential proteins such as by phosphati-
dylinositol 3 kinase/Akt-dependent or MAPK signaling
pathways (695). Stress- and MAP kinase pathways represent
cellular mechanisms to cope with altered O2 levels. Over-ex-
pression of Trx1 led to elevated HIF-1a levels in cells cultured
under normoxic and hypoxic conditions, whereas inhibition
of TrxR1 activity blocked the activation of HIF-1a (513). Zhou
and coworkers confirmed these data, showing that Trx1 in-
creased the levels of HIF-1a by activating Akt-dependent
translation. Trx1 might also be involved in depleting HIF-1a
levels on reoxygenation (339). Over-expression of mitochon-
drial Trx2, on the other hand, either prevented or diminished
hypoxia-induced HIF-1a accumulation (869). In addition,
there are mechanisms regulating hypoxia-induced gene ex-
pression, independently fromHIF. For instance, TxnipmRNA
and protein levels rapidly decreased on hypoxia, potentially
due to a cascade of changes preventing the activation of the
MondoA:Mlx transcription factor and the binding to the car-
bohydrate response elements in the Txnip promoter. The
authors hypothesized that down-regulation of Txnip is es-
sential for cancer cells, adjusting their metabolism to the
hypoxic conditions (106).
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Tumors develop due to elevated cell- or tissue growth,
exceeding the general blood supply; with tumor hypoxia
correlating to poor prognosis, increased tumor growth, and
resistance to drug and radiation therapy (264). In addition,
over-expression of HIF-1a was accompanied by an elevated
mortality rate in patients suffering from distinct cancer types
(695). Many Trx family proteins show distinct expression
patterns in cancer (see also section II.B.12). Prx1, for instance,
was over-expressed in several cancer cell lines (840, 841) and
up-regulated in A549 cells, after 4 h of hypoxia and 2–24 h of
reoxygenation (385). Knock-down of Prx1 protein levels in
lung carcinoma cell lines generally impaired cell growth, and
transplantation of xenografts into nude mice resulted in de-
layed formation of tumors and metastasis and higher sensi-
tivity toward irradiation therapy (123); see also section II.B.12.
These proliferative and anti-apoptotic functions of the per-
oxidase Prx1 were confirmed in human lung cancer 1170i cells
and explained by the inhibition of the JNK-signaling pathway
via an interaction with the GST-JNK complex (385, 386). Both
HIF-1a and Prx1 were appointed potential targets in cancer
therapy. In addition, Prx3 stably over-expressing thymoma
cells were also more resistant to hypoxia-induced production
of H2O2 and apoptosis (551). On the contrary, retinal ganglion
cells cultured in a hypoxic atmosphere showed reduced Prx6
levels, increased levels of ROS, NF-jB-activation, and induc-
tion of apoptosis. This potential dysregulation of redox sig-
naling events can be prevented, by over-expressing the
peroxidase, resulting in reduced hypoxia-induced cell death
and neuroprotection. The authors speculate that Prx6 could be
used in the clinic, intervening with the progression of hyp-
oxia-related disorders such as glaucoma (784). Moreover,
treatment with recombinant Trx1 protected retinal ischemia-
reperfusion injury in rats (673)

Wound areas are susceptible to hypoxia as a result of tissue
damage. Due to the loss of microcirculation and the presence
of transmigrating inflammatory cells, the wound gets hyp-
oxic, with an oxygen gradient being present between the last
perfused capillary and the wound space. Angiogenesis, the
formation of new blood vessels, is also induced by hypoxia
and promoted in wound healing (602). Trx1 has been ana-
lyzed in burn injuries, demonstrating, among others, a po-
tential function in wound healing (2), which is also seen for
N-acetylcysteine (20).

Other pathological conditions, including cerebral stroke
(please see also section II.B.2) and heart infarction (compare
with section II.B.4), are triggered by hypoxic insults, induced
by the blockage or general reduction of the blood flow, re-
sulting not only in the lack of oxygen but also ATP and other
nutrients. The return of blood, although necessary, leads to
dramatic consequences in the injured tissue. This process,
called ischemia-reperfusion injury, induces molecular and
cellular changes, affecting cell morphology, cell polarity, os-
moregulation, protein synthesis, and, for example, in the
brain, release of neurotransmitters (156, 351). The reox-
ygenation phase can be divided into (i) an early, acute phase,
induced by O2, O2

-
$, and rapid changes in the redox prop-

erties of the affected tissue and (ii) the late, subacute phase,
induced by increased cytokine and chemokine levels and the
infiltration of immune cells (173). Not surprisingly, members
of the Trx family have been described to protect against is-
chemic injuries. Increased levels of Trx1, Grx1, Grx2, and Prx2
by either over-expression or treatment attenuated ischemic

damage of neurons (70, 752, 868) and cardiac cells (426, 464,
535, 768, 829), respectively (see also sections II.B.2 and II.B.4).

Besides the pathological conditions, I/R injury is also in-
duced surgically and during cell and organ transplantation.
Lung transplantation in patients with progressive pulmonary
diseases is limited by early graft dysfunction and rejection,
implicated with I/R injury and elevated secreted Trx1 levels
in the bronchoalveolar fluid (580). Even though Trx1 is a po-
tential marker protein for graft rejection, a different study has
demonstrated that pretreatment of rat donor lungs with Trx1
decreased tissue rejection, due to inhibition of I/R injury, NF-
jB activation, and the inflammatory response (see also section
II.B.8) (312). Hepatic I/R injury is induced by liver trans-
plantation. The expression of Prx1 and Prx2 was shown to be
induced by I/R in transplanted organs (702). Moreover, over-
expression of Prx5, which among other organelles is located in
mitochondria, decreased hepatocellular injury in a rat model
for liver transplantation (828). Hepatic I/R injury was shown
to affect mitochondrial function; indeed, the expression of 234
proteins was altered in a mouse model for I/R, detected by a
proteomic analysis of liver mitochondria. Interestingly, Prx6
was shown to translocate from the cytosol into mitochondria
after I/R. The peroxidase seems to function in the degradation
of mitochondrial H2O2, because Prx6 knockout mice demon-
strated increased levels of the second messenger, mitochon-
drial dysfunction, and hepatocellular injury (164). The
important role of Prx6 in I/R injury was confirmed in a dif-
ferent study using Prx6 knockout mice in a model for myo-
cardial I/R injury. Compared with wildtype organs,
knockout hearts showed reduced recovery of the left ven-
tricular function, increased myocardial infarct size, and ele-
vated levels of apoptotic cardiomyocytes (534).

We have recently analyzed the expression of 16 Trx-related
proteins in a mouse model for renal ischemia-reperfusion in-
jury, revealing nephron segment-specific responses of Trx
family proteins to the ischemic insult (236). I/R kidneys
showed significantly increased levels of Trx1, Trx2, and Grx5
and decreased levels of Grx1, which might have resulted from
specific secretion of the protein into the urine. Moreover, an
analysis of contralateral kidneys revealed increased Grx5 and
Prx6 levels and decreased protein levels of TrxR2, Prx4, and
Prx5. We believe that these differences contribute to the dis-
tinct susceptibilities of different parts of the nephron toward
the I/R insult; the glomeruli and the inner medulla cells, for
instance, have been described to be very resistant, while
medullary thick limb cells are extremely susceptible (234,
314). Moreover, Trx family proteins probably function in a
systemic inflammatory response, due to their versatile extra-
and intracellular functions (see also section II.B.8.b).

Trx1 and Trx2 are expressed in mTAL cells, and Kasuno
et al. analyzed Trx1 over-expressing mice demonstrating at-
tenuated reperfusion-induced mTAL injury (372). Induced by
I/R, protein levels of Grx2, Prx3, and Prx6 were significantly
increased in proximal tubule cells (236), a cell type that is
characterized by the ability to regenerate after an I/R insult
(511, 553). Over-expression of these proteinss in HeLa and
HEK293 cells attenuated oxidative damage to the DNA
and led to a higher cell survival and proliferation rate,
compared with controls, implying functions in the regener-
ation process of cells after I/R (236). In addition, Yang and
coworkers demonstrated that Prx5 is essential for the regu-
lation of kidney homeostasis under hypoxic conditions, for

1574 HANSCHMANN ET AL.



example, in terms of mitochondrial function and fatty acid
metabolism (843).

So far, no effective therapeutic approaches to prevent or
treat the damage caused by the hypoxia/ischemia insult are
available. However, since the middle of the twentieth century
hypothermia has been used as a clinical approach to reduce I/
R injury, for instance, of the brain (487, 496) or the cardio-
vascular system (322, 402). The mechanisms underlying the
protective effects are not fully understood. However, it was
shown that hypothermia reduces ROS levels (99), NF-jB ac-
tivation, and inflammation (806). In a proteomic approach,
1089 proteins were shown to be differently expressed in hu-
man coronary artery endothelial cells when cultured at 25�C,
compared with at 37�C. These proteins were assigned to dif-
ferent categories, including oxidoreductase activity, cell redox
homeostasis, and response to stress. Grx1, Prx2, Prx4, Prx6,
and mitochondrial SOD showed changes. However, only
Trx1, TrxR1 isoform 5, TrxR3, Prx1, GST p, and GST x-1 were
significantly increased; whereas protein-glutamine g-gluta-
myltransferase 4, PDI 1, and PDI 4 were decreased. The re-
duction of the temperature to 25�C did not seem to affect the
ratio of GSH/GSSG or the levels of reduced protein thiols and
glutathionylation. These cold-adapted cells, as well as cells
grown constantly at 37�C, were exposed to 0�C, which was
followed by a rewarming period. Cold-adapted cells showed
increased levels of glutathionylated proteins, higher levels of
reduced protein thiols, due to higher activities of Trx, TrxR,
and GSTs (872). Hypothermal preconditioning can be com-
pared with general IPC, where resistance to I/R damage is
induced by exposing a tissue to several ischemic episodes
(516). IPC induced ROS, which are believed to alter various
cellular targets including transcription factors, explaining the
potential cyto- and tissue-protective role of this approach; for
a detailed review, see Ref. (669). In a cardiovascular ratmodel,
IPC increased Trx1 levels and the translocation from the cy-
tosol to the nucleus, where it binds to Ref-1 and induces NF-
jB and Akt1. Suppression of Trx1 by shRNA in rat hearts
diminished cardioprotective effects of the preconditioning
(463). IPC also induced production of $NO, increased mito-
chondrial function, and altered the expression levels of vari-
ous proteins, including mitochondrial SOD; see Ref. (524) and
references within. Another approach is the so called ‘‘post-
conditioning,’’ which is defined as brief intermittent cycles of
ischemia alternating with reperfusion applied after the is-
chemic event. This approach is important for the treatment of
patients, when the reperfusion period is induced and has been
proved to have protective effects on the affected tissues, for
instance, cardioprotection. Both approaches were discussed
and compared in Ref. (797).

12. Cancer.

a. Carcinogenesis. Malignant transformation is the conse-
quence of numerous dynamic changes in the genome, regu-
lation of transcription, signaling pathways, proliferation,
cellular architecture, and cell-cell interactions. Since essen-
tially all of these cellular functions are at some level controlled
by redox signaling, it comes as no surprise that Trx protein
family members play a pivotal role in the process of carcino-
genesis. Many aspects of the potential role of Trx family
members both as oncogenes and as tumor suppressor genes
have been extensively analyzed and reviewed earlier; for the

Trx system, see, for instance, (29, 84, 362, 541, 693); for the Grx
system (432); and for Prxs (87, 544, 728, 830). The various roles
of the proteins in tumor development and progression are as
complex as the multiple redox-regulated signaling pathways
that contribute to malignant transformation. It is, thus, not
possible to plainly classify Trx family proteins as oncogenes or
tumor suppressor genes.

Trx1 was up-regulated in various cancers investigated, that
is, from liver (540), lung (222), and colon (54). Trx may pro-
mote the growth of tumors, and its levels are negatively cor-
relatedwith apoptosis in cancer cells (243). On the other hand,
mice transgenically over-expressing human Trx1 do not show
an increase in malignant diseases; instead, their life expec-
tancy is increased (see also section II.B.13) (504, 594, 752, 852).
The DNA-binding activity of the tumor suppressor p53 is
controlled by the redox state of some critical cysteinyl side
chains in its DNA-binding domain (252, 577). The redox state
of these residues appears to be regulated by both Ref-1 and
Trx. Trx can stimulate the DNA binding activity of p53 and
potentiate Ref-1-stimulated p53 activity both in vitro and
in vivo (789). In yeast, TrxR mutants failed to induce p53-
dependent gene activation (100, 582).

Cytosolic Grx1 and mitochondrial Grx2a expression
showed a significant correlation with the degree of differen-
tiation in adenocarcinomas and an inverse correlation with
proliferation (183). By mechanisms of alternative transcrip-
tion initiation and alternative splicing, two nonmitochondrial
Grx2 isoforms, Grx2b and Grx2c, are generated, whose ex-
pression in humans could so far only be demonstrated in testis
and various tumor cells (447). Contradictory to a potential role
as oncogene, Grx2c reduces the proliferation rate in stably
transfected cells (183).

In many aspects, Prxs appear to qualify as tumor ‘‘pre-
venters’’; for an elaborate discussion on this topic, see (544);
however, many cancer cells showed increased levels of Prxs,
and their expression sometimes correlated with progression.
Epigenetic down-regulation has been demonstrated for Prx1
in 1p/19q-deleted oligodendroglial tumors (158), Prx2 in
acute myeloid leukemia (10), and Prx4 in acute promyelocytic
leukemia (568). Prx1 interacted with a region of the c-Myc
transcriptional regulatory domain that is essential for trans-
formation. Therefore, c-Myc-mediated transformation was
inhibited, implying a tumor suppressor role for Prx1 (163,
531). Moreover, Prx1 inhibits tumorigenesis via regulating
phosphatase and tensin homolog (PTEN)/AKT activity;
binding of Prx1 protected PTEN from oxidation-induced in-
activation (97). Corroboratively to these findings, Prx1
knockout mice showed a higher rate of age-dependent ma-
lignancies (163). On the contrary, increased levels of Prxs
have, for instance, been described for Prx1 in ovarian cancer
proximal fluids (299), and Prx3 in lung cancer (387). Srx and
Prx4 promoted the progression of human lung cancer (807).

13. Aging. In the 1950s, Denham Harman hypothesized
that the aging process is linked to species-specific metabolic
activities, which depend on heritage and various stress fac-
tors. He proposed the so-called ‘‘free radical theory of aging,’’
depicting the production and over-time accumulation of ROS
and the irreversible macromolecular damage, as main reasons
for the aging process (262). The special contribution of mito-
chondria was demonstrated later in 1972 (263). This theory
was supported by a body of evidence, including that (i) cells

TRX, GRX, AND PRX FUNCTION 1575



grown in hypoxia have a prolonged lifespan (562), while cells
grown under hyperoxia have a reduced lifespan (861); (ii) cells
treated with extracellular H2O2 undergo rapid, senescence-
like growth arrest (124); and (iii) caloric restriction was shown
to enhance the lifespan in a wide range of organisms from
yeast to mammals (194, 472). Moreover, various studies in
distinct cell and animal models have demonstrated an age-
related increase in the intracellular ROS levels (134, 726), mi-
tochondrial dysfunction (427, 635, 680), accumulation of oxi-
dative-damaged mitochondrial (192, 834) and nuclear DNA
(50), oxidized lipids, and protein-mixed disulfides (68, 628),
with the latter also being the result of disturbed degradation
and repair mechanisms of oxidatively modified proteins (176,
790). Intracellular as well as plasma GSH/GSSG ratios are
known to decrease with age (628) and in age-related diseases
such as atherosclerosis (31), macular degeneration (see also
section II.B.3.b), and type-2 diabetes (674) (see also section
II.B.9.a). The expression and/or activity of various mamma-
lian Trx family and related proteins is also known to be re-
duced during aging, including, for instance, Trx1 (21, 832,
864), Trx2 (439), TrxR1 (832), TrxR2 (37), GR (68), Grx1 (69,
832), and Prx3 (439).

Mutations in various genes that interfere with the aging
process have been characterized. These encode for proteins
functioning either in the regulation of energy use or in redox
regulation and signaling, including, for instance, catalase
(770) and Prx (194, 775). Various model organisms, including
Sacharomyces cerevisiae, Cenorhabtitis elegans, Drosophily mela-
nogaster, orMusmusculus, depleted from SOD (446), Trx (748),
TrxR Prx, and PDIs (250), were characterized by a reduced
lifespan, reviewed in (334).Vice versa, protein over-expression
can lead to a prolonged lifespan, which is especially signifi-
cant in the case of Trx1, where protein over-expression led to a
35% increase in median and a 22% increase in maximum
lifespan (504, 594). However, the absence of individual genes
or proteins not always leads to a life-shortening phenotype;
for instance, in SOD2 -/ - (634), SOD2 -/ - and GPx1 -/-

(866), or Trx2 +/- mice, reviewed in detail in (334), which
might be explained by compensatory effects of their func-
tional homologs. Similarly, the over-expression of these anti-
oxidants does not necessarily lead to an elongated lifespan
(593). Despite all this supporting evidence, the contribution of
ROS to organismic changes is highly controversial (574), be-
cause, first of all, ROS formation is very complex and verifi-
cation procedures are difficult; and second, numerous studies
did not confirm Harman’s theory, which originally implied
that the targets of ROS were random, indiscriminate, and
cumulative (194)—which, as we know more than half a cen-
tury later, is not true.

A different hypothesis suggested that mitochondrial mu-
tations are created during replication errors during embryo-
genesis and then undergo clonal expansion in adult life,
leading to mitochondrial and age-related diseases (574). The
so-called ‘‘mutatormouse’’ expresses a proofreading-deficient
mitochondrial DNA polymerase, leading to the accumulation
of point mutations in the mitochondrial DNA, impaired re-
spiratory chain functions, and premature aging (574). This
phenotype was shown not to be associated with significant
increased levels of ROS or a cellular anti-stress response (781),
confirming the findings of the comparable Tfam knockout
mice (799). However, even though thesemodels disagree with
the ‘‘free radical theory of aging,’’ they do not exclude redox

regulation. Many aging-related proteins are specifically redox
regulated, including the lifespan regulator p66Shc (225, 226),
MAP kinases (90, 94, 302, 303), the Trx-dependent Msr (89,
520, 600), as well as processes including protein folding and
degradation (57, 470, 536). Furthermore, recent findings cor-
relate specific oxidative changes to the aging process, dem-
onstrating that these changes are distinctly redox couple-,
subcellular compartment-, and tissue-specific. Using geneti-
cally encoded redox probes in Drosophila melanogaster, the
authors showed that age-dependent pro-oxidants were not
equally distributed throughout the organism, but rather re-
stricted to specific regions. Moreover, they showed that the
increased lifespan of the chico1/ + mutant strain, carrying a
mutation in the insulin/IGF signaling pathway, is correlated
with increased oxidant levels (18), confirming previous data
supporting a potential beneficial role for free radicals in lon-
gevity, reviewed in (593) and (415).

In the future, we might be able to assess oxidative changes
during aging, elucidate critical mechanisms, and understand
the impact of these modifications on the aging process as well
as on age-related pathological conditions.

C. Therapeutic approaches

As described earlier, proteins of the Trx family show spe-
cific alterations in various pathological conditions, including
changes in protein expression, enzymatic activity, tissue dis-
tribution, and intra- and extracellular localization. In the fu-
ture, we might be able to use these findings in the clinic and
apply Trxs, Grxs, and Prxs as specific biomarkers in early
diagnosis, disease progression, or in order to determine the
state of a disease, allowing for a more precise prognosis and
choice of treatment.

The secretion of specific Trxs, Grxs, and Prxs has been de-
scribed in various clinical disorders (see section II.B.8.b), and
the analysis of, for example, sputum, blood, or urine samples
for specific proteins has been done through a well-established
and noninvasive approach to confirm potential pathological
changes in patients. Elevated levels of Trx1 in HIV-infected
patients have been correlated with a reduced immune re-
sponse, an increased progression of the infection, and an early
mortality rate (543). Grx1 was only detected in the urine of
mice after I/R. This specific secretion of the oxidoreductase
into urine has to be confirmed in patients; but might be ap-
plied as a marker for renal I/R injury in the future (236).
Moreover, specific auto antibodies against Trx-related pro-
teins could be used as diagnostic markers (112).

The specific expression and distribution of Trxs, Grxs, and
Prxs is especially obvious in various cancer pathologies, with
elevated protein levels of Trx1 or even the presence of cancer-
specific Grx2 isoforms (see section II.B.12). These potential
tumor markers could help determine the state of the disease
and establish a patient- and disease-specific treatment. Even
though Prxs are also highly expressed in various cancers, they
cannot be implicated as medical biomarkers, due to the gen-
eral high cellular abundance of these peroxidases. However,
clinical information on the expression of Prxs might help de-
termine the best medical care and improve the outcome of
radiation therapy (825, 862).

Targeting the proteins that increase the proliferation or
differentiation of cells and which are implicated in the de-
velopment and progression of cancer cells (see section II.B.12)
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has been an ongoing challenge. So far, no inhibitors for Grxs
have been found, but various drugs were shown to affect
proteins of the Trx family. Here, a prominent role is attributed
to TrxR—the key enzyme of the Trx system, which also bears
unique functions of its own (see also section I.A.2.a). Various
drugs, foremost electrophilic compounds that target the se-
lenocysteinyl residue in TrxR, have been developed, inhibit-
ing the oxidoreductase activity. For an indepth discussion on
this topic, we refer to the following articles: (29, 92, 591, 610,
693, 777, 793). Due to the finding that the mammalian re-
ductase differs dramatically from the bacterial or parasitic
enzyme, numerous inhibitors have been developed to coun-
teract infectious diseases; for instance, affecting the malaria
parasite Plasmodium falciparum (24, 48, 616). In addition, spe-
cific substrates for TrxR have been subjected to clinical trials.
For instance, ebselen, reviewed in (175, 452), a ‘‘chemical
mimic of GPx,’’ which was shown to reduce H2O2 levels and
oxidize Trx (867), was analyzed as a potential drug, for ex-
ample, for cerebral ischemia (579) and stroke (836). Another
target of TrxR is motexafin gadolineum. The drug has been
suggested as a radiosensitizer in cancer therapy due to its
tumor-specific uptake and its induction of ROS (201, 268). In
the future, a strategymight be developed to specifically target
Prxs in cancer cells, which contribute to resistance against
radiotherapy (862).

It has been shown that the induction of protein expression,
the addition of recombinant proteins, or over-expression via
gene therapy is beneficial in various pathological conditions
in distinct cell- and animal models, as well as in medical pa-
tient-based studies. Especially the treatment with recombi-
nant Trx1 was described to decrease several pathological
conditions affecting, for instance, the cardiovascular system,
reviewed in (477) (see also section II.B.4.b), retinal cell damage
(323) (see also section II.B.3.b), diabetes (125, 131, 849) (see
also section II.B.9.a), and pathologies of the lung (see also
section II.B.7.b). It was also shown to have a positive impact in
the therapeutic approach of transplantation (see also section
II.B.11). Pretreatment or preconditioning of rat donor lungs
with the cytosolic oxidoreductase abolished tissue rejection
(312) and transfection of mouse donor pancreatic b-cells with
a Trx1 lentivirus vector extended cell survival after trans-
plantation (131). Interestingly, Trx also bears functions in re-
ducing allergenicity to, for instance, milk by reduction of its
major whey protein b-lactoglobulin (756, 796). In addition,
major protein wheat fractions (gliadins, glutenins) are enzy-
matically reduced (80). Trx may, thus, be useful for the pro-
duction of hypoallergenic and more digestible food. Notably,
breast milk concentrations of Trx during the early postpartum
stage are highly increased, supporting this role (776). Elevated
Grx1 protein levels in mice also diminished cardiac patholo-
gies in diabetic hearts suffering from I/R-induced injury (426).
Moreover, oral applications of GSH and precursor amino
acids, including NAC, provide some degree of protection for
HIV patients (230) (see also section II.B.8.b) and diabetes pa-
tients (228, 692) (see also section II.B.9.a). The activity of Prx2
was enhanced by obovatol, a compound extracted from the
medical plantMagnolia obovata, revealing Prx2 as a new target
protecting microglia against neuroinflammation (556). Two
drugs, nipradilol and timolol, used in glaucoma therapy, in-
crease the protein levels of Prx2, thereby protecting cells of the
tabecular meshwork, the tissue surrounding the base of the
cornea, against H2O2-induced apoptosis (506). Another po-

tential target in the clinic is Prx6. Over-expression of the
peroxidase could be used to prevent the progression of hyp-
oxia-dependent disorders, such as glaucoma (784).

III. Concluding Remarks

The importance of redox signaling is increasingly recog-
nized, despite the highly transient and volatile nature of the
redox modifications that makes them very difficult to access
for broad indepth investigations. The various redox modifi-
cations are highly target- and site specific, and the Trx, Grx,
and Prx systems are pivotal players in redox signal trans-
duction both as transducers and as regulators of second-
messenger levels. One of the most striking findings of the last
years was that these events might have to be defined indi-
vidually for each tissue, each cell type within, and the con-
dition of interest. Among others, our joint approach mapping
Trxs, Grxs, and Prxs in physiological tissues of human,
mouse, and rat ‘‘Human and murine redox atlases’’ high-
lighted the complexity of redox regulatory networks and
implied more specific functions and interactions between the
proteins themselves and with other proteins than those pre-
viously assumed. What will the future bring? Even though
numerous open questions are awaiting bold hypotheses and
brilliant new strategies, we should also continuously reassess
previous findings and opinions. New issues involve the dy-
namics of subcellular localization—how can Trx fold proteins
be secreted through the plasma membrane or taken up into
cells? How do the proteins shuttle into and out of the nucleus?
More targets and interactions will have to be defined. The
molecular mechanisms of redox signal transduction are
worthy of closer attention. Will we see more redox circuits
with specific oxidases and reductases? Do redoxins transduce
oxidative signals from, for instance, H2O2 to target proteins?
[.] Undoubtedly, the redoxin and redox signaling research
field will continue to grow, and biological understanding will
contribute to the development of clinical applications.
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WE, Thiede C, Ehninger G, Becker A, Schlenke P, Wang Y,
McClelland M, Krug U, Koschmieder S, Büchner T, Yu D-Y,
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693. Selenius M, Rundlöf A-K, Olm E, Fernandes AP, and
Björnstedt M. Selenium and the selenoprotein thioredoxin
reductase in the prevention, treatment and diagnostics of
cancer. Antioxid Redox Signal 12: 867–880, 2010.

694. Semenza GL. Hypoxia-inducible factor 1: oxygen homeo-
stasis and disease pathophysiology. Trends Mol Med 7: 345–
350, 2001.

695. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev
Cancer 3: 721–732, 2003.

696. Semenza GL. Pulmonary vascular responses to chronic
hypoxia mediated by hypoxia-inducible factor 1. Proc Am
Thorac Soc 2: 68–70, 2005.

697. Sengupta R and Holmgren A. The role of thioredoxin in the
regulation of cellular processes by S-nitrosylation. Biochim
Biophys Acta 1820: 589–700, 2011.

698. Seo MS, Kang SW, Kim K, Baines IC, Lee TH, and Rhee SG.
Identification of a new type of mammalian peroxiredoxin
that forms an intramolecular disulfide as a reaction inter-
mediate. J Biol Chem 275: 20346–20354, 2000.

699. Seth D and Stamler JS. The SNO-proteome: causation and
classifications. Curr Opin Chem Biol 15: 129–136, 2011.

700. Shaked M, Ketzinel-Gilad M, Ariav Y, Cerasi E, Kaiser N,
and Leibowitz G. Insulin counteracts glucotoxic effects by
suppressing thioredoxin-interacting protein production in
INS-1E beta cells and in Psammomys obesus pancreatic
islets. Diabetologia 52: 636–644, 2009.

701. Shau H, Butterfield LH, Chiu R, and Kim A. Cloning and
sequence analysis of candidate human natural killer-en-
hancing factor genes. Immunogenetics 40: 129–134, 1994.

702. Shau H, Merino A, Chen L, Shih CC, and Colquhoun SD.
Induction of peroxiredoxins in transplanted livers and
demonstration of their in vitro cytoprotection activity. An-
tioxid Redox Signal 2: 347–354, 2000.

703. Shelton MD, Chock PB, and Mieyal JJ. Glutaredoxin: role in
Reversible Protein S-Glutathionylation and Regulation of
Redox Signal Transduction and Protein Translocation. An-
tioxid Redox Signal 7: 348–366, 2005.

704. Shelton MD, Distler AM, Kern TS, and Mieyal JJ. Glutar-
edoxin regulates autocrine and paracrine proinflammatory
responses in retinal glial (muller) cells. J Biol Chem 284:
4760–4766, 2009.

705. Shelton MD, Kern TS, and Mieyal JJ. Glutaredoxin regu-
lates nuclear factor kappa-B and intercellular adhesion
molecule in Müller cells: model of diabetic retinopathy. J
Biol Chem 282: 12467–12474, 2007.

706. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa
T, Ishii K, and Kimura H. 3-Mercaptopyruvate sulfur-
transferase produces hydrogen sulfide and bound
sulfane sulfur in the brain. Antioxid Redox Signal 11: 703–
714, 2009.

707. Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z,
Oka S, and Yodoi J. Overexpression of Thioredoxin-1 in
Transgenic Mice Attenuates Adriamycin-Induced Cardio-
toxicity. Circulation 106: 1403–1409, 2002.

708. Shioji K, Kishimoto C, Nakamura H, Toyokuni S, Na-
kayama Y, Yodoi J, and Sasayama S. Upregulation of
thioredoxin (TRX) expression in giant cell myocarditis in
rats. FEBS Lett 472: 109–113, 2000.

709. Shiota M, Yokomizo A, Kashiwagi E, Takeuchi A, Fujimoto
N, Uchiumi T, and Naito S. Peroxiredoxin 2 in the nucleus
and cytoplasm distinctly regulates androgen receptor ac-
tivity in prostate cancer cells. Free Radic Biol Med 51: 78–87,
2011.

710. Shi Y, Ren Y, Zhao L, Du C, Wang Y, Zhang Y, Li Y, Zhao
S, and Duan H. Knockdown of thioredoxin interacting
protein attenuates high glucose-induced apoptosis and ac-
tivation of ASK1 in mouse mesangial cells. FEBS Lett 585:
1789–1795, 2011.

711. Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ,
Habib GM, Lukin DJ, Danney CM, Matzuk MM, and Lie-
berman MW. Glutathione synthesis is essential for mouse
development but not for cell growth in culture. Proc Natl
Acad Sci U S A 97: 5101–5106, 2000.

712. Shoelson SE, Lee J, and Yuan M. Inflammation and the IKK
beta/I kappa B/NF-kappa B axis in obesity- and diet-in-
duced insulin resistance. Int J Obes Relat Metab Disord 27
Suppl 3: S49–S52, 2003.

713. Sibbing D, Pfeufer A, Perisic T, Mannes AM, Fritz-Wolf K,
Unwin S, Sinner MF, Gieger C, Gloeckner CJ, Wichmann
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Abbreviations Used

6-OHDA¼ 6-hydroxydopamine
aa¼ amino acid

AD¼Alzheimer’s disease
ADF¼ adult T-cell leukemia-derived factor
ALS¼ amyotrophic lateral sclerosis

AMD¼ age-related macular degeneration
AP-1¼ activating protein 1
ASK1¼ apoptosis signal-regulating kinase 1
CBS¼ cystathionine b-synthase
CD¼ cluster of differentiation

CNS¼ central nervous system
COPD¼ chronic obstructive pulmonary disease
COX¼ cyclooxygenases

Cp450¼ cytochrome P450 enzymes
CSE¼ cystathionine y-base
DCs¼dendritic cells
ER¼ endoplasmic reticulum

FAD¼flavin adenine dinucleotide
Fli-1¼ Flightless-1
GPx¼ glutathione peroxidase
GR¼ glutathione reductase
Grx¼ glutaredoxin
GSH¼ glutathione

GSNO¼ S-nitrosylated glutathione
GSSG¼ glutathione disulfide
H2O2¼hydrogen peroxide
HIF¼hypoxia-inducible factors
HIV¼human immunodeficient virus

HUVEC¼human umbilical vein endothelial cells
ICAM-1¼ intercellular adhesion molecule 1

IL¼ interleukin
INS¼ islets of Langerhans
IOP¼ intraocular pressure
IPC¼ ischemic preconditioning
IRP¼ iron regulatory proteins
JNK¼C-Jun N-terminal kinase
LPS¼ lipopolysaccharide

MAP¼mitogen-activated protein
MIF¼macrophage inhibitory factor

MPP+
¼ 1-methyl-4-phenylpyridinium

MPTP¼ 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine

Msr¼methionine sulfoxide reductases
MST¼ 3-mercaptopyruvate sulfurtransferase
NDP¼nucleoside-diphosphate

NFAT¼nuclear factor of activated T cells
NF-jB¼nuclear factor kappa B
NMDA¼N-methyl-D-aspartate

$NO¼nitric oxide
NOD¼nonobese diabetic
NOS¼nitric oxide synthase
NOX¼NADH oxidase
Nrf2¼nuclear factor E2-related factor 2
Nrx¼nucleoredoxin

P¼protein
PBMCs¼peripheral blood mononuclear cells
PC12¼pheochromocytoma cell line
PD¼Parkinson’s disease
PDI¼protein disulfide isomerase
PFTs¼pore forming immune toxins
PHD¼prolyl hydroxylases
Prxs¼peroxiredoxins
RNR¼ ribonucleotide reductase
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
RSS¼ reactive sulfur species
SOD¼ superoxide dismutases

SP-Trx¼ sperm-specific thioredoxin
Srx¼ sulfiredoxin

TBP2¼ thioredoxin binding protein 2
TGR¼ thioredoxin glutathione reductase
TH¼ tyrosine hydroxylase
TLR¼Toll-like receptor
TNF¼ tumor necrosis factor

TRAIL¼TNF-related apoptosis-inducing ligand
Trx¼ thioredoxin

TrxR¼ thioredoxin reductase
TSA¼ thiol-specific antioxidant
Txl1¼ thioredoxin-like protein 1

TXNDC¼ thioredoxin domain-containing protein
Txnip¼ trx interacting protein

VDUP1¼Vitamin D up-regulated protein 1
XO¼ xanthine oxidase
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