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Third and Fourth Order Accurate Schemes for

Hyperbolic Equations of Conservation Law Form*

By Gideon Zwas and Saul Abarbanel

Abstract. It is shown that for quasi-linear hyperbolic systems of the conservation form

Wt = —Fx = —AWX, it is possible to build up relatively simple finite-difference numerical

schemes accurate to 3rd and 4th order provided that the matrix A satisfies commutativity

relations with its partial-derivative-matrices. These schemes generalize the Lax-Wendroff

2nd order scheme, and are written down explicitly. As found by Strang [8] odd order schemes

are linearly unstable, unless modified by adding a term containing the next higher space

derivative or, alternatively, by rewriting the zeroth term as an average of the correct order.

Thus stabilized, the schemes, both odd and even, can be made to meet the C.F.L. (Courant-

Friedrichs-Lewy) criterion of the Courant-number being less or equal to unity. Numerical

calculations were made with a 3rd order and a 4th order scheme for scalar equations with

continuous and discontinuous solutions. The results are compared with analytic solutions

and the predicted improvement is verified.

The computation reported on here was carried out on the CDC-3400 computer at the

Tel Aviv University computation center.

1. Introduction. When dealing with one-dimensional problems in continuum

mechanics, and, in particular, hydrodynamics, it is often necessary to solve nonlinear

hyperbolic systems of the form

(1) W.-+ Fx = 0,

where ( ), and ( )x denote, respectively, partial differentiation with respect to the

time and space coordinates. IF is a vector whose components are the unknown

functions and F is a vector whose components are dependent functionally on the

components of W only. We consider the quasi-linear case where Fx = AWX, A being

a matrix whose components depend on the unknown functions only, and not on their

derivatives. Since Eq. (1) is assumed to be hyperbolic, the eigenvalues of A are all real.

Systems of the form of Eq. (1) are called "Conservation Law Form" systems.

Various numerical schemes for their solution have been developed, see [1], [2], [3],

[4], [5], starting with Lax and Wendroff [1].

Keeping in mind that, ultimately, the main interest will focus on multidimensional

systems, it is obviously important to develop numerical schemes whose order of

accuracy is higher than one. A widely used 2nd order accuracy scheme is the one

due to Lax and Wendroff [1]. Their finite-difference approximation is written thus:

(2) w?1 = m - \ (*?+l - *?-i) + \ [a:+1/2íf;+1 - f-> - aU/áv - *?_,)]
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where

W"¡ =   Wix¡, í„),        (/ = 1. 2, • •• , / - ;m.J, (n = 0, 1, 2, • • •),

X = At/Ax.

If the problem contains discontinuities (such as shocks which may develop even

if the initial conditions are smooth; see [6]), the system may be handled either by

adding a nonlinear artificial viscosity term [1] or by iterative methods [4]. A stability

criterion determines Ain for the predetermined and fixed Ax.

With a view towards multidimensional computations, it is of interest to consider

3rd order accuracy schemes for nonlinear hyperbolic equations of the type (1) where,

for the present, we shall consider the scalar case, i.e., a simple conservation-form

equation. A first attempt in this direction is due to Burstein [7] who developed a

three-step approach in analogy to Richtmyer's two-step method [3] which approxi-

mates the Lax-Wendroff 2nd order scheme. We shall use the basic ideas of Lax

and Wendroff [1] for estimating truncation errors in order to construct a third order

scheme.

2. Derivation of the Method. The Lax-Wendroff (L-W) method is based on

the fact that from the equation Wt + Fx = 0 one obtains

(3) W„ = iAFz)x.

This allows the construction of a 2nd order scheme by developing W(x, t + Ai)

in a Taylor series which, to order (Ai)2, is given by

Wix, t + At) =  Wix, t) -+ iAt)Wt + &£- W„ + 0(Ai3)

and the time derivatives are replaced by space derivatives through the use of Eqs. (1)

and (3). This provides a finite-difference scheme, where W is advanced in time by

using only spatial differences.

Our first task is to construct a formula similar to Eq. (3) for higher order time

derivatives. We make the following claim:

If the matrix A of the hyperbolic system (1) is commutative with its partial-

derivative-matrices, then

(4) dif-i-lY^iA-Fx)

for every natural number n.

The proof proceeds as follows:

(5) Wtt = {AFX =  AXFX + AFXI;

on the other hand,

(6) Wtt = (- A Wx)t = - A, W, - AWzi = -AtWx+ AFXX.

Comparing (5) and (6), we obtain

(7) A, Wx =  - AXFX = - AXAWX.
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With these preliminaries and with our assertion (4), known to be true for n = 1

and 2 (even without the commutativity condition), we now consider the case n = 3 :

(8)   Wttt = KAFXl, = KAFXh = ÍAtFx + AFxt]x = [AtAWx + A{-AFX)X]X.

Now substitute the commutativity restriction A, A = A A, into (8) to get

Wllt = [AA,W, -  A{AXFX + AFXX)]X.

Using (7), we obtain (using AXA = AAX):

Wtll = [A{-AXFX) - AAXFX -  A2FXX]X = \-2AAxFx -  ,42F„L

=  -[{A\FX + A2FXX]X =  -{A2FX)XX.

(9)

We have thus verified our claim (Eq. (4)) for the case n = 3. It is easy to show by

induction that Eq. (4) is valid for all n.

With the aid of this result, we can construct a finite-difference scheme to any

desired truncation error by writing the required Taylor series:

(10)        W{x, t + At) W{x, t) + ¿ {-Y y¡£ £^ (A'-'F,) + 0[(Ai)m+1].

One has only to take care to represent the various derivatives by a finite-difference

expression which has the proper accuracy so that the overall scheme retains the

desired truncation error. It should be noted that by the Cayley-Hamilton Theorem

it is possible to express Ak (k = r) in terms of A, A2, • • • , A''1, where A is of order

rXr.

It is interesting to note that the equations describing the fluid dynamic behavior

of polytropic products of detonation with 7 = 3 satisfy the commutativity restriction.

For this situation, the system is described by

W = F =
uc

W + \c J
A =

[_c    u

where c and u are the speed of sound and particle velocity, respectively, and y is

the polytropic constant. This system, where an equation of state of the form p ~ pT

is assumed, cannot describe solutions with strong shocks but can give very good

approximations for expansion flows and flows with weak shocks [9], [10].

3. A Third Order Finite-Difference Scheme,
of a system obeying the restriction on A

We shall consider now the case

(11)

with the initial condition

(12)

Wt = Fx A{W)WX,

W{x, 0) = $(*).

In order for all the terms in the finite-difference representation to be of at least of

third order, it is necessary to improve the representation of the first derivative thus:

(13) ( VZYj =
F?+i -  VU       F-+2 - 2 V"+1 + 2VU - F;_

2A I2h
+ 0{h*).
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232 GIDEON ZWAS AND SAUL ABARBANEL

It should be noted that for a third order accuracy scheme, one may still use A"+l/2 =

AhWj+x + Wj)] or something equivalent; but for higher order schemes, it will

be necessary to utilize a better interpolation.

We can now write down a finite-difference scheme of third order accuracy:

Wr1 =   Wn¡ + XU(F?+1 - F%{) - Z\ (F?+2 - 2F?+1 + 2*7-1 - F"-2)J

(14)

^2

+ "T \A%l/2{Fnj+l — F") — /1"_1/2(F" — FU)\

+ ^~[h{A%Z>\F%2  - FT) - (A7)\F¡+1 - F?-,)

+ hi AU) (Fi - F?-*)]

with 5 = « = 1. If we set 5 = e = 0, we get back to the 2nd order accuracy scheme

of Lax and Wendroff. Scheme (14) is unstable as it stands. In order to stabilize it,

we have to add artificial viscosity terms. This requirement is typical in schemes of

odd order of accuracy.

4. The Stabilizing Artificial Viscosity.   We propose an artificial viscosity term

of the form

(15) -~ h\\2 A2 + v\* A') Wix        {Wix m dl W/dx").

The part of (15) which is proportional to X2A2Wix results from expressing Wu to

a higher accuracy than Oih2). This improvement, if given in a conservation form,

is written thus:

[{AFx)Sj = -a M"+i/2(F"+1 — F") —  A".U2{F" — F"_i)]

(16) — y^-2 [A%3/2{Fni+2 — F"+1) — 3/l"+1/2(F"+1 — F")

+ 3AUAF] - FU) - AUAFU - FU)].

It is the second term on the R.H.S. of (16) which gives rise to \2A2W4x (with A being

taken constant, since the term is not needed for accuracy, only for stability).

The \iAiWix part of (15), however, is due to extending the Taylor series; i.e.,

it is derived from

(17) W4I = {A3FX)XXX.

The finite-difference representation of (17) is, to 3rd order accuracy,

[{AiFx)xxxY¡ = tî [{Ani+3/2f{Fl+2 — F"+1) - 3{A%W2)3{F"+1 — F?)
(18) k

+ 3{AU/2)\Fj - FU) - {AUn)\FU ~  F?_2)].

In practice, we will take the artificial viscosity term, either in its conservation form

(i.e., use (16) and (18)), or in the linear version where the finite-difference form of

(15) is:
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(19) —± [X2U?)2 + vXXaîYUW^, - AWn¡+1 + 6W'j - 4*7_, +  W-X

If we examine the linear stability of the scheme in the usual von Neumann fashion,

then we find that for Í2 = e = 5= — v = 1 the criterion is Xa ^ 1 where a is the

spectral radius of A. This result is also a special case of Theorem 1 in Strang's paper

of 1962, [8].
In principle, it is possible to build up, in the above manner, numerical schemes

of any desired accuracy. It seems that such schemes of odd orders will not be linearly

stable unless an artificial viscosity term is added. The artificial viscosity term that

we have added contains a term which is proportional to the next higher even deriva-

tive of the Taylor series development of W{x, t + At). Thus, it might be possible

to take just that amount of artificial viscosity which will not only stabilize the scheme,

but also will add one more order of truncation accuracy. Of course, when doing

this, care has to be taken that all the differencing is consistent with the higher order

accuracy. In effect, this is the case with the Lax-Wendroff term, which might be

considered as a stabilizing term added to a first order scheme. If the coefficient of

(AFX)X is cleverly chosen to be Ai2/2! , then an additional bonus is the 2nd order

accuracy.

5. Analytic Solutions for Comparison Purposes. Consider the single (scalar)

equation ut + A(u)ux = 0, with the initial conditions «(x, 0) = 4>(x). This hyperbolic

equation has straight characteristics whose slope is given by dt/dx = 1 /A(u). Since u

is known at i = 0, and since u remains constant along a characteristic, it is easy

to find analytic solutions to the above initial-value problem with Aiu) = u and

<Kx) =  xa, a  =  0,  1, UJ:

(20) a = 0: u{x, i) =  1,

(21) a =  1: uix, t) = x/(l + t),

tvn ~ ,    rt      2xt + 1 - (1 + 4*i)1/2
(22) a = 2: u{x, t) = -—2- ,

r™ i <     rt      O2 + Ax- t)l/2
(23) a = i: u{x, t) =- ,

(24) a-}:        u{x, t) - z1'3 - \z~»\    (z = \ + (£ + Z^)'*)-

We shall take these solutions at x = 0 and x = 1 to serve as the boundary conditions

for the numerical work which is to be checked in 0 < x < 1 against the above analytic

solutions.

The case of a solution containing a discontinuity which is created at some i = ic

is demonstrated by taking the following initial conditions:

$(x) =1, -oo < x = 6,

(25) = 2 - x/e, 6 ^ x ^ 26,

= 0, 2d g  X  <   oo.
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234 GIDEON ZWAS AND SAUL ABARBANEL

The solution is given by

u{x, t) = I, -co  < x ^ t + 6,

26 — x
(26) = ~-= ,        t + 6 g x = 26    (0 g t < 6),

6 — t

= 0, 26 g x < oo

and for t = i„ = 6:

(2?) ««.0-1. -oo  <*á*«+3*),    (í^0)

= 0, Kí + 3Ö)<x = 1,

The "shock-wave" is created at time tc = 6 and at the location x = 20, and moves

to the right with the speed x. = J. In the numerical computations corresponding

to this case, we shall examine the behavior of the solution also across the discontinuity

and compare it to both the analytic solution and the results obtained from the standard

Lax-Wendroff method.

6. Numerical Results. In reporting on the numerical work, we shall compare

the standard Lax-Wendroff results with those of our third order scheme (Eq. (14)),

either with the linear viscosity (Eq. (19)) or with the conservation form artificial

viscosity ((16) and (18)).
6a. An Example for Smooth Solutions. We take Ax = 0.005, w(x, 0) = $(x) = x2

and, from (22),

,n   ^      n „    x      2i + 1 - (1 + 4i)1/2

As expected, the maximum relative error using the scheme presented above is about

100 times smaller than the one given by the standard Lax-Wendroff method. This is

the case when we use the linear artificial viscosity (Eq. (19)). When the conservation

form of the artificial viscosity is used, the ratio of the maximum relative errors

decreases from about 1/100 to about 1/1000.
6b. An Example for Discontinuous Solutions. Here, we take w, + uux = 0 with

the initial distribution (25) and boundary conditions according to (26) and (27).

The results indicate that the 3rd order accuracy scheme gives a slight improvement

over the L-W calculation in the large gradient region, in the sense that the "shock"

is slightly steeper and the post-shock oscillations are weaker and are damped more

quickly. On the other hand, unlike the L-W case, there is a very small negative per-

turbation ahead of the "shock". The appearance of this precursor perturbation is

due to the fact that in the 3rd order scheme, in addition to u¡ and wi±1, one also

uses uj±2.

7. A Fourth Order Finite-Difference Scheme. As was mentioned before, if,

in the term stemming from W,„we represent Ani±1/2 by a higher order interpolation

formula, and if we take 0=1, then our scheme becomes of fourth order accuracy.

This is in line with the remarks at the end of Section 3—adding a stabilizing term

to an odd order scheme can raise the order of accuracy if the coefficients of this

added derivative are chosen properly.
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In the present case, the fourth order finite-difference scheme has the following form:

^+1 =   W1 + XU(F?+1 - FU) - y| (*?+» - 2F%, + 2FU ~ F*_2)J

X2 Í ~
+ 27 |^"+i/2(i7+i - F?) -  À^-utiF*, — FU)

- ^ [Á~?+3/2ÍFU - FU) - 3ÄUAFU - F?) + 3A~U/»(Fl - F?-,)
(28)

-  AU,ÁFU - FU)]}

+ ej; {hiAU)\FU- - Ffl - {A^YiFU - J?-,) + K^ft*? ~  FU)}

+ Ü^ {{AU.^iFU - FU) - 3{AU/2)\FU - Ff)

+ 3{An¡-W2)\Fni - FU) - {AU-^fiFU - FU)}

where

(29) ÄUn = |(^í±, + í4J) - y6 {A%2 - ^±1 - A¡ + A%X

Scheme (28) meets the stability criterion Xa :£ 1. Note that if p — 0, then Eq. (28) is

the 3rd order scheme with the linear artificial viscosity represented in a conservative

form. If also 8 = e = fl = 0, then we have the Lax-Wendroff scheme. For the fourth

order accuracy, we must use ô= e = Q = p = 1. We ran test runs with $(x) = x"

in order to determine in practice, and compare to prediction, the amount by which

the grid can be coarsened and still maintain the same maximum relative error as we

go from Lax-Wendroff to 3rd order and then 4th order schemes. The grid sizes (based

on Ax = .005 for the L-W scheme) were found to be, respectively: AxL.w. = .1/200;

Ax3rd order = -1/50; and Ax4th0rder = .1/25. These grids produce absolute errors of

C-10"6 where for a = 2 and i ~ 3, 1 < C < 5.

In conclusion, it may be stated that a 3rd or 4th order scheme, such as the schemes

proposed in this paper, will, in the smooth part of the solution to a hyperbolic problem,

yield, in practice as well as in theory, one or two orders of accuracy higher than, say,

the Lax-Wendroff method. In the regions near shock-like discontinuities, the im-

provement over the L-W scheme is not as good. This opens up the possibility that

in multidimensional cases, we shall be able in a practical manner to overcome par-

tially the problems of restricted machine memory by using coarser grids and higher

order schemes.
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