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This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft
by a third-body using a double averaged analytical model with the disturbing function expanded
in Legendre polynomials up to the second order. The important reason for this procedure is to
eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves
for the evolution of the mean orbital elements for a long-time period. The aim of this study is to
calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the
Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which
conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits
is also performed.
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1. Introduction

An extensive literature is dedicated to the question of the perturbation done by a third-body

on the trajectory of a spacecraft. Sptizer [1] used the lunar theory of Hill-Brown to study the

problem on the limited case of small eccentricities and inclinations between the disturbing

and the disturbed bodies. Kozai [2] derived the principal secular and long-period terms of

the disturbing function due to the lunisolar gravitational attractions and Musen [3] included

the parallactic term in the disturbing function. Using methods of classical mechanics, only

for the secular terms, Blitzer [4] got estimate for the lunisolar disturbances. In the following

years, many authors studied this problem using the disturbing function, Lagrange planetary

equations, and numerical approximations [5–11]. In the references presented, many results

were obtained related to the perturbations of the third body on a small mass moving close
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to another body and showed important analytical contributions, because their results are

concentrated in derivation of equations.

Recently, manyworks have been presented in the literature based on numerical methods.

Broucke [12] calculated the general form of the disturbing function of the third body truncated

after the term of second order in the expansion in Legendre polynomials. This research,

published in 2003, described the problem of the third-body perturbation on a satellite in a

simplified approximated model using double average over the short period of the satellite

as well as with respect to the distant perturbing body [13]. The important reason for this is to

eliminate the terms due to the short time periodic motion of the spacecraft and to show smooth

curves for the evolution of the mean orbital elements for a long-time period. The perturbing

body was in a circular orbit in the (x, y) plane.

Prado and Costa [14] calculated the perturbing potential for order up to four in terms

of the Legendre polynomials and later they extended the calculations to consider effects of

up to order eight in the expansions in Legendre polynomials [15]. In Solórzano [16], the

motion of the spacecraft is studied under the single-averaged analytical model with the

disturbing function expanded in Legendre polynomials up to fourth order. The single average

is taken over the mean motion of the satellite to eliminate short-period perturbations that

appear in the trajectories. After that, the equations of motion are obtained from the planetary

equations. Prado [17] studied this problem under the double-averaged analytical model with

the disturbing function expanded in Legendre polynomials up to fourth order and the full

restricted problem. The double average is taken over the mean motion of the satellite and over

the mean motion of the disturbing body.

We noticed in the literature that few general expressions for calculations of the

perturbing body have been done for cases of elliptic orbits [18–20]. There are no formulations

that explicitly include the eccentricity of the disturbing body.

In the present work, we expanded the study done by Broucke [13], and Prado [17],

including the eccentricity of the perturbing body. The double-averaged analytical model with

the disturbing function expanded in Legendre polynomials up to second order. Our purpose

was to study the stability of orbits of a massless spacecraft in a near-circular three-dimensional

orbit around a central body with mass m0, and a second body with mass m′ in an elliptic orbit

around this same central body in the plane x − y.

This paper is structured as follows. In Section 2, we present the equations of motion used

for the numerical simulations. Section 3 is devoted to the analysis of the numerical results of

near-circular orbits. The theory developed here is used to study the behavior of a spacecraft

around the Moon, where the Earth is the disturbing body. Several plots show the time histories

of the Keplerian elements of the orbits involved. Our final comments are presented in Section 4.

2. Equations of motion

In this section, we present the equations of motion obtained from the mathematical models

used in this research. It is assumed that the main body with massm0 is fixed in the center of the

reference system x−y. The perturbing body, with massm′, is in an elliptic orbit with semimajor

axis a′, eccentricity e′, and mean motion n′ (given by the expression n′2a′3 = G[m0 + m′]).
The massless spacecraft m is in a generic two-dimensional orbit which orbital elements are a

(semimajor axis), e (eccentricity), i (inclination), ω (argument of periapsis), Ω (longitude of

the ascending node), and n (mean motion) given by the expression n2a3 = Gm0. This system
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Figure 1: Illustration of the dynamical system [16].

is showen in Figure 1. Here, G is the gravitational constant, r and r ′ are the radius vectors of

bodies m andm′, and S is the angle between these radius vectors.

Using the traditional expansion in Legendre polynomials (assuming that r ′ ≫ r), the

disturbing potential is given by [21]

R =
µ′G

(
m0 +m′)

r ′

∞∑

n=2

(
r

r ′

)n

Pn

[
cos(S)

]
, (2.1)

where µ′ = m′/(m0 +m
′), G is the gravitational constant, Pn are the Legendre polynomials, and

S is the central elongation between the perturbed body (the spacecraft) and the perturbing

body (the second body).

The terms n = 1 and n = 0 are not included in (2.1). The partR2 of the disturbing function

due to the second body is given by

R2 =
µ′n′2a2

2

(
a′

r ′

)3( r

a

)2[
3 cos2(S) − 1

]
, (2.2)

where cos(S) is

cos(S) = α cos(f) + β sin(f), (2.3)

where α = P̂ · r̂ ′, β = Q̂ · r̂ ′, f is the true anomaly of the satellite, r̂ ′ is the unit vector pointing

from the central body to the disturbing body, all of them functions of f ′ and ω′ (true anomaly

and argument of the periapsis of the disturbing body, resp.). The usual orthogonal unit vectors

P̂ and Q̂ are functions of i, ω, and Ω in the plane of the satellite orbit, with P̂ pointing toward

the periapsis. For the case of elliptic orbits the products α and β are written as

α = cos(ω) cos(Ω − f ′ −ω′) − cos(i) sin(ω) sin(Ω − f ′ −ω′),

β = − sin(ω) cos(Ω − f ′ −ω′) − cos(i) cos(ω) sin(Ω − f ′ −ω′).
(2.4)
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A substitution using (2.3)was made in (2.2). Then we have

R2 =
µ′n′2a2

2

(
a′

r ′

)3( r

a

)2[
3
(
α2 cos2(f) + 2αβ cos(f) sin(f) + β2 sin2(f)

)
− 1

]
. (2.5)

Now we need to average those quantities over the short period of the satellite motion as

well as with respect to the distant perturbing body. The standard definition for average used is

〈F〉 =
1

2π

∫2π

0

F dM, (2.6)

whereM is the mean anomaly that is proportional to time.

The averages are realized in terms of the eccentric anomaly, and then it is necessary to

replace the true anomalies f and f ′ by the eccentric anomalies E and E′. To do this task, we use

somewell-known relations from the Celestial Mechanics [21] given by the following equations:

sin(f) =

(
1 − e2

)1/2

1 − e cos(E)
sin(E),

cos(f) =
cos(E) − e

e cos(E) − 1
,

(
r

a

)
= 1 − e cos(E),

dM =
(
1 − e cos(E)

)
dE.

(2.7)

Using those equations, we can obtain the following relations:

〈(
r

a

)2

cos2(f)

〉
=

(
1 + 4e2

)

2
,

〈(
r

a

)2

sin2(f)

〉
=

(
1 − e2

)

2
,

〈(
r

a

)2

cos(f) sin(f)

〉
= 0,

〈(
r

a

)2〉
=
2 + 3e2

2
.

(2.8)
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After using those equations, the disturbing potential averaged over the eccentric

anomaly that the spacecraft has from the action of the disturbing body becomes

〈
R2

〉
=
3µ′n′2a2

4

(
a′

r ′

)3[
α2(1 + 4e2

)
+ β2

(
1 − e2

)
−
(
2

3
+ e2

)]
. (2.9)

The next step is to obtain the second average with respect to the disturbing body. To do

this, we considered the Keplerian elements of the spacecraft constant during the process of

averaging [17]. Thus we obtain

〈(
a′

r ′

)
α2

〉
=

[
1

2
+
3

4
e′

2
+
15

16
e′

4
][

cos2(ω) + cos2(i) sin2(ω)
]
,

〈(
a′

r ′

)
β2
〉

=

[
1

2
+
3

4
e′

2
+
15

16
e′

4
][

sin2(ω) + cos2(i) cos2(ω)
]
.

(2.10)

After performing these averages for the perturbed and perturbing bodies, the equation

〈〈R2〉〉 obtained from the double-averaged disturbing function is

〈〈
R2

〉〉
= K

[
2
(
3 cos2(i) − 1

)
+ 3e2

(
3 cos2(i) − 1

)
+ 15e2 sin2(i) cos(2ω)

]
, (2.11)

where

K =
µ′n′2a2

16

[
1 +

3

2
e′

2
+
15

8
e′

4
]
. (2.12)

The partial derivatives of 〈〈R2〉〉 with respect to a, e, i, and ω can thus be written as

∂
〈〈
R2

〉〉

∂a
=
an′2µ′

8

[
1 +

3

2
e′

2
+
15

8
e′

4
][
2
(
3 cos2(i) − 1

)
+ 3e2

(
3 cos2(i) − 1

)
+ 15e2 sin2(i) cos(2ω)

]
,

∂
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R2
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∂e
= 6K

[
e
(
3 cos2(i) − 1

)
+ 5e sin2(i) cos(2ω)

]
,

∂
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R2
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∂i
= 3K

[
− 2 sin(2i) − 3e2 sin(2i) + 5e2 sin2(i) cos(2ω)

]
,

∂
〈〈
R2

〉〉

∂ω
= −30Ke2 sin2(i) cos(2ω).

(2.13)
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Now we need to quantify the resulting variations in these four orbital elements of the

perturbed body. To obtain this, we will derive Lagrange’s planetary equations. The results are

given by

da

dt
= 0,

de

dt
=
15µ′n′2e

√
1 − e2

8n

[
1 +

3

2
e′2 +
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8
e′4

]
sin2(i) sin(2ω),

di

dt
=
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8
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]
.

(2.14)

Analyzing these equations of motion, it can be noticed the following (see [13, 17]).

(i) a is constant during the integration.

(ii) All the results based on these equations are valid for any semimajor axis (i.e., present

in the equations in terms of n) and system of primaries in a proportional time scale.

(iii) Here we have a system of three simultaneous ordinary differential equations. They

contain essentially the variables e, i, and ω.

(iv) The equation for the longitude of the ascending nodeΩ depends on the variables e, i,

and ω but it does not influence their motion.

(v) When e = 0 and/or i = 0 there are no variations on the inclination and eccentricity,

and the orbit remains circular and/or planar. These circular solutions with constant

inclination appear due to the truncation of the expansion of the disturbing function

and are not a physical phenomenon. Although no variations for the eccentricity and

inclination are obtained, in a real case (full restricted three-body problem), the circular

solutions with constant inclination do not exist. The eccentricity can oscillate with

large amplitude that depends on the value of the initial eccentricity.

(vi) For the eccentricity e of the spacecraft, we can see immediately that it increases with

e′, which can be explained by the decrease of the minimum distance between the

primaries. Thus, the perturbations for an orbiting spacecraft are maximum when the

secondary body is near the pericenter of its orbit. Analyzing the equations, we have

that, when e′ is different from zero, e increases by a scale factor of [1 + (3/2)e′2 +

(15/8)e′4]. It is also interesting to notice that, when the eccentricity increases, there is

a decrease in the inclination.
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(solid curve) and its mean value [1+(3/2)e′2+(15/8)e′4] (dashed line)
as a function of the value of e′.

(vii) In every equation, appears the term [1+(3/2)e′2 +(15/8)e′4] that is an approximation

of the mean value of the function (a′/r ′)3 that is given by (1 − e′2)(−3/2). This

approximation can reduce the accuracy of the numerical results. In Figure 2 there are

two curves that show the evolutions of (1 − e′2)(−3/2) (solid curve) and its mean value

[1 + (3/2)e′2 + (15/8)e′4] (dashed line) as a function of the value of e′. Analyzing this

figure, we can see that there is a tendency to diverge when the value e′ increases, but
they have a good agreement for small values of e′.

(viii) Apseudo-time can be introduced in the equations by the expression t∗ = [1+(3/2)e′2+
(15/8)e′4] where t is the period of the oscillation in the circular model and t∗ is the

period of oscillation when the value of e′ is considered. In this way, we have t =

[1 + (3/2)e′2 + (15/8)e′4]−1t∗, which means that the period of oscillations decreases

when the eccentricity of the disturbing body increases.

According to these studies, in the elliptic restricted three body problems, the evolutions

in time of the orbital elements of the satellite depend on its initial conditions, on the eccentricity

of the disturbing body e′, and on the mass ratio µ′. Considering that the magnitude of

the relative forces on the satellite is subjected to change with the separation between the

central and the disturbing bodies, so the orbit of the satellite can have different characteristics

depending on its distance from the central body. If the distance between the central body and

the satellite increases, the gravitational force of the central body decreases with the square

of this distance, so the perturbations of the third body become more important. The increase

of the distance between the central body and the satellite may cause regions of stable orbits

quasiperiodic or chaotic. So, escape or collision of the satellite may occur.

3. Numerical simulations

In this section, we show the effects of nonzero initial eccentricities for the perturbing body. We

numerically investigate the variations of e and i for a spacecraft within the elliptic restricted
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three-body problem Earth-Moon spacecraft. The spacecraft is in an elliptic three-dimensional

orbit around the Moon and its motion is perturbed by the Earth.

An interesting question that appears in this problem is what happens to the stability of

near-circular orbits. The answer for this question depends on the initial inclination i0 (inclina-

tion between the perturbed and perturbing bodies). If this inclination is above the critical value,

the orbit becomes very elliptic and the spacecraft may escape. In opposition, if the inclination

is below the critical value, the orbit remains near circular [17]. In the double-averaged second-

order model the critical inclination is i = 0.684719203 radians or 39.23152048 degrees [13].

In Prado [17] a lunar satellite with a0 = 0.01 (3844 km), e0 = 0.01, and ω0 = Ω0= 0◦ was

used to show the behavior of the evolutions of the inclination and the eccentricity with time

for near-circular orbits with i0 ≤ 80◦. The perturbing body was in circular orbit.

For our numerical integrations, the initial conditions of Prado [17] were used. The

eccentricity of the perturbing body in the range 0 ≤ e′ ≤ 0.6 was examined. It means that we

generalized the Earth-Moon system in order to measure the effects on the eccentricity of the

primaries. The time is defined such that the period of the disturbing body is 2π . Therefore,

the integrations were performed for 2000 canonical units, what correspond to 320 orbits of the

disturbing body (in this case of the Earth-Moon system).

The results are summarized in Figures 3–6. The curves show the evolution of the

inclination and the eccentricity as a function of the time, respectively. The results were

obtained considering the full elliptic restricted three-body problem and a double averaged

second-order model. In general, the behavior of the eccentricity and inclination are according

to the expected. The eccentricity oscillates with large amplitude, reaching the value 0.97 only

in the case i0 = 80◦. The inclination remains close to constant most of the time, but from time to

time it decreases to the value of the critical inclination and then returns to its initial value. The

minimum in inclination occurs at the same time as the maximum in eccentricity. As expected,

the averaged model presented smooth curves.

By focusing on the value of the eccentricity of the perturbing body, our results show

differences between the results of the numerical simulations considering the full problem

and the double averaged second-order model. In the two models, the amplitudes of the

inclination and the eccentricity do not suffer significant changes with the increase of e′. In the

second-order model, the time required for the inclination to reach its critical value decreases

when e’ increases. In this case, the critical value is reached a greater number of times for

a given time, when compared to the results of the full model. The numerical results of the

full problem showed that there is no strong effects with the increase of e′ on the inclination

and eccentricity of the spacecraft. It can be seen that the behavior of the eccentricity and

the inclination are similar for all the cases. Thus, what predominates in this process is the

distance of the spacecraft to the secondary body. The spacecraft suffers a small gravitational

perturbation of the secondary body and the effects of such perturbation are not significant.

The comparison between the results above shows that the second-order model (only the

part R2 of the disturbing function) is not very accurate to study orbits with higher values of e′

and further expansions have to be made.

To illustrate the behavior of the inclination and eccentricitywhen the value of i0 is around

the critical value (38◦ ≤ i0 ≤ 43◦), Figure 8 shows the evolution of the eccentricity and the

inclination as a function of time for e′ = 0.0 and 0.3. The figures for other values of e′ are
not presented here, but show similar behaviors. The results showed that the behavior of the

eccentricity and inclination are very similar on the two models.
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Figure 3: Inclination and eccentricity as a function of the time. The perturbing body was in an elliptic orbit
with e′ = 0.1. The results were obtained considering the full elliptic restricted three-body problem (above)
and double-averaged second-order model (below).
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Figure 4: Inclination and eccentricity as a function of the time. The perturbing body was in an elliptic orbit
with e′ = 0.3. The results were obtained considering the full elliptic restricted three-body problem (above)
and double-averaged second-order model (below).
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Figure 5: Inclination and eccentricity as a function of the time. The perturbing body was in an elliptic orbit
with e′ = 0.5. The results were obtained considering the full elliptic restricted three-body problem (above)
and double-averaged second-order model (below).
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Figure 6: Inclination and eccentricity as a function of the time. The perturbing body was in an elliptic orbit
with e′ = 0.6. The results were obtained considering the full elliptic restricted three-body problem (above)
and double-averaged second-order model (below).
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Figure 7: Inclination and eccentricity as a function of the time. The perturbing body was in a circular orbit.
The results were obtained considering the full elliptic restricted three-body problem (above) and double-
averaged second-order model (below).
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Figure 8: Inclination and eccentricity as a function of time. The perturbing body was in elliptic orbit with
e′ = 0.0 and 0.3. The results were obtained considering the full elliptic restricted three-body problem (solid
line) and double-averaged second-order model (dashed line).
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Figure 9: Eccentricity as a function of time for e′ = 0.0, 0.4, 0.5, and 0.6. The results were obtained
considering the full elliptic restricted three-body problem (red line) and double-averaged second-order
model (black line).

The results were obtained considering the full elliptic restricted three-body problem

(solid line) and double-averaged second-order model (dashed line). The values of i0 = 41◦

and 43◦ (above the critical inclination) give results that showed that the inclination oscillates

with very small amplitude (≈ 0.01 rad), decreases until the critical value, and then returns to

its value i0. The eccentricity oscillates with significant amplitude (about 0.30). Again, when the

eccentricity reaches its maximum, the inclination reaches its minimum for the case of initial

condition near the critical value. For the effect of increasing i0 and/or e
′, the time for reaching

the critical value is reduced. For the value of i0 = 38◦ (just below the critical inclination) the

inclination and eccentricity stay close to i0 and e0, respectively.

The next simulations show results (Figure 9) for near-equatorial and circular orbits. For

this case, our simulations are for a = 0.01, e = 0.001, i0 = 5◦, ω0 = Ω0 = 0◦, and 0 � e′ � 0.6.

From the second-ordermodel equations, it is easily seen the existence of stable equatorial

circular orbits. When the value of e0 and/or i0 is small, this imply that e and iwill suffer much

smaller changes with time, either increasing from or decreasing to zero. This is because their

variations with time are proportional to sin2(i) and sin(2i).

The numerical integration of the full problem and the second-order model showed

constant inclination all the time. The variation of the eccentricity on the two models had very

small amplitudes. The oscillations for the full model (red line) have amplitude in the order of

10−3 and, for the second-order model, it was 10−5.



R. C. Domingos et al. 13

0 40 80 120 160

Time (canonical units)

0.1

0.101

0.102

0.103

0.104

E
cc
en

tr
ic
it
y

10◦

(a)

0 50 100 150 200 250 300

Time (canonical units)

0.1

0.125

0.15

0.175

E
cc
en

tr
ic
it
y

30◦

(b)

0 50 100 150 200 250 300

Time (canonical units)

0.2

0.4

0.6

0.8

1

E
cc
en

tr
ic
it
y

50◦

0
0.1
0.2
0.3

0.4
0.5
0.6

(c)

0 50 100 150 200 250 300

Time (canonical units)

0.2

0.4

0.6

0.8

1

E
cc
en

tr
ic
it
y

80◦

0
0.1
0.2
0.3

0.4
0.5
0.6

(d)

Figure 10: Eccentricity as a function of the time for 0.0 � e′ � 0.6. The results were obtained considering
the double-averaged second-order model.

We presented the results for e′ = 0.0, 0.4, 0.5, and 0.6 because they illustrate very well

how the oscillations of e increase with high values of e′ (see the figures for e′ = 0.0 and 0.6 as a

comparison).

The next simulations (see Figure 10) are made for a lunar satellite with the following

data: a = 0.013 (5000 km), e = 0.1, 10 � i � 80 degrees, e′ = 0.0 to 0.6. The color scale indicates

the eccentricity of the perturbing body. The main effect of the eccentricity of the perturbing

body is to reduce the period of the oscillation of the eccentricity of the perturbed body.

4. Conclusions

This paper showed an analytical expansion to study the third-body perturbation for the

case where the perturbing body is in an elliptical orbit. It followed the same steps used

in the literature for the circular case that is based in the expansion of the perturbing

function in polynomials of Legendre. The behavior of the trajectories is similar to the

circular case, showing an oscillatory behavior for the eccentricity. In general, the second-order

approximation shows that the main effect of the eccentricity of the perturbing body is to

reduce the period of the oscillation of the eccentricity of the perturbed body. This reduction

is proportional to the eccentricity of the perturbing body. The amplitude of the oscillation is

not changed. Better accuracy can be attained with larger expansions.
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[20] M. Šidlichovský, “On the double averaged three-body problem,” Celestial Mechanics, vol. 29, no. 3, pp.
295–305, 1983.

[21] C. D. Murray and S. F. Dermott, Solar System Dynamics, Cambridge University Press, Cambridge, UK,
1999.


	Introduction
	Equations of motion
	Numerical simulations
	Conclusions
	Acknowledgment
	References

