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The Lagrange’s planetary equations written in terms of the classical orbital elements have

the disadvantage of singularities in eccentricity and inclination. These singularities are

due to the mathematical model used and do not have physical reasons. In this paper,

we studied the third-body perturbation using a single averaged model in nonsingular

variables. The goal is to develop a semianalytical study of the perturbation caused in a

spacecraft by a third body using a single averaged model to eliminate short-period terms

caused by the motion of the spacecraft. This is valid if no resonance occurs with the moon

or the sun. Several plots show the time histories of the Keplerian elements of equatorial

and circular orbits, which are the situations with singularities. In this paper, the expan-

sions are limited only to second order in eccentricity and for the ratio of the semimajor

axis of the perturbing and perturbed bodies and to the fourth order for the inclination.

Copyright © 2007 C. R. H. Solórzano and A. F. B. A. Prado. This is an open access arti-

cle distributed under the Creative Commons Attribution License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

1. Introduction

Garofalo [1] and Pines [2] used several methods for removing the singularities caused by

the use of the classical orbital elements. Cohen and Hubbard [3] described a new set of

nonsingular elements, which are relatively simple functions of the classical elliptic orbital

elements. They also give the differentials of the coordinates and velocity components in

terms of the differentials of the nonsingular elements. Broucke and Cefola [4] studied

the equinoctial orbit for the two-body problem, showing that the associated matrices are

free from singularities for zero eccentriciticies and 0◦ and 90◦ inclinations. Giacaglia [5]

removed the singularities from the geopotential expansion and its derivates, but allowed
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a mixed set of orbital elements to remain in the expansions. However, its development

retains much of the original inclination and eccentricity functions, allowing their calcu-

lation by existing recursive relations. Nacozy and Dallas [6] removed singularities from

the geopotential and its derivates for zero eccentricity and inclination and formulated

the geopotential expansion entirely in terms of nonsingular orbital elements. Walker et

al. [7] introduced a set of modified equinoctial orbit elements for perturbation analysis

of all types of orbits. Wytrzyszczak [8] used nonsingular elements for the description of

the motion of satellites with small eccentricity and inclination.

This work (Wytrzyszczak [8]) is an extension of the research performed by Nacozy

and Dallas. Those researches present rich contributions and have a strong analytical ap-

proach, containing several derivations of equations. In the present paper, we developed

the equations made by Giacaglia [5] and applied an averaged technique to obtain new

equations for the evolution of the orbital elements in nonsingular variables. Using those

equations, we made numerical simulations to understand the evolution of circular and

equatorial orbits, plotting the results in terms of the standard orbital elements, in order

to complement previous studies of this problem that used singular variables. It is aligned

with papers that have emphasis in numerical results, like the ones by Broucke [9] that de-

veloped a semianalytical study up to the second-order theory, Prado [10] that extended

this theory to the fourth order, and Solórzano and Prado [11] that considered a single

averaged model for the third-body perturbation.

2. Mathematical models

The model used in the present paper can be formulated in a very similar way to the planar

restricted three-body problem.

There are three bodies involved in the dynamics: one body with mass m0 fixed in the

origin of the reference system, a second massless body m in a three-dimensional orbit

around m0, and a third body (m′) in a circular orbit around m0 (see Figure 2.1).

The motion of the spacecraft (the second massless body) is Keplerian and three-

dimensional, with its orbital elements perturbed by the third body. The main body m0

is fixed in the center of the reference system X-Y-Z. The perturbing body m′ is in a cir-

cular orbit that stays in the referential plane (equatorial plane). The canonical system of

units is used here, which means that the period of the disturbing body (moon) is 2π,

which is equivalent to 27.322 days, and the semimajor axis of the moon is normalized to

1 (see Table 2.1).

The Lagrange planetary equations have the disadvantage of singularities in the eccen-

tricity and inclination due to the presence of those quantities in the denominators of the

equations. These singularities are mathematical and not physical. The presence of the ec-

centricity in the denominator causes problem in the evaluation of the variations of the

argument of periapsis. The equations that depend on the inclination have a special be-

havior for small inclinations. Also, the longitude of the ascending node is not defined

for inclination equal to zero. The circular orbits do not have argument of periapsis. It

is possible to express these equations in terms of nonsingular elements, with the goal of

eliminating the singularities.



C. R. H. Solórzano and A. F. B. A. Prado 3

X

Y

Z

m

m’

S

��r

��r �

m0

Ω
ω

i

Apsidal line

EquatorNode line
Vernal

equinox

Figure 2.1. Illustration of the third body perturbation.

Table 2.1. Semimajor axis and orbital period.

Semimajor axis Semimajor axis Orbital period Orbital period

(km) (canonical system of units) (days) (canonical system of units)

384,400 1 27.322 2π

131,080 0.341 5.435 1.25

42,284 0.110 1.087 0.25

26,908 0.07 0.478 0.11

However, the set of nonsingular elements is not unique. In this paper, the equations

used for the motion of the spacecraft are the ones determined by Giacaglia [5] using non-

singular elements and considering that i �= π and e < 1. The following set of nonsingular

elements are used:

λ=M +ω+Ω,

ξ = ecos[̟],

η = esin[̟],

P = sin

[

i

2

]

cos[Ω],

Q = sin

[

i

2

]

sin[Ω],

̟ =Ω+ω.

(2.1)
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The meaning of the symbols are as follows:

(i) λ : mean longitude,

(ii) M : mean anomaly,

(iii) ω : argument of periapsis,

(iv) Ω : longitude of the ascending node,

(v) e : eccentricity,

(vi) i : inclination,

(vii) ̟ : longitude of pericentre,

(viii) M0 : initial mean anomaly,

(ix) n : mean motion,

(x) t : time,

(xi) f : true anomaly.

As a convention, primed variables are used for the perturbing body.

The Lagrange planetary equations in terms of the nonsingular elements are as follows

(Giacaglia [5]):

da

dt
= 2

na

∂R

∂λ
,

dλ

dt
= n− 2

na

∂R

∂a
+

γ

2na2

(

ξ
∂R

∂ξ
+η

∂R

∂η

)

+
1

2na2γ

(

P
∂R

∂P
+Q

∂R

∂Q

)

,

dξ

dt
=− γ

na2(1 + γ)

(

ξ
∂R

∂λ

)

− γ

na2

∂R

∂η
− 1

2na2γ
η
(

P
∂R

∂P
+Q

∂R

∂Q

)

,

dη

dt
=− γ

na2(1 + γ)

(

η
∂R

∂λ

)

+
γ

na2

∂R

∂ξ
+

1

2na2γ
ξ
(

P
∂R

∂P
+Q

∂R

∂Q

)

,

dP

dt
=− 1

2na2γ
P
∂R

∂λ
− 1

4na2γ

∂R

∂Q
+

1

2na2γ
P
(

η
∂R

∂ξ
− ξ

∂R

∂η

)

,

dQ

dt
=− 1

2na2γ
Q
∂R

∂λ
+

1

4na2γ

∂R

∂P
+

1

2na2γ
Q
(

η
∂R

∂ξ
− ξ

∂R

∂η

)

.

(2.2)

The disturbing function due to the third body is (Giacaglia [5])

R= µ′n′2r2

(

a′

r′

)3 ∞
∑

�≥2

(

r

r′

)�−2

P�

(

cos(S)
)

, (2.3)

where

(i) µ=m′/(m0 +m), m′: mass of disturbing body; m0 mass of the main body,

(ii) a′: semimajor axis of the disturbing body,

(iii) S: angle between the position vectors of the perturbing and the perturbed body,

(iv) r′: geocentric distance of the perturbing body,

(v) r: geocentric distance of the perturbed body,

(vi) δ: declination,

(vii) α: right ascension.
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Using equatorial coordinates for the satellite (α,δ) and the perturbing body (α′,δ′), we

have (Giacaglia [5])

cos(S)= sin(δ)sin(δ′) + cos(δ)cos(δ′)cos(α−α′),

P�

(

cos(S)
)

=
�
∑

z=0

ζz
(�− z)!

(� + z)!
P�z(sinδ)P�z(sinδ′)cosz(α−α′).

(2.4)

It is known that ζ0 = 1 and ζz = 2 for z �= 0. From the Rodrigue formula, it is possible to

obtain the associated Legendre function P�z by

P�z(x)= (−1)z
(

1− x2
)z/2

2��!

d�+z

dx�+z

(

x2− 1
)�
. (2.5)

Then, the harmonic coefficients are defined as

C′
�z =

{

µ′n′2

a′�−2

(

a′

r′

)�+1

ζz
(�− z)!

(� + z)!
P�z
(

sinδ′
)

}

coszα′,

S′
�z =

{

µ′n′2

a′�−2

(

a′

r′

)

ζz
(�− z)!

(� + z)!
P�z(sinδ′)

}

sin(zα′)

(2.6)

so that

R=
∑

�≥2

�
∑

z=0

R�z, (2.7)

where (Giacaglia [5])

R�z = a�

(

r

a

)

P�z(sinδ)
[

C′
�z cos(zα) + S′

�z sin(zα)
]

. (2.8)

In the disturbing function, F�zp(i) and J(c)�zp are the inclination functions. Those equa-

tions are in polynomial form, so its accuracy depends on the degree considered for poly-

nomial. H�pq are the Hansen coefficients that are functions of L�pq(γ), which are func-

tions introduced by Giacaglia [5], but that also depend on the power series for the ec-

centricity function. Equation (2.8) in orbital coordinates (Giacaglia [5]) can be written

as

P�z(sinδ)
[

C′
�z cos(zα) + S′

�z sin(zα)
]

=
�
∑

p=0

F�zp(i)
{

A′
�z cosΨ�zp +B′

�z sinΨ�zp
}

, (2.9)

Ψ�zp = (�− 2p)(ω+ f ) + zΩ. (2.10)

In (2.9),

for �− z even, A′
�z = C′

�z, B′�z = S′
�z,

for �− z odd, A′
�z =−S′�z, B′

�z = C′
�z.

(2.11)
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It is possible to relate (2.8) and (2.9) and also (2.7) and (2.8):

∑

�≥2

�
∑

z=0

�
∑

p=0

R�zp =
∑

�≥2

�
∑

z=0

�
∑

p=0

a�

(

a

r

)�

F�zp(i)
{

A′
�z cosΨ�zp +B′

�z sinΨ�zp
}

. (2.12)

Using the Hansen coefficients H�pq (Giacaglia [5]) obtained,

(

r

a

)�cos

sin
Ψ�zp =

∑

q

H�pq(e)cos
sinΨ�zpq, (2.13)

where

Ψ�zpq = (�− 2p+ q)λ− q̟ + (z+ 2p−�)Ω,

H�pq = e|q|L�pq(γ).
(2.14)

The functions L�pq (Giacaglia [5]) are power series of γ (γ =
√

1− e2). The disturbing

function can be written as

R=
∑

�≥2

�
∑

z=0

�
∑

p=0

∑

q

a�F�pq(i)e|q|L�pq(γ)
{

A′
�z cosΨ�zpq +B′

�z sinΨ�zpq
}

. (2.15)

For �= 2,

R=
2
∑

z=0

2
∑

p=0

∑

q

a2F2zp(i)e|q|L2pq(γ)
{

A′2z cosΨ2zpq +B′2z sinΨ2zpq
}

. (2.16)

Expanding (2.16),

R=
∑

q

{

a2F200(i)e|q|L20q(γ)
(

A′20 cosΨ200q +B′20 sinΨ200q
)

+ a2F201(i)e|q|L21q(γ)
(

A′20 cosΨ201q +B′20 sinΨ201q
)

+ a2F202(i)e|q|L22q(γ)
(

A′20 cosΨ202q +B′20 sinΨ202q
)

}

+
{

a2F210(i)e|q|L20q(γ)
(

A′21 cosΨ210q +B′21 sinΨ210q
)

+ a2F211(i)e|q|L21q(γ)
(

A′21 cosΨ211q +B′21 sinΨ211q
)

+ a2F212(i)e|q|L22q(γ)
(

A′21 cosΨ212q +B′21 sinΨ212q
)

}

+
{

a2F220(i)e|q|L20q(γ)
(

A′22 cosΨ220q +B′22 sinΨ220q
)

+ a2F221(i)e|q|L21q(γ)
(

A′22 cosΨ221q +B′22 sinΨ221q
)

+ a2F222(i)e|q|L22q(γ)
(

A′22 cosΨ222q +B′22 sinΨ222q
)

}

.

(2.17)
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Using (2.5) and (2.6), the harmonic coefficients are

A′20 = µ′n′2
(

a′

r′

)3(1

2

)

(

3sin2 δ′− 1
)

,

B′20 = 0,

A′21 = µ′n′2
(

a′

r′

)

(

sinδ′ cosδ′ sinα′
)

,

B′21 = µ′n′2
(

a′

r′

)3
(

sinδ′ cosδ′ sinα′
)

,

A′22 = µ′n′2
(

a′

r′

)3(1

4

)

(

1− sin2 δ′
)

cos2α′,

B′22 = µ′n′2
(

a′

r′

)3(1

4

)

(

1− sin2 δ′
)

sin2α′.

(2.18)

Taking into account that the perturbing body is on the reference plane and that its orbit

is circular (α′ =M′
0 +n′t, δ′ = 0), it is possible to write that

A′20 =−µ′n′2
(

a′

r′

)3(1

2

)

,

B′20 = 0,

A′21 = 0,

B′21 = 0,

A′22 = µ′n′2
(

a′

r′

)3(1

4

)

cos2α′,

B′22 = µ′n′2
(

a′

r′

)3(1

4

)

sin2α′,

(2.19)

then

R=
∑

q

{

a2F200(i)e|q|L20q(γ)
(

A′20 cosΨ200q
)

+ a2F201(i)e|q|L21q(γ)
(

A′20 cosΨ201q
)

+ a2F202(i)e|q|L22q(γ)
(

A′20 cosΨ202q
)

}

+
{

a2F220(i)e|q|L20q(γ)
(

A′22 cosΨ220q +B′22 sinΨ220q
)

+ a2F221(i)e|q|L21q(γ)
(

A′22 cosΨ221q +B′22 sinΨ221q
)

+ a2F222(i)e|q|L22q(γ)
(

A′22 cosΨ222q +B′22 sinΨ222q
)

}

,

(2.20)
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Table 2.2. Values of L�pq (Giacaglia [5]).

� p q � p q �

2 0 −2 2 2 2 5/2

2 0 −1 2 2 1 −3 + 39e2/24

2 0 0 2 2 0 1− 5e2/2

2 0 1 2 2 −1 1− 19e2/8

2 0 2 2 2 −2 1− 5e2/2

2 1 −2 2 1 2 −1/4 + e2/12

2 1 −1 2 1 1 −1 + e2/8

2 1 0 2 1 0 1 + 3e2/2

Table 2.3. Values of J(c)�zp (Giacaglia [5]).

� z p |ξ| J�zp(c) c = cos(i/2)

2 0 0 2 −3c2/2

2 0 1 0 −1/2 + 3c2− 3c4

2 0 2 2 −3c2/2

2 1 0 1 3c3

2 1 1 1 3c− 6c3

2 1 2 3 −3c

2 2 0 0 3c4

2 2 1 2 6c2

2 2 2 4 3

where

Ψ�zpq = (�− 2p+ q)M + (�− 2p)ω+ zΩ. (2.21)

Using Table 2.2 and the inclination functions F�zp(i), J(c)�zp (see Table 2.3), it is pos-

sible to have all the terms of the expansion of (2.20), where

F�zp = s|ξ|J�zp(c), (2.22)

where s= sin(i/2) and c = cos(i/2),

ξ = z+ 2p−�. (2.23)
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Expanding (2.20), we have

R= A′20a
2

{(

− 3

2
sin2

(

i

2

)

cos2

(

i

2

))

[

e2L20(2) cos(4M + 2ω) + eL20(1) cos(3M + 2ω)

+L20(0) cos(2M + 2ω) + eL20(−1) cos(M + 2ω)

+ e2L20(−2) cos(2ω)
]

+

(

− 1

2
+ 3cos2

(

i

2

)

− 3cos4

(

i

2

))

[

e2L21(2) cos(2M) + eL21(1) cos(M)

+L21(0) + eL21(−1) cos(−M)

+ e2L21(−2) cos(−2M)
]

+

(

− 3

2
sin2

(

i

2

)

cos2

(

i

2

))

[

e2L22(2) cos(−2ω) + eL22(1) cos(−M− 2ω)

+L22(0) cos(−2M−2ω)+eL22(−1) cos(−3M−2ω)

+ e2L22(−2) cos(−4M− 2ω)
]

}

+A′22a
2

{(

3cos4

(

i

2

))

[

e2L20(2) cos(4M + 2ω+ 2Ω) + eL20(1) cos(3M + 2ω+ 2Ω)

+L20(0) cos(2M + 2ω+ 2Ω) + eL20(−1) cos(M + 2ω+ 2Ω)

+ e2L20(−2) cos(2ω+ 2Ω)
]

+

(

6sin2
(

i

2

)

cos2

(

i

2

))

[

e2L21(2) cos(2M + 2Ω) + eL21(1) cos(M + 2Ω)

+L21(0) cos(2Ω) + eL21(−1) cos(−M + 2Ω)

+ e2L21(−2) cos(−2M + 2Ω)
]

+

(

3sin4
(

i

2

))

[

e2L22(2) cos(−2ω+ 2Ω) + eL22(1) cos(−M− 2ω+ 2Ω)

+L22(0) cos(−2M− 2ω+ 2Ω)

+ eL22(−1) cos(−3M− 2ω+ 2Ω)

+ e2L22(−2) cos(−4M− 2ω+ 2Ω)
]

}

+B′22a
2

{(

3cos4

(

i

2

))

[

e2L20(2) sin(4M + 2ω+ 2Ω) + eL20(1) sin(3M + 2ω+ 2Ω)

+L20(0) sin(2M + 2ω+ 2Ω) + eL20(−1) sin(M + 2ω+ 2Ω)

+ e2L20(−2) sin(2ω+ 2Ω)
]

+

(

6sin2
(

i

2

)

cos2

(

i

2

))

[

e2L21(2) sin(2M + 2Ω) + eL21(1) sin(M + 2Ω)

+L21(0) sin(2Ω) + eL21(−1) sin(−M + 2Ω)

+ e2L21(−2) sin(−2M + 2Ω)
]

+

(

3sin4
(

i

2

))

[

e2L22(2) sin(−2ω+ 2Ω) + eL22(1) sin(−M− 2ω+ 2Ω)

+L22(0) sin(−2M− 2ω+ 2Ω) + eL22(−1) sin(−3M− 2ω+ 2Ω)

+ e2L22(−2) sin(−4M− 2ω+ 2Ω)
]

}

.

(2.24)
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The definition of average is

〈G〉 = 1

2π

∫ 2π

0
G(λ)dλ. (2.25)

After writing (2.24) in terms of the nonsingular elements and using (2.25) to eliminate

the short-periodic terms of the spacecraft motion (mean longitude), the final result for

the disturbing function is

〈R〉 = A′20a
2

{(

− 15

2

)

(

1−P2−Q2
)((

P2−Q2)
(

ξ2−η2) + 4PQξη
)

+

(

− 1

2
+ 3
(

1−P2−Q2
)

− 3
(

1−P2−Q2
)2
)(

1 +
3
(

ξ2 +η2
)

2

)}

+A′22a
2

{(

5

2

)(

15

2

(

ξ2 +η2
)

− 15η2 + 15η2
(

P2 +Q2)
(

1−P2−Q2)

+
15

2

(

ξ2 +η2
)(

P2 +Q2
)(

− 1 +P2 +Q2
)

)

+ 6
(

P2−Q2
)(

1−P2−Q2
)

(

1 +
3

2

(

ξ2 +η2
)

)

+
75

4

((

8ξηPQ
(

P2−Q2
))

+
((

ξ2−η2
)(

− 6P2Q2 +P4 +Q4
)))

}

+B′22a
2

{

15(ξη)
(

1−P2−Q2
)

+ 6
(

P2−Q2
)(

1−P2−Q2
)

(

1 +
3

2

(

ξ2 +η2
)

)

+
5

2

(

12PQ
(

P2−Q2
)(

ξ2−η2
)

− 6ξη
(

− 6P2Q2 +P4 +Q4
))

}

.

(2.26)

3. Numerical results

This section shows several simulations for the case of equatorial and/or circular orbits. We

studied the effect of the perturbations of the moon on high-altitude earth satellites, with

semimajor axis of 0.070 and 0.110 canonical units. For the equatorial orbits, Figure 3.1

shows that the behavior of the eccentricity is constant for the time scale of the plot. They

remain invariant for several values of the eccentricity. Orbits with semimajor axis of 0.110

(see Figure 3.2) show the same behavior. Our simulations, for several initial inclinations

show a constant behavior (see Figure 3.3).

The simulations for near equatorial orbits using several values for the initial eccen-

tricity is shown in Figure 3.4 for a semimajor axis of 0.341 canonical units and an initial

inclination near to 5 degrees. Looking at these results, we see that the behavior of the

eccentricity shows oscillations with a very small amplitude that does not affect the stabil-

ity of the orbit. In general, the inclination shows its oscillatory behavior. This fact is also

reported in the literature (Broucke [9], Prado [10], and Solórzano and Prado [11]).
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Figure 3.1. Plots of the eccentricity for orbits with a= 0.07 and i0 = 0.
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Figure 3.2. Plots of the eccentricity for orbits with a= 0.110 and i0 = 0.
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Figure 3.3. Plots of the inclination with a= 0.110 and e0 = 0.
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Figure 3.4. Plots of the eccentricity for near equatorial orbits.
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4. Conclusions

The present research considered a semianalytical method to determine the effects of the

disturbance of the third body (moon) on a spacecraft in equatorial and/or circular orbits

using a single averaged nonsingular model. With the help of the inclination functions

and the Hansen coefficients, the disturbing function was obtained. These inclination

and eccentricity functions are polynomials in “s” and “e,” so the accuracy is governed

by the degree of these polynomials. Then, we used the Lagrange planetary equations in

nonsingular variables and expanded the disturbing function until the second order in the

eccentricity. The inclination was expanded until the fourth order, these terms appear on

the expansion of the polynomials F�zp(i), J(c)�zp. However, due to the fact that the series

was truncated for � = 2, we leave out those terms. The results show small variations for

the orbital elements. However, it is important to remember that the expansion of the dis-

turbing function is not convergent for large values of the eccentricity. This limit is not

important in our case because the moon moves in circular orbit and the spacecraft is

in a low eccentric orbit. The results showed that the equatorial orbits remain with the

eccentricity constant, for both values of the semimajor axis tested. It is also visible that,

when the inclination leaves the zero value, the evolution of the eccentricity and inclina-

tion shows sinusoidal variations. In the ideal case of orbits that starts with zero eccen-

tricity, its eccentricity remains always zero. This occurs because the right-hand side of the

equation for the time derivate of the eccentricity is zero (Lagrange’s equation) because it

is a polynomial in the eccentricity with no independent term. Another property of those

orbits is that the inclination is also constant for the same reason. However, these same be-

haviors are expected for orbits with small eccentricities. For the case of equatorial orbits,

the inclination and eccentricity remain constant, and the orbits remain in the equato-

rial plane. The problem of the critical inclination was studied by several authors (Aoki

[12, 13] and Jupp [14, 15]). However, Broucke [9] and Prado [10] studied the presence

of a critical value for the inclination between the perturbed and the perturbing bodies.

This critical inclination is related to the stability of near-circular orbits. Thus, if the in-

clination is higher than the critical value, the eccentricity increasses and the near-circular

orbits become very elliptic. Alternatively, if the inclination is lower than this critical value,

the orbit stays nearly circular. This critical value is 0@39,7◦ and it represents the limit in-

clination that allows the existence of orbits with eccentricity, inclination, and argument

of periapsis constant under the second-order model.
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