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Abstract

We derive Edgeworth-type expansions for Poisson stochastic integrals, based
on cumulant operators defined by the Malliavin calculus. As a consequence we
obtain Stein approximation bounds for stochastic integrals, which are based on
third cumulants instead of the L3 norm term found in the literature. The use
of the third cumulant results into a convergence rate faster than the classical
Berry-Esseen rate on certain examples.
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1 Introduction

Edgeworth expansions have been derived on the Wiener space in [9], [2], [4], us-
ing a construction of cumulant operators based on the inverse L=! of the Ornstein-
Uhlenbeck operator [11]. This approach extends the results of [10], [13] on Stein
approximation, Berry-Esseen bounds and the fourth moment theorem. Related Edge-

worth type expansions have also been derived for the It6-Skorohod integral d(u) of a



process u on the Wiener space in [18].

In this paper we derive Edgeworth type expansions of the form

E[5(u)g(8(w)] = Elullf2@g (6(w)] + > E[g® (6(u)Ti 1]+ E[g" D (5(u) Ry

o (1.1)
for the compensated Poisson stochastic integral 6(u) = [;° u,d(N; —t) of an adapted
process (u;)ier, Wwith respect to a standard Poisson process (Ni)er, , where I'} and
R! are respectively a cumulant type operator and a remainder term defined using

the derivation operators of the Malliavin calculus on the Poisson space, see Proposi-

tion 3.1.

From (1.1), in Proposition 4.1 and Corollary 4.2 we deduce Stein approximation

bounds of the form

d(6(u), N) < E[|1 = |[ullf2@y|] + E H/O ulds + <u,D/O ufdt>H +2E[|RY|],

and

A0, N) < 1= Varls()]| + /Var[luly] + E H /Omui’ds+ <“’D /f“?dtm

+2E[|RY|], (1.2)

when the process u is adapted with respect to the Poisson filtration, where D is a
gradient operator acting on Poisson functionals, N~ N(0,1) is a standard Gaussian
random variable and

d(F.G) := sup [EIh(F)] - EIW(G)]

is the Wasserstein distance between the laws of two random variables F' and G, where

L denotes the class of 1-Lipschitz functions on R.

In Section 5 we present examples of adapted processes (u¢)ier, for which (1.2) holds,

see Proposition 5.1 and Corollary 5.2, in relation with classical examples such as the



normalized sequence ((Ty — k)/VE)x=1, where (Ty)r>1 is the sequence of jump times

of the standard Poisson process (NV;)icr, -

In particular, when f is a differentiable deterministic function we obtain bounds of

the form

(/ AN, — 1), ) 1 e \+\/ 20 dt\+2||fr|L2R+>/ (0P,

(1.3)
depending on the regularity of the function f, see Corollary 5.3. This alternative
approach, which is based on derivation operators, replaces the L3(R,) norm of f in

the classical Stein bound

d( [ 0a - 0.8 ) < = e |+ [ PO 1)

see Corollary 3.4 of [14], with the third cumulant Ii3 fo f3(t)dt, by removing the

inner absolute value in the integral.

The main reason for the appearance of an L? norm in (1.4) instead of the third
cumulant &4 = [ f3(t)dt lies with the use of finite difference operators and the
replacement of the chain rule of derivation with a Taylor expansion bound, see The-
orem 3.1 of [14] and § 4.2 of the recent survey [3]. In the present paper, the use of
derivation operators allows us instead to use the third cumulant &4 = [° f3(¢)dt in

(1.3).

Taking f; of the form
1
fk<t> = —g(t/k), k=1,
\/_

where g € C'(R) is such that ||g|[z2r,) =1 and [} ¢*(t)dt = 0, (1.3) shows that

(/ Flt)d(N, — 1), ) 2 / Ho'(Pdt, k>,

see (5.4) below, while Corollary 3.4 of [14] only yields the standard Berry-Esseen rate,

see (5.6). This similarly improves on the bound

(/ AN, — 1), N )<\1—|rf\|L2(R+r+\// 0 /f ) dt (15)
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obtained using derivation operators on the Poisson space in Corollary 4.4 of [20],

which also yields the standard Berry-Esseen rate in this case, see (5.5) below.

In Section 2 we recall some background material on the Malliavin calculus and cumu-
lant operators for stochastic integrals on the Poisson space. In Section 3 we derive
Edgeworth type expansions, based on a family of cumulant operators that are asso-
ciated to the process u and specially defined for the Skorohod integral operator . In
Section 4 we derive Stein type approximation bounds for stochastic integrals, and in

Section 5 we consider adapted and deterministic examples.

2 Malliavin operators

Let (T})r>1 denote the sequence of jump times of a standard Poisson process (Vy)ier
with unit intensity and generating the filtration (F;);er, on a probability space

(Q, Foo, P), with Ty := 0. The gradient operator D defined on random functionals
FeS:={F=f(Ty....T,) : f€C(R")},

as

. d
DiF ==Y 1[07Tk](t)a—i(T1, T,
k=1

has the derivation property, cf. [7], [5], [15]. The operator D defines the Sobolev

spaces D, ; with the Sobolev norms
1F Dy, = [1Fllzr) + 1 DF ooy, F €S,

p > 1, where H := L*(R,).

Covariant derivative

In addition to the operator D, we will also need the following notion of covariant
derivative, see [19] and references therein. In the sequel we let Wy (R4 ) denote the

Sobolev space of weakly differentiable functions on R, such that

B, o= [ 1@+ [l opd < oo



Definition 2.1 Let the operator V be defined on

uel = {thFz c FeS, hieWo (Ry), i=1,...,n, nZl},

as

V.u; == Dguy — UL g(s), s, t e Ry,
where 1y denotes the time derivative of t — u; with respect to t.

By closability, the operator V extends to the Sobolev spaces ﬁp,l(H ) of processes,
p > 1, by the Sobolev norms

lull, ) = lullee@way @) + 1Dullraem, — uwel.
We note that when a process u € HN)M(H) is (Fi)ier, -adapted we have
65Ut = Dsut = O, s>t. (21)

Definition 2.2 Given k > 1 and u € Dy (H) we define the operator power (Vu)* in

the sense of matriz powers with continuous indices, as
(6U)kh5 = / tee / (ﬁtkusﬁtk_lutk e 6t1ut2)ht1dt1 cee dtk, S € R+, h e H.
0

In particular, for h € W5 ;(R) and v € U we have

(Vh)v, = /00 v Vih(s)dt = —h(s) /00 velp,q (t)dt = —h(s) /S wdt, seR;.
0 0 0 (2.2)
We note that when h € W5 (R} ) is a deterministic function, (2.2) can be iterated to
show that

= /oo - /oo Vi h(8)Vi  h(ty) -+ - Vi h(ts) f(t1)dt, - - dty,
(i) [ [ Lot s (60 ()i (t) -y
:(—1)’%(5)/0 h(tk)/o t2/ f(t)dt, - - - dty, seRy, k>1,

with the bound

_ _ oo k/2
H(Vh)kf||Lz(R+)§||Vh||’zz(R2+)|]f||L2(R+):(/0 tlh'(t)|2dt) 1fllz2 e, )-



This also yields

(k) = (-0F [ hies) [ . / ") - h(ta) (0 -ty
= S0t [Tt [ [ b hesnd i

- <k+11)'/ TR fdn,  fe LR, k> 1,
+JO

and in particular, for h € Wa,(R,) we have h € (2, LP(R, ), with

/0 TRt < (k= DIITIRD 2R D) < (k- DAIG,,, k22

Note that due to (2.1), when the process u € ]DDP 1(H) is (Fi)er, -adapted, we have

/ / / Vtkusvtk 1 R 6t1ut2)vt1dt1 s dtk, S € R+,

and as a consequence, the process ((Vu)kv,).er . is also (F)icr,-adapted. In the

sequel we simply denote (-,-) = (-, )& = (-, ") L2(r,)-

Lemma 2.3 Letting n > 1 and u € Dy (H), we have

n+1

(V)" u, u) = ﬁ/ ul2dt + Z kl' < (V)" D/ > (2.3)
Proof. Using the adjoint V*u of Vu on H given by
(V*u)v, = /Ooo(ﬁsut)vtdt, seR,, veH,
with the duality relation
(v, (ﬁ*u)m = ((ﬁu)v,h% h,v € H,
we will show by induction on 1 < k < n + 1 that

o0 ]
(V') "y, = / / U, Vgt Vi, - Vo g, dty - - - diy
0 0

k 1 00 0o -
§ i
= 5 / s / Vtoutl cee th_iutnﬂ_iDtn+1_iutn+2_idt1 s dtn_z
; +JO 0
=2



1 oo oo » .
+E / cee / ufnﬂ_kvtoutl s th_kutnﬂ_kdtl cee dtn+1_k. (24)
*JO 0

This relation holds for £ = 1. Next, assuming that the identity (2.4) holds for some
ke {l,...,n}, and using the relation

vtnfkutnlefk = Dtnfkutrrklfk - 1[07tn+1—k}(tn_k)utn+1fk7 bn—ks tnt1-k € R+7

we have

N ko1 o[eo o _ ~
(v u) utO - _' / T / Vl‘outl T th 2 n+1 ’LDt’I’L+1 zutn+2,idt1 T dtn+2*l
i=2 U0 0
1 0o o) . .
k
+E . cee ; Utn+1ikvtoutl e thikutn+17kdt1 ce dtn+1_k
k 1 o) 0o .
= § : ﬁ / T / Vtoutl T th 7 n+1 thn+1 7 tn+2,¢dt1 T dtn+271
i=2 70 0
1 00 [ _ .
k
+E e utnﬂ,kvtouh e vtnfkflutnkatnfkutrkklfkdtl o dtn-i-l—k
+JO 0
1 o0 [e.9] o ~ -
. k
_E e utn+17kutn+1_kvt0utl e vtnflfkutnfkdtl T dtn""l_k
‘ 0 0 tn—k
k 1 [ oo . '
— 1
- z : ﬁ /Ov e / Vtoutl T th 7 n+1 thn+17iutn+2,idt1 U dtn+2*l
=2

(k‘ + 1 / / vtoutl vt e Ut thn kuf':ll kdtl oo dbng—k

Viglit, - - Nn _1Utn_/ (ulF Tty dtdt, - - - dt,,_y,
B S

k+1

[e.o]
— E i A
- 2' / / Vit -+ thfiuthrlfiDtn+17iutn+2_idt1 e dlpgo—g
0

+(k +1)! / h / up Vg, -+ Vit by dby
©Jo 0

= E l(%*u)n+1—iDt /Oouids+ 1 (6* ) kg k1
= “Jo 7 (k+1)! o

which shows by induction that (2.4) holds for £ = 1,...,n. In particular, for k =n

we have
" n+1
(V*u)"u, = CEm uptt + Z z' (V*u)" =D, / u'ds, teR,,
which yields (2.3) by integration Wlth respect to t € R, and duality. d



Cumulant operators

We recall the definition of the cumulant operators introduced in § 6 of [17] on the
Poisson space. Given k > 2 and u € ﬁg’l(H ) an (F;)icr, -adapted process we define

the cumulant operators
Iy :Dyy — L*(Q),  k>2,

by
TUF = F((Vu)*?u, u) + (Vu)*'u, DF), k> 2.

As a consequence of Lemma 2.3 we have

k—1
uq _ 1 - k 1 <, \k—1—i = i
1= (k—l)!/o utdt+;ﬂ<(VU) u,D/O utdt>,

and |T1] < [Jullyy, @, a5 k> 2.

When h € Wy ;(R,) is a deterministic function we find

1 & 1
I = hE(t)dt = h k>2
k (k,_1>'/0 ( ) (kﬁ—l)'ﬁk( )7 = 4

where ry,(h) = [7 h¥(s)ds is the cumulant of order k& > 2 of the compensated Poisson
stochastic integral [ h(t)d(N; —t).
Poisson-Skorohod integral

In addition, D has a closable adjoint operator § with domain Dom(d), that satisfies

the duality relation
FE |:/ utDthtl = E[F(S(Uﬂa F e D2,17 u € DOHI((S), (25)
0

and coincides with the compensated Poisson stochastic integral on square-integrable
processes (u)icr, adapted to the filtration (F)icr, generated by (Ni)ier,, i.e., we

have

5(u) = /0 T wd(N, — 1),



In addition, the operators 6, 0 and D satisfy the commutation relation
Dyb(u) = uy + 6(Viu), (2.6)

for u € f))zl(H) an (Fi)ier,-adapted process, cf. Lemma 4.5 in [17] and Rela-
tions (2.16), (2.19) and Lemma 2.4 in [19)].

Recall that when (u;)er, is an (F;)ier, -adapted process, d(u) coincides with the It6

integral of u.

3 Edgeworth type expansions

Classical Edgeworth expansions are used in particular as asymptotic expansions around
the Gaussian cumulative distribution function ®(x) for the cumulative distribution

function P(F < z) of a centered random variable F' with E[F?] =1, as
O(z) + c1o(x) Hi(x) + -+ + (@) Hyn () + -+,

where ¢(x), x € R, is the standard Gaussian density, Hy(x) is the Hermite polyno-
mial of degree k > 1, and ¢;, is a coefficient depending on the sequence of cumulants

(Kn)n>1 of a random variable F', cf. Chapter 5 of [8] and § A.4 of [12].

Edgeworth type expansions of the form

n

BIFg(F)] = Y = Elg"(F)] + Elg"* ) (F)Lus Fl, n 2 1.

have been obtained by the Malliavin calculus in [9], [2], [4], written here for F' a cen-
tered random variable, where I, is a cumulant type operator on the Wiener space
such that n!E[l", F| coincides with the cumulant k,.; of order n+ 1, n € N, cf. [11],

extending results of [1].

An infinite Edgeworth type expansion for the compensated Poisson stochastic integral

of a deterministic function f € ()2, L?(Ry) can be written as

E[a(f)g(6(f))] = E{/Ooof(S)(g(cs(fo(S))—9(5(f)))d8 (3.1)

9



- Zk. | s ease 6]
= S LaaNEEYE]. geCr®),

k=1
using a standard integration by parts for finite difference operators on the Poisson

space.

In this section we establish an Edgeworth type expansion of any finite order with an
explicit remainder term for the compensated Poisson stochastic integral 6(u) of an

(Fi)ter, -adapted process u.

Before proceeding to the statement of general expansions in Proposition 3.1, we de-
rive an expansion of order one for a deterministic integrand f € Wh;(Ry). In the
sequel we let C'(R;) denote the space of C}' functions bounded together with their

derivatives on R, n > 1.

By the duality relation (2.5) between D and ¢, the chain rule of derivation for D and
the commutation relation (2.6) we get, for g € CZ(R),

E[5(f)g(3(f)] = E[g (0(£)(f. DS(f))]
= E[dOO D]+ E[g 66V * f))]
= E[g6(N)(f, 1]+ E[LVf,D(g'(5(f))1))]
= E[gdGN D]+ E[g 6OV FLDI(f))]
= ElgO0UN D] +% Ooof3<t>th[g"<a<f>>} + E[g"(6(){V ) L6V )]
1

since by Lemma 2.3 we have

(Wnrn == [ s [ st = [ =

In the next proposition we derive general Edgeworth type expansions for adapted

integrands processes (u¢)icr, -

10



Proposition 3.1 Let n > 0 and assume that u € IE)nH,l(H) is an (Fy)ier, -adapted
process. Then for all g € C/TH(R) and bounded G € Dy we have

E[G8(w)g(5(u))] = E[g(8(w))(u, DG)] + 3" E[¢®(5(u)It,,G]

k=1

Got™ D (5(w) ( /0 h nfi s+§:1 - < (V) Fy, D / ufdt> <(%)nu,5(6*u)>>] |

Proof. By the duality relation (2.5) between D and 9, the chain rule of derivation

+F

for D and the commutation relation (2.6), we get

E[G(8(u)){(Vu)*u, D(w))] — E[C/(3(u)){(Vu)**u, D(u)]

= E[Go(8(u){(Vu)*u, u)] + E[Cg(0(u)) (Vu)u,5(V° u>>1 E[Gg/(3(w){(Vu)* ', Dd(u))]
= B[Gy(3(u) (Vu)u,u)] + E[(V*u, D(Gg(d(u))(Vu)u))] — E[Gg (3(w){(Vu)**u, D3(u)]
= E[Gg(3(w) (Vu)u,uw)] + E[g(8(u))(Vu)u, DG>} B[G(8(u)(V*u, D((Vu)*u)]

= E[g(3(u))T} 5G]

since (V*u, D((Vu)*u)) = 0 as u is an (Ft)ier, -adapted process, see Lemma 4.4 of

[16]. Therefore, we have

E[Gd(u)g(d(u)] = E[Gg'(0(u))(u, Dé(u))] + E[g(0(u))(u, DG)]
= E[g(6(u))(u, DG)] + E[Gg" D (5(u))((Vu)"u, D3(u))]

n—1

+ 3 (B[Gg* D 6(w){(Vuu, Do) — E[Gg* D (3(w){(Vu)*+u, Di(w)] )

k=0

= E[g(6(w){u. DA)] + > E[gW (6(u)T},,G] + E[Gg" D (6(u){(Va)"u, D3(u))]

k=1

= E[g(3(w){u, DG)] + Y E[g™(6(u)T},,C]
+ B[Gg" D (S() (V) u,u)| + E[Gg"™ D (6(w)(Vu)"u, §(V*u))],

and we conclude by Lemma 2.3. U

When G = 1, Proposition 3.1 shows that

B[5(u)g Z - { / udsg®) (5(u)

11



+ZZE,E (= [ uiar g 500)

+E g™V () (Vu)"u, 6(V*u))],  n>0.

On the other hand, when f € Ws;(R,) is a deterministic function and g € C;°(R) we
find

n+1

Ep(e()] = > /O TP sE[O (5()] + Bl GO 6T)]
n+1 1

= > e (NEPGEN] + E[g" DGOV .57 )]

k=1

n > 0, showing, as n tends to +oo, that

Elonae) =Y [T ase 6] = 5| [T e + 6 - st

k=1

which recovers (3.1) and the standard integration by parts identity for finite difference

operators on the Poisson space.

4 Stein approximation

We let N ~ N(0, 1) denote a standard Gaussian random variable. In comparison with

the results of [2], our bounds apply to a different stochastic integral representation.

In the case n = 0, Proposition 3.1 reads

E g (8(u)){u, u) = 8(u)g(8(u))] = —E[g'(6(u){u, 6(Vu))],

for u € Dy (H) and g € CL(R). Applying this relation to the solution g, of the Stein

equation
Lcooa)(2) = @(2) = g,(2) — 202(2), 2z €R,

which satisfies ||gz]|co < V27/4 and ||¢.||cc < 1, cf. Lemma 2.2-(v) of [6], yields the

expansion
P(6(u) < 2) — ®(2) = E[(1 ~ (u,u)),(6(w))] — E[(u,6(Vu))g,(6(w))], = € R,

12



around the Gaussian cumulative distribution function ®(z), with u € I’D/)Q,l(H ).

On the other hand, given h : R — R an absolutely continuous function with bounded

derivative, the functional equation
h(z) = E[R(N)] =4 (z) — z9(2), 2z €R, (4.1)
has a solution g, € C}(R) which is twice differentiable and satisfies the bounds
Ighlle < MI7' e and  [[glloc < 2[|M[loc; = €R,
cf. Lemma 1.2-(v) of [10] and references therein.

Proposition 4.1 Let u € 5271(H) be adapted with respect to the Poisson filtration

(Fi)ier, - We have
/ ulds + <u,D/ ufdt>H
0 0

2B [[((Vu)u, §(Vu))|]. (4.2)

d(o(u),N) < E[|1 — (u,u>|} +F [

Proof. For n =1 and G = 1, Proposition 3.1 shows that
Elsta(6()] = Bl ] + 55 g6 ([ das+ (up [ iar))]
+E[g" (5(u)){(Vu)u, 5(Vu))],

hence for any absolutely continuous function A : R — R with bounded derivative,

denoting by g, the solution to (4.1) we have
E[h(6(w))] = E[MN)] = E[6(u)gn(0(u)) — g,(5(w))]

= Blg,(6(w)((u,u) — 1)] + %E {g”(é(u)) (/OOO tpds + <“7D/OOO “gdt>>}

+2E [g7(6()) (Vu)u, 6(V*u))],
hence

[E[B(wh(0(u)] = ERN)]| < Wl E{I1 = (u, u)]]

e[ )]

+2/W |l E[|((Va)u, 5(V*u))],

which yields (4.2). O

13



As a consequence of Proposition 4.1 and the It6 isometry we have the following corol-

lary.

Corollary 4.2 Let u € ®271(H) be adapted with respect to the Poisson filtration
(Fi)ier, - We have

d(0(u),N) < |1 — Var[d(u)]| + \/‘MJFE H/OOO uds + <U’D/ooou?dt>u

2B [[((Vu)u, §(Vu))|]. (4.3)

Proof. By the It06 isometry we have

([ wdvi- t))2

Var[d(u)] = £ = E[(u, )],

hence

E[|1 - <uvu>” S E“l - E[<uwu>]” + E[|<u7u> - E[<u7u>]|}
= |1 = Var[d(u)]| + VE[((u, u) — E[{u, u)])?]

= |1 = Var[o(u)]| + 1/ Var[[[ul3].

In particular, when Var[§(u)] = 1, (4.3) shows that
d(6(u), N) < \/Var[|Jull%] +E [ /Ooo Wds + <u,D/OOO ufdt>u LE[(Vu)u, 5(Tw))].

5 Examples

Adapted integrands

Although the present approach does not apply directly to the classical normalized
sequence
T, — k 1 [
Fk = W = —ﬁ/ov 1[O,Tk](t)d(Nt - t), k Z 1,
due to the lack of time differentiability of the adapted integrand t — 1jo1,1(), exam-

ples of this form can be treated via smoothed processes uy, as in (5.1) below, see also

Corollary 5.2.

14



Proposition 5.1 Let

ug(t) = g(t) oz () + 9(Th) Lz 00) (£) f(t — Th), te Ry, (5.1)

k € N, where g is a Lipschitz function on Ry and f € Wy (R,) satisfies f(0) = 1.
Then for every k € N we have

d(6(ug), N) (5.2)
< Hl - " R0t — | Page (T [+ " (62(s) - () g(s)ds ]

#2071 [aT0 @0 [ aton|

G / $)ds / : - Tt]

+ B[ |¢*(Tk)| ‘/ fA(t)dt

+2E[

+ 2| fll2 ) E ‘g ()dsdt
o(Ti)g
£ 2 fll e B [|g*(T0)| / )t
0
Proof. We have

tlf’ )[2dt

|
£ 2l B {
[

() = / " w(t)d(N, — 1) = / C G0N, — 1) + 9(T}) :’f(t—Tk)d(Nt—t),
and

vars(uo) = 5| [ eyar] + ) [ poa

On the other hand, we have

ug(t) = Deug(t) — (9" () Loz (1) + 9(Te) f'(t — Ti) L(zy,.00) (1)) L0, ()
(9/ T3) 1 (73, 00) )f(t T1) — 9(Ti) L1, 00) () f'(t = Ti)) Lo (5)
—(4g'(

(g' ()17 t) +9(Th) f (t_Tk (Tho0) (1) )1[0t] o
g/ OTk] (Tk‘) Tk oo t — Tk; )1[0 t] 3 OTk ) - g(Tk‘)l{Tk<S<t}f,(t - Tk‘)v
and
(Vur)ur(t) = —/ 9(5) (9 ()11 (1) + ¢ (Ti) L (1 00) (1) F (t = Ti)) 110,01 (5) Lo,13) (5)ds
0

15



T T) / (s~ T lgcncnds
0

= —1[0,Tk](t)9/(t)/0 g(s)ds — (g, 00)(t) g (Ti) f (T — Tk)/o kQ(S)dS

1100 (O (T) f'(t = Tx) [ f(s — Ti)ds.

Tk

Given that

[e.o]

5(Vru) = —( [ i -0+ g

+1(1,<s19(Tk) /OO f'(t = Ty)d(Ny — t),

£t — TN, t)) Lor(s)

Tk

this yields
(Vur)ur, 6(Vuy))
:/0 | (/t (N, =) + () TOO f(s = TRd(N, —s)) gt /O g(s)dsdt

(T / N toof’(s CTOA(N, — 8)d (Tt — To) / " g(s)dsdt

t

+ ¢*(Ty) /TOO too (s = Tp)d(Ng — s)f'(t = Ty,) | f(s— Ty)dsdt

~ / g [ =) [ otsisa
gy [ s =) [ [ oisa

— g(T)g (T3 / / o[ s
o o s 1o

where “~" denotes equality in distribution and (Nt)teR . is a standard Poisson process

independent of (T})x>1. We also have
0o Ty 0o
Ds/ up(t)dt = D (/ g (t)dt + g*(Ty) f2(t—Tk)dt)
0 0 Ty

- o/ " @t + (1) [ roa)

16



0

- (g%Tk) +2(Tg(T) [ f?(t)dt) Lo (5),

consequently we have

Uk, D u d T + 2(] T T f d ' g d
< k> / k t> ( k ( k: k / t) /0 (t) t,
and

/Ooouz(s)ds+<uk D/oouk dt>
:/OTk(f() s)ds + g*(T; /f3 Bt — 29(Ti)g Tk/ At dt/ g(t)dt.

Hence by Corollary 4.2 we find

d(6(uk), N)

< 1= Varld(u)]| + \/m+ E H/OOO ul(s)ds + <uk,D/OOO ui(t)dt>H

2B (Vg )ug, 6(V* Uk:>>”

- omcan ro]
v | / () - <Tk>><>ds}

o o ]
/ o
o / dsm A
el el i o o
el o s o]

Finally, we note that

Ui

N S

d(Ng — s)dt

} — EBI(.0& )]

17



A

< Wl y EUST ) 2age,

I\flle(R+>\/E UOOO \5(%§f)|2dt}
||f||L2<R+>\//OO° /OOO IV, f(s)[2dsdt
||f||L2(R+)\//OOO /Ooolf’(S)IQl[o,S](t)dsdt
= ||f||L2(R+)\//0008|f’(8)|2ds,

—s / f(s dsdt]z (VA 8(V ))]

< (V) f||LzR+>\/ U 5(S5f |2dt}

< ||f||L2(R+)||vf||L2(R3_) = ||f||L2(1R+)/O s f'(s)[*ds.

IN

and

ol

The above bound can also be obtained as

ENVNLS ] = E[S(TLN] < EIS(T 2]
= ||(Vf) f||L2(]R+ < | fllzes va“L?(Ri)

= Hf!IL2<R+>/0 s|f'(s)|*ds.

When u,, is an adapted process of the form

uk(t) = gk(t)l[O,Tk](t)v teRy,

where gy, is Lipschitz, and e.g. f(t) := e™™, Proposition 5.2 shows, by letting n tend
to infinity, that

d(/OTkgk(t)d(Nt—t),N) < EHl—/OTkg,z(t)dtHJrE{

18
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+25 |

[ [ g [ (o]

As a consequence, similarly to Corollary 4.2 we have the following result.

Corollary 5.2 Let g be a Lipschitz function on Ry for k > 0. We have

d (/OT e (D)d(N, — t),N) < B H1 B UOT g,%(t)dt] H + \/Var [/OT g,%(t)dt}

/OTk (9i(5) — g (T1))gr(s)ds }

[ [ [ an(syisa|.

For example, when gx(t) = 1/vk is constant, Corollary 5.2 recovers the standard

v |

+28 |

Berry-Esseen rate

Ty — k Var[T}] 1
d < Y U kE>1.
( VE 7N’) N k VE N

Deterministic integrands

Taking £ = 0 and go(0) = 1 in Proposition 5.1, we also find the following corollary.

Corollary 5.3 Let f € Wy 1(R,) be a deterministic function. We have

(/ N = 1), ) ‘1‘/ A dt‘ '/ F2(t) dt‘+2||f||Lz<R+ /Oootlf’(t)|2dt.

Considering for example fi(¢) of the form

fe(t) == —=g(t/k), k=1,

S| -

where g € C'(R) is such that ||g||2r,) = || fellr2®.) = 1, we have
o ["nwai-ox) < | [T ] +2 [Cagopa
0 0 0

= | [Tdwal+ L [ gwra. 53

19



k > 1. When g has constant sign, e.g. g(z) := v2be % with b > 0 and f,(t) =
\/2b/ke™"/% (5.3) does not improve on the standard Berry-Esseen convergence rate

d(/ooogk(t)d(Nt—t),N)Sg %b and d(/ooogk(t)d(Nt—t),N)S %

respectively obtained from (1.4) and (1.5), see § 4.2 of [20]. On the other hand,

| swi=o
0
we find the bound

d (/Ooo fe(t)d(N; — t),/\/) < %/Oot|g’(t)|2dt, kE>1, (5.4)

0

choosing ¢ such that

while Corollary 4.4 of [20] and Corollary 3.4 of [14] only yield the Berry-Esseen rates

d(/ fk<t>d<Nt—t>,N) < |1—||fk||iz<R+>|+||fk||L2(R+)\/ / HF () 2t
0 0

1 /°°
= — tlg'(t)[2dt,  k>1, 5.5
T\ e (5.5)

by (1.5), and

d ( | ey - t>,/v) < [ Ul + [ 1k

1 [e.e]
= o [ lawra (5:6)
by (1.4). For another example, choosing
1 m
t) = ——= a;e btk k>1,

with || fellr2e,) = 1, for b; >0, a; € R, i =1,...,m, such that

Z ;a5 0
bi+b;+0

1<ijl<m

(5.4) yields the bound

o 1
d(/o fk(t)d(Nt_t),N) S@lgid m(bz—l——W’ k‘Zl

20



In particular, when fi(t) := k=Y/2(e /% — ae~ /%) /C with a,b > 0 and

1 2a +a2_b(b+1)—4ab+a2(1—|—b)>0
2 140 2b 26(b+1) ’

for any b > 0 we can choose a > 0 satisfying the equation

/ 3 1 3a N 3a? _a_3 0
F c:af S 24+b 1420 3)

which yields the bound

d( [ awam-ow) < Gk,

where ¢(a,b) depends only on a,b > 0.

References

[1]

2]

A.D. Barbour. Asymptotic expansions based on smooth functions in the central limit theorem.
Probab. Theory Relat. Fields, 72(2):289-303, 1986.

H. Biermé, A. Bonami, I. Nourdin, and G. Peccati. Optimal Berry-Esseen rates on the Wiener
space: the barrier of third and fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat.,
9(2):473-500, 2012.

S. Bourguin and G. Peccati. The Malliavin-Stein method on the Poisson space. In Stochastic
analysis for Poisson point processes, volume 7 of Bocconi & Springer Series, pages 185-228.
Springer-Verlag, 2016.

S. Campese. Optimal convergence rates and one-term Edgeworth expansions for multidimen-
sional functionals of Gaussian fields. ALEA Lat. Am. J. Probab. Math. Stat., 10(2):881-919,
2013.

E. Carlen and E. Pardoux. Differential calculus and integration by parts on Poisson space.
In S. Albeverio, Ph. Blanchard, and D. Testard, editors, Stochastics, Algebra and Analysis in
Classical and Quantum Dynamics (Marseille, 1988), volume 59 of Math. Appl., pages 63-73.
Kluwer Acad. Publ., Dordrecht, 1990.

L.H.Y. Chen, L. Goldstein, and Q.-M. Shao. Normal approzimation by Stein’s method. Proba-
bility and its Applications (New York). Springer, Heidelberg, 2011.

R.J. Elliott and A.H. Tsoi. Integration by parts for Poisson processes. J. Multivariate Anal.,
44(2):179-190, 1993.

P. McCullagh. Tensor methods in statistics. Monographs on Statistics and Applied Probability.
Chapman & Hall, London, 1987.

I. Nourdin and G. Peccati. Stein’s method and exact Berry-Esseen asymptotics for functionals
of Gaussian fields. Ann. Probab., 37(6):2231-2261, 2009.

I. Nourdin and G. Peccati. Stein’s method on Wiener chaos. Probab. Theory Related Fields,
145(1-2):75-118, 2009.

21



11]
12]
13]
14]
[15]
[16]
17)
18]

[19]

[20]

I. Nourdin and G. Peccati. Cumulants on the Wiener space. J. Funct. Anal., 258(11):3775-3791,
2010.

I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus, volume 192 of
Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2012.

I. Nourdin and G. Peccati. The optimal fourth moment theorem. Proc. Amer. Math. Soc.,
143:3123-3133, 2015.

G. Peccati, J. L. Solé, M. S. Taqqu, and F. Utzet. Stein’s method and normal approximation
of Poisson functionals. Ann. Probab., 38(2):443-478, 2010.

N. Privault. Chaotic and variational calculus in discrete and continuous time for the Poisson
process. Stochastics and Stochastics Reports, 51:83-109, 1994.

N. Privault. Laplace transform identities and measure-preserving transformations on the Lie-
Wiener-Poisson spaces. J. Funct. Anal., 263:2993-3023, 2012.

N. Privault. Cumulant operators for Lie-Wiener-Ito-Poisson stochastic integrals. J. Theoret.
Probab., 28(1):269-298, 2015.

N. Privault. Stein approximation for Itd6 and Skorohod integrals by Edgeworth type expansions.
Electron. Comm. Probab., 20:Article 35, 2015.

N. Privault. De Rham-Hodge decomposition and vanishing of harmonic forms by derivation
operators on the Poisson space. Infinite Dimensional Analysis, Quantum Probability and Related
Topics, 19(2):1-34, 2016.

N. Privault and G.L. Torrisi. Probability approximation by Clark-Ocone covariance represen-
tation. FElectron. J. Probab., 18:1-25, 2013.

22



