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We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically

protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated

by optical nonlinearities boosted by multipolar Mie resonances of silicon nanoparticles. Variation of the

pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-

momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated

harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states

bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform

for the robust generation and transport of photons in topological photonic nanostructures.
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Topological photonics describes optical structures with
the properties analogous to electronic topological insulators
[1]. These systems are distinguished by bulk band gaps that
host disorder-robust states localized at edges or interfaces
and provide a novel approach for designing nonreciprocal
or localized modes for optical isolators, photonic-crystal
waveguides, and lasers. Since the original demonstration
of backscattering-immune photonic topological edge states
with the use of a gyrotropic microwave photonic crystal
under a strong magnetic field [2], there has been a
concerted effort toward realizing topological photonics at
the nanoscale. Recently suggested optical designs compat-
ible with nonmagnetic all-dielectric structures [3–8] are
now emerging as a promising platform for quantum and
nonlinear topological photonics [9–12].
Stimulated by the progress in nanofabrication techniques,

a new favorable ground for topological photonics based
on dielectric nanoparticles with high refractive index has
recently emerged [13,14]. Strong optical resonances and low
Ohmic lossesmake it feasible for practical implementation of
topological order for light at subwavelength scales. The
underlying conceptual framework is to use arrays of meta-
atomswith judiciously engineered shape and lattice structure,
with topologically nontrivial features arising from pseudo-
spin degrees of freedom. It bridges fundamental physics of
topological phases with resonant nanophotonics and multi-
polar electrodynamics [15,16]. Topological metasurfaces
could form a ground for a new class of ultrathin devices
with functionalities based on novel physical principles
through engineering light-matter interactions in synthetic
photonic potentials [17]. Their pseudospin-dependent phys-
ics may be useful for manipulation of internal degrees of
freedomof light such as polarization and angularmomentum.

However, the experimental characterization of topologi-

cal photonic structures becomes much more challenging

at the nanoscale. Most implementations so far have been

limited to indirect probing of topological states such as

transmission spectra [11,18–20], which cannot provide

spatially resolved information about the edge modes and

suffer from input or output coupling losses. Other recently

demonstrated linear approaches such as near-field imaging

[21], cathodoluminescence [22], and far-field imaging [23]

suffer from poor spatial resolution or small field of view,

leaving the edge states almost completely hidden in the

background noise. Direct high-contrast imaging of the edge

states is essential for assessing the fidelity of the topologi-

cal waveguides and for optimizing the coupling with

localized emitters [5].
Here we show that nonlinear topological photonics

provides an effective way to overcome these limitations
by observing nonlinear light conversion in a topological
photonic nanostructure. By varying the frequency and
polarization of a pump beam and measuring the generated
third-harmonic signal, we demonstrate selective imaging of
either bulk modes or edge modes that are otherwise
undetectable via conventional linear far field imaging.
Our approach significantly enhances the measurement
contrast, sensitivity, and imaging area compared to other
recent works, enabling us to unambiguously visualize
nanoscale topological photonic edge states and their
propagation around corners and defects. Importantly, our
platform combining appreciably strong optical nonlinearity
with topological band structures paves the way toward
observing other nonlinear wave interactions in photonic
topological insulators.
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For our experiments, we design photonic all-dielectric
metasurfaces exhibiting a topological phase transition and
band inversion above the light line, similar to an earlier
theoretical proposal [3]. The array of silicon nanopillars
hexamers is divided into two domains—expanded or
shrunken hexamers—characterized by distinct topolo-
gical invariants. Their interface supports a pair of topo-
logically protected, spin-momentum locked edge states
[3,18,24,25].
We fabricate our samples from silicon on a glass

substrate (for details, see the Supplemental Material
[26]). Figures 1(a)–1(c) show optical and electron micro-
scope images of one of the fabricated samples, consisting
of a rhomboid-shaped domain of expanded hexamers
embedded in a domain of shrunken hexamers. We illu-
minate the sample with a powerful short-pulse laser with a
tunable wavelength [35]; see details in [26]. The laser
beam size is larger than the total size of the sample. The
strong cubic nonlinearity of silicon [27,36] naturally

provides optical frequency conversion capabilities, and
the resonant near-field enhancement provided either by
bulk or edge modes boosts the nonlinear harmonic
generation [16], enabling accurate mapping of the corre-
sponding modes. The generated third-harmonic (TH)
radiation is imaged on a camera; see [26].
Figures 1(d)–1(f) show three representative cases of the

TH distribution at different pump frequencies: in Figs. 1(d)

and 1(f), the TH comes from the bulk of the shrunken or

expanded regions. This corresponds to resonant excitation

of bulk dipolar modes in these two domains. In Fig. 1(e),

the pump is tuned to the bulk band gap of the two domains,

and the TH signal is generated along the domain wall

between the shrunken and expanded structures, visualizing

the topological edge states. We notice that in our experi-

ments the coupling to the edge states at normal incidence

is inefficient, and the result presented in Fig. 1(e) is an

average of two images obtained at �1° incident angles.

Within the band gap frequency range, resonant excitation

of high-quality topological edge states induces tightly

localized nonlinear light sources with magnitudes strongly

exceeding nonlinear response in the bulk. In Fig. 1(e), the

experimentally measured TH intensity at the topological

domain wall is 3 orders of magnitude higher than the TH

intensity coming from the bulk (see details in Fig. S4 of the

Supplemental Material [26]).
To demonstrate the potential of the nonlinear diagnostics

technique, we additionally perform sets of complimentary
linear measurements for identical experimental configura-
tions with the results presented in [26]. With linear
approach we are able to observe convincingly the excitation
of bulk modes, although with a substantially degraded
signal-to-noise ratio. However, the topological light locali-
zation along the domain wall remains invisible in our linear
experiments (see discussions and the results of linear
measurements in Sec. II of [26]). It is vastly easier to
observe edge states using the conventional linear imaging
in the large-scale designs of topological systems based on
the waveguide geometry [37], with a typical size of the
building blocks much larger than the wavelength of light.
But linear imaging becomes increasingly difficult with
nanoscale platforms compatible with planar silicon-based
integrated optics.
To explain the wavelength-dependent optical response

and the observed edges states, we model each nanopillar
as an out-of-plane dipole with predominant Ez component
of the electric field directed along the vertical axis.
The collective modes supported by the individual hexamers
can be classified according to their in-plane symmetry,
with the bands in the spectral range of interest composed
primarily of dipole (p) and quadrupole (d) hexamer
eigenmodes. In the vicinity of the Γ point, the bulk photonic
band structure is captured by the eigenvalue problem

Ejψ�i ¼ Ĥ�jψ�i, with the effective Hamiltonian forming

2 × 2 blocks Ĥ� given by
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FIG. 1. Experimental results for dielectric metasurfaces with
topological edge states. (a) Optical microscope image of a
topological metasurface guiding robust edge waves with opposite
helicities (σ�) along the interface between topologically different

outer and inner domains (painted blue). Dashed line—guide for
a eye. (b),(c) Scanning electron microscopy images: (b) top
view and (c) side view of the metasurface consisting of silicon
pillars arranged into hexagon clusters. (b) Domain wall between
expanded (blue) and shrunken (red) domains. Framed hexagons
highlight corresponding unit cells. Pillars’ radius r ¼ 105 nm,
height h ¼ 538 nm, lattice constant of hexagon clusters a ¼
1100 nm, shrink or expand coefficients are 0.95 and 1.05,
correspondingly. (d)–(f) Experimental images of third-harmonic
intensity distribution for three excitation wavelengths.
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Ĥ� ¼

0

@

μþ βk2 vð∓ kx − ikyÞ

vð∓ kx þ ikyÞ −μ − βk2

1

A; ð1Þ

corresponding to the two circular polarizations of eigen-

states jψ�i ¼ ðjp�i; jd�iÞ
T [18]. Equation (1) incorporates

effective parameters: μ and β are the mass term and band
parabolicity, respectively, v is velocity; kx;y are in-plane

components of the wave vector. The two decoupled polari-
zations form a pseudospin degree of freedom and thus the
spin Chern number C ¼ ðC

−
− CþÞ=2 can be introduced,

where C� is Chern number for each individual block [28].
Each of the blocks in Eq. (1) has the structure of a Dirac-
like Hamiltonian, for which the spin Chern number can be

straightforwardly calculated as C ¼ 1

2
ðsgnμ − sgnβÞ [28].

The shrunken domain is described by the condition μβ > 0

(C ¼ 0; trivial), whereas the condition μβ < 0 is valid for
the expanded domain (C ¼ 1; nontrivial), in accordance
with Ref. [3]; thus, the interface states are topologically
protected. The edge states bound to the interface x ¼ 0

exhibit linear dispersion crossing Ee:s:ðkyÞ ¼ �vky.

Figure 2(a) shows the numerically computed bulk band
diagram of the structure (for details of numerical simu-
lations, see [26]). The bulk modes are primarily quad-
rupolar or dipolar, and the transition from shrunken to
expanded designs is accompanied by a band inversion.
At the normal incidence, the external radiation can only
couple to the dipolar modes, as seen in the calculated
transmission spectra in Fig. 2(b). When the pump is tuned
to the upper band edge, it is resonant only with the dipolar
bulk modes of the shrunken outer domain, whereas at the
lower band edge it is resonant with the dipolar bulk modes
of the expanded inner domain. Hence, the localization of
nonlinear light generation occurs, as the wavelength is
varied mapping the band inversion.
Figure 2(a) additionally illustrates the characteristicDirac-

like dispersion of the spin-momentum locked edge states

residing in the band gap, which can be selectively excited
using a circularly polarized pump beam. Figure 2(c) shows
the experimental TH spectra for 1° incidence measured
from the bulk (gray dots) and from the domain wall excited
with the two orthogonal circular polarizations of the pump
laser beam (red and blue). The two polarizations excite the
edge modes with the opposite helicity values σþ and σ−.
We experimentally measure the dispersion of the edge

states by tilting the sample along its horizontal axis between
0° and 5° and tracing the maxima of the TH spectra [see
Fig. 2(d)]. Since our domain wall forms a closed cavity, to
distinguish between the σþ and σ− states we sample the TH
intensity from the upper part of the domain wall only (on the
lower edge their dispersion is opposite). Figure 2(d) shows

the spectral separation of the σþ and σ− states as the angle
increases. In particular, their dispersion is close to linear,
indicating the edge states are nearly gapless and decoupled,
consistent with their topological origin.

(a) (b) (c) (d)

FIG. 2. Dispersion properties of the topological helical edge states. (a) Numerically calculated photonic band structures for the four
doublet bands along Γ −M (black curves) and Γ − K (dark gray curves) directions, found almost perfectly overlaid for shrunken and
expanded arrays. The bulk bands are shaded in light gray, while the dispersion branches of the edge modes spanning the topological
band gap are shown by colored curves. Inset: Brillouin zone. (b) Simulated transmission spectra of the infinite expanded and shrunken
metasurfaces featuring excitation of dipolar resonances at normal incidence. Note that the optical response of the fabricated sample is
spectrally blue shifted by approximately 15 nm. (c) Experimentally measured TH spectrum indicating the mid-gap edge states excited at
the interfaces of the rhomboid topological cavity. (d) Spectral positions of TH maxima depending on angle of incidence trace diverging
dispersion branches for opposite circular polarizations.

FIG. 3. Nonlinear diffraction and polarization conversion. Ex-
perimentally observed back-focal plane images of the TH signal
generated by an all-dielectric metasurface consisted of an inner
domain of shrunken hexamers and outer domain of expanded
hexamers in the forward direction for the left-handed circularly
polarized pump, σþ, at 0° incident angle for the fundamental
wavelength of 1540 nm which corresponds to a bulk state. Blue
arrows visualize the polarization state of theTH fields. Right: back-
focal plane patterns of the TH field for two states of an analyzer:
left-handed (top) and right-handed (bottom) circular polarized.
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Nonlinear diffraction from the metasurface sample
exhibits a characteristic hexagonal far-field pattern. It is
accompanied by the circular polarization conversion due to

the nonlinear interference of the induced multipolar sources

related to the excited photonic modes of the metasurface

(see Secs. IV and VI of [26]). We perform the polarimetry

[29] of the third-harmonic signal and observe the polari-

zation conversion of σþ pump into σ− harmonic and vice

verse in the zeroth diffraction order, as summarized in

Fig. 3. The nonlinear conversion efficiency is estimated to

be comparable to the efficiency of previously demonstrated

silicon Mie-resonant metasurfaces [16,30,31]; see details in

Sec. III of [26].

Next, we study the spin-momentum-locked waveguiding

of the optical edge modes associated with the analogue of

the quantum spin Hall effect for light [3,32–34,38]. In this

design, the edge states are topologically protected by the

C6v rotational symmetry of the hexamers [3]. As long as

this symmetry is preserved, the counter-propagating edge

states remain decoupled and cannot scatter backward,

even when the interface has sharp corners, as in our system.

To excite and map the counter-propagating edge modes

individually, we locally focus the circularly polarized pump

beam in a spot near the domain wall [see the dashed circle

in Figs. 4(a) and 4(b)]. In Fig. 4(a), the pump with σþ

polarization couples to the mode propagating clockwise,

while in Fig. 4(b) the σ− pump launches the counterclock-

wise wave propagation. Both waves propagate along the

domain wall passing the corners.
Finally, we demonstrate the existence of the edge states for

arbitrary geometries of the topological interfaces. For this,

we fabricate a metasurface with a domain wall similar to the

shape of theAustralian continent; see Fig. 5.When thewhole

metasurface is pumped with the wavelength corresponding

to that of the edge mode, the domain wall becomes clearly

imaged via the third-harmonic field contour.
Beyond imaging, nanofabricated topological photonic

cavities of arbitrary geometries may be employed as non-
linear light sources for efficient converting infrared radiation
to visible light, with tunability of near and far field character-
istics governed by the topological band inversion, and
intrinsic protection against fabrication imperfections. This

opens prospects for singular optics and frequency mixing
driven by topological effects. For example, in Sec. X of [26]
we simulate the conversion of orbital angular momentum
using helical edge states excited at a closed edge contour with
sharp corners.
In summary, we have suggested and demonstrated a

novel approach for imaging topological edge states with
third-harmonic generation. Compared to linear imaging,
our nonlinear approach offers superior contrast, sensitivity,
and large imaging area, enabling both characterization and
optimization of topological waveguides for applications.
We have observed pseudospin-momentum locking of edge
photonic modes at the topological interfaces, verifying their
ability to propagate around sharp corners. Furthermore,
we have demonstrated tunable localization and enhanced
harmonic generation in topological photonic structures.
Our results help bridge nonlinear optics with topological
physics for the integrated and robust photonic circuitry at
the nanoscale.

The authors thank B. Luther-Davies for his support with
tunable lasers, M. Lockrey for his help with the electron
microscopy, and K. Bliokh for useful discussions. They
acknowledge the use of the Australian National Fabrication
Facility of the ACT Node. The work has been supported by
the Strategic Fund of the Australian National University, the
US Air Force Office of Scientific Research (Grant
No. FA2386-16-1-0002), the Australian Research Council
EarlyCareerResearcherAward (DE190100430), theRussian
Foundation forBasicResearch (GrantNo. 18-02-00381), and
the Institute for Basic Science (Grant No. IBS-R024-Y1).

[1] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological
states in photonic systems, Nat. Phys. 12, 626 (2016).

[2] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
Observation of unidirectional backscattering-immune

(a) (b)

+ -

FIG. 4. Spin-momentum-locked topological guided modes.
Experimental images of the third-harmonic intensity distribution
for the pump focused within the dashed circle with (a) left-
circular and (b) right-circular polarizations.

10 um10 um

(a) (b)

FIG. 5. Topological Australia: an example of a third-harmonic
image generated from geometry-independent edge states. (a) Op-
tical microscope image of a metasurface with a domain wall of a
shape of the Australian continent. Dashed line is a guide for an
eye for the domain wall between the shrunken and the expanded
domains. (b) Experimentally observed third-harmonic field at the
edge-state pump wavelength.

PHYSICAL REVIEW LETTERS 123, 103901 (2019)

103901-4

https://doi.org/10.1038/nphys3796


topological electromagnetic states, Nature (London) 461,

772 (2009).
[3] L.-H. Wu and X. Hu, Scheme for Achieving a Topological

Photonic Crystal by Using Dielectric Material, Phys. Rev.

Lett. 114, 223901 (2015).
[4] A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S.

Kivshar, and A. B. Khanikaev, Three-dimensional all-
dielectric photonic topological insulator, Nat. Photonics
11, 130 (2017).

[5] T. Ma and G. Shvets, All-Si valley-Hall photonic topologi-
cal insulator, New J. Phys. 18, 025012 (2016).

[6] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and M.
Hafezi, Two-dimensionally confined topological edge states
in photonic crystals, New J. Phys. 18, 113013 (2016).

[7] P. D. Anderson and G. Subramania, Unidirectional edge
states in topological honeycomb-lattice membrane photonic
crystals, Opt. Express 25, 23293 (2017).

[8] M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M.
Litchinitser, Robust topologically protected transport in
photonic crystals at telecommunication wavelengths, Nat.
Nanotechnol. 14, 31 (2019).

[9] B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and
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