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Abstract: In this paper, a third-order ordinary differential equation coupled to three-point boundary con-
ditions is considered. The related Green’s function changes its sign on the square of definition. Despite this,
we are able to deduce the existence of positive and increasing functions on the whole interval of definition,
which are convex in a given subinterval. The nonlinear considered problem consists on the product of a
positive real parameter, a nonnegative function that depends on the spatial variable and a time dependent
function, with negative sign on the first part of the interval and positive on the second one. The results hold
by means of fixed point theorems on suitable cones.
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1 Introduction

Third-order three-point boundary value problems arise in several areas of applied mathematics and phy-
sics. Some particular models of deflection of a curved beam with constant or varying cross sections, three-
layer beams, electromagnetic waves, study of the equilibrium states of a hated bar and others can be found
in [1]. Jiang and Agarwal [2] proved that the singular third-order boundary value problem

Y"x) =(1-y’gy), 0<x<oo, A>0,
y(0)=0, limyx) =1, limy'(x)= limy"(x)=0,
X—00 X—00 X—00

where g(y) is positive and continuous on (0, 1], has a unique solution. This kind of problem arises in the
study of draining and coating flows.

Later, using Krasnoselskii’s fixed-point theorem, Sun [3] proved the existence of infinite positive solu-
tions of the BVP

u"(t) = Aa(t)f(t,u(t)), 0<t<l1,
u@@ =u'@m=u"1=0, ne G lj,
assuming that fis sublinear or superlinear with respect to the second variable.
Li [4] studied the same problems with two-point boundary conditions

u0) =u'(0)=u"Q) =0,
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while Liu et al. in [5,6] studied the aforementioned problem with three-point boundary conditions
u@ =u) =u"(b)=0 and u(a) =u'(h) =u"(a) =0,

respectively. In [7], the authors considered the problem with conditions as follows:

u@=u'(0)=0, W@ =au'(m), 0<n<l, 1<a<l.
n

In all these papers, the existence of positive solution follows from the fact that the corresponding
Green’s function is strictly positive. In [8], Palamides and Veloni studied the singular BVP

u"(t) = —a(t)f(t,u(t)), 0<t<l1,
u@ =u'M=u") =0, nelo0,1/2].

The corresponding Green’s function G(¢, s) for this problem is not a definite sign function for (¢, s) €
[0, 1] x [0, 1]. The solution u(t) = f; G(t, s)a(s)f(s, u(s))ds may still be positive, i.e., if its initial values
u’ (0) and u” (0) are positive. This observation is based on an analysis of the corresponding vector field on
the phase-plane (u', u"), proposed in [9] and in some references therein. It is worth noticing that a positive
and increasing solution was obtained in [8], where the proof is based on the classical Krasnoselskii’s fixed
point theorem in cones.

The aim of this paper is to study the existence, nonexistence and multiplicity of solutions of the third-
order nonlinear differential equation

u”(t) = -Ap()fu(t), ae. te0,1] =1, (M
coupled with more general three-point boundary value conditions, namely
u(0) =0, u'(n) =au'(1), w'1)=pu), @

with0<a<1,0<f<s* and0<n<-.
The following assumptions on the nonlinear part are assumed:

(F) A> 0is a parameter, p € L*°(]) is such that p < 0 a.e. on [0, ] and p > 0 a.e. on [, 1] and f: [0, c0) —
[0, 00) is a continuous function.

Moreover, it is worth noticing that the properties of the corresponding sign-changing Green’s function make
it necessary to construct a different kind of cone, similar to the one recently used in [10]. Using this cone we
will impose some conditions in order to assure the existence of positive and increasing solutions of the
considered problem, which will also be convex in a certain subset of its interval of definition.

The paper is organized as follows: in Section 2 we study the linear problem and we deduce the exact
expression of the corresponding Green’s function and some of its properties as well as some properties of its
first- and second-order derivative. Using these properties, in Section 3, we impose some sufficient condi-
tions on the nonlinearity that allow us to deduce the existence of at least one positive solution of problem
(1)-(2). The results are based on the fixed point index theory. In Section 4, we give some conditions under
which there is no solution for the considered problem. Finally, in Section 5 we illustrate the given results
with some examples.

2 Linear problem

Consider, for any y € C([0, 1]), the following three-point linear boundary value problem
u”(t) = -yt), 0<t<l, (3)
u0) =0, u'(m=au'@), uQ)=pu), (4)

. 2 1
with0<a<1,0<B< ~—and0<n<;
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First, we prove the following result in which the sign properties of the related Green’s function is
deduced.

Lemma2l.let0<a<1,0<fB< ﬁ and0 <n < % The Green’s function G, related to problem (3)—(4), has
the following sign properties:

G(t,s) <0 and %G(t,s)so for 0 <s<n,

G(t,s) =20 and %G(t,s)zo forn <s<1.

Proof. Integrating three times the linear problem gives us that
t

u'(t) = J- -y (s)ds + A,
0

t
u'(t) = J (s - t)y(s)ds + At + B,
0

t

2 2 d t? c

t) = t- — - — A— + Bt .

u(t) I[s 5 2]y(s) S + 5 + Bt +
0

The first condition u(0) = 0 implies that C = 0.
Next, u” (1) = au’ (1) is rewritten as
n 1
I—y(s)ds +A=a I(s -1)y(s)ds+ A + B,
0 0
whence
1

n

1-a 1

" A — < I y(s)ds — I(s - 1)y(s)ds.
0

0

B =
Then, using u’ (1) = Bu(1), we obtain that

2
( —S——lJy(s)ds+§+B.

1
I(s—l)y(s)ds+A+B:ﬁ 5 >
0

ol—.‘.a

If we substitute B with the expression from above and simplify, we get that

1 n
_ O(ﬁ 2 2(1 _ﬁ)
A= CPTIET b~ 28 -([(1 s?)y(s)ds + CPTET 28 .([y(s)ds.

Thus,
n 1
1-a 1
B = " A - o ! y(s)ds — ! (s - y(s)ds
1-wp 1 2 -wi-p | "
=P a-s - 20-aa-p 1
T ! (1 - Dy ()ds + !(1 Syeds + 2oL !y(s)ds . !y(s)ds.
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Finally, we obtain that

t
2 t? t?
t) = t- — - — d A— + Bt
u(t) J-(s 5 2jy(s)s+ 2+

O e = O

1 n
s e _ap-s) - .
[t 5 ]y(s)ds + _[ 20+ af - 2/3)t y(s)ds + }[ 2+ ap - Z,Bt y(s)ds

+

1
P B
.O[(Z+aﬁ s 2+aﬁ_2BS]tY(5)d5+_[2 2ﬁty(s)ds

As a result, we have that
(1) if s = n, then

ap(1 - s) m( 2-p _ _(-wp Sz}, s
22 + aff - 2fB) 2+af-28 2+a,8—2ﬁ

2,8—2—0(/332t2+ 2- -a)p 2] s? s<t
22 + ap - 2B) 2+af-28 2+a,B ﬁ ’

G(t,s) =

and
(2) if s < n, then

2+aﬁ_2ﬁ_aﬁ52t2_[s+wjt’ s>t
22 + aff - 2B) 2+aB-28
—aps’ t? - 1 - 0ps’ t—s—z, s<t.

20+ap-28) 2+aB-28 2

G(t,s) =

Now, we will study the sign properties of function G.
First, suppose that s > n and s > ¢. In this case, we have that

_ afl-sh) 2-f . (Q-wB
G(t,s) = 2(2+aﬁ—2,3)t +[ 75]

2+aB -28 2+af - 28
which gives us that G (0, s) = 0 and
_g2 _ _
aﬁ(l s)t+ 2-8 s 1-a)p e

_G(t = a8 T avap-28 " 2+aB-28
Thus, —G(t s) = 0 is equivalent to

aB(l-sHt+2-B=>sQ2+aB -2B) + (1 - a)Bs?
which is the same as

2-2s>2B(0+s@-2)+(1-a)s?-a(l-sHt).

It is enough to show that

2—2522fa(1+s(a—2)+(1—a)sz—a(1—sz)t),

which is equivalent to
A-s)A+at-a)=0

and the last one clearly holds since a <1 and s < 1.
As a result, in the case when s > 17 and s > t, we have that — G(t s)>0and G(O, s) =
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Second, suppose that s > n and s < t. In this case, it is fulfilled that

G(t,s)—zﬂ'z‘“ﬁsth[ =t -ap sz]t_s_z

’

T 22+ aB - 2p) 2+af-28 2+apf-2B 2

which gives us that

%G(t’ 5) = 25 J: jﬁ_—afgzt i Jrzf)z/_ilj 28 2 (+1 ;ﬁazﬁzﬁsz'
Thus, %G(t, s) > 0 is equivalent to
2B-2-afsHt+2-B=(Q1- a)fs?,
which is the same as

2-2t>B(1+ 8%+ as’t — as? - 2t).

Since f < ﬁ, it is enough to show that

2-2t> 2 1+ 82 + as?t — as? - 2t),
2-a

which is equivalent to
1-s)1A+at-a)=0

and the last one clearly holds since a < 1and s < 1.
Moreover,

G(s,s)zzﬁ_z_aﬁszsz+ 2-p _ _(-op szs—s—2
22 + aff - 2B) 2+af-28 2+af-28

Thus, G (s, s) > 0 is equivalent to
(2B-2-aBs?)s?> +22 - B)s —2(1 - a)Bs® > s2(2 + aB - 2B),
which is the same as
45(1-5) = Bs(2 + as)(1 — s)°.
It is enough to show that

2
-a

4 > 5 2+as)(1-ys),

or, which is the same,
2+ 25+ as?>2a+ as

and the last one holds since 2 > 2a and 2s > as.
As a result, in the case when s > n and s < ¢, we have that %G(t, s)>0andG(s,s) > 0.
Now, suppose that s < 7 and s > t. In this case, we have that

2+af - 28 - 0([3521‘2 ~ ( (1 - a)Bs? . s]t,

G = =) 2+aB- 28

which gives us that G (0, s) = 0 and

_ 908 _ 2 _ 2
EG(t,s):2+aﬂ 28 aﬂst_ (1-a)ps*
ot 2+af-2B 2+af - 28
Thus, %G(t, s) < 0 is equivalent to

R+af-28-aBs’)t < (1 - a)fs* +s2 + aB - 2B),

15
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which is the same as
R+aB-2B)(s-t)+Bs*(I+at-a) =0

and the last inequality clearly holds as s >t and a < 1.
As a result, in the case when s < 7 and s > t, we have that %G(t, s)<0and G(0,s) = 0.
Finally, suppose that s < 7 and s < t. In this case, we have that

G(t,s) = —afs? o (1 - a)ps? ‘o 5_2

22 + af - 2B) 2+af-28 2

Obviously, since a < 1, we have that G (¢, s) < 0. Moreover,

iG(t, 5 = —afs? ‘o (1 - a)Bs?
ot 2

+af -28 2+0z[3—2ﬁS

As a result, in the case when s < 1 and s < t, we have that %G(t, s) < 0 and G(s, s) < 0 and the result is
proved. O

As a direct consequence of previous result, for 0 < s < n, we obtain that

. 52
max|G(t, s)| = —-min{G(t,s)} = -G(1,s) = ————,
nax|G (, s)| (6.9} = ~6(L.s) = T——r—g
while, forn <s<1
_ Q2
max|G(t, s)| = G(1,s) = —— 5
tel 2+af - 28
Consequently, since 7 € (0, 1/2],
2 _n2 _n2
max|G(t, s) = DXL 1=} 1-n )
t.sel 2+af-28 2+af-28

Remark 2.2. We point out that, under the conditions for a and 3, we have that 2 + aff — 28 > 0. Moreover, if
a = f§ = 0, we obtain the expression of Green’s function given in [8].

Lemma 2.3. Let G(t, s) be Green’s function defined in Lemma 2.1. Then,

2+af -8B

max .
2+aB-28

t,sel

(6)

d
—G(t,s)| <
260 )‘

Proof. A direct computation gives us that if s > n, then

aft —2s — afs + 2Bs +2 - B - Bs?’(1 + at — @)

5 5 , S>t,
‘ie(t,s) = +af -2
ot 28t -2t +2 - B - Bs*(1 + at - a) s<t
2+af - 28 ’ N
and
(2) if s < n, then
R+aB-2B)(s—-1t)+Bs*(1 + at — @) s>t
9 2+aBf-28 o
" T g2t at - )
—_—, s<t.
2+af - 28

Thus, if s > 7 and s > ¢, then (6) is equivalent to
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Bs’(l+at—a) +aBf(l+s-t)+2s(1-B) =0,

which holds.
If s > nand s < t, then (6) is the same as
ap + Bs>(1 +at —a) +2t(1 - B) = 0O,

which is true.
If s <nand s > ¢, then we have

R+aB-2B)(s—t)+ Bs*(1 + at — a) <2+aﬁ—2ﬁ+ﬁ_ 2+af - B

3
96t 9)| =
a! S)‘

Finally, if s <n and s < ¢, then

_[352(1+0(t—o()< B <2+aﬁ-ﬁ
2+ aB-28 T 2+aB-28 2+af-28

3
—G(t,
‘at (t,s)

On the other hand, we have that, for s > n,

2

92 2aﬁ(1/3 Sz)ﬂ’ s>t

a —

20 (6s) = 2+ 2 2
u, s<t
2+af-2B

and for s < n,
_ R _ 2
2 2+zaﬁ /32ﬁ 2/;1[35, s>
+af -

a—G(t,s)=

ot? —apfs?

_— s<t
2+aB-28

So, as a direct consequence, we deduce the following result

2+af - 28 T 2+aB-28  2+aBf-28

17

Lemma2.4.let0<a<1,0<f< ﬁ and0 <n < % Then, Green’s function G, related to problem (3)—(4),

satisfies
a—2G(t, s)<0 foralls<t
ot?

and
a—ZG(t, s)>0 foralls>t.
at?

Now, define the cone

K={yeC): y®)20, y'({t) >0, tel}.

@)

Lemma22.5.Let0<a<1, 0<fB< ﬁ, 0<n< % and G be the related Green’s function to problem (3)—(4).

Let y € K. Then the unique solution of the linear boundary value problem (3)-(4) is such that
1
u(t) = I G(t,s)y(s)ds € K.
0

Moreover, u € C(I) and u”(t) > O for all t € [0, nl.
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Proof. First, we will show that u(t) > 0 on I.
If t <n, using that G(t,s) <0 forO<s<nandG(t,s) >0 for n <s <1, we have

u(t) =

I\

S y(n)(—%t_6 + af -

t n 1
G(t,s)y(s)ds = _[ G(t,s)y(s)ds + j G(t,s)y(s)ds + _[ G(t,s)y(s)ds
n

{ —afs? o (1 - a)Bs? [ S—ZJy(S)dS
22 + af - 2B)

2+af-2f 2
[2+aﬁ—

O e = O C—

1 - a)ps’
2+ aB - ZB]t]y (5)ds

t2+£ 2-p  ___(Q-wp
2+aB-28

2 + ﬁ B
(1 - a)Bs? Szjds

+

2ﬁ_aﬁsztz—[s+

22+ af - 2P)

+

|
;
I aB(l - )
22 + aff - 2B)
n

] ]y(s)ds

t
—apfs? )
maxy (s) (2(2 T ap-2p)

-2
2+af-28 2

+7(1_0()B52 jt}ds
2+af-28
t2+[ 2_:8 _ (1_a)ﬁ
2+aB - 28

2+aB-2 ﬁ
(1 - a)ps’ t—s—szs
2+af -2 2

- aps’ t2 - (s
2p)

0

2+aﬁ—2ﬁ—aﬁszt2_ s
22 + aff - 2f8)

t<s<n

n
+ maxy(s) [
t

+ min y(s)

n<s<1
2
—aps o2

y”“z(z af - 28)

2+af -
v I [ 22 + aﬁ * mjtjds

aﬁ(l—sz) Z—ﬁ -a)p
+Y(rl)I[Z(Z+aﬁ—2ﬁ)tz+(2+aﬁ_2ﬁ_ _2+a,8 ﬂ j]ds
n

6Bn + 6npt + 2B — 2Bta — 6tn + 121 + aPt? + 2t -
2+af -28

( a1 - s?)
22 + aBf - 2B)

e

(1 - a)ps?

)20

The last one holds since

is equivalent to

Using that f < ——

(3—6r1—t2+3tn)(2—a):

-6 + aB — 6Bn + 6nft + 2B - 2Bta — 6tn + 12 + aft? + 2t2 - 2Bt < 0

6 —12n — 2t + 6tn = B(a — 61 + 61t + 2 — 2ta + at? — 2t?).

- we only need to show that

which is the same as

2-3nR21-a)+ta) =0

and this clearly holds since n < % and a < 1.

6 — 3a — 12n + 6an — 2t2 + at? + 6nt - 3nta > a - 61 + 6Nt + 2 — 2ta + at? -

DE GRUYTER

2t2,
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Now, if t > 1, using again that G(t,s) <O forO<s<nand G(t,s) > 0 for n <s <1, we have

] ¢ 1
G(t,s)ds = j G(t, s)y(s)ds + '[ G(t,s)y(s)ds + _[ G(t,s)y(s)ds
1

[ —aps? o (1 - a)Ps? ( sz] (5)ds
2+ af - 2B) 2+af -28 2

u(t) =

+

B-2-0ps, (2B _A-@B o) 5 64
22+ aB - 2B) 2+af-28 2+aBf-28 2

I
i

+ pl-s) , (_2-F _  _(-op y(s)ds
22 + aff - 28) 2+af -28 2+th B

f [ —afs? oo (- a()ﬁs2 Szjds

2 + af - 2B) 2+aﬁ—,8 2

> max y(s)
0<s<n

t
+ miny(s) (Zﬁ—z—aﬁszt2+[ 2-p (-« szjt—s—z]ds

nssst 22+ aff - 2B) 2+af -2 2+af-2B 2

es<t 202 2B) 2+af-28 2 + aﬁ 28°

B —aps? , Q- aps _5_2
ym)j[z(z BB 2+aB-28 2de

28 - 2 — afs? 2-8 a)p s?
+y(n)j[2(2 2B)2+£2+aﬁ—2ﬁ_2+aﬁ 28° jt ?]ds

ap(1 - s?) 2-B a)B
+y(t)j{2(z 2B)2+(2+aﬁ—2ﬁ_s_2+aﬁ 28° Nds

1 —6+txﬁ 6Bn + 6npt + 2B — 2Bta — 6t + 121 + aPt? + 2t> — 2Bt? >0
6 2+aB - 2B -

+ miny(s) [aﬂ(l—sz) 2+[ al s - _-ap des

>y -

Next, we will show that u’(t) > 0 on I.
If t < n, since %G(t, s)<0for0<s<n and%G(t, s) > 0 for n < s <1, we have

n

/ Mz _g_ pArat-a),
u'(t) = Y y(s)ds+I[t S 2 af - 2B jy(s)ds
t

+

2+aﬁt—ﬁ_s_ﬁ(1+at a) y(s)ds
2+af-28 2+af - ﬁ

S C—

B+ at - a)szjds

B
zmaxy(s)j 2+af - 28

O<s<t

1
1
(1+at- 52 ds + maxy(s) t-s-—
+af - 28 t<s<n
t

+ min y(s)
n<s<1

2+0(ﬁt—/3_s_/3(1+0(t—0()s2 ds
2+af - 28 2+af-2B
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B 2+aB - 28

2+apt-f  Bl+at-a,
y(n)j(zﬂxﬁ s 2+aﬁ_zﬁs]ds

n
= ()I Lat;‘)sz ds+y(n).[(t_s_wsz]ds
t

[\

2 2+apt-B 1
y(n){ 2+aB-283 2 2+af-283

tr1_3+7(1_r1)_ _Mljzo

The last inequality holds since it is equivalent to
6(1-t)Q+t-2n)=BR+a+ 12t + 3at? - 4at - 61 - 6t2),
which is satisfied since f§ < ﬁ and
31-0A+t-2nQR - a) 22+ a + 12ty + 3at? - 4at - 61 — 62
is equivalent to
Q+at-a)2-3n) =0.

Ifnst,sincegG(t,s)sOforOsssnand%G(t,s)20fornsss1wehave

t
BA+at-a), 2+2pt-2t-B B +at- )
u'(t) = I 72‘Bsy(s)ds+'|‘[ Jy(s)ds
n

2+aBf -28 2+aBf -28

1
2+aft-f _ _ﬁ(1+at a)
’ Mzmﬁ ST i aB- 28 }'(s)ds
t
> max y(s) —ms2 ds+m1ny(s)j{2+2‘8t 2A-p B(1+at—a)s st
0<s<n 2+af -28 nssst 2+af - 2+aB-28
0
+ miny(s) [2+aﬁt— _S_ﬁ(1+at—a)szjds
t<s<1 2+ af 2+af - 2B
1 ¢
Bl+at-a, 2+28t-2t-B Bl+at-a),
=y 2+aﬁ—2ﬁSds+y(n)j[ 2+af-28 2+aﬁ—2ﬁsjds
0 n
2+aft-p _Bl+at-a,
+J’(t)j[ 2 -5 2+aﬁ—2ﬁsjds
2+ 2t -2t -B 2+apt-.. . 1 2 pl+at-a)1
zy(n)[ 2+af-28 g n)+2+aﬁ—2ﬂ(l 2 2+2 2+aBf -2p 3]20

The last inequality holds since it is equivalent to
6(1-t) 1 +t-2n) =BR+a+12tn + 3at? - 4at — 61 — 6t?)

and we already showed above that it is true.
As a result, we have that u(0) = 0, u(t) >0 and u’(t) >0 forall t € I.
Similarly as above, for 0 < t < 1, since

2n-t) = 2 (2((11 —t) +at — Eaj > /3(2((11 - t) + at - gaj,
2-a 3 3
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we conclude that

1
2
u'(t) = j %G(t, s)y(s)ds
0

t

n
L 2+ ap - 28 - afs’ api-s)
= 2+aﬁ—2ﬁy(5)ds+ I 2 af - 2B y(s)ds + 2+aﬁ—2ﬁy(s)d5
0 f )
t n .
Lﬁsz . 2+aB - 2B - aBs? . M
2$?3Y(S)Jz+aﬁ—zﬁd“tsms‘§if 2rap-2 T n) 2o apm®
n
1
- 2r o of s -8
)’()Iz ds+y(t)j 2+ a8 2B ds+ym)-[2+aﬁ—2ﬁds
n
y 1
_ s’ 2+ af - 2 - as’ B =Y
>y(t)'[2 2ﬁds+-[ 2+af - 28 ds + 2+aﬁ—2ﬁds
n
YO (5 ~ 2
_2+aﬁ—2ﬁ(2n 2t — 2fBn + 2Bt aﬁt+3aﬁj20, O

In order to deduce existence results for the nonlinear problem, we will work in more restrictive cones.
To this end, from the fact that

_Ha-2p+2) ifs>tands>n,
(s +1)?
s\G(,s) C12((y —
_st-1°((a-2)B+2) ifs<tands>n,
(s? - 1)?
0 ifs<tands<n,

ggs;jsoforallt,seI,Osozsl,OSﬁ<ﬁf‘mdog’lS

As a direct consequence,

we deduce that —( %

Lemma 2.6. Let 0 <a<1,0<f< ﬁ and 0 <7 < % and G be the related Green’s function to problem
(3)—(4). Then, for all (t, s) € (0, 1] x (0, 1) the following inequalities are fulfilled:

Gt,s) _ .. G(t,s) 1, i
Gy = m S < SR a1 2 w151 "

and

G639 | i 669 _ 15
G(,s) - slg? G(,s) zaﬁ(t Dt +t. ©)

Now, by defining g(t) = %aﬁ(t — 1t + t and H(t, s) == G(t, s) — g(t) G(1, s), we deduce, from Lemmas 2.1 and
2.6 the following direct consequence.
Corollary 2.7. Let 0 < a < 1,0 < B < 5>~ and 0 < < 3. Then

G(t,s) < g(t)G(1,s) for 0<s<n,

G(t,s) = g(t)G(1,s) forn<s<l.
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Thus, by denoting for any y € C(I)
Vlleo = max{ly()], t e I},
we are in a position to introduce a more restrictive cone than K, defined in (7), as follows:
Ko={yeCD):yeK, y©) 28O ylo, t eI} (10)
So, we assume that the solution of problem (3)-(4) belongs to the previous cone, when 7 is in the more

restrictive interval [0, 1/3]. The result is the following.

Lemma2.8.let0<a<1,0<B< ﬁ, 0o<n< % and G be the related Green’s function to problem (3)—(4).
Let y € Ky. Then the unique solution of the linear boundary value problem (3)—(4) is such that

1
u(t) = I G(t, s)y(s)ds € K,.
0

Proof. As it has been proved in Lemma 2.5, we know that u € K. Let us see that u(t) > g(t)|ull, for all ¢ € L.
To this end, we must use the expression

%sz(t - 1), s<tands<n,

l(s - 1)2t, s>t and s>1,
H(t, ) = G(t, s) - g()G(1,9) = | 7

E(t—l)(sz—t), s<tand s>n,

%t((s - 2)s +t), s>t and s < 1.

If t < n, using Corollary 2.7 and arguing as in the proof of Lemma 2.5, we have that

1
u(t) - g(t)llulleo u(t) - g(Hu@) = I H{(t, s)y(s)ds
0

t n 1
= I H(t,s)y(s)ds + I H(t,s)y(s)ds + I H(t,s)y(s)ds
0 t 1

t n 1

= e s - Lo 1
= I 25 (t 1)y(s)ds+I 2t((s 2)s+t)y(s)ds+j 2(s 1)%ty (s)ds

0 t n
t n 1

> y(t) j %sz(t - 1ds +y(n) I %t((s -2)s+t)ds +y(n) j %(S - 1%t ds
0 t n

> y(n)%(l -ttt +1-3n),

which is nonnegative on [0, 1] if and only if < 1/3.
Analogously, when ¢t > 1, using Corollary 2.7 and arguing as in the proof of Lemma 2.5, we have that

n t 1
u(t) - g(Oluleo = f H(t, )y (s)ds + j H(t,s)y(s)ds + j H{(t, )y (s)ds
0 t

n
t 1

n
_ l 2(¢ _ l _ 2 _ l —1)2
= f 2s (t-1Dy(s)ds + J 2(t 1(s? - t)y(s)ds + I 2(s 1)%ty (s)ds

0 n t
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n t 1
>y I %sz(t - 1ds +y(n) I %t((s - 2)s + t)ds + y(t) I %(s - 1%t ds
0 n t

1
> )’W)g(l -ttt +1-3n),
which is nonnegative on [, 1] if and only if n < 1/3. O

Remark 2.9. Notice that Lemmas 2.5 and 2.8 remain valid for any y € C(I), which is nonnegative and mono-
tone nondecreasing in I.

Now, define h(t) =1 + a(t — 1) and
o, s<tand s <n,
d 9 1-s, s>tandszxn,
H(t,s) = —G(t,s) — h(t)—G(1, s) =
2(t5) ot (t. s) ()at €. ) 1-t, s<tandszxn,
t-s, sx>=tands<n.

So, it is obvious that
Corollary 2.10. Let 0 < @ < 1,0 < f < 5>~ and 0 < 1 < . Then
2G(t, s) < h(t)iG(l, s) forO<s<n,
ot ot
EG(t, S) > h(t)iG(l, s) forn<s<l.
ot ot

Let us see that u, the unique solution of problem (3)-(4), is such that u'(t) > h(t)u'(1) for all t € I.
If t < n, using Corollary 2.10 and arguing as in the proof of Lemma 2.5, we have that

u'(t) - h(Ou'() = | H(t, s)y(s)ds

O e, O S,

n 1
H (¢, s)y (s)ds + f Hy (¢, s)y (s)ds + j Hy(t, s)y (s)ds
t n

1
(t-s)y(s)ds + I (1 -s)y(s)ds
n

Il
- —

n 1
zy(n)j (t—s)ds+y(n>j (1 - s)ds
t n

- y(n)@(l SOt 1)}

which is nonnegative on [0, n] if and only 0 < 1 < 1/2.
Analogously, when t > 1, using Corollary 2.10 and arguing as in the proof of Lemma 2.5, we have that

t 1
u'(t) - h(Hu'(1) = H, (t,s)y(s)ds + I H (t,s)y(s)ds + I H,(t,s)y(s)ds
t

n

O C—

1
(1-1t)y(s)ds + I (1-29)y(s)ds
t

1]
,:%»s
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t 1
zy(n)j <1—t)ds+y(t>f (1 - s)ds
n t

> y(n)G(l SOt te 1)}

which is nonnegative on [7, 1] if and only 0 < n < 1/2.

3 Existence results

In this section, using the fixed point index theory, we will give some sufficient conditions that will ensure
the existence of positive solutions of problem (1)—(2). We follow some ideas developed on [10].
Let us consider the Banach space E = C'(I) equipped with the norm

lull = max{llulleo, lu'lloo}-

Taking into account the properties satisfied by Green’s function and its derivatives, we define the cone
K; in E as follows:

Ki={yeCU):yekKo y(t)>ht)y ), tel}, (11)

with K, defined in (10).
Moreover, it is well known that the solutions of problem (1)-(2) correspond with the fixed points of the
integral operator

1
Tu(t) =A I G(t,s)p(s)f (u(s))ds, tel. (12)
0

Lemma 3.1. T: K; — K; is a completely continuous operator.

Proof. Let u € K;. From the sign conditions on function p assumed in (F) and Lemma 2.1 we obtain that
Tu(t) = 0, (Tu)'(t) =0 forall t € I.
Moreover, using Lemma 2.6 and condition (F), we have that

g(t)p(s)G(1, s) < p(s)G(t, s) < p(s)G(1,s), fora.e. t,s el (13)

Thus, for t € I, we have that

1
Tu(t) = /1_[ G(t,s)p(s)f (u(s))ds
0

> A | gt)p(s)GQ, s)f (u(s)ds

> A | gt)sup{p(s)G(t, s)}f (u(s)ds

tel

SR N e

tel

1
> Ag(t)sup j PS)G(t, s)f (u(s)ds; = g(t) [ Tull -
0

Using Corollary 2.10 and condition (F), we have that

h(t)p(s)%G(l, s) < p(s)%G(t, s), forae.t,sel. (14)
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Thus, for t € I, we have that
0 d 0 d
(Tw)'(t) = A j 266 9p©f (u(s)ds > A j H(OPE) =601, 5)f (u($)ds = he) (T ().
0 0

As a result we obtain that Tu € K;.

Now, we will show that T is a compact operator. Let us consider a bounded set B ¢ {u € E : |u| <r}.
First, we will prove that T (B) is uniformly bounded in C'(I).

First, notice that, since p is a L -function, there is a constant D, > O such that 0 < |p(t)| f(u(t)) < D, for a.e.
telandallueB.

Thus, from (5), for u € B, we have that

1 1
1 - n?
ITulloo = sup |A _[ G(t,s)p()f(u(s)ds| <A f max|G (t, s)|[p(s)fu(s)ds < \——L D, =,
te(0,1] t,sel 2+ af - 28
0 0
and from 6 it follows that
1 1
1Tk = sup |2 [ 6w wE)ds| <2 [ max| $6(,9) pEfwE)ds < PRl
e | o ot ) tsel ot 2+aBf - 28

Thus, | Tu| < max{C;, G} for all u € B.
Now, we will prove that T (B) is equicontinuous in C'(I). Let t,, t, € I. Without loss of generality, suppose
that ¢, < t,. Then,

1
[Tu(t) - Tu(B)| <A J G (t, 5) = G (&, S)|Ip(s)If(u(s)ds
0

1
< AD, j IG (6, 5) - Gty 5)|ds
0

and since G( -, s) is continuous, we have that for all € > 0 there exists § (¢) > 0 (independent of u € B) such
that if | — 6| < 6, then |Tu(t;)) — Tu(t,)| < € for all u € B.
Using the same arguments, we have

1
(Tw) (&) - (Tw)' (&) < AD j ‘%G(tl, 5) - %G(tz, s)|ds,
0

whence | (Tu)' (t;) — (Tu)'(t,)| < € for all u € B.

Therefore, T(B) is equicontinuous in C'(I).

As a consequence, by the Ascoli-Arzela theorem, we obtain that T(B) is relatively compact in C(J),
which gives us that T is a completely continuous operator. O

1
Define A = _[0 G(1, s)p(s)g(s)ds > 0, p* = max|p(s)| and denote, assuming that both limits exist,
sel

fo = lim f® and f® = lim M

x—-0t X x—+o0 X

Theorem 3.2. Assume thatO <a<1,0<pf < ﬁ and 0 <n < % If 22878 foope < Af,, then for all

2+aBf-28
1 2+aBf-2B _ s .
Ae ( ' Trap B ), problem (1)—(2) have at least one positive solution that belongs to the cone K;.
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1 2+aBf-28
Ao’ 2+aB-p)f<p*
2 -2
1 <A< +a - 28 .
Afo - ) Q+ap - P> +¢ep*

From the definition of f,, it follows that there exists §; > 0 such that when 0 < u(t) < 8, for all t € I,
we have

Proof. Assume, at first, that f, € (0, +00), let A € ( ) and choose ¢ € (0, fy) such that

f) > (fo —eu(t) forall t €.

Let Qs, = {u € K : |ull < 61} and choose u € dQs,. We will prove that Tu % u, being < the order induced in
the cone K;. So, since p(s)G(1, s) > 0 for all s € I and u € K;, we have

1
Tu(l) = Aj G (L, $)p©)f (u(s)ds
° 1
> Al - €) I P(s)G (1, s)u(s)ds
° 1
> Ay - e>||u||oof p(s)G (1, 5)g (s)ds
0

1
= Ay - eu(l) I p(s)G (1, 8)g (5)ds > u(l).
0

Thus, we have that Tu(t) < u(t) is not true for all ¢ € I, which is a necessary condition to have u — Tu
€ K c K;. As a consequence Tu % u and, from [11, Theorem 7.11, (iii)], we deduce that

ix, (T, Q) = 0.

Assuming now that f, = +00, let A > 0 and M > 0 be such that A > 1/(MA). So, from the definition of f, we
have that there exists §; > 0 such that when 0 < u(t) < ,, for all t € I, we have

fu(t) >Mu(t) foralltel.

So, arguing as above we deduce again that
i, (T, Q) = 0.

On the other hand, due to the definition of f*, we know that there exists §, > 0 such that when
min{u (t)} > 6,
tel

f@) < (e +eu(t) <(f*° +e¢e)ulle foralltel.

Define Qs, = {u € K : minlu(t)| < 8,}. We note that Qs, is an unbounded subset of the cone K;. Because of this,
tel

the fixed point index of the operator T with respect to Qs,, ix, (T, Qs,) is only defined in the case that the set of
fixed points of the operator T'in Qs,, thatis, (I — T)"1({0}) n Qs,, is compact (see [11] for the details). We will see
that ik, (T, Qs,) can be defined in this case.

First of all, since (I - T) is a continuous operator, it is obvious that (I - T)"1({0}) n Qs, is closed.
Moreover, we can assume that (I — T)"1({0}) n Qg, is bounded. Indeed, on the contrary, we would have
infinite fixed points of T in Qs, and it would be immediately deduced that problem (1)—(2) have an infinite
number of positive solutions. Therefore, we may assume that there exists a constant M > 0 such that
lul <M forallu € (I - T)1({0}) N Qs,.

Finally, using similar arguments as before, see also [10], since (I - T)1({0}) N Qs, is bounded, we
deduce that (I - T)1({0}) n Qg, is equicontinuous.

Now, we will prove that ||Tu|| < |lu| for all u € dQs,. Let u € dQs,. Then, for any ¢ € I, using (5), we have
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1
ITu(t)| < A_[ IG(t, $)|Ip(s)| fu(s)ds
0

1
1-n? J‘
SA———p | (f® ood
2 af - 28" (F® + &) ullods
0

Ao oo s eyl <
T 2+aB- Zﬁp '

We point out that the last inequality holds because of 1 — 7> <1< 2 + af - .
Now, from (6), we deduce

1
I(Tw)' (O] < AI ‘%G(t, $)|Ip ()| f(u(s)ds
0

1
2+aB-B o
<A ! (7 + ) lullods

< A%}?* (F + )l < lul,

whence, we deduce that||Tu| < |lul and as a consequence, see [11, Theorem 7.3], we have thatig, (T, Qs,) = 1.
Then, we conclude that T has a fixed point in 052\551, which is a positive solution of problem (1)-(2). O

Consequently, we obtain the following results.

Corollary 3.3. Assume that condition (F) holds. Then,
(i) Iffo=00and f> = 0, then for all A > 0 problem (1)-(2) has at least one positive solution.

(i) If fo= coand 0 < f*® < oo, then for all A € (0 2+ap-2p

) W) problem (1)—(2) has at least one positive
solution.

(iii) If 0 < fo < 00 and f*> = 0, then for all A > Aifo problem (1)—(2) has at least one positive solution.

In the sequel, we will obtain some alternative results that ensure the existence of solutions of problem
(1)-(2). First of all, we will recall some classical results regarding fixed point theory (see [12,13] for more
details).

Lemma 3.4. Let X be a Banach space and D be an open bounded set with Dx = D n K + & and D¢ # K.
Assume that F : Dy — K is a compact map such that x + Fx for x € OD. Then the fixed point index ix (F, Dg)
satisfies the following properties:
(1) If there exists e € K\{0} such that x + Fx + ae for all x € dDg and a > 0, then ix (F, D) = 0.
(2) If ux + Fx for all x € dDk and for every u > 1, then ix (F, Dg) = 1.
(3) Let D' be open in X with D" ¢ Dx. Ifix (F, D) = 1and ix (F, D}) = 0O, then F has a fixed point in Dg \Dy.
The same result holds if ix (F, Dg) = 0 and ix (F, D}) = 1.

We will consider the sets
Ky, ={uck:ul <p}
and

Vo= {u e K :minu(t) < p}.
tel

It is clear that K, c V,.
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Lemma 3.5. Denote

fo = sup{m; (t,u) € I x [0,p]}.
p
If there exists p > 0 such that AfP < 22:0;[;125, then ix, (T, K,) = 1.

Proof. We will prove that Tu + uu for all u € 0K, and every y > 1. Suppose, on the contrary, that there exists
some u € 0K, and u > 1 such that

1
pu® =1 [ G pe)f wE)ds.
0

Taking the supremum for ¢ € I, we obtain that
1

_n2
b, = Asup 0 G(t, $)p()f(u(s)ds < Apfpzfaﬁ <p.
On the other hand, we have that
1
w0 = 1 [ 26, s
) o
and
( d 2 B - B
0 3 , 2+ 0B -
L, = A sup ! |69l po) frushas < dopr =L <

As a consequence, it is deduced that yp < p, which is a contradiction with the assumption that py > 1.
Therefore, the result is proved. |

Lemma 3.6. Let

and
o= inf{%; (t,u) e I x [O,p]}.

If there exists p > O such that A f, > M, then i, (T, K,,) = 0.

Proof. We will prove that there exists e € K;\{0} such that u # Tu + a for all u € 0V, and all a > 0.
Since 0 < g(t) < 1for all t € I, we can take e(t) = 1 € K; and suppose that there exists some u € 0V, and
a > 0 such that u = Tu + a. Then,

1 1
u(1) = A f G, )lIpG)|f @(s)ds + a > Apf, j IG(L, s)lds > p,
0 0

which is a contradiction. Therefore, the result holds. |
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From previous lemmas, it is possible to formulate the following theorem, in which we give some
conditions under which problem (12) is solvable.

Theorem 3.7. Assume O < n < 1/3. Then problem (1)—(2) has at least one nontrivial solution in K, if one of the
following conditions hold.

2+aBf-2B

2+af-B°

(C2) There exist p,, p, € (0, ), p; < p,, such that AfP < 22162127_2; and Af,, > M.

(C1) There exist p;, p, € (0, 00), p; < p,, such that }lfp1 > M and AfP: <

4 Nonexistence results

In the following theorem, we give some conditions to ensure that the integral equation (12) has no nontrivial
solution in Kj.

Theorem 4.1. Let [a, b] C I, with a > 0, be given. If one of the following conditions holds
(i) f(x) < m*x for every x > 0, where

1 -1
m* =|Asup | G(t, s)p(s)ds
tel
(i) fix) > m.x for every x > 0, where
b -1

m, =|A inf G(t,s)p(s)ds
tela,b]
a

Then problem (1)—(2) has no nontrivial solution in K;.

Proof. (i) Suppose, on the contrary, that there exists u € K; such that u = Tu. Let t, € I be such that |Ju|| = u(to).
Then,

1
lull = A I |G (to, S)|Ip(s)If (u(s))ds
° 1
< Amr j G (to, 5)11p(s)u(s)ds
0]

1
< Am* Jull IIG(to, S)Ip(s)lds < flul,
0

which is a contradiction.
(ii) Suppose, on the contrary, that there exists u € K; such that u = Tu. Let ¢t € [a, b] be such that

u(ty) = II[lil’ll’]u(l‘). Then, for t € [a, b] we have that
tela,

1
u(to) = A f G (to, $)p(S)f (u(s))ds
0

b
> A j G (to, S)p(S)f (u(s))ds
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b
> Am, IG(tO, s)p(s)u(s)ds

b
> Am,u(ty) i[nfb] JG(t, s)p(s)ds = u(toy),
tela,
a

which is a contradiction. O

5 Examples

In this section, we will illustrate our main results with examples. Moreover, we will show that the existence
results obtained in Theorems 3.2 and 3.7 are not comparable.

Example 5.1. Let us consider the problem with f(u) = ”, y € (0, 1) and p(t) = g(t)arctan(t — 1), with ¢; > q
(t)262>Oforalltelandlet0sas1,Osﬁ<ﬁandOsns%.Thatis,

u" = -Aw¥q(t)arctan(t - n), tel,
u(0)=0, u'(n =au'(1), uQ) =pu(l).
In this case,
fo=+0c0 and f* =0.

Then, Theorem 3.2 gives us that there exists at least one positive solution of the considered problem for
allA > 0.
On the other hand, for p > 0,

q (t)arctan|t — n|w

fpzinf{ ; (t,u)eIx[O,p]}zo

and it is not possible to find a positive p, such that A f, > M, which means that Theorem 3.7 cannot be applied
in this case.

Example 5.2. Now, consider the problem with f(u) = uq(u), such that D > g(u) > ¢ > O for all t € I and p(t) =
arctan(t — n), where

2+af - 28
A -n?) ((—%ln(((rz -2n +2)(n? + 1)) - (n — Darctan(1 — n) + narctan n))

D

Namely,

u" = —Aug(u)arctan(t - n), tel,
u(0)=0, u'(m=au'(1), u'()=pu),

where0<a<1,0<f< ﬁ and0<n< % are arbitrarily chosen. Since,
1

1
1. Asup | G(t, s)p(s)ds < Amax|G (t, s)| I |arctan(s — n)|ds = %
0

m* tel p t,sel

then, f (u) = ug(u) < uD = um*.
Thus, condition (i) in Theorem 4.1 holds, which shows that the considered problem has no nontrivial
solutions in K;.
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