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Abstract: All-optical signal processing based on nonlinear optical devices is promising for ultrafast
information processing in optical communication systems. Recent advances in two-dimensional (2D)
layered materials with unique structures and distinctive properties have opened up new avenues for
nonlinear optics and the fabrication of related devices with high performance. This paper reviews
the recent advances in research on third-order optical nonlinearities of 2D materials, focusing on
all-optical processing applications in the optical telecommunications band near 1550 nm. First, we
provide an overview of the material properties of different 2D materials. Next, we review different
methods for characterizing the third-order optical nonlinearities of 2D materials, including the Z-scan
technique, third-harmonic generation (THG) measurement, and hybrid device characterization,
together with a summary of the measured n2 values in the telecommunications band. Finally, the
current challenges and future perspectives are discussed.

Keywords: third-order optical nonlinearity; 2D materials; telecommunications band

1. Introduction

All-optical signal processing based on nonlinear optical devices is an attractive tech-
nique for ultrahigh speed signal processing for optical communication systems. It offers
broad operation bandwidths, ultra-high processing speeds, together with low power
consumption and potentially reduced footprint and cost. Integrated nonlinear optical
photonic chips have been based on a few key materials including silicon (Si) [1–3], doped
silica (SiO2) [4,5], silicon nitride (Si3N4) [6,7], aluminum gallium arsenide (AlGaAs) [8–10],
and chalcogenide glasses [11,12]. These have enabled a wide range of devices from Ra-
man amplification and lasing [13–15], wavelength conversion [5,12,16–18], optical logic
gates [19–22], and optical frequency comb generation [23–26], to optical temporal cloak-
ing [27], quantum entangling [28–30], and many others. Despite their success, no platform
is perfect—they all have limitations, such as a relatively small Kerr nonlinearity (n2) (e.g.,
for Si3N4) or high two photon absorption (for silicon in the telecommunications band),
resulting in a low nonlinear figure of merit (FOM = n2/(λβTPA), with n2 and βTPA denoting
the effective Kerr coefficient and TPA coefficient of the waveguides, respectively, and λ the
light wavelength).

To overcome these limitations, newly emerging materials have attracted signifi-
cant attention, particularly 2D-layered materials, such as graphene [31–33], GO [34–36],
TMDCs [37–40], h-BN [41–43], and BP [44–46], where their atomically thin nature yields
unique and superior properties. Compared with bulk materials, the 2D materials possess
surfaces that are free of dangling bonds due to their weak out-of-plane van der Waals
interactions [32,37]. In particular, their properties are highly dependent on the number of
atomic layers—not only is their optical bandgap highly layer thickness dependent but they
can also exhibit an indirect-to-direct bandgap transition (and the reverse), which provides
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powerful ways in which to tune their optical responses [37,46–48]. Further, their broadband
photoluminescence and ultrahigh carrier mobility are highly attractive features for pho-
tonic and optoelectronic applications [33,49–53]. The unique photon-excited exciton and
valley-selective properties of monolayer TMDCs and their heterostructures are promising
for the development of future spintronic and quantum computing devices [37,38]. Finally,
in addition to their linear optical properties, 2D materials exhibit remarkable nonlinear
optical properties including strong saturable absorption (SA) [54–57], a giant Kerr nonlinear-
ity [58–62], and prominent second- (SHG) and third-harmonic generation (THG) [44,63–65],
opening up new avenues for high-performance nonlinear optical devices.

In contrast to the second-order optical nonlinearity that only exists in non-centrosymmetric
materials, the third-order susceptibility is present in all materials, which gives rise to a rich
variety of processes, including four-wave mixing (FWM), self-phase modulation (SPM),
cross-phase modulation (XPM), THG, two-photon absorption (TPA), SA, stimulated Raman
scattering, and many others. These third-order nonlinear optical processes are quasi-
instantaneous with ultrafast response times on the order of femtoseconds [66]. This has
motivated ultrafast all-optical signal generation and processing for telecommunications,
spectroscopy, metrology, sensing, quantum optics, and many other areas [67,68].

In this paper, we review recent progress in the study of the third-order optical non-
linearities of 2D materials specifically in the telecommunications wavelength band near
1550 nm, in contrast with other reviews [44,69,70] that focus predominantly in the visible
wavelength range. We discuss the different techniques for characterizing the third-order
optical nonlinearity and the prospects for future development. In Section 2, the material
properties of different 2D materials are briefly introduced and compared. Next, we review
different methods used to characterize the third-order nonlinear optical response of 2D
materials, including Z-scan technique, THG measurement, and hybrid device character-
ization. We also summarize the measured values of n2 of different 2D materials in the
telecommunications band. Finally, the conclusion and future perspectives are discussed in
Section 4. Our review is aimed to help readers have a view of the progress in this field and
to provide guidance for optimizing the properties and device applications of 2D materials
in future optical telecommunications systems.

2. 2D Materials

The past decade has witnessed an enormous surge in research on layered 2D materials—
many have been discovered and synthesized with a wide range of properties. In this section,
we briefly introduce some key 2D materials such as graphene, GO, TMDCs, h-BN, and BP
as shown in Figure 1 and discuss their electrical and optical properties.

2.1. Graphene and Graphene Oxide

Graphene, and its derivative, graphene oxide (GO), have been intensely studied
due to their excellent mechanical, electrical, and optical properties [33,71,72]. Graphene
has a gapless band structure, in which the conduction and valence bands meet at the K
point of Brillouin zone, resulting in its semimetal nature [31,44,73]. In contrast, GO is an
electronically hybrid material, featuring both conducting π-states from sp2 carbon sites
and a large energy gap between the σ-states of its sp3-bonded carbons [34,74]. Their unique
band structures result in novel electrical and optical properties, where for graphene, for
example, the electrons and holes act as massless Dirac fermions resulting in extremely
high carrier mobilities (>105 cm2/Vs) even under ambient conditions [31]. In contrast, GO
exhibits a band gap that is tunable by adjusting the degree of reduction, which in turn
affects the electric and optical properties. In addition, GO exhibits fluorescence in the near-
infrared (NIR), visible and ultraviolet regions [34–36], which is very promising for light
emitting devices. Moreover, the excellent nonlinear optical properties of both materials
have been reported, including strong saturable absorption (SA) [75,76], a giant optical Kerr
nonlinearity [58,59], leading to efficient self-phase modulation [77], FWM [78,79], as well
as high harmonic generation [63].
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2.2. Transition Metal Dichalcogenides

Transition metal dichalcogenides (TMDCs) with the formula of MX2 (where M is a
transition metal and X is a chalcogen), is another widely studied family of 2D materials.
Different to the semimetal graphene, monolayer TMDCs, such as MoS2, MoSe2, WS2, and
WSe2, are typically semiconductors that have bandgaps from 1 eV to 2.5 eV, covering
the spectral range from the near infrared to the visible region [37,38]. Moreover, TMDCs
can exhibit a transition from direct- to indirect-bandgaps with increasing film thickness,
resulting in strongly thickness-tunable optical and electrical properties. For instance,
MoS2 exhibits layer-dependent photoluminescence, with monolayer films showing a much
stronger photoluminescence [80]. Monolayer hexagonal TMDCs also exhibit unique band
structure valley-dependent properties, such as valley coherence and valley-selective circular
dichroism [37,81], offering new prospects for novel applications in optical computing and
information processing. For the nonlinear optical properties, TMDCs with odd numbers of
layers have no inversion symmetry, and so exhibit a non-zero second-order (and higher
even-order) nonlinearities that are absent in graphene and even-layer TMDCs [44,64].
Recently, noble metal TMDCs, including PdSe2 and PtSe2, and PdTe2, have also attracted
increasing interest in the fabrication of high performance electronic and optical devices,
such as ultra-broadband photodetectors [39,40] as well as mode-locked lasers [82].

2.3. Black Phosphorus

Black phosphorus (BP) is another attractive single element 2D-layered material which
has been widely studied. It has a puckered crystal structure, yielding a strong in-plane
anisotropy in its physical properties in the “armchair” and “zigzag” directions, opening
new avenues for anisotropic electronic and optoelectronic devices [44,45,83]. Moreover,
BP is a semiconductor that features a layer thickness-dependent direct bandgap from
0.3 eV (bulk) to 2.0 eV (monolayer), bridging the gap between the zero-bandgap graphene
and large-bandgap TMDCs [48,83]. This broad bandgap tunability is very suitable for
the photodetection and photonic applications from the visible to mid-infrared spectra
regions [46,47,84]. For the nonlinear optical properties, the layer thickness tunable and
polarization-dependent THG and optical Kerr nonlinearity have been demonstrated re-
cently [83,85]. Broadband SA has also been observed in BP, demonstrating its strong
potential for ultrafast pulsed lasers [86–88].
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2.4. Other Emerging 2D Materials

A wide range of other novel 2D low-dimensional materials have been investigated,
including h-BN, MXenes, perovskites, as well as MOFs, which greatly enriches the family of
2D materials. h-BN is an electrical insulator with a large bandgap of around 5.9 eV [41,89]
making h-BN a candidate for ultraviolet light applications. It also has an ultra-flat surface
as well as excellent resistance to oxidation and corrosion, which are both highly useful as a
dielectric or capping layer to protect the active materials or devices from degradation [41].

MXenes belong to another family of 2D materials, including 2D transition metal
carbides, nitrides, and carbonitrides. Typically, the electronic structure of MXenes can
be tuned by varying the surface functional groups. For instance, nonterminated Ti3C2
theoretically resembles a typical semimetal with a finite density of states at the Fermi level,
whereas it can transition to a semiconductor when terminated with surface groups, such
as OH and F groups [90]. MXnens also exhibit superior optical properties, such as a high
optical transmittance of visible light (>97% per nm) [38,91], and excellent nonlinear optical
properties [57].

Organometal-halide perovskites have a general formula of ABX3, where typically
A = CH3NH3

+, B = Pb2+, and X = I−, Br−, Cl− or mixtures [92]. Due to their promi-
nent photovoltaic features and luminescence properties, organometal-halide perovskite
semiconductors have been widely used to design high performance solar cells as well as
light-emitting diodes [51–53]. Metal-organic frameworks (MOFs) are organic–inorganic
hybrid porous crystalline materials with metal ions or metal-oxo clusters coordinated
with organic linkers [93,94]. Thanks to this unique structure, 2D MOFs exhibit enhanced
photo-physical behaviour and are promising for various applications, from light emission
and sensing to nonlinear optical applications [95,96].

3. Third-Order Optical Nonlinearities of 2D Materials in the Telecommunications Band

With their excellent third-order optical nonlinearities, 2D materials are promising func-
tional materials for high-performance nonlinear optical devices. In this section, we review
the different methods used to characterize their third-order nonlinear optical response.
These include the Z-scan technique, THG measurement, and hybrid device characterization.
We also summarize and compare the measured n2 values of different 2D materials in the
telecommunications band.

3.1. Third-Order Optical Nonlinearity

The nonlinear optical response of a material in the dipole approximation is given
by [1,97]:

P̃(t) = ε0[χ
(1)·Ẽ(t) + χ(2) : Ẽ(t)Ẽ(t) + χ(3)... Ẽ(t)Ẽ(t)Ẽ(t) + . . . ] (1)

where the P̃(t) is the material electronic polarization, Ẽ(t) is the incident field, χ(n) are
the nth-order nonlinear optical susceptibility. The first-order term χ(1) describes the linear
refractive index including refraction and absorption and is a result of the dipole response of
bound and free electrons to a single photon [1]. The second-order term χ(2) is a third-rank
tensor, nonzero only for non-centrosymmetric materials, describes second-harmonic gen-
eration (SHG), sum-and difference frequency generation (SFG, DFG), optical rectification,
the Pockels effect and others. The third-order nonlinear optical susceptibility χ(3) is partic-
ularly important because it exists in all materials regardless of the crystal symmetry and
gives rise to a rich variety of nonlinear processes, represented by THG [1,97], FWM [78,98],
SPM [61,99], and XPM [100,101]. These form the basis of all-optical processing devices, such
as wavelength conversion, optical comb generation, quantum entanglement, and more.

Equation (2) gives a simple description of the relevant third-order nonlinear optical
effects corresponding to P̃(3)(t) = ε0χ(3)·Ẽ3(t) [97] as follows:
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P̃(3)(t) = ε0

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

∫ ∞

−∞

dω3

2π
χ(3)(ωσ; ω1, ω2, ω3)× E(ω1)E(ω2)E(ω3)e−iωσt (2)

where ωσ = ω1 + ω2 + ω3, with ω1, ω2, and ω3 denoting the angular frequencies. Different
χ(3) effects can be described with different wave frequency combinations, such as THG
(χ(3)(ωσ = 3ω1; ω1, ω1, ω1)), non-degenerate FWM (χ(3)(ωσ = ω1 + ω2 −ω3; ω1, ω2,−ω3))
and degenerate FWM (χ(3)(ωσ = 2ω1 −ω2; ω1, ω1,−ω2)).

A key component of χ(3) is given by n2 = 3·Re
[

χ(3)

4cn2
0ε0

]
, which reflects the intensity-

dependent refractive index change, known as the Kerr effect and the complex refractive
index n can be expressed as [1,97]:

n = n0 + n2 I − i
λ

4π
(α0 + α2 I) (3)

where n2 represents the Kerr coefficient or Kerr nonlinearity, I is the light intensity, λ is the
wavelength, α2 is the nonlinear absorption induced by the third-order susceptibility χ(3),
and n0, α0 are the linear refractive index and absorption, respectively.

In this paper, we focus on χ(3) of 2D materials for key nonlinear processes that form the
basis for ultra-high speed all-optical signal generation and processing, with response times
on the order of femtoseconds [102,103]. These include SPM and XPM, governed largely by
n2 via the Re (χ(3)), as well as FWM and THG that are mainly governed by the magnitude of
|χ(3)|, although the latter are also sensitive to the complex value of χ(3) via phase-matching
effects. The n2 component of χ(3) accounts for two-photon absorption (TPA) via the Im
(χ(3)) and can also result in saturable absorption (SA). Both are intrinsic functions of the
material’s bandgap, but can also be influenced by free carrier effects. At photon energies
well below the bandgap, all χ(3) components will become degenerate, but near, or above,
the bandgap, they will in general be quite different. Finally, since nonlinear absorption is
always present, it will affect the efficiency of all third-order nonlinear optical processes,
not just n2, even though it does not arise directly from other χ(3) components such as THG
and FWM, for example. Further, these processes will generally scale differently with pump
power to n2, and so the conventional nonlinear FOM may not be a useful benchmark.

3.2. Characterization Methods
3.2.1. Z-Scan Technique

Measuring the Kerr coefficient of a material is needed in order to design and fabricate
nonlinear optical devices. The Z-scan method, introduced in the 1990s [104] is an elegant
method to measure the third-order optical Kerr nonlinearity of a material. This technique
involves open-aperture (OA) and closed-aperture (CA) measurements, which can be used
to measure the third-order nonlinear absorption and nonlinear refraction, respectively. CA
Z-scan method is widely used to measure the nonlinear refractive index (Kerr coefficient)
of an optical material. The valley–peak and peak–valley transmission curves are the typical
results of the CA measurement, as shown in Figure 2a. When the nonlinear material has
a positive nonlinear refractive index (n2 > 0), self-focusing will occur which results in the
valley–peak transmission curve. The peak–valley CA curve arises from de-focusing and
occurs with a negative nonlinear refractive index (n2 < 0).

Figure 2b shows a typical Z-scan setup [62]. To measure the ultrafast nonlinear
response, a femtosecond pulsed laser is used to excite the samples. A half-wave plate
combined with a linear polarizer can be employed to control the power of the incident light.
The beam is focused onto the sample with a lens or an objective. During the measurements,
samples are oriented perpendicular to the beam axis and translated along the Z axis with
a linear motorized stage. For the measurements of small micrometer sized samples, a
high-definition charge-coupled-device imaging system can be employed to align the light
beam to the target area. Two PDs are employed to detect the transmitted light power for
the signal and reference arms.
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For the CA Z-scan method, the normalized transmittance can be written as [62,104]:

T (z, ∆Φ0) ' 1 +
4∆Φ0x

(x2 + 9)(x2 + 1)
(4)

where x = z/z0, z0 = kω2
0/2 with ω0 the beam waist radius and k the wave vector.

∆Φ0 represents the on-axis phase shift at the focus, is defined as [62,104]:

∆Φ0 = kn2 I0Le f f (5)

In Equation (5), Le f f =
(
1− e−αL)/α, with L denoting the sample length and α0 the

linear absorption coefficient, k is the wave vector which is defined by k = 2π/λ, and I0
is the laser irradiance intensity with in the sample [104]. Based on the measured Z-scan
curves, one can derive the Kerr coefficient n2 with the fitting equations.

Graphene is the first 2D material to have been discovered, and its optical nonlinearities
have been widely studied using Z-scan measurements and other methods. Figure 3a
shows the CA Z-scan signal of a graphene film with an excitation laser wavelength at
1550 nm [105]. A peak–valley configuration can be observed, indicating a negative Kerr
nonlinearity. The measured Kerr coefficient n2 of graphene is as large as 10−11 m2/W
which is about six orders of magnitude larger than bulk Si, demonstrating the strong
potential of 2D materials for nonlinear optical devices. A laser peak intensity-dependent
n2 has also been observed (Figure 3b), providing a potential method for modulating its
nonlinear properties. Figure 3c,d show the CA curves of CH3NH3PbI3 perovskite [106]
and Ti3C2Tx MXene films [57] measured at a wavelength of 1550 nm, where a positive and
negative Kerr nonlinearity were observed, respectively. The different response of these two
materials forms the basis of their applications in different functional devices. For example,
a negative Kerr nonlinearity can be used to self-compress ultrashort pulses in the presence
of positive group-velocity dispersion while the materials with positive nonlinearity are
promising for achieving a net parametric modulational instability gain under abnormal
dispersion conditions.
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2D van der Waals (vdW) heterostructures offer many new features and possibilities
beyond what a single material can provide, and there has been significant activity in this
field [107–109]. Recently, the optical nonlinear response of 2D heterostructures has also
been investigated via the Z-scan method. Figure 3e plots the CA curve of a MoS2/BP/MoS2
heterostructure at different laser intensities [107]. A negative Kerr nonlinearity at the
telecommunications wavelength of 1550 nm can be observed. The strong Kerr nonlinearity
of graphene/Bi2Te3 at the same wavelength was also demonstrated recently [110]. By
fitting the experimental data, a large n2 of ∼2 × 10−12 m2/W was obtained, which is highly
attractive for all-optical modulators and switches.

One of the unique features of GO is its tunable optical and electrical properties through
laser reduction, which is particularly attractive for nonlinear optical applications. To
investigate laser tunable optical nonlinearities, an in situ third-order Kerr nonlinearity
measurement for GO films has been conducted with the Z-scan method [60]. Figure 4a–d
show the CA signal of GO films at different laser intensities. At low intensity, GO exhibits
a positive Kerr nonlinearity with a valley–peak CA configuration. With increasing the
laser intensity, GO reduction occurs and the positive nonlinearity finally transitions into
a negative nonlinearity at an intensity of 4.63 GW/cm2, at which point GO completely
reduces to graphene. In addition to the ability to laser tune optical nonlinearities in GO,
the measured Kerr coefficient n2 of GO is as large as 4.5 × 10−14 m2/W at 1550 nm, which
is four orders of magnitude higher than single crystalline silicon. These properties render
GO a promising candidate for nonlinear applications in the telecommunications band.

3.2.2. THG Measurement

In addition to the Z-scan method, another technique that can be used to directly
characterize the third-order optical nonlinearity of a material is THG measurement. As
introduced in Section 3.1, THG is a fundamental third-order optical nonlinear process in
which three photons at the same frequency (ω1) excite the nonlinear media to generate
new signal (ω = 3ω1). Measuring the THG of a material provides a direct method to
characterize its third-order optical nonlinearity. Figure 5 shows a typical setup for THG
measurements [111] where a fundamental (ω, red) pulse is incident normally on the sample.
The third harmonic (3ω, green) is detected in the reflected direction by a CCD camera, a
spectrometer, or a photodiode connected to a lock-in amplifier.
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To quantitatively analyze the THG effect, an equation for the THG intensity (I3ω), can
be introduced [112]:

I3ω(t) =
9ω2

16|ñ3ω ||ñω |3ε2
0c4

I3
ω

∣∣∣χ(3)
∣∣∣2( e−2αt − 2 cos(∆kt)e−αt + 1

α2 + ∆k2

)
e−2αt (6)

where ñω and ñ3ω are the complex refractive indexes at the fundamental and harmonic
wavelengths, respectively, α is the absorption coefficient at the THG wavelength, ∆k is
the phase mismatch between the fundamental and harmonic waves, and χ(3) is the third-
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order susceptibility of the sample. By fitting the THG data with Equation (6), an effective
third-order susceptibility χ(3) value can be obtained.

Strong THG in graphene was demonstrated by Kumar et al. [111]. Figure 6a-i show the
THG of monolayer graphene as a function of incident laser powers. The incident laser was
1720.4 nm. By fitting the experimental data, a large χ(3) of∼0.4× 10−16 m2/V2 was obtained.
In addition, a thickness-dependent THG signal can be observed (Figure 6a-ii, while χ(3)

remains constant with increasing graphene layer number. Recently, Jiang et al. [113]
investigated the gate-tunable THG of graphene. Figure 6b-ii show the THG signal as a
function of chemical potential generated at different wavelengths. When tuning the doping
level of graphene, an enhanced THG and χ(3) were observed.
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Figure 6. (a) THG in graphene: [111] (a-i) The average power of the THG signals as a function of
the average power of the incident laser. Inset is the THG spectrum. (a-ii) The average power of the
THG signals as a function of the number of atomic layers for an average fundamental power of 1 mW.
(b) Gate-tunable THG in graphene: [113] (b-i) Schematic of an ion-gel-gated graphene monolayer on
a fused silica substrate covered by ion-gel and voltage biased by the top gate. (b-ii) THG signal as a
function of 2 µ generated by different input wavelengths: 1300 nm, 1400 nm, 1566 nm and 1650 nm.

THG in other 2D materials, such as TMDCs and BP, have also been investigated
recently. Rosa et al. [114] characterized THG in mechanically exfoliated WSe2 flakes at an
excitation wavelength of 1560 nm. By measuring the THG for different numbers of layers,
a clear thickness-dependent behaviour was observed, as shown in Figure 7a-i,a-iii. The χ3)

of WSe2 was measured to be in the order of 10−19 m2/V2, which is comparable to other
TMD [115] and BP [116]. Youngblood et al. [116] reported THG in BP by using an ultrafast
near-IR laser obtaining a χ(3) of ∼1.4 × 10−19 m2/V2. In addition, an anisotropic THG was
demonstrated, as shown in Figure 7b-iii. Nonlinear optical properties of few-layer GaTe
were also studied by characterizing the THG at a pump wavelength of 1560 nm [117]. The
THG intensity was found to be sensitive to the number of GaTe layers (Figure 7c-iii). They
obtained a large χ(3) of ∼2 × 10−16 m2/V2
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Figure 7. (a) THG in WSe2: [114] (a-i) Spatial THG intensity mapping across the WSe2 sample. (a-ii)
THG spectrum of WSe2. (a-iii) THG intensities as a function of sample layers. (b) THG in BP: [116]
(b-i) THG emission (bright spot) from the BP flake. (b-ii) Measured spectrum of THG emission with
a peak wavelength at 519 nm. (b-iii) Anisotropic THG in BP. (c) THG in GaTe: [117] (c-i) THG images
of the few-layer GaTe flake. (c-ii) Measured spectra of THG emission. (c-iii) THG signals of samples
with different thicknesses.

3.2.3. Hybrid Device Characterization

Z-scan and THG measurements are usually employed to characterize the material
property directly. While on the one hand, the properties of a material form the basis for
applications to electronic and optical devices, the reverse is true—device performance can
also provide key information about the material properties. A typical example is field effect
transistors (FETs) which have been one of the main techniques to evaluate the electrical
properties of 2D materials. Optical structures and waveguides can also be exploited to
characterize the material optical properties. By integrating 2D materials with photonic
cavities and optical waveguides, the third-order optical nonlinearity of atomically thin 2D
material has been characterized by measuring the nonlinear optical responses of the hybrid
devices, such as FWM [78], SPM [99], and supercontinuum generation [118]. This method
also enables the investigation of the layer-dependence of the nonlinear properties, which
is challenging for conventional Z-scan methods due to the weak response of ultrathin
2D films.

For the hybrid device characterization, the data analysis is performed in the following
steps. First, by fitting the measured FWM or SPM spectra of corresponding hybrid devices,
one can obtain the nonlinear parameters (γ) for the bare and hybrid waveguides. Then,
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based on the fit γ of the hybrid waveguides, the Kerr coefficient (n2) of the coated 2D films
can be extracted using [119–121]:

γ =
2π

λ

s
D n0

2(x, y)n2(x, y)Sz
2dxdy[s

D n0(x, y)Szdxdy
]2 (7)

where λ is the central wavelength, D is the integral of the optical fields over the material
regions, Sz is the time-averaged Poynting vector calculated using mode solving software,
n0 (x, y) and n2 (x, y) are the refractive index profiles calculated over the waveguide cross
section and the Kerr coefficient of the different material regions, respectively.

FWM is a fundamental third-order nonlinear optical process that has been widely used
for all optical signal generation and processing, including wavelength conversion [98,122],
optical frequency comb generation [123,124], optical sampling [125,126], quantum entangle-
ment [29,30], and many other processes. The conversion efficiency (CE) of FWM is mainly
determined by the third-order Kerr nonlinearity of the material that makes of the device.
Therefore, it is useful to obtain the Kerr coefficient of a material by measuring its FWM CE.

Gu et al. [118] fabricated a silicon nanocavity covered with graphene (Figure 8a-i) and
measured the FWM CE with different pump and signal detuning wavelengths around
1550 nm, as shown in Figure 8a-ii,a-iii. From the CE data, a n2 of ∼4.8 × 10−17 m2/W
was obtained for a graphene integrated with a silicon cavity. The layer-dependence of the
Kerr nonlinearity of GO films has been investigated by measuring the FWM performance
of GO hybrid devices based on doped-silica and SiN optical waveguides and microring
resonators (MRRs) [78,127–129]. Figure 8b-i show a fabricated doped-silica MRR covered
with patterned GO films [78]. By fitting the CE to theory for a device with different GO
thicknesses, the layer thickness dependence of n2 of GO at 1550 nm was characterized, as
shown in Figure 8b-iii. Recently, electrically tuneable optical nonlinearities of graphene
at 1550 nm were also demonstrated by measuring FWM in graphene-SiN waveguides at
different gate voltages, as shown in Figure 8c [130].

SPM is another third-order nonlinear optical process that can be used to characterize
the optical nonlinearity of 2D materials. Feng et al. [131] studied the Kerr nonlinearities of
graphene/Si hybrid waveguides with enhanced SPM (Figure 9a). The n2 of the Graphene
on Si hybrid waveguides was measured to be ∼2 × 10−17 m2/W, which is three times
larger than that of the Si waveguide. Even though the intrinsic n2 of graphene is orders of
magnitude larger than bulk silicon, the monolayer thickness of the graphene film results
in a very low optical mode overlap, which yields only a factor of three improvement in
the effective nonlinearity of the waveguide. For GO, on the other hand, comparatively
larger film thicknesses are achievable which result in an overall much higher waveguide
nonlinearity. Optical nonlinearities of GO films have also been investigated by SPM ex-
periments. Zhang et al. [99] demonstrated the enhanced optical nonlinearity of silicon
nanowires integrated with 2D GO Films (Figure 9b-i). Figure 9b-ii show the experimental
SPM spectra of the devices with different numbers of GO layers, where increased spectral
broadening can be observed in GO coated silicon nanowires. The layer-dependent Kerr
n2 coefficient of GO was also characterized by fitting the spectra to theory, as shown in
Figure 9b-iii. In addition to graphene and GO, the optical Kerr nonlinearity of MoS2 mono-
layer films was also characterized by analysing the SPM of MoS2-silicon waveguides [132].
The experiments demonstrated a large Kerr coefficient n2 of ∼1.1 × 10−16 m2/W for a
monolayer of MoS2 in the telecommunications band.
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Figure 8. (a) FWM in graphene-clad silicon nanocavities: [118] (a-i) Scanning electron micrograph 
(SEM) of the photonic crystal cavity partially covered by graphene monolayer. (a-ii) Measured 
transmission spectrum of the cavity device with pump laser fixed on cavity resonance, and signal 
laser detuning scanned from 20.04 to 20.27 nm. (a-iii) Measured and simulated conversion 

Figure 8. (a) FWM in graphene-clad silicon nanocavities: [118] (a-i) Scanning electron micrograph
(SEM) of the photonic crystal cavity partially covered by graphene monolayer. (a-ii) Measured
transmission spectrum of the cavity device with pump laser fixed on cavity resonance, and signal laser
detuning scanned from 20.04 to 20.27 nm. (a-iii) Measured and simulated conversion efficiencies of
the cavity. Solid and dashed black lines are modelled conversion efficiencies for the graphene–silicon
and monolithic silicon cavities, respectively. (b) Layer-dependent optical nonlinearities in GO-coated
integrated MRR: [78] (b-i) Microscopic image of an integrated MRR patterned with 50 layers of GO.
Inset shows zoom-in view of the patterned GO film. (b-ii) Optical spectra of FWM at a pump power
of 22 dBm for the MRRs with 1−5 layers coated GO. (b-iii) n2 of GO versus layer number at fixed
pump powers of 12 and 22 dBm. (c) Electrically tunable optical nonlinearities in graphene-covered
SiN Waveguides: [130] (c-i) Sketch of the gating scheme (up) and optical microscope image (down) of
the device. Calculated values of third-order conductivity as a function of Fermi energy for different
wavelength detunings (c-ii) and as a function of detuning for a range of Fermi energies (c-iii).

3.3. Comparison of Measured Results

By using different characterization techniques discussed above, Kerr coefficient n2 or
THG χ(3) value of graphene, GO, TMDCs, BP, and different heterostructures at telecom-
munication wavelengths have been obtained. In Table 1, we compare these parameters
characterizing the third-order optical nonlinearity. It can be seen that monolayer graphene
exhibits the largest n2 value (up to 10−11 m2/W). The n2 value of GO films is on the
magnitude of 1014 m2/W, which is relatively smaller than graphene, but still more than
three orders of magnitudes larger than that of bulk silicon. For MoS2, MXene film, and 2D
heterostructures, the measured n2 varies from 10−16 to 10−22 m2/W. In terms of χ(3) suscep-
tivity obtained by using THG measurements, the value ranges from 10−19 to 10−15 m2/V2

for graphene, TMDCs, and BP.
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Figure 9. (a) SPM experiments in graphene–silicon hybrid waveguides: [131] (a-i) Schematic diagram
and Raman spectra of the device. (a-ii) Measured transmission spectra of comparison between
the Si (green solid curve) and G/Si hybrid (blue solid curve) waveguides under the same input
energy with 1.5 ps input pulse (spectrum denoted by the red dashed curve). (a-iii) Output SPM
spectra of the hybrid waveguide under various coupled energies. (b) SPM experiments in GO-silicon
waveguide: [99] (b-i) Microscopic image of a GO-coated silicon nanowire. (b-ii) Optical spectra of
SPM at a coupled pulse energy of ∼51.5 pJ with 1−3 layers coated GO. (b-iii) n2 of GO vs. layer
number at fixed coupled pulse energies of 8.2 and 51.5 pJ. (c) SPM experiments in MoS2-coated silicon
waveguides: [132] (c-i) scanning electron microscope image of the device, with MoS2 covering both
the grating couplers and waveguide regions. (c-ii) Measured transmission spectra of the devices with
and without MoS2. (c-iii) Simulation result for the redshift of the grating to estimate the refractive
index of MoS2. (c-iv) SPM spectra of MoS2–silicon waveguide and bare silicon waveguide.

One should note that the measured n2 values can often vary even for the same material
with the use of different measurement techniques, mainly due to the difference in sample
preparation and different laser sources used in the measurements. Usually, 2D films
fabricated by chemical vapor deposition possess higher numbers of defects compared to
mechanically exfoliated single crystal monolayers [37,38], and this can often be reflected
in variations in the measured values of n2. As for the influence of irradiation lasers, the
pulse duration is a key factor. In Z-scan and THG measured, a femtosecond laser is widely
employed while a picosecond laser or continuous wavelength (CW) laser are used in the
characterization of hybrid devices. A longer laser duration, particularly for the CW laser,
may induce thermal optical nonlinearity of the materials, resulting in the deviation of the
measured n2 values.
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Table 1. Comparison of third-order optical nonlinear parameters of different 2D materials. FWM:
four-wave mixing; SPM: self-phase modulation; WG: waveguide; MRR: microring resonator; THG:
third-harmonic generation.

Material Wavelength (a) Thickness Nonlinear Parameter Method Ref.

Graphene 1550 nm ∼1 layer n2 = ∼10−11 m2/W Z-scan [105]

Graphene 1550 nm ∼5–7 layers n2 = ∼−8 × 10−14 m2/W Z-scan [58]

GO 1560 nm ∼1 um n2 = ∼4.5 × 10−14 m2/W Z-scan [60]

GeP 1550 nm ∼15–40 nm n2 = ∼3.3 × 10−19 m2/W Z-scan [133]

CH3NH3PbI3 1560 nm ∼180 nm n2 = ∼1.6 × 10−12 m2/W Z-scan [106]

MXene 1550 nm ∼220 um n2 = ∼−4.89 × 10−20 m2/W Z-scan [57]

BiOBr 1550 nm ∼140 nm n2 = ∼3.82 × 10−14 m2/W Z-scan [61]

MOF 1550 nm ∼4.2 nm n2 = ∼−8.9 × 10−20 m2/W Z-scan [134]

MoS2/BP/MoS2 1550 nm ∼17–20 nm n2 = ∼3.04 × 10−22 m2/W Z-scan [107]

Graphene/Bi2Te3 1550 nm ∼8.5 nm n2 = ∼2 × 10−12 m2/W Z-scan [110]

Graphene 1550 nm ∼1 layer n2 = ∼10−13 m2/W SPM in WG [135]

GO 1550 nm ∼4 nm n2 = ∼1.5 × 10−14 m2/W FWM in WG [127]

GO 1550 nm ∼2–100 nm n2 = ∼(1.2-2.7) × 10−14 m2/W FWM in MRR [78]

GO 1550 nm ∼2–20 nm n2 = ∼(1.3-1.4) × 10−14 m2/W FWM in WG [128]

GO 1550 nm ∼2–40 nm n2 = ∼(1.2-1.4) × 10−14 m2/W SPM in WG [99]

MoS2 1550 nm ∼1 layer n2 = ∼1.1 × 10−16 m2/W SPM in WG [132]

Graphene 1560 nm ∼1 layer χ(3) = ∼4 × 10−15 m2/V2 THG [136]

Graphene 1560 nm ∼1 layer χ(3) = ∼1.5 × 10−19 m2/V2 THG [137]

MoS2 1560 nm ∼1 layer χ(3) = ∼2.4 × 10−19 m2/V2 THG [137]

MoSe2 1560 nm ∼1 layer χ(3) = ∼2.2 × 10−19 m2/V2 THG [138]

WS2 1560 nm ∼1 layer χ(3) = ∼2.4 × 10−19 m2/V2 THG [138]

WSe2 1560 nm ∼1 layer χ(3) = ∼1.2 × 10−19 m2/V2 THG [114]

SnSe2 1560 nm multilayer χ(3) = ∼4.1 × 10−19 m2/V2 THG [139]

ReS2 1515 nm ∼1 layer χ(3) = ∼5.3 × 10−18 m2/V2 THG [140]

BP 1560 nm multilayer X(3) = ∼1.6 × 10−19 m2/V2 THG [141]
(a) Here, is the excitation laser wavelength.

4. Outlook and Prospects

The past decade has witnessed tremendous progress of 2D materials in both funda-
mental property study and related device applications. As for optical applications, the
excellent third-order optical nonlinearity of graphene, GO, TMDCs, and many other novel
2D materials have been investigated using various techniques, and these form the basis
of their applications in high-performance nonlinear photonic devices for next-generation
optical communications systems.

Despite these remarkable achievements, challenges still exist for engineering the non-
linear optical properties of 2D materials. First, accurate and efficient characterization of
the linear and nonlinear optical properties remains challenging. Although the Z-scan
method has been highly successful, the very weak Z-scan signals of ultra-thin films limit its
applications in mono- or few layer 2D materials, especially for the layer-dependent mea-
surements. In contrast, integrating 2D films with optical waveguides provides a powerful
method to obtain accurate nonlinear parameters of atomic-thin 2D materials by analyzing
the nonlinear optical performance of the hybrid device. However, the complicated device
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fabrication process and resulting relatively low efficiency make this method unsuitable
for rapid material characterization which is required for future industrial applications.
Second, 2D materials are a large family which include thousands of different materials.
For applications of the third-order optical nonlinearity in the telecommunications band,
only a very small fraction of them have been investigated. Many newer materials, such
as perovskites, MOFs, and graphdiyne, still need more research, which hinders the full
exploitation of 2D materials in the fabrication of next-generation nonlinear optical devices.
Finally, tuning or engineering the properties of materials is important for both optimiz-
ing the device performance and enabling new functionalities, as well as the fundamental
study of 2D materials. Nevertheless, current advances in the study of third-order optical
nonlinearities of 2D materials focus mainly on their fundamental properties. The relative
lack of effective methods of tuning the material properties poses another obstacle for 2D
materials to move forward to practical device fabrication. While challenges remain and
more work is needed, there is no doubt that 2D materials will underpin key breakthroughs
and greatly accelerate the developments of next-generation nonlinear optical devices for
many applications, particularly high bandwidth optical communications systems.

5. Conclusions

In conclusion, we review recent progress in the study of the third-order optical non-
linearities of 2D materials in the telecommunications wavelength band. We introduce
the representative 2D materials, together with their basic material properties followed by
a discussion of the main methods for characterizing the third-order optical nonlinearity,
reviewing recent achievements in the field. These advances highlight the significant poten-
tial of 2D materials in enabling high-performance nonlinear optical devices for all-optical
processing functions in optical communications systems.
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