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Abstract
We perform a perturbative calculation of the third order optical conductivities of
doped graphene, using approximations valid around the Dirac points and
neglecting effects due to scattering and electron–electron interactions. In this
limit analytic formulas can be constructed for the conductivities. We discuss in
detail the results for third harmonic generation, the Kerr effect and two-photon
carrier injection, parametric frequency conversion, and two-color coherent cur-
rent injection. We find a complicated dependence on the chemical potential and
photon energies. The linear dispersion causes resonances over a wide range of
photon energies, and it is possible to obtain large optical nonlinearities by tuning
the chemical potential.

Keywords: graphene, optical nonlinearities, four wave mixing, coherent control,
third harmonic generation

1. Introduction

Due to the gapless linear dispersion of its low energy electronic excitations, graphene exhibits
unique and remarkable optical properties: the linear optical response is characterized by a
universal conductivity [1] σ = e 40

2 at wavelengths from the mid-infrared to the visible, with
a monolayer absorbance about ∼2.3% [2]. Thus while a single layer of graphene is highly
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transparent, considered as a monolayer it is a highly absorbing material, and saturated
absorption is easy to achieve [3]. With its strong optical coupling, broadband absorption, and
other novel material and electronic properties [4], graphene is a natural candidate for use in
optically controlled devices in photonics and optoelectronics [5, 6]. In moving towards any
application, an important step is understanding the optical nonlinearities of graphene. The
graphene structure has center-of-inversion symmetry, and while second-order nonlinear
response can arise from interface effects [7], nonuniformity of optical field [8], or the presence
of dc currents [9], the first nonvanishing nonlinear susceptibility arising in pristine graphene is
the third order susceptibility [10], and that is the focus of this paper.

Third order nonlinearities in graphene have been experimentally investigated; however, the
extracted effective bulk susceptibilities χ

eff
(3) values show discrepancies and strongly depend on

measurement method, light frequency, and perhaps sample preparation. In their pioneering
work on the nonlinear response of graphene, Hendry et al [11] presented an expression for χ

eff
(3)

for four-wave mixing experiments, and then approximated their expression to find a value of
about − −10 m V15 2 2 in the near-infrared, weakly dependent on frequency; they found agreement
between experiment and their approximated expression by comparing their signal from
graphene with that from a gold film. Using a sample with about 100 layers of graphene, Wu
et al [12] found agreement with this approximated expression as well. However, in fact a direct
calculation from the expression of Hendry et al gives a value only about − −10 m V19 2 2 3. Yang
et al [13] observed no detectable two-photon absorption in monolayer graphene by the Z-scan

method at a wavelength of 780 nm, which limits χ⎡⎣ ⎤⎦Im
eff
(3) to less than − −10 m V18 2 2. The same

experimental technique was used by Zhang et al [14] to measure the nonlinear refractive index
at 1.55 μm, and they found ∼ − −n 10 m W2

11 2 1, six orders of magnitude larger than the value of

× − −4.8 10 m W17 2 1 obtained at a similar wavelength by Gu et al [6], which matches a
theoretical prediction using Hendryʼs original expression. Kumar et al [15] found a value of
about × − −8 10 m V17 2 2 by measuring third harmonic generation at a fundamental wavelength of
1720 nm, while Hong et al [16] found a value about two orders of magnitude smaller for third
harmonic photon transitions at the M points in graphene. Sun et al [17] showed that two-color
coherent injected currents can induce an observable terahertz radiation signal. Theoretically,
besides the expression provided by Hendry et al, Rioux et al [18] investigated two-photon
absorption and two-color coherent by using Fermiʼs Golden Rule for pristine graphene, and
Jafari [19] calculated the nonlinear optical response in gapped graphene by adding a mass term.
Zhang et al [20] used the density matrix method to study four wave mixing at the saturation
regime in undoped graphene, and found an effective χ

eff
(3) about −10 17 m2 −V 2 which decreased
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3 Some confusion has entered the literature here. Hendry et al [11] made some approximations in their expression
and wrote it in a form where they could compare χ ( )

eff
3 for graphene with the third order nonlinear optical response of

a typical insulator, χ ( )
ins

3 . Evaluating the coefficient they found to relate the two, they quoted χ χ≈ 10( ) ( )
eff

3 8
ins

3 . This led
them to estimate χ ≈ ≈− − −10 esu 10 m V( )

eff
3 7 15 2 2. However, a factor of π( )2

5
was missed in their evaluation of their

coefficient; if their coefficient is evaluated correctly the result is χ χ≈ 10( ) ( )
eff

3 4
ins

3 , or χ ≈ ≈− − −10 esu 10 m V( )
eff

3 11 19 2 2.
We mention that the experimental comparison they made with the nonlinear response of gold could be questioned,
since while their experiments on gold and graphene were done at 820 nm with 6 ps pulses, the reference value they
used for the χ ( )3 of gold came from experiments done at 532 nm with 35 ps pulses; the effective nonlinear optical
response of metals is well-known to be strongly dependent on wavelength [37] and pulse duration.



with increasing light intensity. A giant optical nonlinearity [21–23] in the presence of a strong
magnetic field has also been calculated from a density matrix formalism. Third and higher
harmonic generations from intraband contributions have been investigated in detail in the THz
regime [10, 24, 25]. Yet a general calculation of even third order nonlinearities at higher
frequencies, including the optical regime where interband contributions can play a central role,
is still lacking.

A full calculation of the nonlinear response, even in the perturbative limit, would require
the inclusion of electron–electron and electron–phonon scattering in the construction of a self-
energy. Thermal effects caused by a high repetition rate of laser pulses, as used in Z-scan
experiments, also cannot be ignored [26, 27]. In this paper, we neglect these complications,
restrict ourselves to frequencies such that we can use approximations relevant around the Dirac
cone, and perform a simple, zero-temperature perturbative calculation at the independent
particle level, but fully taking into account both the interband and intraband motion of the
electrons as perturbed by an incident field. The advantage of such a simplified approach is that
we can obtain analytic results for the third order conductivity σ ω ω ω( ), ,dabc(3);

1 2 3 in doped
graphene; one can then determine an effective bulk susceptibility [11] by

χ ω ω ω σ ω ω ω ω ϵ= −( )( ) ( ) i d, , , , , (1)dabc dabc
teff

(3);
1 2 3

(3);
1 2 3 0 gr

with

ω ω ω ω= + + ,t 1 2 3

ϵ0 being the vacuum permittivity, and ≈d 3.3gr Å an effective thickness of graphene. These

elementary but analytic results allow us to explore predictions for a number of third order
nonlinear optical effects; they provide both an indication of what ranges of parameter space
would be interesting to explore experimentally, and a benchmark for more sophisticated
calculations.

For undoped graphene, we find that this model leads to a simple expression for the fully
symmetrized conductivity

σ ω ω ω
σ

ω ω ω ω ω ω ω
=

+ + +



( ) ( )

( ) ( ) ( )
v e

, , (2)xxxx F

t

(3);
1 2 3

0

2

4
1 2 2 3 3 1

where vF is the Fermi velocity. For doped graphene with a chemical potential μ, however, our
formulas show divergences related to the resonances between any involved photon energy and
the chemical potential gap μ2 , with results quite different for different frequency
combinations. Combined with the tunability of μ by an external gate voltage [28] or chemical
doping [29] this should lead to novel approaches for controlling the nonlinear optical properties
of graphene, and indeed to the possibility of graphene-based ‘nonlinear optics on demand’.

2. Model

We describe the electronic states in the π and π* bands of graphene by a tight binding model
employing carbon p2

z
orbitals; we denote by ϕ r( ) centered at the origin. The Bloch states can be

written as
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ψ Φ Φ= +r r rc c( ) ( ) ( ). (3)
k k k k ks A

s
A B

s
B

Here = + −( )s are band indexes for π π* ( ) bands, and Φ ϕ τ= ∑ − −α α
− · ( )r r Re( )k

k R
nm

i
nm

1 nm

are tight binding basis functions for carbon atoms at sites α = A B, in unit cell
= +R a an mnm 1 2, where n and m are integers;  is the number of unit cells in the

normalization area. We take the primitive lattice vectors to be = ˆ − ˆ( )a x ya1 0
3

2

1

2
and

= ˆ + ˆ( )a x ya ,2 0
3

2

1

2
with the lattice constant =a 2.460 Å. In our tight binding model, we set

the energy reference by taking the onsite energy to be zero; we take the nearest neighbor
coupling to be γ = 2.7

0
eV [4], and denote the nearest neighbor overlap of the p2

z
orbitals as d0.

Neglecting overlaps of neighboring p2
z
beyond the first nearest neighbor, the Schrödinger

equation for the αc k
s is

γ =* *

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

f

f

c

c

d f

d f

c

c

0

0

1

1
. (4)

k

k

k

k

k

k

k

k

A
s

B
s

A
s

B
s0

0

0

Here = + +− · − ·f e e1
k

k a k ai i1 2 is the structure factor. The amplitudes of the eigenfunctions
identified by equation (4) are then found to be

=
+

= ±
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟( )

c

c sd f

s
f

f s
1

2 1
1

, ,k

k
k

k

k

A
s

B
s

0

and eigenvalues are

ε
γ

=
+

s f

sd f1
. (5)k

k

k

s
0

0

Moving to a continuous range of crystal wavevectors k, we write the Bloch functions as

ψ = π
·r e( )

k

r k
s

u i r( )

2
ks , where = +( )r r Ru u( )k ks s nm for any n m, . From the normalization of the

Bloch functions ∫ ψ ψ δ δ= −* ′′ ′ ′ ( )r r r k kd ( ) ( )
k ks s ss where the integral is over all space and we

take k and ′k to be in the first Brillouin zone, the ru ( )ks are normalized according to

∫ δ=*
′ ′ ( ) ( )r

r r
d

u u ,k ks s ss
cell cell

where the indicated integral is over a unit cell with area cell in the xy plane and over all z. The
Berry connections [30–32],

∫ξ = *
r

r ri
d

u u( ) ( ), (6)k k k ks s s s
cell cell

1 2 1 2

are then found to be

ξ τ χ ξ
τ χ

= − =
+

−
¯( )

d f

1
2

,
2 1

, (7)k k k
k

k

ss ss

0
2 2

New J. Phys. 16 (2014) 053014 J L Cheng et al

4



with χ = ⎡⎣ ⎤⎦f fIm ,
k k k k

τ τ τ= −B A, and s̄ the index of the band that is not the s band. At the

Dirac points, χ
k
is singular.

Under the approximation that the optical field is treated as uniform, the light-matter
interaction can in principle be described either through the use of a scalar potential or a vector
potential associated with the electric field ( )E t . Both treatments have disadvantages. The first
involves introducing the position operator r, which does not have well-behaved matrix elements
between the periodic Bloch functions ψ r( )

ks
. Starting with the work of Blount [30], a number of

strategies and techniques have been developed for working with the effective matrix elements
of the position operator that arise; these matrix elements are linked to the Berry connections
[32]. Such problems do not arise if the vector potential is used to represent the electric field, but
the inevitable band truncation in numerical calculations can result in false divergences [32, 33].
This problem does not plague calculations based on the position operator. And while these
divergences can be eliminated using proper sum rules that involve all the bands, since only two
bands are included in our tight binding model we use the approach based on introducing the
position operator, and take the interaction Hamiltonian to be = − ·( )E rH e tI , where we take

the electronic charge to be = −e e . In the independent particle approximation we adopt in this
paper, the proper treatment of the position operator then leads to the description of the system
by the semiconductor Bloch equations [32]


ρ

ξ ρ ρ
∂
∂

= − − · − ·⎡⎣ ⎤⎦ ( ) ( )E E
t

i e t e t, . (8)k
k k k k k

S
S S

Here ρ ( )tk
S is ×2 2 density matrix, with elements ρ ( )tks s

S

1 2
, in which diagonal term ρ

kss
S describes

the population of band s at k and off-diagonal terms ρ ¯kss
S describe the optical polarization;

similarly k denotes the matrix with elements δ ε= k ks s s s s1 2 1 2 1
and ξk denotes the matrix with

elements ξ ks s1 2
. The areal current density is then calculated by

∫
π

ρ=
⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥( )

J
k

ve
d

2
Tr ,k k

s
2

where the integral is over the Brillouin zone and the vk are the matrix elements of the velocity

operator = − +− [ ]v ri H H, ,I
1

0 given by

 ε ε ε ξ= = −¯ ¯ ¯( )v v i, . (9)k k k k k k kss s ss s s ss

The direct perturbative solution of equation (8) has been discussed in detail before [32], in
fact for a 3D crystal, using an approach in which interband and intraband contributions are
separated as the perturbation expansion is developed. Here we introduce a simpler strategy by
shifting to a moving frame that essentially follows the intraband motion of the carriers; we put
ρ ρ= +( ) ( )t t( )k k A

S
e t

, where ( )A t is the vector potential used to describe the electric field,

= −∂ ∂( ) ( )E At t t. In a rough sense we are using the vector potential to treat the intraband
motion, and the scalar potential to treat the interband motion. Equation (8) then reduces to
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ρ
ρ

∂
∂

= − −
⎡⎣ ⎤⎦( )( )

( ) ( )E
t

t
i H t t, , (10)( )

k
k A ke t

with ξ= − ·( )( ) ( )E EH t e tk k k. The ath Cartesian component of the areal current density is

then written as ∫ ρ=
π −

⎡⎣ ⎤⎦( ) ( )J t e v tTr
( ) ( )

k
k A k

a d
e t

a

2
2 .

We wish to generate a perturbative expansion of the solution of (10), which will then allow
us to write an expansion of ( )J t in terms of powers of the electric field,

= + + + ⋯( ) ( ) ( ) ( )J J J Jt t t t . (11)(1) (2) (3)

Because graphene has center-of-inversion symmetry the second order term ( )J t(2) will be
identically zero in the dipole approximation.

We begin by writing

∫ ω
π

= ω
ω−( )A At

d
e

2
, (12)i t

and expand − ( )( )EH t( )k Ae t in ( )E t and ( )A t to find

∫ ω
π

ω

ω ω

= −

− + + ⋯

ω
ω

−
− ⎡⎣

⎤
⎦⎥

 

 

( )( ) ( )

( ) ( ) ( ) ( ) ( )

EH t
d

eA e

eA t e A t A t

2

2 6
, (13)

( )k A k k

k k

e t
a i t a

b
ab

b c
abc

2

where superscripts indicate Cartesian components, to be summed over if repeated,
and with ω ωξ= ∂ ∂ + ( ) k ik k k

a a a, ω ωξ= ∂ ∂ ∂ + ∂ [ ]( ) k i k2k k k
ab a a b, and ω = ∂ ( )k

abc 2

ωξ∂ ∂ + ∂ ∂[ ]k i k k3k k
a a b c. In doped graphene, the singularities of vk and ξk at Dirac points can

be ignored. For weak external electric fields ( )E t , equation (10) can then be solved iteratively.

By expanding ρ ρ ρ= + ∑ ( )t( )
k k ki

i0 with ρ
k
0 being the density matrix at equilibrium states and

∫
∫

∫

ρ ω
π

ω

ρ
ω ω

π
ω ω

ρ
ω ω ω

π
ω ω ω

=

=

=

ω
ω

ω ω
ω ω

ω ω ω
ω

−

− +

−







( ) ( )

( )
( )

( )

( )
( )

( )

t
d

e A e

t
d d

e A A e

t
d d d

e A A A e

2
,

2
, ,

2
, , ,

( )

k k

k k

k k

a a i t

a b ab i t

a b c abc i t

(1) (1);

(2) 1 2
2

2 (2);
1 2

(3) 1 2 3
3

3 (3);
1 2 3

t

1 2

1 2

1 2 3

the iterative solutions are given as

ρ

ρ

ρ

=

= +

= + +

ω

ω ω

ω

+ ⎜ ⎟

⎜ ⎟

⎡⎣ ⎤⎦
⎛
⎝ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎞

⎠
⎛
⎝ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎞

⎠

 
   

     

( )I

I

I

, ,

,
1
2

, ,

,
1
2

,
1
6

, .

k k k

k k k k k

k k k k k k k

a a

ab a b ab

abc a bc ab c abc

(1); 0

(2); (1); 0

(3); (2); (1); 0t

1 2
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Hereafter we keep the dependence of the terms on frequencies implicit, always linking the
frequencies ω ω ω1 2 3 to the Cartesian components a b c. The matrix function ω ( )I Xk , where Xk

is any ×2 2 matrix associated with wavevector k, is defined as

ω ω δ= − +ω  ( )( )I X X ik k ks s s s s s1 2 1 2 1 2
with ω ε ε= − k k ks s s s1 2 1 2

. Expanding

= − + − + ⋯− ( ) ( ) ( ) ( ) ( ) ( )v v eA t M e A t A t W e A t A t A t Z
1
2

1
6

. (14)( )k A k k k ke t
a a b ab b c abc b c d abcd2 3

where = ∂ ∂M v kk k
ab a b, = ∂ ∂W M kk k

abc ab c, and = ∂ ∂Z W kk k
abcd abc d, we find that in an expansion

of the ( )J t(1) of (11) according to (12) we have

∫ ω
π

σ ω= ω
ω−( ) ( )J t

d
E e

2
,( ) ( )d da i t1 1 ;

where the linear conductivity σ ω( )da(1); is given by

∑

∑ ∑

σ ω
ω

ρ

ω ω
ω

ω ω δ

= − +

= +
−

− +
¯ ¯ + −

+−

⎡⎣ ⎤⎦


   
( )

( )

( )

e

i
v M

ie
M n

e

i

v s n n

s i

Tr ,

. (15)

k
k k k k

k
k k

k

k k k k

k

da d a da

s
ss
da

s
s

ss
d

ss
a

(1);
2

(1); 0

2

2

2

We also find

∫ ω ω ω
π

σ ω ω ω= ˜ ω−( )
( )

( )J t
d d d

e
2

, , , (16)d dabc i t(3) 1 2 3
3

(3);
1 2 3

t

where as in equation (1) we have ω ω ω ω= + +t 1 2 3, and the (nonsymmetrized) third order

conductivity σ ω ω ω˜ ( ), ,dabc(3);
1 2 3 is

∑σ
ω ω ω

ρ˜ = − + + +
⎡
⎣⎢

⎤
⎦⎥  ie

v M W ZTr
1
2

1
6

. (17)
k

k k k k k k k k
dabc d abc da bc dab c dabc(3);

4

1 2 3

(3); (2); (1); 0

In graphene, the hexagonal lattice has D h6 symmetry, which results in zero second order
conductivity. The linear conductivity has only one independent nonzero component
σ σ=xx yy(1); (1); . For the third order conductivity there are in all eight nonzero components,
among which three are independent; we have

σ σ σ σ σ σ
σ σ σ σ σ
˜ = ˜ ˜ = ˜ ˜ = ˜
˜ = ˜ = ˜ + ˜ + ˜

, , ,

. (18)

xxyy yyxx xyxy yxyx xyyx yxxy

xxxx yyyy xxyy xyxy xyyx

(3); (3); (3); (3); (3); (3);

(3); (3); (3); (3); (3);

In nonlinear optics it is standard to symmetrize the terms σ ω ω ω˜ ( ), ,ijkl
j k l

(3); by permuting the

indices ( )jkl and the corresponding frequency variables ω ω ω( ), ,j k l ; [34] it is easy to confirm

that such symmetrized coefficients, which we denote by σ ω ω ω( ), ,ijkl
j k l

(3); can without

impunity be used in place of σ ω ω ω˜ ( ), ,ijkl
j k l

(3); in the expression for ( )J td(3) , and they satisfy

the symmetry relations given above.
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3. Approximations around dirac points

The expressions given above are exact for the two-band model. However, for studying optical

transitions around the Dirac points = ˆ + ˆπ ( )K x y3 3
a

2

0
or = ˆ − ˆ′ π ( )K x y3 3

a

2

0
, it is

usual to approximate the electronic dispersion relation as linear, i.e. ε ≈+ s v kK ks F with Fermi

velocity γ= v a3 2F 0 0
, the velocity matrix elements as ≈+v ksv kK kss F and

≈ ˆ ×¯ +v z kisv kK kss F , and the interband Berry connection as ξ ≈ ˆ ×¯ + z k k2K kss
2. These

approximations follow immediately from equations (5), (6), and (9), and when they are made
an analytic result is found for the linear optical conductivity,

σ ω
σ
π

μ
ω

ω
μ

= −
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) i
G

4

2
, (19)xx(1); 0

where

πθ= +
−

+ −( ) ( )G x
x

x
i xln

1
1

1

is a dimensionless complex function of a real variable x. Here θ ( )y is the Heaviside step
function, equal to 0 for <y 0 and 1 for >y 0. Compared to a full band structure calculation
based on our tight-binding model, this analytic result gives an error less than 15% for
ω < 3 eV. We also find an analytic result for the third order optical conductivity,

σ
σ
σ

ω ω ω ω ω ω ω ω

= −

+ +

+ − + −

− +

σ

π ω ω ω ω ω ω
ω ω ω ω ω ω ω

ω ω

ω ω ω ω ω

ω ω

ω ω ω ω ω

ω ω

ω ω

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

+ + +
+ +

+ − + −

+

+ −

+ + +

ω
μ

ω ω
μ

ω
μ

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧⎨⎩
⎡⎣

⎤⎦
⎡⎣ ⎤⎦

⎫⎬⎭
⎡⎣ ⎤⎦






 



( ) ( )

( )

( )

( )

A

A A

A A

c p. . . (20)

( )
( ) ( ) ( )

( )

( ) ( )

( )

( )

( ) ( ) ( )

xxyy

xyxy

xyyx

i v e G

G

t t

G A

(3);

(3);

(3);
6

(1)

(2) (3)

6 1 2 3
(1)

2 1 3
(2)

6

F t

t

t

t

t

t

t
t

t

0
2

4

1
2

1 2 2 3 3 1

1 2 2 3 3 1

2
2

3
2

1 2 1 2

2
2

1 3 1 3

3
2

1 2
1 2
2

1
2

2
2

3
2

2 2 3 2 3
(1)

1 2 2 3 3 1 2
2

3
2

Here c p. . stands for the simultaneous cycle permutation of indexes in ω ω ω{ }, ,1 2 3 and

{ }A A A, ,(1) (2) (3) with

=
−

= − =
−

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥A A A

3
1
1

,
1
3

1
,

1
1
3

.( ) ( ) ( )1 2 3

The linear conductivity is the same as found by, e.g. Gu et al [6], and reduces to the universal
conductivity σ0 when taking the Fermi energy μ → 0. We plot σ xx(1); in figure 1(a). Due to the
gapless linear dispersion, the third order conductivities contain many possible divergences as
the photon energies involved—including all the ωi and their combinations—go to zero or to the
doping induced gap ( μ2 ).
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In limit of zero doping, μ → 0 and π→( )G x i ; then σ xxxx(3); simplifies to equation (2), and

σ σ σ σ= = = 3xxyy xyxy xyyx xxxx(3); (3); (3); (3); . These terms all exhibit power-law divergences as
photon energies vanish. For doped graphene, the chemical potential is only involved in the
function ( )G x , and a logarithmic divergence appears for suitable chemical potentials. This
could be utilized as a flexible method of controlling the third order nonlinearities, by tuning the
doping through adjusting a gate voltage or applying chemical doping. To present a summary of
the results we scale all photon energies by the chemical potential and rewrite the third order
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Figure 1. (a) Linear conductivity σ ω( )xx , (b) third harmonic generation coefficient

( )S w w w, ,xxyy , (c) two-photon absorption and Kerr effect coefficient −( )S w w w, ,dabc

for <w 2, (d) parametric frequency conversion coefficient −( )S w w w, ,dabc
s p p . Beside

w = 0, divergences also exist at (a) w = 2, (b) =w 2 3, 1, and 3 2, (c) w = 1 and w = 2,
(d) =w 1s , 2, and 3.



conductivity as

σ μ ω ω ω σ
μ

ω
μ

ω
μ

ω
μ

=
⎛
⎝⎜

⎞
⎠⎟

  ( ) S; , ,
1eV

, , . (21)dabc dabc(3);
1 2 3 0

4

1 2 3

We show the coefficient ( )S w w w, ,dabc describing third harmonic generation in figure 1 (b), the

coefficient −( )S w w w, ,dabc describing two-photon absorption and Kerr effects for <w 2 in

figure 1(c), and typical components −( )S w w w, ,dabc
s p p for parametric frequency conversion in

figure 1(d). For the validity of the perturbation theory, the electric field should be less than a
value Em at which the contributions to the optical current from the third order term are

comparable to those from the linear term. Away from the divergent regime in figure 1, Sdabc is
usually of the order of − −10 m V19 2 2, which gives an estimated σ σ ∼ − −10 m V(3) (1) 15 2 2 for a
chemical potential μ ∼ 0.1 eV, which then leads to ∼ −E 300 kV cmm

1. This value is at the high
end of the range of electric field amplitudes used in experiments.

3.1. Third harmonic generation

For third harmonic generation we set ω ω ω ω= = =1 2 3 and show the transitions at the left
hand side of figure 2(a). From equation (20) the third order conductivity for this effect is given
by

σ
σ

π ω
ω
μ

=
⎛
⎝⎜

⎞
⎠⎟




( )
( )

i v e
T

48 2
(22)xxxx F(3); 0

2

4

with = − +( ) ( ) ( ) ( )T x G x G x G x17 64 2 45 3 ; the other components are

σ σ σ σ= = = 3xxyy xyxy xyyx xxxx(3); (3); (3); (3); . If we take μ → 0, using (1) we find the effective bulk

susceptibility is χ = × ω
− −

( )6.3 10 m Vxxxx
eff
(3); 20 eV 4 2 2. For nonzero μ, ( )S w w w, ,xxyy is plotted in

figure 1(b). The divergence at w = 2 is very weak compared to those at =w 2 3 and w = 1, due
to cancellations in T(x). Setting ω = 0.72 eV, as in the experiment by Kumar et al [15], our
results are χ =xxxx

eff
(3); × − −3.25 10 m V19 2 2 for μ → 0, and × − −6 10 m V19 2 2 for μ = 0.3 eV

( ≈w 2.4); these are both two orders of magnitude smaller than the experimental value. While
our calculations do not include scattering and the effects of electron–electron interactions, there
are a number of other possible reasons for this discrepancy, which include: (i) for third
harmonic generation, the imaginary part of σ (3) has the same importance as the real part, and the
contribution from k points far away from Dirac points may be not ignorable. (ii) Even around
the Dirac points, the widely used linear dispersion approximation, which we have adopted here,
may not be adequate for an accurate calculation of optical nonlinearities. Likely more important
are the following reasons: (iii) for a very low doping level, the strong light intensity used in
THG measurements may cause saturated absorption, especially if excited by high-repetition-rate
laser pulses, this would lead to a nonlinearity of a totally different type, beyond the perturbation
approach we apply here. (iv) Thermal effects may lead to a higher effective nonlinearity than
the intrinsic one calculated here; their study is beyond the scope of the present work.
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3.2. Kerr effects and two-photon absorption

We now look at the frequency components ω ω ω ω= − = − = −1 2 3 . A direct calculation of

σ ω ω ω−( ), ,dabc(3); leads to a divergent result which can be understood by rewriting equation
(21) as

δ δ
δ δ

δ
δ

δ
δ

δ δ

− + + = + +

+

( ) ( ) ( ) ( )

( )

S w w w
S w S w S w

S w

, ,
; ;

; , . (23)

dabc A
dabc

B
dabc

B
dabc

C
dabc

1 2
1 2

1

2

2

1

1 2

The divergent terms are related to the optical transition shown at the left hand side in figure 2
(b) and determined by

π
= − + +⎜ ⎟

⎛
⎝

⎞
⎠

 ( )( ) ( )
S w

i v e

w
H

w
A A A

12 2
(24)A

dabc F

2

2
(1) (2) (3)

and

δ
δ

π δ δ
=

+
+ +

+ +⎜ ⎟
⎛
⎝

⎞
⎠

 ( )( ) ( ) ( )
( ) ( )

S w
i v e w

w w w
H

w
A A A;

3

12 2 2
(25)B

dabc F

2

2
(1) (2) (3)

with πθ= + − = −( ) ( ) ( ) ( )H x G x G x i x2 1 . The term δ δ( )S w; ,C
dabc

1 2 has no singularity as

δ δ →, 01 2 . Its components satisfy =( ) ( )S w S w; 0, 0 ; 0, 0C
xyyx

C
xyxy and
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Figure 2. Illustration of the nonlinear optical transition processes for THG (left hand
side of (a)), parametric frequency conversion (right hand side of (a)), two-photon
absorption (b), and two-color coherent current injection. (c) Diagram (a) illustrates the
nonresonant transitions, but the contribution will be maximized when any resonant
condition is satisfied. The peaks of the coefficients in figure 1 correspond to resonant
transitions occurring at the Fermi surface. Diagrams (b) and (c) illustrate only resonant
transitions.
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⎡
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⎝
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⎠
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4
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−
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We point out that the divergences as δ → 0i associated with SA and SB only appear for
frequencies satisfying ω μ> 2 , where one-photon absorption is nonzero. So we focus on the
frequencies satisfying ω μ< 2 , which is the regime where only two-photon absorption occurs,
analogous to the situation in a gapped semiconductor with a gap corresponding to μ2 . In this

regime, we find = −[ ] [ ]S SRe ReC
xyxy

C
xxyy , and plot the w-dependence of

− =( ) ( )S w w w S w, , ; 0, 0dabc
C
dabc in figure 1(c).

The two-photon absorption rate is written as

ξ ω= ω ω ω ω− −
( ) ( )

dn t

dt
E E E E , (26)abcd a b c d

2

where n(t) is the areal density (for monolayer structures such as graphene) of electron-hole pairs
injected. The coefficient ξ ω( )abcd

2 can be linked with the real part of σ ω ω ω−( ), ,abcd(3); by

matching the energy loss of the light field ·( ) ( )J Et t , written in terms of

σ ω ω ω−( ), ,abcd(3); , with the total energies of excited electron-hole pairs ω2 ( )dn t

dt
, written

in terms of ξ ω( )abcd
2 ; we find ξ ω ω σ ω ω ω= −− ⎡⎣ ⎤⎦( ) ( ) ( )3 Re , ,abcd abcd

2

1 (3); yielding

ξ ω ξ ω
σ

ω
θ ω μ ω μ= − = − <




 ( ) ( ) ( )

( )
( )

v e4
, for 2 .xyxy xxyy F

2 2
0

2

5

This result agrees with calculations based on Fermiʼs Golden Rule [18] where only transitions at

the right hand side of figure 2 (b) are considered and give ξ ω∝ −( )dabc
2

5
for μ ω μ< < 2 .

In bulk materials the Kerr effect can be described by a nonlinear index of refraction n2,
leading to an index of refraction given by = +n n n I0 2 where I is the light intensity and n0 is
the index at very low intensities. With the very naïve model of graphene behaving as a thin
layer of macroscopic material with effective response coefficients, we would have

χ ϵ χ= +⎡⎣ ⎤⎦( )n c3 4 12 eff
(3)

0 eff
(1) [34]; in these formulas we assume that the light is linearly

polarized, χ xxxx
eff
(3); is related to σ ω ω ω−( ), ,xxxx(3); by equation (1), and χ xx

eff
(1); to σ ω( )xx(1); by the

corresponding relation,

χ σ ωϵ= −( )i d .( ) ( )da da
greff

1 ; 1 ;
0

Hence starting from our calculated quantities we can extract an effective n2. In the experiment

by Zhang et al [14], the photon energy was ω = 0.8 eV. Assuming μ ∈ [ ]0.4, 0.7 eV, we

calculate ∼ − −n 10 cm W2
11 2 1, much less than their measured value. However, if the doping
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level were much lower the experiment could have fallen in the divergent regime identified
above, where we would not expect the perturbation approach adopted here would be sufficient.

3.3. Parametric frequency conversion

With a strong pump at frequency ωp, a signal photon at frequency ωs can be converted to an idler

photon at ω ω ω= −2i p s; this process is described by σ ω ω ω−( ), ,dabc
s p p

(3); and the

corresponding optical transitions are illustrated at the right hand side of figure 2 (a). At
μ ω≪  p s i, , we find the conductivity given by equation (2) is

σ ω ω ω σ ω ω ω ω ω− = − −⎡⎣ ⎤⎦ ( ) ( ) ( )( )v e, , 6 2 . (27)dabc
s p p F p p s p s

(3);
0

2 4 2

This differs from the formula of Hendry et al [11] for the same process, although both this
formula and that of Hendry et al exhibit an overall frequency dependence of ω−4. In the
experiments of Hendry et al [11] the photon energies were ω = 1.31 eVp and ω = 1.02 eVs

(corresponding to wavelengths of 950 nm and 1210 nm, and direct calculations from both
formulas give similar values of σ ∼ − −10 m Vxxxx(3); 23 2 2 (or χ ∼ − −10 m Vxxxx

eff
(3); 18 2 2), smaller by

two orders of magnitude than the experimental values they extracted by comparing the
nonlinear response with that of gold.

For large μ , in figure 1(d) we plot the dependence of −( )S w w w, ,xxyy
s p p and

−( )S w w w, ,xyxy
s p p on ws for a given =w 1.5p . For both components, divergences appear in the

imaginary parts as →w 0s and in the real parts as →w w2s p, and scale as w1 s and −( )w w1 2 p s

respectively. These divergences correspond to two interesting physical processes: as →w 0s , the
idler frequency is close to twice ωp, which indicates that graphene could manifest very high

second order nonlinearities in the presence of an external DC field [12]. For →w w2s p, the idler

frequency vanishes, and the divergence ω ω−
−( )2 p s

1
shows the existence of two-color coherent

current injection, to which we turn in the next section. For ⩾w 1s , two photon absorption (or
one photon absorption ( ⩾w 2s )) will occur and reduce the signal light intensity. However, the

imaginary parts of −( )S w w w, ,xyxy
s p p show logarithmic divergences at →w 1s and →w 2s , which

could enhance the idler intensity.

3.4. Two-color coherent current injection

To link up with earlier treatments we now consider ω ω ω= = −1 2 and ω ω δω= +23 , as

δω → 0. The divergence, as δω −( ) 1
, indicates the injection of current through the interference of

one- and two-photon absorption processes [35],

η ω= +ω ω ω− −( )dJ

dt
E E E c c. .

a
abcd b c d

2

The tensor η ω( )abcd can be calculated directly from Fermiʼs Golden Rule [18], but it also can be

extracted from the expression for σ ω ω ω δω− − +( ), , 2abcd ,
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η ω δω σ ω ω ω δω= − − − +
δω→

( )( ) ( ) ( )ilim 3 , , 2 . (28)abcd abcd

0

We find η η=xxyy xyxy and

η ω
η ω

σ

ω
θ ω μ θ μ ω θ ω μ= − − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

 

  
( )
( )

( )
( )

i v e

6
2 4

4
2 1

1
.

xxyy

xyyx

F0

2

3

Again, we can identify different regimes here: (i) ω μ ω< < 2 2 . Here only the first
term contributes to the injection rates. This corresponds to the interference of one-photon
absorption at ω2 with two photon absorption at ω (see the transitions at the right hand side of
figure 2 (c)), and corresponds to the usual current injection observed in semiconductors where

ω2 is greater than the band gap but ω is not. (ii) ω μ> 2 . In this regime one-photon
absorption occurs at the fundamental frequency, and the second order contribution to current
injection at the same position in the Brillouin zone leads to a divergent result. However, a new
contribution to the coherent current injection appears and is finite; it arises from a new process
of interfering pathways involve ω and ω ω− 2 transitions [36] (at the left hand side of figure 2
(c)). For experiments in semiconductors, where the fundamental energy ω is typically less than
the band gap, this regime is usually not explored. But note that in graphene the onset of this new
channel leads to obvious amplitude changes in η, which could be easily detected in experiments
by measuring the sudden change of the injection currents amplitude with scanning the
fundamental frequencies across μ2 .

4. Conclusion

We investigated the linear and third order nonlinear optical conductivity of doped graphene, at
zero temperature in the tight binding model, using the semiconductor Bloch equations. Analytic
results were obtained around the Dirac points by using the widely accepted linear dispersion
approximation. The third order optical conductivities exhibit a complicated dependence on the
photon frequencies and chemical potential. We discussed in detail third harmonic generation,
Kerr effects and two-photon absorption, parametric frequency conversion, and two-color
coherent current injection. A nonvanishing chemical potential mimics many of the features that
result from the presence of a band gap in normal semiconductors, and divergences can result
when the energy of the effective gap is matched to any of the photon energies involved. The
different third order processes considered exhibit a wide range of behavior, with each process
having its own signature features. The important role played by the chemical potential allows
for the generation of desired nonlinearities by electrically tuning or chemical doping; for low
doping levels, the easily saturated absorption may lead to a nonlinear response totally different
than those calculated here in the perturbative regime. Both systematic experiments and full band
structure calculations, including finite temperature effects, thermal effects, scattering processes,
and saturation, are clearly required to identify the true nature of the nonlinear response. But the
perturbative calculations presented here identify a host of frequency regimes where very
interesting behavior can be expected, even if more sophisticated calculations are required to
elucidate it.
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