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Abstract
The equations of motion of compact binary systems and their associated
Lagrangian formulation have been derived in previous works at the third post-
Newtonian (3PN) approximation of general relativity in harmonic coordinates.
In the present work, we investigate the binary’s relative dynamics in the
centre-of-mass frame (centre of mass located at the origin of the coordinates).
We obtain the 3PN-accurate expressions of the centre-of-mass positions and
equations of the relative binary motion. We show that the equations derive from
a Lagrangian (neglecting the radiation reaction), from which we deduce the
conserved centre-of-mass energy and angular momentum at the 3PN order. The
harmonic-coordinates centre-of-mass Lagrangian is equivalent, via a contact
transformation of the particles’ variables, to the centre-of-mass Hamiltonian in
ADM coordinates that is known from the post-Newtonian ADM-Hamiltonian
formalism. As an application we investigate the dynamical stability of circular
binary orbits at the 3PN order.

PACS numbers: 04.25.−g, 04.30.−w

1. Introduction

The problem of the dynamics of two compact bodies is part of a larger programme aimed at
unravelling the information contained in the gravitational-wave signals emitted by inspiralling
and/or coalescing compact binaries (see [1, 2] for reviews). The current treatment of the
problem is post-Newtonian (expansion when the speed of light c → +∞; following the
standard practice we say that a term of order 1/c2n relative to the Newtonian force belongs

3 On leave from: Institut d’Astrophysique de Paris, groupe de Gravitation et Cosmologie (GRεCO, FRE 2435 du
CNRS), 98bis boulevard Arago, 75014 Paris, France.
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to the nPN approximation). The first breakthrough in the problem of dynamics has been the
completion of the equations of motion of two point-like particles up to the 2PN order [3–10].
In recent years the (quite involved) equations of motion at the next 3PN order have also been
successfully derived [11–20].

Up to the order 3.5PN there is a clean separation between the conservative part of the
dynamics, made up of the ‘even’ Newtonian, 1PN, 2PN and 3PN approximations—with
the 2PN and especially the 3PN ones being very difficult to obtain, and the part associated
with the radiation reaction, and consisting of the ‘odd’ 2.5PN and 3.5PN orders (which are
comparatively much simpler to control than 2PN and 3PN). In principle, the conservative
part of the equations yields a point of dynamical general-relativistic instability at which there
is (presumably) a transition from the adiabatic inspiral to the final plunge and coalescence.
On the other hand, the non-conservative terms—i.e. 2.5PN computed in [3–8], 3.5PN and
4.5PN computed in [21–23, 10]—are determined by the boundary conditions imposed on the
gravitational field at infinity.

One should not confuse the latter nomenclature for post-Newtonian orders with a different
one applied to the gravitational field at future null infinity. There the ‘Newtonian’ order, which
has a quadrupolar wave pattern, corresponds to the dominant odd term in the local equations of
motion, i.e. 2.5PN, while the 1PN order, which is both quadrupolar and octupolar, corresponds
to 3.5PN in the local equations. And so on. Because of the presence of tails at the 1.5PN order
in the wave field at infinity there is a contribution at the 4PN order in the equations of motion
that is ‘odd’ in the sense of being associated with radiation-reaction effects [24]. Similarly
one expects that the known tails-of-tails [25] arising at the 3PN order in the wave field will
correspond to an odd contribution at the 5.5PN order in the equations of motion4.

Two different methods, relying on two independent frameworks, have been applied to
the equations of motion at the 3PN order. Jaranowski and Schäfer [11, 12], working within
the ADM-Hamiltonian formalism of general relativity, derived the Hamiltonian describing the
motion of two compact bodies, in ADM coordinates, and in the centre-of-mass frame. The
Hamiltonian was later generalized to an arbitrary frame in [13]. Blanchet and Faye [16–19]
(following the method proposed in [8]) performed a direct iteration of the equations of motion
in harmonic coordinates, and in a general frame. The Lagrangian of the motion was then
deduced from the equations of motion [20]. The end results provided by these two methods—
ADM-Hamiltonian and harmonic-coordinates—have been shown to be physically equivalent
[14, 20]: there exists a unique ‘contact’ transformation of the binary’s dynamical variables
that transforms the harmonic-coordinates Lagrangian [20] into a different Lagrangian, whose
Legendre transform agrees with the ADM-coordinates Hamiltonian [13].

In the works [11–14] and [16–20] the compact objects are modelled by structureless
(non-spinning) point particles. Such a modelling is quite efficient and physically sound
when describing the inspiral of compact binaries, but the shortcoming is the necessity of
a regularization for removing the infinite self-field of each of the point particles. The
regularization of Hadamard (or, more precisely, a refined form of it proposed in [18, 19]
and implemented in the harmonic-coordinates approach) has been applied but turned out to be
incomplete in the sense that one (and only one) numerical coefficient remains undetermined at
the 3PN order: ωs in the ADM-Hamiltonian formalism [11, 12], λ in the harmonic-coordinates
approach [16, 17]. This coefficient has been computed in [15] with the help of a dimensional
regularization instead of the Hadamard one, within the ADM-Hamiltonian formalism, with
the result ωs = 0 or equivalently λ = − 1987

3080 (below we shall keep the value of λ unspecified).

4 This difference by 2.5PN orders explains why the equations of motion are insufficient as regards the radiative aspects
of the problem. For analysing the waves emitted by inspiralling compact binaries one needs not only the solution of
the problem of motion but also the (equally crucial) solution of the problem of gravitational-wave generation [2].
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The present paper’s lineage is the harmonic-coordinates approach [16–20]. Its goal is
the completion of the 3PN dynamics of compact binaries—equations of motion, Lagrangian,
conserved integrals—in the frame where the centre-of-mass is located at the origin of the
coordinates. Our motivation is that the centre-of-mass equations of motion constitute the
needed starting point in many applications such as the one in [26]. In section 2, we recall
the expression derived in [20] for the position of the centre-of-mass in an arbitrary harmonic-
coordinates frame. In section 3, the individual positions of the particles in the centre-of-mass
frame are obtained as functions of the relative separation and velocity. We then compute
the 3PN-accurate centre-of-mass equations of motion. These equations are substantially
simpler than in a general frame—though they are still quite lengthy (that is unavoidable at
such a high post-Newtonian order). In particular, we recover the centre-of-mass equations of
motion at the 2.5PN order derived by Lincoln and Will [27] on the basis of the general-frame
2.5PN equations of Damour and Deruelle [3–5]. In section 4, the 3PN relative Lagrangian
(in harmonic coordinates), describing the conservative part of the dynamics, is obtained.
Note that the centre-of-mass relative Lagrangian does not straightforwardly follow from the
general-frame Lagrangian of de Andrade et al [20], because one is not a priori allowed
to use in a Lagrangian some expressions which are consequences of the equations of motion
derived from that Lagrangian. We found it convenient to derive the centre-of-mass Lagrangian
ab initio using some guess work (i.e. adjusting a set of coefficients in order to reproduce after
Lagrangian variation the correct equations of motion). From that centre-of-mass Lagrangian
we then obtain in a standard way the Noetherian conserved energy and angular momentum,
thereby completing our harmonic-coordinates approach.

Further investigations are proposed. Section 5 deals with the connection between
the centre-of-mass Lagrangian and the centre-of-mass ADM-Hamiltonian. We check that
the centre-of-mass reduction of the contact transformation worked out in [20] between the
harmonic-coordinates Lagrangian and the ADM-coordinates Hamiltonian is identical—as it
must surely be—to the contact transformation connecting the centre-of-mass versions of these
Lagrangian and Hamiltonian. In the process we recover the 3PN Hamiltonian for the relative
motion as computed by Jaranowski and Schäfer [11, 12]. Finally in section 6 we consider
the problem of the stability against linear perturbations of circular orbits. We undertake
the problem by perturbing both the equations of motion in harmonic coordinates, and the
Hamiltonian equations in ADM coordinates (the two methods give equivalent results). We
obtain a gauge-invariant criterion for the stability of circular orbits up to the 3PN order.

2. The centre-of-mass vector position

Our study starts with the expression, derived in [20], for the position Gi of the binary’s centre
of mass. In this section we briefly review the construction of Gi . Note that the centre-of-mass
position can also be interpreted as the gravitational mass-type dipole moment. Actually, using a
slight abuse of language, by centre-of-mass position Gi we really mean the gravitational dipole
(its dimension is that of a mass times a length). In a future work [28], we shall show that the
gravitational mass-type dipole moment which follows from a 3PN wave-generation formalism
(instead of being inferred from the 3PN equations of motion) is in complete agreement with
the present centre-of-mass vector Gi .

By equations of binary motion (in a given coordinate system) we mean the acceleration
ai

A(t) = dvi
A

/
dt of body A, where A = 1, 2 and the spatial index i = 1, 2, 3, as a function

of the positions yi
B and coordinate velocities vi

B(t) = dyi
B

/
dt . Equation (7.16) in [17] gives

the 3PN equations of motion in the harmonic coordinate system. The 3PN Lagrangian in
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harmonic coordinates (considering only the conservative part of the dynamics) is given by
equation (4.1) in [20]; it takes the form

L = LN[yA, vA] +
1

c2
L1PN[yA, vA] +

1

c4
L2PN[yA, vA, aA] +

1

c6
L3PN[yA, vA, aA]. (2.1)

The successive post-Newtonian orders depend on the positions and velocities, and also,
starting from the 2PN order, on the accelerations. The fact that a harmonic-coordinates
Lagrangian necessarily becomes a ‘generalized’ one (depending on accelerations) at the 2PN
approximation has been proved by Damour and Deruelle [4]5. At the 3PN order we found [20]
that the Lagrangian also depends on accelerations, but it is notable that these accelerations
are sufficient (i.e. there is no need to include derivatives of accelerations). Furthermore,
the dependence upon the accelerations at both the 2PN and 3PN orders is linear. Indeed,
one can always eliminate from a generalized Lagrangian, taking the form of a perturbative
post-Newtonian expansion, a non-linear—for instance quadratic—term in the accelerations
by adding a ‘double-zero’ counter term, whose Lagrangian variation is zero on-shell and
therefore which does not contribute to the dynamics (we refer to [6] for a general discussion
on acceleration-dependent terms in a post-Newtonian Lagrangian). The conservative part of
the equations of motion of body A (neglecting the 2.5PN and 3.5PN radiation damping terms)
can be written with the help of the variational derivative of the Lagrangian as

δL

δyi
A

≡ ∂L

∂yi
A

− d

dt

(
∂L

∂vi
A

)
+

d2

dt2

(
∂L

∂ai
A

)
= O

(
1

c8

)
. (2.2)

It is important to remember that here the equations of motion are supposed to have been
‘order-reduced’ using the equations themselves at lower post-Newtonian order (i.e. any ai

A

occurring in a post-Newtonian term must be replaced by its expression in terms of the yi
B and

vi
B following the equations of motion).

The existence of a centre-of-mass integral for the 3PN dynamics is a consequence of its
invariance under Lorentz transformations or boosts. The Lorentz invariance of the (harmonic-
coordinates) equations of motion was established in [17]. Technically, this means that a
specific variant, defined in [19], of the Hadamard regularization that respects the Lorentz
invariance, is to be implemented. Consider an infinitesimal deformation of the path of the
two particles, say δyi

A(t) ≡ y ′i
A (t) − yi

A(t). Then the corresponding perturbation of the
Lagrangian, i.e. δL = L[y′

A, v′
A, a′

A] − L[yA, vA, aA], reads, to the linearized order,

δL = dQ

dt
+

∑
A

δL

δyi
A

δyi
A + O

(
δy2

A

)
. (2.3)

It involves the total time derivative of the function

Q =
∑
A

(
pi

Aδyi
A + qi

Aδvi
A

)
, (2.4)

which is defined in terms of the momenta conjugate to the velocities and accelerations,

pi
A = δL

δvi
A

≡ ∂L

∂vi
A

− d

dt

(
∂L

∂ai
A

)
, (2.5)

qi
A = δL

δai
A

≡ ∂L

∂ai
A

. (2.6)

5 This is consistent with a general argument of Martin and Sanz [29] that in coordinate systems which preserve the
Lorentz invariance (as the harmonic coordinates do) the equations of motion at 2PN and higher orders cannot be
derived from an ordinary Lagrangian.
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Equations (2.3), (2.5) and (2.6) are nothing other than the Noetherian equations in the case of
a generalized Lagrangian.

In the case of a Lorentz transformation, the change in the position of particle A, to linear
order in the (constant) boost velocity V i , is

δyi
A = −V it +

1

c2
V jy

j

Avi
A + O(V2). (2.7)

Because the 3PN dynamics is invariant under Lorentz boosts, the change in the Lagrangian
given by equation (2.3) must take the form of a total time derivative on-shell, i.e. when the
equations of motion (2.2) are satisfied. Hence there should exist a certain functional Zi of the
positions, velocities and accelerations such that (on-shell)

δL = V i dZi

dt
+ O(V2). (2.8)

Using this, together with the particular form of the transformation law (2.7), into
equation (2.3) we readily obtain the conservation (on-shell) of the Noetherian integral
Ki = Gi − tP i , where P i , the total linear momentum, and Gi , the centre-of-mass position,
are given by

P i =
∑
A

pi
A, (2.9)

Gi = −Zi +
∑
A

(
−qi

A +
1

c2

[
yi

Ap
j

Av
j

A + yi
Aq

j

Aa
j

A + vi
Aq

j

Av
j

A

])
. (2.10)

Since P i is itself constant (indeed, apply equations (2.3), (2.4) to the case of a constant spatial
translation: δyi

A = εi),

dP i

dt
= 0, (2.11)

we find that the conservation of Ki implies that
dGi

dt
= P i . (2.12)

(We neglect terms of order O(c−8).) The centre-of-mass vector Gi is conserved in the rest
frame where P i = 0; it will be zero, by definition, in the centre-of-mass frame.

Applying these considerations to the 3PN equations of motion and Lagrangian in harmonic
coordinates, we found [20] that indeed the variation of the Lagrangian uniquely defines some
function Zi (this is a confirmation of the boost symmetry of the equations of motion), and
from it we explicitly determined the centre-of-mass vector position in an arbitrary harmonic-
coordinates frame6:

Gi = m1y
i
1 +

m1

c2

{(
− m2

2r12
+

v2
1

2

)
yi

1

}
+

m1

c4

{
m2

(
−7

4
(n12v1) − 7

4
(n12v2)

)
vi

1

+

[
−5

4

m1m2

r2
12

+
7

4

m2
2

r2
12

+
3v4

1

8
+

m2

r12

(
−1

8
(n12v1)

2 − 1

4
(n12v1)(n12v2)

+
1

8
(n12v2)

2 +
19

8
v2

1 − 7

4
(v1v2) − 7

8
v2

2

)]
yi

1

}
+

m1

c6

{[
235

24

m1m2

r12
(n12v12)

− 235

24

m2
2

r12
(n12v12) + m2

(
5

12
(n12v1)

3 +
3

8
(n12v1)

2(n12v2) +
3

8
(n12v1)(n12v2)

2

6 Throughout this paper the gravitational constant is set to G = 1.
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+
5

12
(n12v2)

3 − 15

8
(n12v1)v

2
1 − (n12v2)v

2
1 +

1

4
(n12v1)(v1v2) +

1

4
(n12v2)(v1v2)

− (n12v1)v
2
2 − 15

8
(n12v2)v

2
2

)]
vi

1 +

[
5v6

1

16
+

m2

r12

(
1

16
(n12v1)

4

+
1

8
(n12v1)

3(n12v2) +
3

16
(n12v1)

2(n12v2)
2 +

1

4
(n12v1)(n12v2)

3 − 1

16
(n12v2)

4

− 5

16
(n12v1)

2v2
1 − 1

2
(n12v1)(n12v2)v

2
1 − 11

8
(n12v2)

2v2
1 +

53

16
v4

1

+
3

8
(n12v1)

2(v1v2) +
3

4
(n12v1)(n12v2)(v1v2) +

5

4
(n12v2)

2(v1v2) − 5v2
1(v1v2)

+
17

8
(v1v2)

2 − 1

4
(n12v1)

2v2
2 − 5

8
(n12v1)(n12v2)v

2
2 +

5

16
(n12v2)

2v2
2

+
31

16
v2

1v
2
2 − 15

8
(v1v2)v

2
2 − 11

16
v4

2

)
+

m1m2

r2
12

(
79

12
(n12v1)

2 − 17

3
(n12v1)(n12v2)

+
17

6
(n12v2)

2 − 175

24
v2

1 +
40

3
(v1v2) − 20

3
v2

2

)
+

m2
2

r2
12

(
−7

3
(n12v1)

2

+
29

12
(n12v1)(n12v2) +

2

3
(n12v2)

2 +
101

12
v2

1 − 40

3
(v1v2) +

139

24
v2

2

)
− 19

8

m1m
2
2

r3
12

+
m2

1m2

r3
12

(
13 721

1260
− 22

3
ln

(
r12

r ′
1

))
+

m3
2

r3
12

(
−14 351

1260
+

22

3
ln

(
r12

r ′
2

)) ]
yi

1

}

+ 1 ↔ 2 + O
(

1

c8

)
. (2.13)

To the terms given above we must add those corresponding to the relabelling 1 ↔ 2. We
denote by r12 = |y1 − y2|, ni

12 = (
yi

1 − yi
2

)/
r12 and vi

12 = vi
1 − vi

2 the relative particles’
separation, unit direction and velocity.

Expression (2.13) has been systematically order-reduced using the equations of motion
and therefore depends only on the positions and velocities (no accelerations). Note the
appearance at the 3PN order of some logarithmic terms, containing two constants r ′

1 and r ′
2

(one for each body) having the dimension of a length. It was proved in [17, 20] that these
logarithms, and the r ′

A therein, can be removed by an infinitesimal gauge transformation at
the 3PN order. Thus we can refer to the r ′

A as some ‘gauge constants’, since they are merely
associated with a choice of coordinate system, and thereby do not carry any physical meaning:
they will always cancel when deriving some physical, gauge-invariant results. On the other
hand, we note that Gi is free of the physical regularization ambiguity λ present in the equations
of motion and Lagrangian.

The previous derivation of the centre of mass neglected the effect of radiation reaction. To
take into account this effect we introduce some appropriate modifications at the 2.5PN order
of the linear momentum and centre of mass position:

P̃
i = P i +

(
4m2

1m2

5c5r2
12

ni
12

[
v2

12 − 2m1

r12

]
+ 1 ↔ 2

)
, (2.14)

G̃
i = Gi +

(
4m1m2

5c5
vi

1

[
v2

12 − 2(m1 + m2)

r12

]
+ 1 ↔ 2

)
. (2.15)
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With these definitions, we find that the conservation laws (2.11) and (2.12), but now when
taking into account the radiation-reaction effect, take in fact exactly the same form

dP̃
i

dt
= O

(
1

c7

)
, (2.16)

dG̃
i

dt
= P̃

i
+ O

(
1

c7

)
. (2.17)

This finding is quite normal: recall that the total linear momentum of an isolated system is
conserved up to the 3PN order included. Indeed, the integral over the system of the local
radiation-reaction forces is a total time derivative at the 2.5PN order, and therefore it does
not contribute to any change in the total linear momentum. The modification of the linear
momentum by radiation reaction, or net radiation ‘recoil’ of the source, is a smaller effect, of
order 3.5PN—negligible in equations (2.16) and (2.17).

3. Equations of motion in the centre-of-mass frame

The positions and velocities of the two particles in the centre-of-mass frame at the 3PN order
are obtained by solving the equation

G̃
i
[yA, vA] = O

(
1

c7

)
, (3.1)

where G̃
i

is defined in the previous section. Obviously, the solution must be determined
iteratively, in a post-Newtonian perturbative sense, with systematic order reduction of the
equations. At the Newtonian order we get

yi
1 = X2x

i + O
(

1

c2

)
, (3.2)

yi
2 = −X1x

i + O
(

1

c2

)
. (3.3)

In this paper we employ the following notation. The binary’s relative separation is

xi = yi
1 − yi

2, (3.4)

r = |x| and ni = xi

r
. (3.5)

For the relative velocity and acceleration we pose

vi = dxi

dt
= vi

1 − vi
2 and ṙ = n · v, (3.6)

ai = dvi

dt
, (3.7)

(r and vi were formerly denoted by r12 and vi
12 in equation (2.13)). Concerning the mass

parameters we denote

X1 = m1

m
and X2 = m2

m
, (3.8)

m = m1 + m2, (3.9)

ν = m1m2

m2
= X1X2 and µ = mν. (3.10)
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All the expressions that are written in the centre-of-mass frame are conveniently parametrized
by m and the very useful mass ratio ν (such that ν = 1

4 in the equal-mass case and ν → 0 in
the test-mass limit for one of the bodies). Often it is convenient to consider reduced quantities,
i.e. quantities divided by the reduced mass µ.

The Newtonian solution (3.2), (3.3) is inserted into the 1PN terms of equation (3.1) and
we then obtain an equation for the 1PN corrections in yi

1 and yi
2. Solving that equation

we plug the result back into the 1PN and 2PN terms of equation (3.1) and obtain the 2PN
corrections in the same way. The process continues at the next order and this finally results in
the 3PN-accurate relationship between the individual centre-of-mass positions yi

1 and yi
2 and

the relative position xi and velocity vi . In the course of the computation we use for the order
reduction the centre-of-mass equations of relative motion at the 2PN order—that is, at one
post-Newtonian order before the 3PN order we want to reach. Since we give below the result
for the 3PN equations, we do not detail this step and simply present the final expressions.
They are in the form

yi
1 = [X2 + ν(X1 − X2)P]xi + ν(X1 − X2)Qvi + O

(
1

c7

)
, (3.11)

yi
2 = [−X1 + ν(X1 − X2)P]xi + ν(X1 − X2)Qvi + O

(
1

c7

)
, (3.12)

where all the post-Newtonian corrections beyond the Newtonian result (3.2), (3.3) are
proportional to the mass ratio ν and the mass difference X1 − X2. The two dimensionless
coefficients P and Q depend on the mass parameters m, ν, the distance r, the relative velocity
v2 = v2 and the radial velocity ṙ = n · v:

P = 1

c2

[
v2

2
− m

2r

]
+

1

c4

[
3v4

8
− 3νv4

2
+

m

r

(
− ṙ2

8
+

3ṙ2ν

4
+

19v2

8
+

3νv2

2

)
+

m2

r2

(
7

4
− ν

2

)]
+

1

c6

[
5v6

16
− 11νv6

4
+ 6ν2v6 +

m

r

(
ṙ4

16
− 5ṙ4ν

8

+
21ṙ4ν2

16
− 5ṙ2v2

16
+

21ṙ2νv2

16
− 11ṙ2ν2v2

2
+

53v4

16
− 7νv4 − 15ν2v4

2

)
+

m2

r2

(
−7ṙ2

3
+

73ṙ2ν

8
+ 4ṙ2ν2 +

101v2

12
− 33νv2

8
+ 3ν2v2

)
+

m3

r3

(
−14 351

1260
+

ν

8
− ν2

2
+

22

3
ln

(
r

r ′′
0

))]
, (3.13)

Q = 1

c4

[
−7mṙ

4

]
+

1

c5

[
4mv2

5
− 8m2

5r

]
+

1

c6

[
mṙ

(
5ṙ2

12
− 19ṙ2ν

24
− 15v2

8
+

21νv2

4

)
+

m2ṙ

r

(
−235

24
− 21ν

4

)]
. (3.14)

Up to the 2.5PN order we find agreement with the circular-orbit limit of equations (6.4) in
[30] (note that the 2.5PN radiation-reaction term itself is proportional to the velocity and so it
enters only the coefficient Q).

In equation (3.13) we find that the logarithms appear at the 3PN order and only in the
coefficient P . They contain a particular combination r ′′

0 of the two gauge constants r ′
1 and r ′

2
that is defined by

(X1 − X2) ln r ′′
0 = X2

1 ln r ′
1 − X2

2 ln r ′
2. (3.15)
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This constant r ′′
0 happens to be different from a similar constant r ′

0 which will have to be
introduced to the 3PN equations of relative motion and Lagrangian (see equation (3.19)).

The 3PN centre-of-mass equations of motion are obtained in a straightforward way by
replacing in the general-frame 3PN equations derived in [17] (see equation (7.16) there) the
positions by equations (3.11)–(3.13), and the velocities by the derivatives of equations (3.11)–
(3.13) (applying as usual the order reduction of all accelerations where necessary). Actually
for this purpose we do not need the equations (3.11)–(3.13) with the full 3PN precision; the
2PN-accurate ones are sufficient. We write the relative acceleration in the centre-of-mass
frame in the form

dvi

dt
= − m

r2
[(1 + A)ni + Bvi ] + O

(
1

c7

)
, (3.16)

and find that the coefficients A and B are

A = 1

c2

{
−3ṙ2ν

2
+ v2 + 3νv2 − m

r
(4 + 2ν)

}
+

1

c4

{
15ṙ4ν

8
− 45ṙ4ν2

8
− 9ṙ2νv2

2

+ 6ṙ2ν2v2 + 3νv4 − 4ν2v4 +
m

r

(
−2ṙ2 − 25ṙ2ν − 2ṙ2ν2 − 13νv2

2
+ 2ν2v2

)
+

m2

r2

(
9 +

87ν

4

)}
+

1

c5

{
−24ṙνv2

5

m

r
− 136ṙν

15

m2

r2

}
+

1

c6

{
−35ṙ6ν

16
+

175ṙ6ν2

16
− 175ṙ6ν3

16
+

15ṙ4νv2

2
− 135ṙ4ν2v2

4
+

255ṙ4ν3v2

8

− 15ṙ2νv4

2
+

237ṙ2ν2v4

8
− 45ṙ2ν3v4

2
+

11νv6

4
− 49ν2v6

4
+ 13ν3v6

+
m

r

(
79ṙ4ν − 69ṙ4ν2

2
− 30ṙ4ν3 − 121ṙ2νv2 + 16ṙ2ν2v2 + 20ṙ2ν3v2

+
75νv4

4
+ 8ν2v4 − 10ν3v4

)
+

m2

r2

(
ṙ2 +

32 573ṙ2ν

168
+

11ṙ2ν2

8
− 7ṙ2ν3

+
615ṙ2νπ2

64
− 26 987νv2

840
+ ν3v2 − 123νπ2v2

64
− 110ṙ2ν ln

(
r

r ′
0

)
+ 22νv2 ln

(
r

r ′
0

))
+

m3

r3

(
−16 − 41 911ν

420
+

44λν

3
− 71ν2

2
+

41νπ2

16

)}
,

(3.17)

B = 1

c2
{−4ṙ + 2ṙν} +

1

c4

{
9ṙ3ν

2
+ 3ṙ3ν2 − 15ṙνv2

2
− 2ṙν2v2 +

m

r

(
2ṙ +

41ṙν

2
+ 4ṙν2

)}
+

1

c5

{
8νv2

5

m

r
+

24ν

5

m2

r2

}
+

1

c6

{
−45ṙ5ν

8
+ 15ṙ5ν2 +

15ṙ5ν3

4
+ 12ṙ3νv2

− 111ṙ3ν2v2

4
− 12ṙ3ν3v2 − 65ṙνv4

8
+ 19ṙν2v4 + 6ṙν3v4

+
m

r

(
329ṙ3ν

6
+

59ṙ3ν2

2
+ 18ṙ3ν3 − 15ṙνv2 − 27ṙν2v2 − 10ṙν3v2

)
+

m2

r2

(
−4ṙ − 18 169ṙν

840
+ 25ṙν2 + 8ṙν3 − 123ṙνπ2

32
+ 44ṙν ln

(
r

r ′
0

))}
.

(3.18)
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Up to the 2.5PN order the result agrees with the one given by Lincoln and Will [27]. At the
3PN order we have some gauge-dependent logarithms containing a constant r ′

0—distinct from
r ′′

0 introduced in equation (3.15)7—which is the ‘logarithmic barycentre’ of the two constants
r ′

1 and r ′
2:

ln r ′
0 = X1 ln r ′

1 + X2 ln r ′
2. (3.19)

In addition, there is the physical ambiguity λ due to the Hadamard self-field regularization
(λ cannot be removed by any coordinate transformation); it appears at the 3PN order in the
A-coefficient.

4. Lagrangian and Noetherian conserved integrals

The Lagrangian for the relative centre-of-mass motion is obtained from the 3PN centre-of-mass
equations of motion (3.16)–(3.18) in which one ignores for a moment the radiation-reaction
2.5PN term. The Lagrangian in harmonic coordinates will necessarily be a generalized one,
depending on accelerations, from the 2PN order. At the 3PN order, further acceleration terms
are necessary but we do not need to include derivatives of accelerations. Furthermore we
can always restrict ourselves to a Lagrangian that is linear in the accelerations. Hence, our
centre-of-mass Lagrangian, denoted with a calligraphic letter L to distinguish it from the
general-frame Lagrangian L, is of the form

L = LN[x, v] +
1

c2
L1PN[x, v] +

1

c4
L2PN[x, v, a] +

1

c6
L3PN[x, v, a]. (4.1)

We recall that there is a large freedom for choosing a Lagrangian because we can always
add to it the total time derivative of an arbitrary function. As a matter of convenience, we
shall choose below a particular centre-of-mass Lagrangian in such a way that it is ‘close’
(in the sense that many coefficients are identical) to some ‘fictitious’ Lagrangian that is
obtained from the general-frame one given in [20] by the mere Newtonian replacements
yi

1 → X2x
i, yi

2 → −X1x
i . We immediately point out that such a fictitious Lagrangian is not

the correct Lagrangian for describing the centre-of-mass relative motion. Indeed, the actual
centre-of-mass variables involve many post-Newtonian corrections given by equations (3.11)–
(3.14), so the actual centre-of-mass Lagrangian must contain some extra terms in addition
to those of the previous fictitious Lagrangian. However, we find that these extra terms arise
only at the 2PN order and not before. We did not try to find a general method for obtaining
systematically the centre-of-mass Lagrangian given the general-frame one. Though such a
method might exist it was in fact simpler to proceed by guess-work, i.e. to introduce some
unknown coefficients in front of all possible types of terms, and to adjust these coefficients so
that the Lagrangian reproduces the correct equations of motion. Our result (when divided by
the reduced mass µ = mν) is then

L
µ

= v2

2
+

m

r
+

1

c2

{
v4

8
− 3νv4

8
+

m

r

(
ṙ2ν

2
+

3v2

2
+

νv2

2

)
− m2

2r2

}
+

1

c4

{
v6

16
− 7νv6

16
+

13ν2v6

16
+

m

r

(
3ṙ4ν2

8
− ṙ2anνr

8
+

ṙ2νv2

4

− 5ṙ2ν2v2

4
+

7anνrv2

8
+

7v4

8
− 5νv4

4
− 9ν2v4

8
− 7ṙνrav

4

)
7 They are related by

(X1 − X2) ln

(
r ′′

0

r ′
0

)
= X1X2 ln

(
r ′

1

r ′
2

)
.
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+
m2

r2

(
ṙ2

2
+

41ṙ2ν

8
+

3ṙ2ν2

2
+

7v2

4
− 27νv2

8
+

ν2v2

2

)
+

m3

r3

(
1

2
+

15ν

4

)}
+

1

c6

{
5v8

128
− 59νv8

128
+

119ν2v8

64
− 323ν3v8

128
+

m

r

(
5ṙ6ν3

16
+

ṙ4anνr

16

− 5ṙ4anν
2r

16
− 3ṙ4νv2

16
+

7ṙ4ν2v2

4
− 33ṙ4ν3v2

16
− 3ṙ2anνrv2

16
− ṙ2anν

2rv2

16

+
5ṙ2νv4

8
− 3ṙ2ν2v4 +

75ṙ2ν3v4

16
+

7anνrv4

8
−7anν

2rv4

2
+

11v6

16
− 55νv6

16

+
5ν2v6

2
+

65ν3v6

16
+

5ṙ3νrav

12
− 13ṙ3ν2rav

8
−37ṙνrv2av

8
+

35ṙν2rv2av

4

)
+

m2

r2

(
−109ṙ4ν

144
− 259ṙ4ν2

36
+ 2ṙ4ν3 − 17ṙ2anνr

6
+

97ṙ2anν
2r

12
+

ṙ2v2

4

− 41ṙ2νv2

6
− 2287ṙ2ν2v2

48
− 27ṙ2ν3v2

4
+

203anνrv2

12
+

149anν
2rv2

6

+
45v4

16
+

53νv4

24
+

617ν2v4

24
− 9ν3v4

4
− 235ṙνrav

24
+

235ṙν2rav

6

)
+

m3

r3

(
3ṙ2

2
− 12 041ṙ2ν

420
+

37ṙ2ν2

4
+

7ṙ2ν3

2
− 123ṙ2νπ2

64

+
5v2

4
+

387νv2

70
− 7ν2v2

4
+

ν3v2

2
+

41νπ2v2

64
+ 22ṙ2ν ln

(
r

r ′
0

)
− 22νv2

3
ln

(
r

r ′
0

))
+

m4

r4

(
−3

8
− 2747ν

140
+

11λν

3
+

22ν

3
ln

(
r

r ′
0

))}
. (4.2)

Witness the acceleration terms present at the 2PN and 3PN orders: our notation is an ≡ a · n
and av ≡ a · v for the scalar products between ai = dvi/dt and the direction ni and velocity
vi . The conservative part of the equations of motion is then identical (after order reduction of
the accelerations) to

δL
δxi

≡ ∂L
∂xi

− d

dt

(
∂L
∂vi

)
+

d2

dt2

(
∂L
∂ai

)
= O

(
1

c8

)
. (4.3)

From the Lagrangian one deduces the conserved energy and angular momentum using
the generalized formulae (neglecting O(c−8))

E = vipi + aiqi − L, (4.4)

J i = εijk(x
jpk + vj qk), (4.5)

(the first one being a generalized version of the Legendre transform), where the conjugate
momenta read

pi = δL
δvi

≡ ∂L
∂vi

− d

dt

(
∂L
∂ai

)
, (4.6)

qi = δL
δai

≡ ∂L
∂ai

. (4.7)

Alternatively one can compute the centre-of-mass energy and angular momentum directly
from the general-frame quantities E and J i given by equations (4.2) and (4.4) in [20] by
replacing all variables by their centre-of-mass expressions given by equations (3.11)–(3.14);
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the result is the same. For the energy we obtain

E

µ
= v2

2
− m

r
+

1

c2

{
3v4

8
− 9νv4

8
+

m

r

(
ṙ2ν

2
+

3v2

2
+

νv2

2

)
+

m2

2r2

}
+

1

c4

{
5v6

16
− 35νv6

16
+

65ν2v6

16
+

m

r

(
−3ṙ4ν

8
+

9ṙ4ν2

8
+

ṙ2νv2

4

− 15ṙ2ν2v2

4
+

21v4

8
− 23νv4

8
− 27ν2v4

8

)
+

m2

r2

(
ṙ2

2
+

69ṙ2ν

8
+

3ṙ2ν2

2

+
7v2

4
− 55νv2

8
+

ν2v2

2

)
+

m3

r3

(
−1

2
− 15ν

4

)}
+

1

c6

{
35v8

128
− 413νv8

128

+
833ν2v8

64
− 2261ν3v8

128
+

m

r

(
5ṙ6ν

16
− 25ṙ6ν2

16
+

25ṙ6ν3

16
− 9ṙ4νv2

16

+
21ṙ4ν2v2

4
− 165ṙ4ν3v2

16
− 21ṙ2νv4

16
− 75ṙ2ν2v4

16
+

375ṙ2ν3v4

16
+

55v6

16

− 215νv6

16
+

29ν2v6

4
+

325ν3v6

16

)
+

m2

r2

(
−731ṙ4ν

48
+

41ṙ4ν2

4
+ 6ṙ4ν3

+
3ṙ2v2

4
+

31ṙ2νv2

2
− 815ṙ2ν2v2

16
− 81ṙ2ν3v2

4
+

135v4

16
− 97νv4

8
+

203ν2v4

8

− 27ν3v4

4

)
+

m3

r3

(
3ṙ2

2
+

803ṙ2ν

840
+

51ṙ2ν2

4
+

7ṙ2ν3

2
− 123ṙ2νπ2

64

+
5v2

4
− 6747νv2

280
− 21ν2v2

4
+

ν3v2

2
+

41νπ2v2

64
+ 22ṙ2ν ln

(
r

r ′
0

)
− 22νv2

3
ln

(
r

r ′
0

))
+

m4

r4

(
3

8
+

2747ν

140
− 11λν

3
− 22ν

3
ln

(
r

r ′
0

))}
. (4.8)

As for the centre-of-mass angular momentum we get

J i

µ
= εijkx

jvk

[
1 +

1

c2

{
(1 − 3ν)

v2

2
+

m

r
(3 + ν)

}
+

1

c4

{
3v4

8
− 21νv4

8
+

39ν2v4

8

+
m

r

(
−ṙ2ν − 5ṙ2ν2

2
+

7v2

2
− 5νv2 − 9ν2v2

2

)
+

m2

r2

(
7

2
− 41ν

4
+ ν2

)}
+

1

c6

{
5v6

16
− 59νv6

16
+

119ν2v6

8
− 323ν3v6

16
+

m

r

(
3ṙ4ν

4
− 3ṙ4ν2

4
− 33ṙ4ν3

8

− 3ṙ2νv2 +
7ṙ2ν2v2

4
+

75ṙ2ν3v2

4
+

33v4

8
− 71νv4

4
+

53ν2v4

4
+

195ν3v4

8

)
+

m2

r2

(
ṙ2

2
− 287ṙ2ν

24
− 317ṙ2ν2

8
− 27ṙ2ν3

2
+

45v2

4
− 161νv2

6
+

105ν2v2

4

− 9ν3v2

)
+

m3

r3

(
5

2
− 5199ν

280
− 7ν2 + ν3 +

41νπ2

32
− 44ν

3
ln

(
r

r ′
0

))}]
.

(4.9)

(The energy involves the regularization ambiguity λ, while the angular momentum is free of
any physical ambiguity.) These quantities are conserved in the sense that their time variation
equals the radiation-reaction effect. One can therefore modify them with terms of ‘odd order’
to take into account the radiation reaction due to gravitational wave emission. For instance,
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in the leading 2.5PN radiation reaction one conventionally chooses that the right-hand sides of
the balance equations for energy and angular momentum take the standard form appropriate
to the quadrupolar approximation. We then pose

Ẽ = E +
8m3ṙν2

5c5r2
v2, (4.10)

J̃
i = J i − 8m3ṙν2

5c5r2
εijkx

jvk. (4.11)

This choice is in agreement with the results of [21–23]. Then we can easily check that

dẼ

dt
= − 1

5c5

·
Q̈ij

·
Q̈ij + O

(
1

c7

)
, (4.12)

dJ̃
i

dt
= − 2

5c5
εijkQ̈jl

·
Q̈kl + O

(
1

c7

)
, (4.13)

where the Newtonian trace-free quadrupole moment is Qij = µ
(
xixj − 1

3δij r2
)
.

5. Lagrangian and Hamiltonian in ADM-coordinates

In [20] (see also [14]) we determined the ‘contact’ transformation between the particles’
variables in harmonic coordinates and those in ADM (or rather ADM-type8) coordinates. By
contact transformation we mean the relation between the particles’ trajectories in harmonic
coordinates, yi

A(t), and the corresponding ones in ADM coordinates, say Y i
A(t). We recall that

in the contact transformation, i.e.

δyi
A(t) = Y i

A(t) − yi
A(t), (5.1)

the time coordinate t is to be viewed as a ‘dummy’ variable9. There is a unique transformation
(5.1) such that the 3PN harmonic-coordinatesLagrangian of de Andrade et al [20] (in a general
frame) is changed into another Lagrangian whose Legendre transform coincides with the 3PN
ADM-coordinates Hamiltonian derived by Damour et al [13]. The explicit expression of this
general-frame contact transformation can be found in section 4.2 of [20].

Now we are in a position to obtain the relation between the relative separation vector
xi ≡ yi

1 − yi
2 in harmonic coordinates and the one Xi ≡ Y i

1 − Y i
2 in ADM coordinates (do

not confuse the relative distances xi and Xi between the two particles with the spatial position
vector of some field event in these coordinates). Namely,

δxi ≡ Xi − xi = δyi
1 − δyi

2, (5.2)

where δyi
1 and δyi

2 are given by equations (4.8)–(4.10) in [20]. (We shall always view such
equalities as (5.2) as functional equalities, i.e. valid for any dummy time variable t.) One
replaces in equation (5.2) all the variables by their centre-of-mass counterparts following
equations (3.11)–(3.14). Actually, since the contact transformation is already of relative order
2PN, the calculation is quite immediate and requires only the equations (3.11)–(3.14) to 1PN
8 Strictly speaking, the ADM coordinates we are considering differ from the actual ADM coordinates at the 3PN
order by a shift of phase-space coordinates that is given in [13].
9 The contact transformation is not a coordinate transformation between the spatial vectors in both coordinates, but
takes also into account the fact that the time coordinate changes as well, i.e. δyi

A = ξ i (yA) − ξ0(yA)vi
A/c, where

ξµ(yA) denotes the four-dimensional change between the harmonic and ADM coordinates, when evaluated at the
position yA = (t, yi

A).



768 L Blanchet and B R Iyer

order. As a result the spatial separation vectors Xi and xi in both coordinates (each one living
within the spatial slice of constant time appropriate to each of the coordinate systems) are
related to each other by

δxi

m
= 1

c4

{[
ṙ2ν

8
− 5νv2

8
+

m

r

(
−1

4
− 3ν

)]
ni +

9ṙν

4
vi

}
+

1

c6

{[
− ṙ4ν

16
+

5ṙ4ν2

16
+

5ṙ2νv2

16
− 15ṙ2ν2v2

16
− νv4

2
+

11ν2v4

8

+
m

r

(
161ṙ2ν

48
− 5ṙ2ν2

2
− 451νv2

48
− 3ν2v2

8

)
+

m2

r2

(
2773ν

280
+

21νπ2

32
− 22ν

3
ln

( r

r ′
0

))]
ni

+

[
−5ṙ3ν

12
+

29ṙ3ν2

24
+

17ṙνv2

8
− 21ṙν2v2

4
+

m

r

(
43ṙν

3
+ 5ṙν2

)]
vi

}
.

(5.3)

Below we shall deduce from this formula the radius of the circular orbit in ADM coordinates,
say R0, versus the one in harmonic coordinates, i.e. r0 (see equation (6.39)).

Now we look for the centre-of-mass Lagrangian in ADM coordinates. Since in ADM
coordinates the Lagrangian is ‘ordinary’ (no accelerations) the contact transformation must be
such that it removes the acceleration terms present in harmonic coordinates—more precisely,
it must make them in the form of a total time derivative which is irrelevant to the dynamics.
Following an investigation similar to the one in section 3.2 of [20] (see notably equation (3.18)
there) we know that LADM differs from L by two terms: (1) the functional variation of L
induced at the linearized order by the contact transformation of the relative path as given by
equations (5.2), (5.3); (2) the total time derivative of a function F of the relative position and
velocity. We can limit our consideration to the linearized order because δxi is at least of order
2PN, so the non-linear terms do not contribute before the 4PN order and are negligible here.
Hence we necessarily have the following functional equality (by which we mean the equality
between functions of the same dummy variables x, v, a):

LADM[x, v] = L[x, v, a] − δL
δxi

δxi +
dF
dt

, (5.4)

in which δxi is explicitly given by equation (5.3), and where the function F is for the moment
unknown10. We insist that in the present calculation the contact transformation δxi is known
so that the only freedom left is the choice of F . This contrasts with our earlier study in [20]
where both the contact transformation of the individual paths, δyi

1 and δyi
2, and some arbitrary

function, say F, had to be varied and determined. The reason, of course, is that once δyi
1 and

δyi
2 are known from [20] we have no choice for δxi which must be equal to the centre-of-mass

reduction of the difference δyi
1 − δyi

2 (see equation (5.2)). Thus, despite the smaller freedom
that we presently have in the adjustment of parameters, the calculation must work with that
δxi and not with another one.

The function F = F[x, v] is not difficult to determine in order to match perfectly the
ADM Hamiltonian. Note that after adding the total time derivative of that function, not

10 Note that the minus sign in front of the second term in equation (5.4) differs from the one in equation (3.18) of [20].
The reason is because we have corrected a sign inconsistency in [20]: namely the equation (3.12) there, together with
the adopted definition δyi

A = y′
A

i − yi
A, is inconsistent with (3.13) and (3.18); but this does not change any of the

results of [20].
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only has one been able to remove all the accelerations, but also one has gauged away all the
logarithms which were present in the harmonic-coordinates Lagrangian. We get

F
mṙ

= 1

c4

[
−νv2

4
+

m

r

(
1

4
+ 3ν

)]
+

1

c6

[
−νṙ2v2

16
+

19ν2ṙ2v2

48
− νv4

16
+

19ν2v4

16

+
m

r

(
−43νṙ2

144
− 97ν2ṙ2

36
+

v2

8
− 217νv2

48
− 665ν2v2

24

)
+

m2

r2

(
3

4
− 113ν

280
+ 6ν2 − 21νπ2

32
+

22ν

3
ln

(
r

r ′
0

))]
. (5.5)

Next, equation (5.4) together with the explicit expressions (5.3) and (5.5) gives the ADM
centre-of-mass Lagrangian. Once the calculation is done we have to express it using the
names appropriate to the ADM variables: Xi = xi + δxi, which means the separation distance
R, the relative square velocity V 2 and the radial velocity Ṙ = N · V. The formula is

LADM

µ
= m

R
+

V 2

2
+

1

c2

{
V 4

8
− 3νV 4

8
+

m

R

(
νṘ2

2
+

3V 2

2
+

νV 2

2

)
− m2

2R2

}
+

1

c4

{
V 6

16
− 7νV 6

16
+

13ν2V 6

16
+

m

R

(
3ν2Ṙ4

8
+

νṘ2V 2

2
− 5ν2Ṙ2V 2

4

+
7V 4

8
− 3νV 4

2
− 9ν2V 4

8

)
+

m2

R2

(
3νṘ2

2
+

3ν2Ṙ2

2
+ 2V 2 − νV 2 +

ν2V 2

2

)
+

m3

R3

(
1

4
+

3ν

4

)}
+

1

c6

{
5V 8

128
− 59νV 8

128
+

119ν2V 8

64
− 323ν3V 8

128

+
m

R

(
5ν3Ṙ6

16
+

9ν2Ṙ4V 2

16
− 33ν3Ṙ4V 2

16
+

νṘ2V 4

2
− 3ν2Ṙ2V 4

+
75ν3Ṙ2V 4

16
+

11V 6

16
− 7νV 6

2
+

59ν2V 6

16
+

65ν3V 6

16

)
+

m2

R2

(
−5νṘ4

12
+

17ν2Ṙ4

12
+ 2ν3Ṙ4 +

39νṘ2V 2

16
− 29ν2Ṙ2V 2

8

− 27ν3Ṙ2V 2

4
+

47V 4

16
− 15νV 4

4
− 25ν2V 4

16
− 9ν3V 4

4

)
+

m3

R3

(
77νṘ2

16
+

5ν2Ṙ2

4
+

7ν3Ṙ2

2
+

3νṘ2π2

64
+

13V 2

8
− 409νV 2

48
− 5ν2V 2

8

+
ν3V 2

2
− νπ2V 2

64

)
+

m4

R4

(
−1

8
− 1881ν

280
+

11λν

3
+

21νπ2

32

)}
. (5.6)

This is an ordinary Lagrangian and we apply the ordinary Legendre transform to obtain the
Hamiltonian, which is a function of the conjugate momentum

P i = ∂LADM

∂V i
, (5.7)

P 2 ≡ P2 and PR ≡ N · P. (5.8)

We find perfect agreement with the centre-of-mass Hamiltonian derived in [11–13]:
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HADM

µ
= P 2

2
− m

R
+

1

c2

{
−P 4

8
+

3νP 4

8
+

m

R

(
−PR

2ν

2
− 3P 2

2
− νP 2

2

)
+

m2

2R2

}
+

1

c4

{
P 6

16
− 5νP 6

16
+

5ν2P 6

16
+

m

R

(
−3PR

4ν2

8
− PR

2P 2ν2

4

+
5P 4

8
− 5νP 4

2
− 3ν2P 4

8

)
+

m2

R2

(
3PR

2ν

2
+

5P 2

2
+ 4νP 2

)
+

m3

R3

(
−1

4
− 3ν

4

) }
+

1

c6

{
−5P 8

128
+

35νP 8

128
− 35ν2P 8

64
+

35ν3P 8

128

+
m

R

(
−5PR

6ν3

16
+

3PR
4P 2ν2

16
− 3PR

4P 2ν3

16
+

PR
2P 4ν2

8

− 3PR
2P 4ν3

16
− 7P 6

16
+

21νP 6

8
− 53ν2P 6

16
− 5ν3P 6

16

)
+

m2

R2

(
5PR

4ν

12
+

43PR
4ν2

12
+

17PR
2P 2ν

16
+

15PR
2P 2ν2

8
− 27P 4

16
+

17νP 4

2

+
109ν2P 4

16

)
+

m3

R3

(
−85PR

2ν

16
− 7PR

2ν2

4
− 25P 2

8
− 335νP 2

48
− 23ν2P 2

8

− 3PR
2νπ2

64
+

νP 2π2

64

)
+

m4

R4

(
1

8
+

1881ν

280
− 11λν

3
− 21νπ2

32

)}
. (5.9)

Recall that λ is related to the so-called ‘static’ regularization-ambiguity constant ωs of
[11, 12] by λ = − 3

11ωs − 1987
3080 . We have ωs = 0 according to [15]. On the other hand,

the ‘kinetic’ ambiguity constant ωk of [11, 12] has been fixed to the value ωk = 41
24 by the

explicit Lorentz invariance of the equations of motion in harmonic coordinates [16, 17], and,
equivalently, by the requirement of existence of generators for the Poincaré algebra in the
ADM-Hamiltonian formalism [13].

Finally let us present, for completeness, the formulae for the centre-of-mass positions
which are analogous to equations (3.11)–(3.14) but in ADM coordinates. We have

Y i
1 = [X2 + ν(X1 − X2)P̂]Xi + ν(X1 − X2)Q̂V i + O

(
1

c7

)
, (5.10)

Y i
2 = [−X1 + ν(X1 − X2)P̂]Xi + ν(X1 − X2)Q̂V i + O

(
1

c7

)
, (5.11)

where the post-Newtonian coefficients P̂ and Q̂ are given by

P̂ = 1

c2

[
V 2

2
− m

2R

]
+

1

c4

[
3V 4

8
− 3νV 4

2
+

m

R

(
3νṘ2

4
+

7V 2

4
+

3νV 2

2

)
+

m2

R2

(
1

4
− ν

2

)]
+

1

c6

[
5V 6

16
− 11νV 6

4
+ 6ν2V 6 +

m

R

(
21Ṙ4ν2

16
+

7Ṙ2νV 2

4
− 11Ṙ2ν2V 2

2

+
45V 4

16
− 109νV 4

16
− 15ν2V 4

2

)
+

m2

R2

(
9Ṙ2ν

4
+ 4Ṙ2ν2 +

23V 2

8
+

29νV 2

16

+ 3ν2V 2

)
+

m3

R3

(
−1

8
+

ν

8
− ν2

2

)]
, (5.12)

Q̂ = 1

c5

[
4mV 2

5
− 8m2

5R

]
+

1

c6

[
m2νṘ

4R

]
. (5.13)



Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame 771

At the 2PN order the result is identical with the one given by Wex in his appendix A [31]11.
By differentiating equations (5.10)–(5.11) with respect to time we obtain the centre-of-mass
velocities V i

1 and V i
2 in terms of the relative position Xi and velocity V i . We have checked

that by replacing into the obtained relations the velocities V i
1 and V i

2 by their expressions
depending on the conjugate momenta P i

1 and P i
2 as deduced from the variation of the general-

frame Lagrangian, and by expressing the velocity V i in terms of P i following the variation of
the centre-of-mass Lagrangian (equation (5.7)), with both replacements being made with the
full 3PN accuracy, one ends up with the simple equations

P i
1 = P i = −P i

2 , (5.14)

which are indeed the ones appropriate to a linear momentum that is conserved.

6. On the dynamical stability of circular orbits

As an application of the previous formalism let us investigate the problem of the stability,
against dynamical perturbations, of circular orbits at the 3PN order. We propose to use
two different methods, one based on a perturbation at the level of the equations of motion
(3.16)–(3.18) in harmonic coordinates, the other one consisting of perturbing the Hamiltonian
equations in ADM coordinates for the Hamiltonian (5.9). We shall find a criterion for the
stability of orbits and shall present it in an invariant way (the same in different coordinate
systems). We shall check that our two methods agree on the result.

We deal first with the perturbation of the equations of motion, following Kidder et al [32]
(see their section III.A). We introduce polar coordinates (r, ϕ) in the orbital plane and pose
u ≡ ṙ and ω ≡ ϕ̇ (beware that in this paper u = ṙ , and not another standard notation in central
force problems, u = 1/r). Then equation (3.16) yields the system of equations

ṙ = u, (6.1)

u̇ = − m

r2
[1 + A + Bu] + rω2, (6.2)

ω̇ = −ω

[
m

r2
B +

2u

r

]
, (6.3)

where A and B are given by equations (3.17), (3.18) as functions of r, u and ω (through
v2 = u2 + r2ω2). In the case of an orbit which is circular apart from the adiabatic inspiral at
the 2.5PN order (we neglect the 2.5PN radiation-reaction effect), we have ṙ = u̇ = ω̇ = 0
hence u = 0. Equation (6.2) gives thereby the angular velocity ω0 of the circular orbit as

ω2
0 = m

r3
0

(1 + A0). (6.4)

Solving iteratively this relation at the 3PN order using the equations of motion (3.16)–(3.18)
we obtain ω0 as a function of the circular-orbit radius r0 in harmonic coordinates (the result
agrees with the one of [16, 17]):

ω2
0 = m

r3
0

{
1 +

m

r0c2
(−3 + ν) +

m2

r2
0 c4

(
6 +

41

4
ν + ν2

)
+

m3

r3
0 c6

(
−10 +

[
−67 759

840
+

41

64
π2

+ 22 ln

(
r0

r ′
0

)
+

44

3
λ

]
ν +

19

2
ν2 + ν3

)
+ O

(
1

c8

)}
. (6.5)

11 Since the contact transformation we consider relates together the conservative parts of the dynamics in harmonic
and ADM-type coordinates (and affects only the 2PN and 3PN orders), the radiation-reaction damping term at the
2.5PN order in equation (5.13) is the same as in harmonic coordinates. This is merely a definition of a particular
ADM-type dynamics (a priori different from the one in ADM coordinates stricto-sensu), in which the ‘odd’ terms,
associated with radiation reaction, are the same as in harmonic coordinates.
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(Please do not confuse the circular-orbit radius r0 with the constant r ′
0 entering the logarithm

at the 3PN order and which is defined by equation (3.19).)
Now we investigate the equations of linear perturbations around the circular orbit defined

by the constants r0, u0 = 0 (actually, if we were to include the radiation-reaction damping,
u0 = O(c−5)) and ω0. We pose

r = r0 + δr, (6.6)

u = δu, (6.7)

ω = ω0 + δω, (6.8)
where δr, δu and δω denote some perturbations of the circular orbit. Then a system of linear
equations follows:

δ̇r = δu, (6.9)

δ̇u = α0δr + β0δω, (6.10)

˙δω = γ0δu, (6.11)
where the coefficients, which solely depend on the unperturbed circular orbit, read [32]

α0 = 3ω2
0 − m

r2
0

(
∂A
∂r

)
0

, (6.12)

β0 = 2r0ω0 − m

r2
0

(
∂A
∂ω

)
0

, (6.13)

γ0 = −ω0

[
2

r0
+

m

r2
0

(
∂B
∂u

)
0

]
. (6.14)

In obtaining equations (6.12)–(6.14) we use the fact that A is a function of the square u2

throughv2 = u2 +r2ω2, so that ∂A/∂u is proportional to u and thus vanishes in the unperturbed
configuration (because u = δu). On the other hand, since the radiation reaction is neglected,
B also is proportional to u (see equation (3.18)), so only ∂B/∂u can contribute at the zeroth
perturbative order. Now by examining the fate of perturbations that are proportional to some
eiσ t , we arrive at the condition for the frequency σ of the perturbation to be real, and hence
for stable circular orbits to exist, as being [32]

Ĉ0 ≡ −α0 − β0γ0 > 0. (6.15)

Substituting into this A and B at the 3PN order we then arrive at the orbital-stability criterion

Ĉ0 = m

r3
0

{
1 +

m

r0c2
(−9 + ν) +

m2

r2
0 c4

(
30 +

65

4
ν + ν2

)
+

m3

r3
0 c6

(
−70 +

[
−45 823

840
− 451

64
π2

+ 22 ln

(
r0

r ′
0

)
− 88

3
λ

]
ν +

19

2
ν2 + ν3

)
+ O

(
1

c8

)}
, (6.16)

where we recall that r0 is the radius of the orbit in harmonic coordinates.
Our second method is to use the Hamiltonian equations based on the 3PN Hamiltonian in

ADM coordinates given by equation (5.9). We introduce the polar coordinates (R,�) in the
orbital plane—we assume that the orbital plane is equatorial, given by � = π

2 in the spherical
coordinate system (R,�,�)—and make the substitution

P 2 = PR
2 +

P 2
�

R2
, (6.17)

into the Hamiltonian. This yields a ‘reduced’ Hamiltonian that is a function of R,PR and
P� : H = H[R,PR, P� ], and describes the motion in polar coordinates in the orbital plane
(henceforth we denote H = HADM/µ). The Hamiltonian equations then read
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dR

dt
= ∂H

∂PR

, (6.18)

d�

dt
= ∂H

∂P�

, (6.19)

dPR

dt
= −∂H

∂R
, (6.20)

dP�

dt
= 0. (6.21)

Evidently the constant P� is nothing but the conserved angular-momentum integral. For
circular orbits we have R = R0 (a constant) and PR = 0, so

∂H
∂R

[
R0, 0, P 0

�

] = 0, (6.22)

which gives the angular momentum P 0
� of the circular orbit as a function of R0, and

ω0 ≡
(

d�

dt

)
0

= ∂H
∂P�

[
R0, 0, P 0

�

]
, (6.23)

which yields the angular frequency of the circular orbit ω0—the same as in equation (6.5)—in
terms of R0

12:

ω2
0 = m

R3
0

{
1 +

m

R0c2
(−3 + ν) +

m2

R2
0c

4

(
21

4
− 5

8
ν + ν2

)
+

m3

R3
0c

6

(
−7 +

[
−54 629

1680
+

167

64
π2

+
44

3
λ

]
ν − 31

8
ν2 + ν3

)
+ O

(
1

c8

)}
. (6.24)

We consider now a perturbation of the circular orbit defined by

PR = δPR, (6.25)

P� = P 0
� + δP�, (6.26)

R = R0 + δR, (6.27)

ω = ω0 + δω. (6.28)

It is easy to verify that the Hamiltonian equations (6.18)–(6.21), when worked out at the
linearized order, read as

˙δPR = −π0δR − ρ0δP�, (6.29)

˙δP� = 0, (6.30)

˙δR = σ0δPR, (6.31)

δω = ρ0δR + τ0δP�, (6.32)

where the coefficients, which depend on the unperturbed orbit, are given by

π0 = ∂2H
∂R2

[
R0, 0, P 0

�

]
, (6.33)

12 The last equation,

∂H
∂PR

[R0, 0, P 0
� ] = 0,

which is equivalent to R = const = R0, is automatically verified because H is a quadratic function of PR and hence
∂H/∂PR is zero for circular orbits.
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ρ0 = ∂2H
∂R∂P�

[
R0, 0, P 0

�

]
, (6.34)

σ0 = ∂2H
∂PR

2

[
R0, 0, P 0

�

]
, (6.35)

τ0 = ∂2H
∂P�

2

[
R0, 0, P 0

�

]
. (6.36)

By looking to solutions proportional to some eiσ t one obtains some real frequencies, and
therefore one finds stable circular orbits, if and only if

Ĉ0 ≡ π0σ0 > 0. (6.37)

Using the Hamiltonian (5.9) we readily obtain

Ĉ0 = m

R3
0

{
1 +

m

R0c2
(−9 + ν) +

m2

R2
0c

4

(
117

4
+

43

8
ν + ν2

)
+

m3

R3
0c

6

(
−61 +

[
135 403

1680
− 325

64
π2 − 88

3
λ

]
ν − 31

8
ν2 + ν3

)
+ O

(
1

c8

)}
.

(6.38)

This result does not look the same as our previous result (6.16), but this is simply due to the fact
that it depends on the ADM radial separation R0 instead of the harmonic one r0. Fortunately,
we have derived in section 5 all the material needed to connect R0 to r0 with the 3PN accuracy.
Indeed, with equations (5.2), (5.3) we have the relation valid for general orbits between the
separation vectors in both coordinate systems. Specializing that relation to circular orbits we
readily find

R0 = r0

{
1 +

m2

r2
0 c4

(
−1

4
− 29

8
ν

)
+

m3

r3
0 c6

([
3163

1680
+

21

32
π2

− 22

3
ln

(
r0

r ′
0

)]
ν +

3

8
ν2

)
+ O

(
1

c8

)}
. (6.39)

The difference between R0 and r0 is made out of 2PN and 3PN terms only. Inserting
equation (6.39) into equation (6.38) and re-expanding to 3PN order we find that indeed
our basic stability-criterion function Ĉ0 comes out the same with our two methods.

Finally, let us give to the function Ĉ0 an invariant meaning by expressing it with the help
of the orbital frequency ω0 of the circular orbit, or, more conveniently, of the frequency-related
parameter13

x0 ≡
(mω0

c3

)2/3
. (6.40)

13 From the inverse of equation (6.5) we obtain r0 as a function of x0. For completeness we give the relations linking
both r0 and R0 to the x0-parameter:

m

r0c
2

= x0

{
1 +

(
1 − ν

3

)
x0 +

(
1 − 65

12
ν

)
x2

0 +

(
1 +

[
− 10 151

2520
− 41

192
π2 − 22

3
ln

(
r0

r ′
0

)
− 44

9
λ

]
ν

+
229

36
ν2 +

ν3

81

)
x3

0 + O
(
x4

0

)}
,

m

R0c
2

= x0

{
1 +

(
1 − ν

3

)
x0 +

(
5

4
− 43

24
ν

)
x2

0

+

(
7

4
+

[
23 759

5040
− 167

192
π2 − 44

9
λ

]
ν +

85

36
ν2 +

ν3

81

)
x3

0 + O
(
x4

0

)}
.
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This allows us to write the criterion for stability as C0 > 0, where C0 = m2

c6x3
0
Ĉ0 admits the

gauge-invariant form (the same in all coordinate systems)

C0 = 1 − 6x0 + 14νx2
0 +

([
5954

35
− 123

16
π2 − 44λ

]
ν − 14ν2

)
x3

0 + O
(
x4

0

)
. (6.41)

This form is more interesting than the coordinate-dependent expressions (6.16) or (6.38), not
only because of its invariant form, but also because as we see the 1PN term yields exactly the
Schwarzschild result that the innermost stable circular orbit or ISCO of a test particle (i.e. in
the limit ν → 0) is located at xISCO = 1/6. Thus we find that, at the 1PN order, but for any
mass ratio ν,

x1PN
ISCO = 1

6 . (6.42)

One could have expected that some deviations of the order of ν already occur at the 1PN
order, but it turns out that only from the 2PN order does one find the occurence of some
non-Schwarzschildian corrections proportional to ν. At the 2PN order we obtain

x2PN
ISCO = 3

14ν

(
1 −

√
1 − 14ν

9

)
. (6.43)

For equal masses this gives x2PN
ISCO � 0.187. Note also that the effect of the finite mass

corrections is to increase the frequency of the ISCO with respect to the Schwarzschild result
(i.e. to make it more inward) : x2PN

ISCO = 1
6

[
1 + 7

18ν +O(ν2)
]
. Finally, at the 3PN order, for equal

masses ν = 1
4 and for the value of the ambiguity parameter λ = − 1987

3080 (equivalent to ωs = 0),
we find that according to our criterion all the circular orbits are stable. More generally, we
find that at the 3PN order all orbits are stable when the mass ratio is ν > νc where νc � 0.183.

Note that the above stability criterion C0 gives an innermost stable circular orbit, when it
exists, that is not necessarily the same as—and actually differs from—the innermost circular
orbit or ICO, which is defined by the point at which the centre-of-mass binding energy of the
binary for circular orbits reaches its minimum [33]. In this respect the present formalism,
which is based on systematic post-Newtonian expansions (without using post-Newtonian
resummation techniques such as Padé approximants [34]), differs from some ‘Schwarzschild-
like’ methods such as the effective-one-body approach [35] in which the ICO happens to be
also an innermost stable circular orbit or ISCO.

As a final comment, let us note that the use of a truncated post-Newtonian series such
as equation (6.41) to determine the ISCO is a priori meaningful only if we are able to bound
the neglected error terms. Furthermore, since we are dealing with a stability criterion, it is
not completely clear that the higher-order post-Newtonian correction terms, even if they are
numerically small, will not change qualitatively the response of the orbit to the dynamical
perturbation. This is indeed a problem, which cannot be answered rigorously with the present
formalism. However, in the regime of the ISCO (when it exists), we have seen that x0 is
rather small: x0 � 0.2 (this is also approximately the value for the ICO computed in [33]),
which indicates that the neglected terms in the truncated series (6.41) should not contribute
very much, because they involve at least a factor x4

0 � 0.002. On the other hand, we pointed
out that in the limit ν → 0 the criterion C0 gives back the correct exact result, xν→0

ISCO = 1
6 .

This contrasts with the gauge-dependent power series (6.16) or (6.38) which give only some
approximate results. Based on these observations, we feel that it is reasonable to expect that
the gauge-invariant stability criterion defined by equation (6.41) is physically meaningful.
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[6] Damour T and Schäfer G 1985 Gen. Rel. Grav. 17 879
[7] Kopejkin S M 1985 Astron. Zh. 62 889
[8] Blanchet L, Faye G and Ponsot B 1998 Phys. Rev. D 58 124002
[9] Itoh Y, Futamase T and Asada H 2001 Phys. Rev. D 63 064038

[10] Pati M E and Will C M 2002 Phys. Rev. D 65 104008
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