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Abstract
A Lagrangian from which one can derive the third post-Newtonian (3PN)
equations of motion of compact binaries (neglecting the radiation reaction
damping) is obtained. The 3PN equations of motion were computed previously
by Blanchet and Faye in harmonic coordinates. The Lagrangian depends on the
harmonic-coordinate positions, velocities and accelerations of the two bodies.
At the 3PN order, the appearance of one undetermined physical parameter λ

reflects the incompleteness of the point-mass regularization used when deriving
the equations of motion. In addition the Lagrangian involves two unphysical
(gauge-dependent) constants r ′

1 and r ′
2 parametrizing some logarithmic terms.

The expressions of the ten Noetherian conserved quantities, associated with
the invariance of the Lagrangian under the Poincaré group, are computed.
By performing an infinitesimal ‘contact’ transformation of the motion, we
prove that the 3PN harmonic-coordinate Lagrangian is physically equivalent to
the 3PN Arnowitt–Deser–Misner Hamiltonian obtained recently by Damour,
Jaranowski and Schäfer.

PACS number: 0425N

1. Motivation and relation to other works

The long-standing problem of the gravitational dynamics of compact bodies has become very
important in recent years because of the need to construct accurate templates for detecting the
gravitational waves from inspiralling compact binaries in future experiments such as LIGO
and VIRGO [1–3]. Concerning the two-body problem, the current state of the art is the third
post-Newtonian (3PN) approximation, corresponding to the inclusion of all the relativistic
corrections up to the order 1/c6 (where c is the velocity of light) with respect to the Newtonian
acceleration. Up to the 2.5PN or 1/c5 approximation the equations of motion are well known,

0264-9381/01/050753+26$30.00 © 2001 IOP Publishing Ltd Printed in the UK 753



754 V C de Andrade et al

as they have been derived by many different methods with complete agreement on the result [4–
17]. They have already been used for constructing the 2.5PN-accurate templates of inspiralling
compact binaries [18–20].

To the 3PN order, the problem of equations of motion has been pursued by two groups
working independently with different methods: on one hand, Jaranowski and Schäfer [21, 22]
and Damour, Jaranowski and Schäfer [23–25] employ the Arnowitt–Deser–Misner (ADM)
Hamiltonian formulation of general relativity; on the other hand, Blanchet and Faye [26–29]
work iteratively with the Einstein field equations in harmonic coordinates. Both groups use a
regularization based on Hadamard’s concept of ‘partie finie’ to overcome the problem of the
infinite self-field of point-like particles. However, the details are actually different; notably the
second group developed for this problem an extended version of the Hadamard regularization
and a theory of generalized functions [27, 28]. Both groups found that there remains one
and only one physical constant, ωstatic in the ADM-Hamiltonian formalism [21–25] and λ

in the harmonic-coordinate approach [26–29], that is left undetermined by the point-mass
regularization. Furthermore, in the harmonic-coordinate approach, the equations of motion
(obtained in [29]) depend on two additional constants r ′

1 and r ′
2 parametrizing some logarithmic

terms, but these constants are not physical in the sense that they can be removed by a coordinate
transformation. The aim of the present paper is threefold:

(a) to present the Lagrangian of the 3PN dynamics of the compact binary in harmonic
coordinates;

(b) to obtain explicitly from it the ten Noetherian conserved integrals of the motion in harmonic
coordinates;

(c) to exhibit a contact transformation of the harmonic-coordinate motion to some pseudo-
ADM coordinates in order to compare our results [26–29] with those obtained by the other
group [21–25].

Concerning (a), we find a generalized Lagrangian (i.e. depending on the positions,
velocities and accelerations of the bodies) whose variation yields the conservative part of the
3PN equations of motion in harmonic coordinates as found in [29]. Our second point (b) is to
use the fact that the Lagrangian incorporates the ten symmetries of the Poincaré group (notably
the boost symmetry) to compute the ten integrals corresponding to the energy, the linear and
angular momenta, and the centre-of-mass position. In particular, we find that the energy agrees
with the previous result of [29]. As all of these integrals will probably be needed in future work
we choose to display them explicitly, despite the length of the expressions. We also give the
balance equations they satisfy when the radiation reaction effect is turned on. Finally, the result
of point (c) is that there exists a unique contact transformation of the harmonic-coordinate
dynamical variables that changes the generalized Lagrangian into an ordinary Lagrangian
(depending on positions and velocities) whose associated 3PN Hamiltonian matches exactly
that given by Damour et al [24]. This proves the complete equivalence of the results obtained
from the two (rather different) methods followed by the two groups, and constitutes a strong
support of the validity of both methods. This equivalence has also been shown independently
by the other group [25] (who also presents the formulae needed for computing the conserved
quantities). Note that it holds if and only if the undetermined constant λ in the harmonic-
coordinate formalism and the ambiguity constant ωstatic in the ADM Hamiltonian are related
to each other by

ωstatic = − 11
3 λ − 1987

840 , (1.1)

a result already obtained in [26] on the basis of the comparison of the invariant energy of
binaries moving on circular orbits. The appearance of the unknown constant λ is probably not
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due to a real physical ambiguity, but is associated with an incompleteness of the point-mass
regularization. It is probably related to the fact that, starting from the 3PN order, many separate
integrals constituting the equations of motion of extended bodies would depend on the internal
structure of the objects (e.g. their density profile), even in the limiting case where the radius
of the objects tends to zero. Further work is needed to compute the precise value of λ. On the
other hand, the constants r ′

1 and r ′
2 occurring in the harmonic-coordinate Lagrangian disappear

from the ADM-Hamiltonian (where there are no logarithms), in accordance with the fact that
they are pure gauge.

The plan of this paper is as follows. In section 2, motivated by the striking equivalence
between the (regularization-related) unknown constants λ and ωstatic, we discuss our method
of point-mass regularization and contrast it with the method advocated in [21–25]. Section 3
is devoted to the theoretical investigations. First, we recall the theory of Noetherian conserved
quantities in the case of a generalized Lagrangian, and next we show how to eliminate the
accelerations in the harmonic-coordinate Lagrangian by a contact transformation at the 3PN
order. The reader interested only in the results at the 3PN order can go directly to section 4,
where we present the closed-form expressions of the Lagrangian and the conserved energy,
momenta and centre of mass in harmonic coordinates, and give the result for the contact
transformation as well as the final expressions for the Lagrangian and Hamiltonian in pseudo-
ADM coordinates.

2. Discussion on the point-mass regularization

The equivalence between the respective formalisms of [21–25] and [26–29] is interesting
because the two groups have adopted some different approaches regarding the point-mass
regularization (chosen in both cases to be based on the Hadamard concept of ‘partie finie’ of
a singular function or a divergent integral [30, 31]). Essentially, the group [21–25] introduced
systematically some ‘ambiguity’ parameters in the ADM Hamiltonian whenever the standard
Hadamard regularization yielded inconsistent results, while the group [26–29] looked for the
most general solution allowed by some basic physical requirements and following from a new,
mathematically consistent, Hadamard-type regularization.

More precisely, in our approach [26–29], we adopted some variants of the Hadamard
regularization which were devised specifically for this problem [27, 28]. Let F be a function
which is singular at two isolated points y1 and y2, and is smooth everywhere else; y1 and
y2 are the positions of the particles in harmonic coordinates at some given instant t . The
Hadamard partie finie of F at the point y1, denoted by (F )1, is defined as the angular average
over all directions of approach to y1 of the finite term (zeroth order) in the singular expansion
of the function around this point. We found that this definition yields a natural extension of
the notion of a Dirac distribution at the location of a singular point, that we constructed by
means of the Riesz delta-function [32]. As a result, the ‘partie finie delta-function’ at point 1,
denoted Pf δ1 where δ1 ≡ δ(x − y1), is the linear form defined on the set of singular functions
of type F , that associates to any F the real number (F )1 (see equation (6.9) in [27]). Using
an integral notation this means that

∫
d3xF · Pf δ1 = (F )1. (The partie finie delta-function

Pf δ1 constitutes a mathematically well defined version of the so-called ‘good delta function’
of Infeld [33].) In our derivation of the equations of motion at 3PN order, this prescription
is employed systematically to compute all the ‘compact-support’ integrals, whose integrand
is made of the product of a singular potential with some mass density localized on the two
particle worldlines.

By applying the latter definition to the product FG we obtain
∫

d3xFG · Pf δ1 = (FG)1,
which permits us to give a sense to the more complicated object F ·Pf δ1 ≡ Pf(F δ1), composed
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of the product of a delta-pseudo-function with a function which is singular on its support (such
a product being ill-defined in the standard distribution theory). Namely, Pf(F δ1) is the linear
form which associates to any function G the real number (FG)1. It is important to realize
that Pf(F δ1) �= (F )1 Pf δ1 in general. This is an immediate consequence of the so-called
‘non-distributivity’ of the Hadamard partie finie, namely the fact that (FG)1 �= (F )1(G)1

for two singular functions F and G in general. As an example taken from [17], we have
(U 4)1 = [(U)1]4 + 2[(U)1]2[(U)2]2, where U = Gm1/r1 + Gm2/r2 denotes the Newtonian
potential of two particles (with r1 = |x − y1| and r2 = |x − y2|). In the post-Newtonian
iteration one can check that the functions involved become singular enough so that the non-
distributivity plays an actual role at the 3PN order: for instance, in the example above, U 4

will appear in the metric coefficient g00 with a factor 1/c8 in front, which indeed corresponds
to the 3PN order. However, there is no problem linked with the non-distributivity in the
equations of motion up to the 2.5PN approximation [17]. Therefore, from the 3PN order (but
only from that order), it is a mathematically inconsistent regularization prescription to assume
at once that

∫
d3xF · Pf δ1 = (F )1 and Pf(F δ1) = (F )1 Pf δ1. Faced with this problem,

the authors [21–25] have advocated that the breakdown of the distributivity of the Hadamard
regularization at the 3PN order is a source of ambiguities. (Actually, in their first paper, see
appendix A in [21], these authors performed their basic computation using the inconsistent rule
Pf(F δ1) = (F )1 Pf δ1. Later in [23] (see appendix A therein), they argued that their result was
‘stable’ against a possible violation of the latter rule). In contrast, the authors [26–29] have
accepted the special features of the partie finie, such as its non-distributivity, and constructed
by its mean a mathematically consistent regularization, which is able to give a precise sense
to all computations at the 3PN order.

The Hadamard partie finie (F )1 of a singular function involves a spherical average that
is defined within the spatial hypersurface t = constant of a global coordinate system such
as the harmonic coordinates. Clearly, this definition is incompatible with the framework of
a relativistic field theory, and we expect at some level a violation of the Lorentz invariance
of the equations of motion due to this regularization. Remarkably, such a violation occurs
only at the 3PN order; up to the 2.5PN order the equations of motion in harmonic coordinates,
as computed using the regularization (F )1, are Lorentz-invariant [17]. To overcome this
problem at the 3PN order, it has been necessary to define a ‘Lorentzian’ regularization [28],
which consists merely of applying the Hadamard partie finie within the spatial hypersurface
orthogonal to the (Minkowskian) 4-velocity of a particle. It was shown in [29] that the
Lorentzian regularization adds some new terms to the 3PN equations of motion (computed
with the standard regularization (F )1) which are mandatory in order to maintain their Lorentz
invariance (see, for instance, equation (5.35) in [29]). The Lorentzian partie finie of a singular
function F , denoted by [F ]1, enables one to define a ‘Lorentzian’ partie finie delta-function
Pf �1, namely a linear form whose action on any F gives the real number [F ]1. It also permits
the precise definition, given by equation (5.11) in [28], of a model for the stress–energy tensor
of point-particles in (post-Newtonian expansions of) general relativity.

Besides the compact-support integrals computed before, the equations of motion contain
many ‘non-compact’ integrals, whose support extends up to infinity and which are divergent at
the location of the particles. To them we assign systematically the value given by the Hadamard
partie-finie of a divergent integral: Pf

∫
d3xF , see equation (3.1) in [27]. Furthermore, to any

F in this class, we associate the pseudo-function Pf F which by definition is the linear form
whose action on any other G gives the real number Pf

∫
d3xFG. Given then two pseudo-

functions, their product is chosen to be the ‘ordinary’ one Pf F · Pf G = Pf(FG).
An important feature of the Hadamard partie-finie integral is that the integral of a gradient

is not zero in general, Pf
∫

d3x ∂iF �= 0, since it is equal to the sums of the parties finies
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of the surface integrals surrounding the singularities when the surface areas tend to zero
(see equation (3.4) in [27]). This means that the ordinary derivative of singular functions
shows a fundamental difference with the case of regular sources, since in this case the
integral of a gradient is always zero (provided that the integrand decreases sufficiently fast
at infinity). One can check that some non-vanishing integrals of a gradient start to appear
precisely at the 3PN order. Confronted with this problem, the authors [21–25] have considered
that this signals the presence of ambiguities at the 3PN order, notably because their ADM-
Hamiltonian density is defined only modulo a total divergence, that one certainly does not
want to contribute even in the case of singular sources. On the other hand, the authors [26–29]
have accepted this feature and introduced a new kind of (spatial or temporal) distributional
derivative acting on the pseudo-functions of type Pf F (for instance, ∂i Pf F ) in order to
ensure that the integral of a gradient is always zero. It was found [27] that it is impossible
to define a derivative which satisfies the Leibniz rule for the derivation of a product, i.e.
∂i(Pf FG) �= F∂i Pf G + G∂i Pf F in general, but that when one replaces the Leibniz rule
by the weaker rule of ‘integration by parts’, an interesting mathematical structure exists. By
the rule of integration by parts, we refer to the relation

∫
d3x [F∂i Pf G + G∂i Pf F ] = 0,

for F and G arbitrary functions (see equation (7.2) in [27] where we use a more appropriate
bracket notation for the spatial integral). While the rule of integration by parts is nothing
but an integrated version of the ‘pointwise’ Leibniz rule, the Leibniz rule itself is a stronger
requirement, which is not satisfied in general as there are triplets of singular functions F ,
G, H for which

∫
d3xH [F∂i Pf G + G∂i Pf F ] �= ∫

d3xH∂i(Pf FG). The motivation for
requiring the rule of integration by parts is that it is clearly valid in the case of regular fluid
systems. Notably it implies that the integral of a gradient of any singular function of type F

is zero. However, because it violates the Leibniz rule, the distributional derivative cannot be
completely satisfying from the physical point of view.

Actually, two different distributional derivatives, and therefore two different
regularizations, were introduced in [27]. A ‘particular’ derivative, defined by equation (7.7)
in [27], was first chosen for its simplicity. The two main properties of this derivative are:
that (a) it reduces to the ordinary derivative, i.e. ∂i Pf F = Pf(∂iF ), whenever F is bounded
near the singularities (in addition to being smooth everywhere else) and (b) it obeys the rule
of integration by parts. Though the particular derivative is especially convenient to use in
practical computations, it does not follow from some ‘unicity’ theorem. A more interesting
derivative, from the mathematical point of view, is the so-called ‘correct’ derivative (we follow
the terminology of [29]) which does satisfy a unicity theorem. Namely, this derivative is
obtained in theorem 4 of [27] as the unique derivative satisfying properties (a) and (b) above,
and, in addition, (c) the rule of commutation of successive derivatives (Schwarz lemma). As it
turned out, the ‘correct’ derivative, given by equation (8.12) of [27], depends on one arbitrary
numerical constant K . (Note that both the particular and correct derivatives reduce to the
derivative of the standard distribution theory [31] when applied to smooth test functions with
compact support.)

In summary, it is possible to construct a consistent regularization based on the Hadamard
partie finie, thus one can give a precise meaning to any integral encountered in the computation,
but there are several possible prescriptions associated with different distributional derivatives
(and the Leibniz rule is not satisfied). Our strategy has been to perform two computations of
the equations of motion, associated, respectively, with the ‘particular’ and ‘correct’ derivatives.
Then the following were shown [29].

(I) The 3PN equations of motion, when computed by means of the Lorentzian regularization
and the particular derivative, are in agreement with the known equations of motion up
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to the 2.5PN order, have the correct test-mass limit and most importantly are Lorentz
invariant (in a perturbative post-Newtonian sense).

(II) Looking for the most general solution, allowed by the regularization, for the 3PN equations
of motion to admit a conserved energy and a Lagrangian description, we find that they
depend on two unphysical gauge-constants r ′

1 and r ′
2 (associated with the appearance of

logarithms), and on one and only one physical constant λ which cannot be determined
within the method. The equations of motion possess all the physical properties that we
expect, but the presence of the unknown constant λ is somewhat baffling, as it probably
reflects a physical incompleteness of the regularization.

(III) When the correct distributional derivative is used instead of the particular one, the
equations of motion depend on K in addition to r ′

1, r ′
2 and λ. In this case we find that they

are no longer Lorentz invariant in general, but that there is a unique value of K for which
the Lorentz invariance is recovered: K = 41

160 . For this value the equations of motion have
also all the physical properties we expect.

(IV) The different equations of motion as obtained by means of the ‘particular’ and ‘correct’
prescriptions (with K = 41

160 in the second case) are physically equivalent in the sense
that they differ from each other by an infinitesimal change of coordinates. This satisfying
result indicates that the distributional derivatives introduced in [27] constitute merely some
technical tools which are devoid of physical meaning.

In scenario (III) one may wonder why after having used the Lorentzian regularization
defined in [28] one still has to adjust the constant K to a certain value in order to finally
obtain the Lorentz invariance. The likely reason is that the distributional derivatives we use
(the particular and correct ones) have not been defined in a Lorentz-invariant way, as their
distributional terms are made of the delta-pseudo-function Pf δ1 instead of the ‘Lorentzian’
delta-pseudo-function Pf �1 (see equation (3.36) in [28]). As a result, we find in scenario (III)
that although most of the terms satisfy the requirement of Lorentz invariance, notably the
terms proportional to the combination of masses m2

1m2 in the acceleration of particle one
(these terms are shown to behave correctly thanks to the Lorentzian regularization), there still
exists a limited class of terms, proportional to m3

2, that do not obey the Lorentz invariance
unless K is adjusted to the value 41

160 . (In scenario (I) where there is no constant to adjust the
latter terms behave correctly.)

The problem of the Lorentz invariance of the equations of motion was solved in a quite
different way by the other group [21–25]. We recall that the harmonic-coordinate equations
of motion are manifestly Lorentz-invariant because the harmonic gauge condition preserves
the Poincaré symmetry. In contrast, the coordinate conditions associated with the ADM
Hamiltonian formalism do not respect the Poincaré group, and therefore the authors [21–
25] had to prove that their Hamiltonian is compatible with the existence of generators in phase
space such that the usual Poincaré algebra is satisfied. More precisely, they constructed a
generic ‘ambiguous’ dynamics at the 3PN order, parametrized by some unknown ambiguity
parameters associated notably with the non-distributivity of the Hadamard partie finie and to
the fact that the integral of a gradient, in an ordinary sense, is not zero. They showed that there
were only two ambiguity parameters which they denoted by ωkinetic and ωstatic. (Actually, in
the first paper [21] they considered only the ambiguity constant ωkinetic and obtained the value
ωstatic = 1

8 . The static ambiguity was introduced in the second paper [22].) By imposing in
an ad hoc manner the existence of the Poincaré generators for their ambiguous Hamiltonian,
they showed [24] that the parameter ωkinetic is fixed uniquely to the value 41

24 . This result was,
in fact, obtained earlier [26] by comparing their expression of the energy of circular orbits
[23] to the expression we obtained by means of the explicitly Lorentz-invariant formalism
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described in scenario (I) above. Finally, having fixed ωkinetic, there still remained in the ADM-
Hamiltonian formalism one and only one undetermined constant ωstatic, that we shall find to be
equivalent, in the sense of equation (1.1), to the constant λ appearing in harmonic coordinates.
(Note that, despite the resemblance between the value K = 41

160 in scenario (III) and the
result ωkinetic = 41

24 , the constant K can be fixed to this unique value only if the sophisticated
Lorentzian regularization is used before. Without such a regularization, several other terms not
parametrized by K would not behave correctly under Lorentz transformations, and therefore
no value of K could be chosen in order to restore the Lorentz invariance. In this sense the
constant K is more ‘specialized’ than the constant ωkinetic.)

Finally, choosing one or other of the two approaches advocated in [21–29] for the
regularization is a matter of taste. In view of the equivalence of the final results, it is a
good state of affairs that the two approaches are different conceptually and technically.

3. Theory

3.1. Noetherian conserved quantities for a generalized Lagrangian

At the 1PN order, the equations of motion of two compact objects in general relativity, as
derived in [4, 5], can be deduced from an ordinary Lagrangian, depending on the positions and
velocities of the bodies, which were obtained by Fichtenholz [6]. At the next 2PN order, the
equations of motion in harmonic coordinates, as obtained in [8, 10, 11], can only be deduced
from a ‘generalized’ Lagrangian, depending not only on the positions and velocities but also on
the accelerations of the particles [8]. In particular, this confirmed a result of Martin and Sanz
[34] that N -body systems cannot admit an ordinary Lagrangian description beyond the 1PN
order, provided that the gauge conditions preserve the Lorentz invariance (as is the case for the
harmonic gauge). However, it has been shown by Damour and Schäfer [12] that there exists a
special class of coordinates, which includes those associated with the ADM formalism, such
that the Lagrangian at the 2PN order expressed by means of such coordinates becomes ordinary,
i.e. no longer depends on accelerations. This means that we can eliminate the accelerations in
the harmonic-coordinate Lagrangian at the 2PN order by going to the ADM coordinates [12].
In this paper, we shall find that the 3PN terms in the Lagrangian in harmonic coordinates also
depend on accelerations, and that, like at the 2PN order, these accelerations can be eliminated
by a suitable coordinate transformation to some ‘pseudo-ADM’ coordinates, following the
general method of redefinition of position variables [12, 35–37].

Strictly speaking, the dynamics of two compact bodies does not derive from a Lagrangian
at the 3PN approximation because of the radiation reaction damping effect at the previous
2.5PN order. When speaking of a 3PN Lagrangian or Hamiltonian, we always refer to the
conservative part of the dynamics, which corresponds to the ‘even’ post-Newtonian orders
1PN, 2PN and 3PN. As we shall see, the radiation reaction effect manifests itself in the
non-conservation at the 2.5PN approximation of the conserved quantities associated with the
conservative 3PN dynamics (see equations (4.7)).

Let us consider a harmonic-coordinate generalized 3PN Lagrangian

Lharmonic ≡ L[yA(t), vA(t),aA(t)], (3.1)

depending on the instantaneous positions yi
A(t) ≡ yA(t) (with A = 1, 2 and i = 1, 2, 3),

coordinate velocities vi
A(t) ≡ vA(t) = dyA/dt , as well as coordinate accelerations ai

A(t) ≡
aA(t) = dvA/dt . Our harmonic-coordinate 3PN Lagrangian is given by (4.1) below, but we
do not need to be so specific in the present section, where most of the results hold, in fact,
for N -body systems (A = 1, . . . , N). We assume that the dependence of the Lagrangian
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(3.1) upon the accelerations is linear. As a matter of fact, it is always possible to eliminate
from a generalized post-Newtonian Lagrangian a contribution quadratic in the accelerations
by rewriting it in the form of a so-called ‘double-zero’ term, which does not contribute to the
equations of motion, plus a term linear in the acceleration [12] (this argument can be extended
to any term polynomial in the accelerations).

The equations of motion of the Ath body are deduced from the Lagrangian by taking the
functional derivative defined as

δL

δyi
A

≡ ∂L

∂yi
A

− d

dt

(
∂L

∂vi
A

)
+

d2

dt2

(
∂L

∂ai
A

)
= 0. (3.2)

We consider first, very generally, an infinitesimal transformation of the path of the particle A

at some instant t , i.e. δyA(t) = y′
A(t) − yA(t). The corresponding variations of its velocity

and acceleration are δvA(t) = dδyA/dt and δaA(t) = dδvA/dt . Such a transformation of the
motion induces a variation of the Lagrangian, namely δL = L[y′

A, v
′
A,a

′
A] − L[yA, vA,aA]

which is readily found to be expressible, at the linearized order in δyA, in the form

δL = dQ

dt
+
∑
A

δL

δyi
A

δyi
A + O (

δy2
A

)
, (3.3)

where the functional derivative δL/δyi
A is given by (3.2) (it is zero ‘on-shell’, i.e. when the

equations of motion are satisfied), and where we have introduced the total time derivative of a
function Q ≡ Q[δyA, δvA] defined by

Q =
∑
A

(
pi

Aδy
i
A + qi

Aδv
i
A

)
. (3.4)

Here, pi
A and qi

A denote the momenta that are conjugate to the positions yi
A and velocities vi

A

of the particle A, respectively, that is

pi
A = δL

δvi
A

≡ ∂L

∂vi
A

− d

dt

(
∂L

∂ai
A

)
, (3.5a)

qi
A = δL

δai
A

≡ ∂L

∂ai
A

. (3.5b)

We now discuss the Noetherian conservation laws for generalized Lagrangians following
[9, 11]. We know from [29] that the 3PN equations of motion in harmonic coordinates are
manifestly invariant (in a perturbative post-Newtonian sense) under the Lorentz and more
generally the Poincaré group. Thus the dynamics associated with our 3PN generalized
Lagrangian (4.1) should stay the same after an infinitesimal Poincaré transformation of the
dynamical variables y

µ

A = (ct,yA). In particular, this means that δL = 0 in the case of
arbitrary infinitesimal constant spatial translations and rotations, δyi

A = εi and δyi
A = ωi

jy
j

A

with ωij = −ωji . In this case equation (3.3) implies the conservation on-shell (all the δL/δyi
As

are zero) of the Noetherian linear and angular momenta given by

P i =
∑
A

pi
A, (3.6a)

J i = εijk
∑
A

(
y
j

Ap
k
A + v

j

Aq
k
A

)
. (3.6b)

Thus, dP i/dt = 0 and dJ i/dt = 0 on-shell. On the other hand, we have δL = τdL/dt in the
case of an infinitesimal constant time-translation δt = τ , hence the conservation on-shell of
the Noetherian energy from equation (3.3),

E =
∑
A

(
vi
Ap

i
A + ai

Aq
i
A

)− L. (3.7)
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Thus, dE/dt = 0. We shall give the explicit expressions of these Noetherian energy and
momenta at the 3PN order in harmonic coordinates in the next section which is devoted to the
results (see equations (4.2)–(4.4)).

Finally, let us consider the symmetry of the Lagrangian that is associated with the
invariance under Lorentz special transformations or boosts. Clearly, since the dynamics must
stay the same after an infinitesimal constant Lorentz boost, the corresponding variation of
the Lagrangian has to take essentially the form of a total time derivative. At the linearized
order in the boost velocity Wi , the transformation of the particle trajectories is given by
δyi

A = −Wit + 1
c2 W

jy
j

Av
i
A + O(W iWi). There should exist a certain functional Zi of

the positions, velocities and accelerations such that the 3PN Lagrangian variation reads
δL = Wi dZi/dt +O(W iWi), plus some ‘double-zero’ terms at the 3PN order (which are zero
on-shell when applying the Noether theorem). By applying equation (3.3), we readily find
the conservation on-shell of the Noetherian integral Ki = Gi − P it , where P i is the linear
momentum (3.6a), and where Gi represents the centre-of-mass position:

Gi = −Zi +
∑
A

(
−qi

A +
1

c2

[
yi
Ap

j

Av
j

A + yi
Aq

j

Aa
j

A + vi
Aq

j

Av
j

A

])
. (3.8)

Thus, dKi/dt = 0, or equivalently d2Gi/dt2 = 0 (the centre-of-mass vector Gi is conserved
in a frame where P i = 0). The existence of the latter boost-symmetry of the Lagrangian is a
confirmation of the Lorentz invariance of the 3PN equations of motion obtained in [29]. The
Noetherian centre-of-mass Gi in harmonic coordinates at the 3PN order is given explicitly by
equation (4.5) below.

The ten Noetherian quantities (3.6)–(3.8) have been found from our generalized
Lagrangian as some functionals of the positions, velocities and accelerations of the particles.
However, once they have been constructed, all the accelerations they involve can be order-
reduced by using the fact that they take on-shell some definite expressions depending on the
positions and velocities as given by the equations of motion. Our final results presented in
section 4.1 have all been order-reduced consistently with the 3PN approximation.

3.2. Elimination of acceleration-dependent terms in a Lagrangian

We start from the harmonic coordinate system xµ = (ct,x) and perform an infinitesimal
coordinate transformation to a new coordinate system x ′µ, generally not obeying the harmonic
gauge condition, of type

x ′µ = xµ + εµ(x), (3.9)

where εµ(x) is a function of the spatial coordinates x as well as a (local-in-time) functional
of the trajectories yA(t) and velocities vA(t) parametrized by the coordinate time t = x0/c.
Namely,

εµ(x, t) = εµ[x; yA(t), vA(t)]. (3.10)

Since the accelerations in the harmonic-coordinate Lagrangian appear only at the 2PN order, we
suppose that the coordinate transformation starts at the same level. This means that εi = O (

1
c4

)
and ε0 = O (

1
c3

)
. In particular, we can check that any term in the following that is at least

quadratic in εµ is, in fact, of the order of O (
1
c8

)
and thus can be neglected in our study limited to

the 3PN approximation. The trajectories and velocities in the new coordinates x ′µ = (ct ′,x′)
are some functions y′

A(t
′) and v′

A(t
′) of the new coordinate time t ′ = x ′0/c. The ‘contact’

transformation of the particle variables induced by the coordinate transformation (3.9) and
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(3.10) is defined by δyi
A(t) = y ′i

A(t) − yi
A(t) (we use the same terminology as in [12]).

Neglecting all the terms of the order of the square of εµ we obtain

δyi
A(t) = εi(yA, t) − vi

A

c
ε0(yA, t) + O

(
1

c8

)
. (3.11)

In this paper we shall construct a contact transformation δyi
A, composed of 2PN and 3PN terms

and neglecting O (
1
c8

)
, which is issued from some infinitesimal coordinate transformation (3.9)

and (3.10); however, we shall not be so much interested in the coordinate transformation
itself, in particular this means that we shall not investigate to which coordinate conditions it
corresponds to (non-harmonic and/or ADM type).

If the equations satisfied by the worldlines yA(t) in some initial coordinate system derive
from the Lagrangian L, then the equations satisfied by the new worldlines y′

A(t
′) in a new

coordinate system will derive from the new Lagrangian L′ that is such that

L′[y′
A(t), v

′
A(t),a

′
A(t), b

′
A(t)] = L[yA(t), vA(t),aA(t)] (3.12)

(see, e.g., equation (5) of Damour and Schäfer [12]). Since we assumed that the contact
transformation δyA depends on the velocities, the new Lagrangian necessarily depends on
positions, velocities, accelerations and also derivatives of accelerations: bA(t) = daA/dt .
Now the same computation as the one leading to equation (3.3) shows that, at the linearized
order in δyA,

L′[yA, vA,aA, bA] = L[yA, vA,aA] +
dQ

dt
+
∑
A

δL

δyi
A

δyi
A + O

(
1

c8

)
. (3.13)

Note that both sides of this relation are expressed in terms of the same ‘dummy’ variables,
chosen to be the harmonic-coordinate ones, e.g. yA. At the end, when we obtain the new
Lagrangian, we shall have to replace this dummy variable by the one corresponding to the
new coordinate system, y′

A = yA + δyA. The term with a total time derivative is the same as
that found in equation (3.3), with Q given by (3.4). As one can see, the dependence of the
Lagrangian L′ upon derivatives of accelerations bA comes only from this total time derivative.
Therefore, by posing L′′ = L′ − dQ

dt we obtain a Lagrangian which is dynamically equivalent
to the Lagrangian L′ and depends like L on positions, velocities and accelerations only,

L′′[yA, vA,aA] = L[yA, vA,aA] +
∑
A

δL

δyi
A

δyi
A + O

(
1

c8

)
. (3.14)

We now show that there exists a contact transformation δyi
A (actually, there exist infinitely

many of them), together with a redefinition of the Lagrangian by the addition of a total time
derivative, which eliminates all the accelerations in the Lagrangian up to the 3PN order. In other
words, the 3PN Lagrangian that will follow is ordinary, i.e. depends on positions and velocities
only. Damour and Schäfer [12] have already shown how to eliminate the accelerations at the
2PN level. We shall see how to do this at the next 3PN order, but, in fact, the method
is a particular application of a general algorithm to eliminate higher-derivative terms in a
Lagrangian [37]. Since the contact transformation (3.11) is assumed to start at 2PN order,
i.e. δyi

A = O (
1
c4

)
, we must control the functional derivative δL

δyi
A

appearing on the right-hand

side of equation (3.14) at the relative 1PN order. The standard Newtonian contribution is then
followed by a certain 1PN correction, denoted by mAC

i
A, hence

δL

δyi
A

= mA

[
−ai

A −
∑
B �=A

GmB

r2
AB

ni
AB +

1

c2
Ci

A

]
+ O

(
1

c4

)
. (3.15)
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The 1PN term Ci
A can be computed straightforwardly from the Lagrangian (4.1). The point is

that it does depend on accelerations, Ci
A ≡ Ci

A[yB, vB,aB], with this dependence being linear.
The presence of accelerations in Ci

A is the reason why the method used in [12] to deal with
the problem at the 2PN order cannot be extended immediately at the 3PN approximation. We
shall see that the method necessitates the introduction in the contact transformation at the 3PN
order of some ‘counter-term’ Xi

A described below. Now, in view of the term −mAa
i
A present in

equation (3.15), it is clear that we will be able to remove all the accelerations at the 2PN order
if we choose for the contact transformation the term 1

mA
qi
A (we recall that qi

A is the conjugate

momentum of the acceleration, qi
A = ∂L

∂ai
A

). Indeed, the only possible accelerations at the

2PN order in the Lagrangian L′′ would be contained in the combination L−∑
A ai

Aq
i
A, which

clearly does not depend on accelerations because of the linearity of the original Lagrangian L

upon ai
A. Furthermore, as discussed in [12], once we have eliminated the accelerations at the

2PN order, we are free to add to the contact transformation any term of type

1

mA

∂F

∂vi
A

,

where F is an arbitrary functional of the positions and velocities only, starting at the 2PN order.
This follows immediately from the identity

dF

dt
=
∑
A

(
vi
A

∂F

∂yi
A

+ ai
A

∂F

∂vi
A

)
,

which shows that the further accelerations produced by this term are contained into the total
time derivative of F , and so can be removed from the original Lagrangian without changing
the dynamics. However, these procedures are no longer valid at the 3PN order because of the
accelerations in the 1PN term Ci

A of (3.15), which will couple to the terms

1

mA

[
qi
A +

∂F

∂vi
A

]
as suggested before and produce some new accelerations. The solution of the problem is to
add to the contact transformation some correction term that we shall find to be adjustable in a
unique way so that it works.

As a result, we look for a contact transformation of type

δyi
A = 1

mA

[
qi
A +

∂F

∂vi
A

+
1

c6
Xi

A

]
+ O

(
1

c8

)
, (3.16)

where qi
A is defined by equation (3.5b); F is a general functional of the positions and velocities,

F ≡ F [yA, vA], and Xi
A denotes some ‘counter’ term depending on positions and velocities

only, Xi
A ≡ Xi

A[yB, vB]. We recall that qi
A is composed of 2PN and 3PN terms, which are

easily computed from the Lagrangian (4.1). The function F must start at the 2PN order; in
addition, we assume that it contains all possible generic terms at 3PN. Finally, as explained
above the counter term Xi

A is purely of the order of 3PN. We now replace both equations (3.15)
and (3.16) into L′′ given by (3.14) and investigate the occurrence of accelerations. Among
the terms we recognize the combination L −∑

A ai
Aq

i
A, which is free of any accelerations at

the 3PN order. We also transfer several acceleration terms into the total time derivative of F
as before. Finally, we find that the only remaining accelerations in L′′ are contained in the
particular combination of terms∑

A

(
1

c2

[
qi
A +

∂F

∂vi
A

]
Ci

A − 1

c6
ai
AX

i
A

)
+ O

(
1

c8

)
.
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As all the terms in that combination are linear in the accelerations, we see that for any given
function F there is a unique choice of the term Xi

A (for each particle) such that all the remaining
accelerations are cancelled out, namely

1

c6
Xi

A =
∑
B

1

c2

[
q
j

B +
∂F

∂v
j

B

]
∂C

j

B

∂ai
A

+ O
(

1

c8

)
. (3.17)

With the latter choice, the contact transformation (3.16), defined for any F , yields a Lagrangian
L′′ whose only accelerations come from (minus) the total time derivative of F . Therefore, the
3PN Lagrangian L′′′ = L′′ + dF

dt is at once physically equivalent to L′′, L′ and L, and free of
accelerations. Our result then reads

L′′′[yA, vA] = L +
∑
A

δL

δyi
A

δyi
A +

dF

dt
+ O

(
1

c8

)
. (3.18)

Recall the large freedom we still have on the definition of L′′′, since we constructed it for any
functional F of the positions and velocities at the 2PN and 3PN orders.

In this paper we shall be able to determine uniquely the function F by the requirement that
the Lagrangian L′′′ be exactly the ADM Lagrangian associated with the ADM (or ADM-type)
Hamiltonian published by Damour et al [24]. We shall not give the details of the computation
since it consists merely of parametrizing the most general function F , constructed with the
dynamical variables of the problem and having a compatible dimension, by means of some
arbitrary constant parameters, and showing that all these constants are uniquely fixed by the
condition of matching to the ADM Hamiltonian. We find indeed, in complete agreement with
[25], that there is a unique set of constants for which this works. In particular, the equivalence
is possible if and only if the undetermined constant λ appearing in the harmonic-coordinate
formalism [29] is related to the constantωstatic of Jaranowski and Schäfer [22] by equation (1.1).
Note that the latter matching also shows that the logarithms ln

(
r12
r ′

1

)
and ln

(
r12
r ′

2

)
present in the

harmonic-coordinate Lagrangian (4.1), where r ′
1 and r ′

2 denote some regularization constants,
are eliminated by this contact transformation, in agreement with the fact proved in [29] that
the logarithms, and the constants r ′

1 and r ′
2 therein, can be gauged away. See equation (4.9)

below for the complete expression of the function F .
Finally, with F now fully specified by the equivalence with [24], we obtain the ordinary

ADM-type Lagrangian

LADM = L +
∑
A

δL

δyi
A

δyi
A +

dF

dt
, (3.19)

given explicitly at the 3PN order by equation (4.11) below, in which, as mentioned above, we
shall replace the ‘dummy’ variables used in the computation, yi

A and vi
A, by the real dynamical

variables in pseudo-ADM coordinates, Y i
A and V i

A. The ADM momentum conjugate to the
velocity is

P i
A = ∂LADM

∂vi
A

= pi
A +

δ

δvi
A

(∑
B

δy
j

B

δL

δy
j

B

)
+

∂F

∂yi
A

, (3.20)

and the corresponding Hamiltonian follows from the ordinary Legendre transformation

HADM =
∑
A

P i
Av

i
A − LADM. (3.21)

See equation (4.12) for the complete 3PN expression of this Hamiltonian (as a function of Y i
A

and P i
A). (We have checked that the second equality in (3.20) is true at 3PN order.) Note that,
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strictly speaking, HADM is not the ADM one, as it differs from it by a shift in phase-space
coordinates at the 3PN order which is given in [24]. Indeed, the ADM Hamiltonian at the 3PN
order is not ordinary, as it depends on the positions and momenta as well as on their derivatives
[21]. However, this is not a concern for our purpose, since we are interested in proving the
equivalence between our approach [26–29] and that of [21–25], that is in finding the existence
of a unique transformation connecting both works, in whatever coordinate systems the two
approaches found it convenient to use. We think that the equivalence found in this paper and
in [25] convincingly confirms the correctness of the result. This equivalence is especially
important in view of the different procedures adopted by the two groups to treat the point-mass
divergences (see section 2 for a discussion).

4. Results

4.1. Conserved quantities in harmonic coordinates at the 3PN order

We first exhibit a generalized Lagrangian from which we derive the 3PN equations of motion
of two compact objects as they were obtained in harmonic coordinates; see equations (7.16)
in [29]. The Lagrangian corresponds only to the conservative part of the equations, which
excludes the radiation reaction term at the 2.5PN order. To compute it we proceed by
guesswork, and find the occurrence of terms depending on accelerations at the 2PN and 3PN
orders. The Lagrangian is chosen to be linear in the accelerations, and to agree at the 2PN
approximation with the Lagrangian obtained in [11]. The result is

L = Gm1m2

2r12
+

m1v
2
1

2

+
1

c2

{
−G2m2

1m2

2r2
12

+
m1v

4
1

8
+

Gm1m2

r12

(− 1
4 (n12v1)(n12v2) + 3

2v
2
1 − 7

4 (v1v2)
)}

+
1

c4

{
G3m3

1m2

2r3
12

+
19G3m2

1m
2
2

8r3
12

+
G2m2

1m2

r2
12

(
7
2 (n12v1)

2 − 7
2 (n12v1)(n12v2)

+ 1
2 (n12v2)

2 + 1
4v

2
1 − 7

4 (v1v2) + 7
4v

2
2

)
+
Gm1m2

r12

(
3

16 (n12v1)
2(n12v2)

2 − 7
8 (n12v2)

2v2
1 + 7

8v
4
1 + 3

4 (n12v1)(n12v2)(v1v2)

−2v2
1(v1v2) + 1

8 (v1v2)
2 + 15

16v
2
1v

2
2

)
+

m1v
6
1

16

+Gm1m2
(− 7

4 (a1v2)(n12v2) − 1
8 (n12a1)(n12v2)

2 + 7
8 (n12a1)v

2
2

)}

+
1

c6

{
G2m2

1m2

r2
12

(
13
18 (n12v1)

4 + 83
18 (n12v1)

3(n12v2) − 35
6 (n12v1)

2(n12v2)
2

− 245
24 (n12v1)

2v2
1 + 179

12 (n12v1)(n12v2)v
2
1 − 235

24 (n12v2)
2v2

1 + 373
48 v4

1

+ 529
24 (n12v1)

2(v1v2) − 97
6 (n12v1)(n12v2)(v1v2) − 719

24 v2
1(v1v2) + 463

24 (v1v2)
2

− 7
24 (n12v1)

2v2
2 − 1

2 (n12v1)(n12v2)v
2
2 + 1

4 (n12v2)
2v2

2 + 463
48 v2

1v
2
2

− 19
2 (v1v2)v

2
2 + 45

16v
4
2

)
+

5m1v
8
1

128
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+Gm1m2
(

3
8 (a1v2)(n12v1)(n12v2)

2 + 5
12 (a1v2)(n12v2)

3

+ 1
8 (n12a1)(n12v1)(n12v2)

3 + 1
16 (n12a1)(n12v2)

4 + 11
4 (a1v1)(n12v2)v

2
1

−(a1v2)(n12v2)v
2
1 − 2(a1v1)(n12v2)(v1v2) + 1

4 (a1v2)(n12v2)(v1v2)

+ 3
8 (n12a1)(n12v2)

2(v1v2) − 5
8 (n12a1)(n12v1)

2v2
2 + 15

8 (a1v1)(n12v2)v
2
2

− 15
8 (a1v2)(n12v2)v

2
2 − 1

2 (n12a1)(n12v1)(n12v2)v
2
2 − 5

16 (n12a1)(n12v2)
2v2

2

)
+
G2m2

1m2

r12

(− 235
24 (a2v1)(n12v1) − 29

24 (n12a2)(n12v1)
2 − 235

24 (a1v2)(n12v2)

− 17
6 (n12a1)(n12v2)

2 + 185
16 (n12a1)v

2
1 − 235

48 (n12a2)v
2
1 − 185

8 (n12a1)(v1v2)

+ 20
3 (n12a1)v

2
2

)
+
Gm1m2

r12

(− 5
32 (n12v1)

3(n12v2)
3 + 1

8 (n12v1)(n12v2)
3v2

1 + 5
8 (n12v2)

4v2
1

− 11
16 (n12v1)(n12v2)v

4
1 + 1

4 (n12v2)
2v4

1 + 11
16v

6
1 − 15

32 (n12v1)
2(n12v2)

2(v1v2)

+(n12v1)(n12v2)v
2
1(v1v2) + 3

8 (n12v2)
2v2

1(v1v2) − 13
16v

4
1(v1v2)

+ 5
16 (n12v1)(n12v2)(v1v2)

2 + 1
16 (v1v2)

3 − 5
8 (n12v1)

2v2
1v

2
2

− 23
32 (n12v1)(n12v2)v

2
1v

2
2 + 1

16v
4
1v

2
2 − 1

32v
2
1(v1v2)v

2
2

)
−3G4m4

1m2

8r4
12

+
G4m3

1m
2
2

r4
12

(
−5809

280
+

11

3
λ +

22

3
ln

(
r12

r ′
1

))

+
G3m2

1m
2
2

r3
12

(
383
24 (n12v1)

2 − 889
48 (n12v1)(n12v2) − 123

64 (n12v1)
2π2

+ 123
64 (n12v1)(n12v2)π

2 − 305
72 v2

1 + 41
64π

2v2
1 + 439

144 (v1v2) − 41
64π

2(v1v2)
)

+
G3m3

1m2

r3
12

(
−8243

210
(n12v1)

2 +
15 541

420
(n12v1)(n12v2) +

3

2
(n12v2)

2

+
15 611

1260
v2

1 − 17 501

1260
(v1v2) +

5

4
v2

2 + 22(n12v1)
2 ln

(
r12

r ′
1

)

−22(n12v1)(n12v2) ln

(
r12

r ′
1

)
− 22

3
v2

1 ln

(
r12

r ′
1

)
+

22

3
(v1v2) ln

(
r12

r ′
1

))}

+1 ↔ 2 + O
(

1

c7

)
. (4.1)

In our notation, r12 = |y1 − y2|, n12 = (y1 − y2)/r12, and the scalar products are written,
for example, as (n12v2) = n12 · v2. To the terms given explicitly above, we have to add
the terms corresponding to the relabelling 1 ↔ 2, including those that are symmetric under
the label exchange. Note the presence of the constant λ which is the only unknown physical
parameter in this Lagrangian, and of the two unknown gauge constants r ′

1 and r ′
2 (we follow

exactly the notation of [29]). The Lagrangian presented here is not the only admissible one, as
we can always add to it an arbitrary total time derivative (double-zero terms would make the
Lagrangian nonlinear in the accelerations). We have checked that our Lagrangian (4.1) does
indeed differ from the one given by equations (5.4)–(5.10) in [25] by a total time derivative.
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Next we present the expressions of the conserved integrals of the 3PN harmonic-coordinate
motion as constructed in section 3.1. These expressions involve only the relativistic 1PN, 2PN
and 3PN terms corresponding to the conservative part of the dynamics at the 3PN order. The
radiation reaction damping effect is added afterwards. All the quantities we present depend
only on the positions and velocities, because all accelerations therein have been systematically
order-reduced by means of the equations of motion. The energy E reads

E = m1v
2
1

2
− Gm1m2

2r12

+
1

c2

{
G2m2

1m2

2r2
12

+
3m1v

4
1

8
+

Gm1m2

r12

(− 1
4 (n12v1)(n12v2) + 3

2v
2
1 − 7

4 (v1v2)
)}

+
1

c4

{
−G3m3

1m2

2r3
12

− 19G3m2
1m

2
2

8r3
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+
5m1v

6
1

16
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3
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1

− 13
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1 + 21
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2 − 3

2v
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1 + 7

4v
2
2

)}

+
1
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{
35m1v
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+
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1
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. (4.2)

We find that this energy is in agreement with the expression obtained in [29] by guesswork,
starting directly from the equations of motion. The logarithms ln

(
r12
r ′

1

)
and ln

(
r12
r ′
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)
take the

form of a gauge transformation of the energy (see equation (6.16) in [29]). Accordingly, they
will never enter a physical result such as the circular-orbit energy when expressed in terms of
the orbital frequency of the circular motion (see [26]). Such is not the case for the constant
λ which does enter the invariant energy. The total linear momentum P i at the 3PN order is
given by
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Next, the 3PN angular momentum J i is
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. (4.4)

The last constant of the motion is the vector Ki . We prefer to present the vector Gi = P it +Ki

which represents the centre-of-mass position and varies linearly with time,
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We checked that this expression of the harmonic-coordinate centre of mass is changed under the
contact transformation into the ADM-coordinate expression which is given by equations (16)–
(22) in [24]. Note that the energy E is the only one among these integrals of the 3PN motion
that depends on the unknown constant λ. The other integrals P i , J i and Gi do not depend on
λ and therefore are entirely determined.

The latter Noetherian quantities are no longer conserved when we take into account the
radiation reaction effect at the 2.5PN order. In order to express the resulting balance equations
in the best way, we modify of all these quantities by certain terms of the order of 2.5PN and
find that the right-hand sides of the equations take the form appropriate for a radiative flux at
infinity. We pose
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as well as K̃i = G̃i − t P̃ i . Then, the 3PN balance equations are given by

dẼ
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, (4.7a)

dP̃ i

dt
= O

(
1

c7

)
, (4.7b)

dJ̃ i

dt
= − 2G

5c5
εijk

d2Qjl

dt2

d3Qkl

dt3
+ O

(
1

c7

)
, (4.7c)

dK̃i

dt
= O

(
1

c7

)
, (4.7d)

where the Newtonian trace-free quadrupole moment is Qij = m1(y
i
1y

j

1 − 1
3δ

ij y2
1 ) + 1 ↔ 2.

4.2. Contact transformation and the ADM Hamiltonian at the 3PN order

Our final result for the contact transformation (3.16) is as follows. The first term in (3.16)
is composed of the conjugate momentum of the acceleration and is readily obtained by
differentiating (4.1):

qi
1 = 1

c4

{
ni

12

(− 1
8Gm1m2(n12v2)

2 + 7
8Gm1m2v

2
2

)− 7
4Gm1m2(n12v2)v

i
2

}
+

1

c6

{
ni

12

(
G2m2

1m2

r12

(− 17
6 (n12v2)

2 + 185
16 v2

1 − 185
8 (v1v2) + 20

3 v2
2

)
+
G2m1m

2
2

r12

(
29
24 (n12v2)

2 + 235
48 v2

2

)
+ Gm1m2

(
1
8 (n12v1)(n12v2)

3 + 1
16 (n12v2)

4

+ 3
8 (n12v2)

2(v1v2) − 5
8 (n12v1)

2v2
2 − 1

2 (n12v1)(n12v2)v
2
2 − 5

16 (n12v2)
2v2

2

))
+vi

1

(
Gm1m2

(
11
4 (n12v2)v

2
1 − 2(n12v2)(v1v2) + 15

8 (n12v2)v
2
2

))
+vi

2

(
−235G2m2

1m2

24r12
(n12v2) +

235G2m1m
2
2

24r12
(n12v2)

+Gm1m2
(

3
8 (n12v1)(n12v2)

2 + 5
12 (n12v2)

3 − (n12v2)v
2
1

+ 1
4 (n12v2)(v1v2) − 15

8 (n12v2)v
2
2

))}
+ O

(
1

c7

)
. (4.8)

The second term in (3.16) involves the function F that constitutes the only possible freedom
to adjust in order to match the harmonic-coordinate and ADM Hamiltonian formalisms. This
F was determined uniquely as

F = 1

c4

{
G2m2

1m2

r12

(
7
4 (n12v1) − 1

4 (n12v2)
)

+
Gm1m2

4
(n12v2)v

2
1

}

+
1

c6

{
G2m2

1m2

r12

(− 91
144 (n12v1)

3 + 21
16 (n12v1)

2(n12v2) − 113
24 (n12v1)v

2
1
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8 (n12v2)v

2
1 + 195

16 (n12v1)(v1v2) − 3
4 (n12v1)v

2
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8 (n12v2)v
2
2

)
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+Gm1m2
(− 1

16 (n12v1)(n12v2)
2v2

1 − 5
24 (n12v2)

3v2
1 − 1

2 (n12v2)v
4
1

+ 1
8 (n12v2)v

2
1(v1v2) + 5

16 (n12v1)v
2
1v

2
2

)
+
G3m2

1m
2
2

r2
12

(
245
18 (n12v1) − 21

32 (n12v1)π
2
)

+
G3m3

1m2

r2
12

(
−25 867

2520
(n12v1) − 3

4
(n12v2) +

22

3
(n12v1) ln

(
r12

r ′
1

))}

+1 ↔ 2 + O
(

1

c7

)
. (4.9)

Note the dependence of F on the logarithms, namely

22

3

G3m3
1m2

c6r2
12

(n12v1) ln

(
r12

r ′
1

)
− 22

3

G3m1m
3
2

c6r2
12

(n12v2) ln

(
r12

r ′
2

)
,

which is necessary in order for the contact transformation to remove the logarithms of the
harmonic-coordinate Lagrangian (4.1). This result can be checked to be in agreement with the
coordinate transformation given by equations (7.2) in [29]. The third term in (3.16) involves
a correction term, purely of the order of 3PN, which is defined by (3.17). For this term we
obtain

1

c6
Xi

1 = 1

c6

{
ni

12

(
−G3m3

1m2

r2
12

− 49

4

G3m2
1m

2
2

r2
12

− 3

4

G3m1m
3
2

r2
12

+
G2m2

1m2

r12

(
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8 (n12v1)

2 − 1
4 (n12v1)(n12v2) − 27

8 v2
1

)
+
G2m1m

2
2

r12

(
3
8 (n12v2)

2 − 1
8v

2
1 − 15

8 v2
2

)
+ Gm1m2

(
1

16 (n12v2)
2v2

1 − 5
16v

2
1v

2
2

))

+vi
1

(
35G2m2

1m2

8r12
(n12v1) +

G2m1m
2
2

r12

(− 1
4 (n12v1) − 3

2 (n12v2)
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+Gm1m2
(

1
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2 − 3
4 (n12v2)v

2
1 + 7

4 (n12v2)(v1v2) − 5
8 (n12v1)v

2
2

))

+vi
2

(
−7G2m2

1m2

4r12
(n12v1) +

21G2m1m
2
2

4r12
(n12v2) +

7Gm1m2

8
(n12v2)v

2
1

)}

+O
(

1

c7

)
. (4.10)

The term Xi
2 is obtained by relabelling 1 ↔ 2. With those results we obtain the ADM

Lagrangian (3.19) which is an ordinary Lagrangian, not containing any accelerations, and
furthermore not containing any logarithms. Though the investigations in section 3.2 were
done with the harmonic-coordinate quantities taken as ‘dummy’ variables, we must present
here the ADM Lagrangian in terms of the variables corresponding to the motion in ADM
coordinates. We denote them exactly like in harmonic coordinates but with uppercase letters,
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e.g. R12 = |Y1 − Y2|, N12 = (Y1 − Y2)/R12, (N12V2) = N12 · V2,

LADM = Gm1m2

2R12
+

1

2
m1V

2
1 +

1

c2

{
−G2m2

1m2

2R2
12

+
1

8
m1V

4
1

+
Gm1m2

R12

(− 1
4 (N12V1)(N12V2) + 3

2V
2
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4 (V1V2)

)}

+
1

c4

{
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+
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2
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+
1
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32π

2
)

+
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2
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2
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3 − 5
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2V 2
1 V

2
2 − 9

32 (N12V1)(N12V2)V
2
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2

2
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4
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)
+
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2
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2V 2
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1 + 5
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(
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(

1

c7

)
. (4.11)
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The corresponding ADM (or, rather, ADM-type [24]) Hamiltonian is given by the ordinary
Legendre transformation (3.21) as

HADM = −Gm1m2

2R12
+

P 2
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2m1
+
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. (4.12)

This result is in perfect agreement with the expression obtained by Damour et al [24]. (Note
that in their published result, equation (12) in [24], the following terms are missing:

G2

c6r2
12

(− 55
12m1 − 193

48 m2
) (N12P2)

2P 2
1

m1m2
+ 1 ↔ 2.

This is a misprint which has been corrected in an erratum [24].) Finally, we recall that
the agreement works if and only if our undetermined constant λ is related to their static-
ambiguity constant ωstatic by equation (1.1), and their kinetic-ambiguity constant takes the
value ωkinetic = 41

24 . This completes the proof of the equivalence of the harmonic-coordinate
and ADM-Hamiltonian approaches to the equations of motion of compact binaries at the 3PN
order.
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