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Thirty loci identified for heart rate response to
exercise and recovery implicate autonomic nervous
system
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Evan Tzanis1,3, Michele Orini 4,5, Andrew Tinker1,3, Pier D. Lambiase2,4 & Patricia B. Munroe 1,3

Impaired capacity to increase heart rate (HR) during exercise (ΔHRex), and a reduced rate of

recovery post-exercise (ΔHRrec) are associated with higher cardiovascular mortality rates.

Currently, the genetic basis of both phenotypes remains to be elucidated. We conduct

genome-wide association studies (GWASs) for ΔHRex and ΔHRrec in ~40,000 individuals,

followed by replication in ~27,000 independent samples, all from UK Biobank. Six and seven

single-nucleotide polymorphisms for ΔHRex and ΔHRrec, respectively, formally replicate. In a

full data set GWAS, eight further loci for ΔHRex and nine for ΔHRrec are genome-wide

significant (P≤ 5 × 10−8). In total, 30 loci are discovered, 8 being common across traits.

Processes of neural development and modulation of adrenergic activity by the autonomic

nervous system are enriched in these results. Our findings reinforce current understanding of

HR response to exercise and recovery and could guide future studies evaluating its con-

tribution to cardiovascular risk prediction.
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Increased resting heart rate (HR) has been demonstrated to be
an independent risk factor for cardiovascular mortality even in
healthy individuals1–3. The heritability of resting HR is esti-

mated to be 26–32% from family studies4,5, and 55–63% in twin
studies6. Consequently, genetic association studies have been
undertaken to detect genetic determinants of resting HR. Seventy-
three loci have been identified to date7–14, and a recent study
including 64 loci that were robustly validated accounted for 2.5%
of the trait variance7.

Less is known about the genetic basis of both HR response to
exercise and to recovery. Impaired capacity to increase HR during
exercise (chronotropic incompetence) and a reduced rate of
recovery post exercise (sustained sympathetic activation) have
been associated with all-cause and cardiovascular mortality in
both healthy individuals and those with heart failure15–18. Fur-
thermore, the haemodynamic response to exercise and to recov-
ery is suggested to have a significant heritable component19. A
genome-wide association study (GWAS) including up to 100,000
variants has been undertaken for peak HR and recovery HR
during an exercise test in 1238 individuals from the Framingham
Heart Study. No genome-wide significant (GWS) loci were found
for any of the two traits20. The genetic basis of HR response to
exercise and to recovery has only recently been studied21.

The identification of genetic loci may aid prognosis and inform
the development of new HR modulatory agents, which are known
to reduce mortality in heart failure22. In addition, it could provide
new insights into the development of arrhythmias including
autonomic effects modulating the conduction-repolarization
dynamics of the myocardium with relevance to new anti-
arrhythmic drug targets.

The aim of this study is to discover single-nucleotide poly-
morphisms (SNPs) associated with the responses of HR to
exercise and to recovery. We analyse automated HR measure-
ments and electrocardiogram (ECG) recordings from individuals

who participated in the ‘Cardio test’, thereafter referred to as the
exercise test, from the UK Biobank (UKB) study. Two phenotypes
are studied: (1) HR response to exercise (ΔHRex) and (2) HR
response to recovery (1 min post-exercise, ΔHRrec). We perform a
discovery GWAS for each trait in ~40,000 individuals of Eur-
opean ancestry, and a validation experiment in the remaining
~27,000 samples, all within UKB. We next conduct a full data set
GWAS including all individuals (~67,000). Bioinformatics ana-
lyses of the newly identified loci for each trait provide new
insights into potential causal candidate genes and biological
mechanisms.

Six and seven SNPs for ΔHRex and ΔHRrec, respectively, for-
mally replicate. In a full data set GWAS, eight further loci for
ΔHRex and nine for ΔHRrec are genome-wide significant (P ≤ 5 ×
10−8). In total, 30 loci are discovered, 8 being common across
traits. Processes of neural development and modulation of adre-
nergic activity by the autonomic nervous system are enriched in
these results. Our findings reinforce current understanding of HR
response to exercise and recovery and will guide future studies
evaluating its contribution to cardiovascular risk prediction.

Results
Identification of loci associated with ΔHRex and ΔHRrec. An
overview of the study design is provided in Fig. 1. The demo-
graphics of the discovery and replication samples did not sig-
nificantly differ (Supplementary Table 1). In a discovery phase,
genome-wide association results of ~7.8 million SNPs from
~40,000 individuals of European ancestry from UKB were ana-
lysed for each trait, ΔHRex and ΔHRrec (Methods; Supplementary
Table 2 and Supplementary Data 1). Three genome-wide sig-
nificant (P ≤ 5 × 10−8) loci were found for ΔHRex, and six for
ΔHRrec (Supplementary Tables 2 and Supplementary Data 1).

Using a significance threshold of P < 1 × 10−6, 14 and 16
variants (considering one lead SNP per 1Mb region) were taken

(N = 39,650)
ΔHR rec∼SNPs + sex + age + BMI + resting HR +

resting HR2 + UKBB vs UKBL  

GWAS on HR response to exercise and to recovery in UK Biobank

HR response to exercise (ΔHR ex) HR response to recovery (ΔHR rec)

Discovery analysis
(N = 39,735)

ΔHR ex∼SNPs + sex + age + BMI + resting HR +
resting HR2 + UKBB vs UKBL  

Discovery analysis 

SNPs with P < 1 x 10–6 were selected for follow up
For SNPs with genomic distance < ±500 Kb, the SNP with the lowest P-value was selected.
14 SNPs selected for replication for ΔHR ex and 16 SNPs selected for replication ΔHR rec
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Fig. 1 Flowchart of the analytical 3-stage approach. HR heart rate, ΔHRex changes in HR during exercise, ΔHRrec changes in HR 1 min post-exercise, SNP:
single-nucleotide polymorphism, BMI: body mass index, UKBB: UK Biobank genetic array, UKBL: UK BiLEVE genetic array, UKBB vs. UKBL: binary indicator
variable for UK Biobank versus UK BiLEVE to adjust for the different genotyping chips, MAF: minor allele frequency, HWE: Hardy–Weinberg Equilibrium,
INFO: parameter indicating the quality of imputation, HRC: Haplotype Reference Consortium
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forward for replication for ΔHRex and ΔHRrec, respectively, in
~27,000 independent samples from UKB (Methods).

Six of the selected SNPs for ΔHRex formally replicated
(P ≤ 0.05/14= 0.00356) and all had concordant directions of
effect (Table 1). Regarding ΔHRrec, 7 SNPs were formally
replicated (P ≤ 0.05/16= 0.0031), all showing as well
concordant directions of effect (Table 2). The range of magnitude
of the β estimates for these SNPs was 0.29–0.86 bpm per allele for
ΔHRex (Table 1) and 0.26–0.67 bpm for ΔHRrec (Table 2).

We next performed a full data set GWAS for each trait
(Methods). Manhattan plots including the discovery and full data
set GWAS results are shown in Fig. 2 and corresponding QQ
plots in Supplementary Fig. 1. Eight additional SNPs reached
genome-wide significance for ΔHRex and 9 SNPs for ΔHRrec,
respectively, all with concordant directions of effect in the full
GWAS data set. All variants were more significant in the full data
set than the discovery data set alone. Altogether, across both the
replication stage and full data set GWAS, 14 loci were identified
for ΔHRex and 16 loci for ΔHRrec (Tables 1 and 2, Supplementary
Tables 3 and 4, Supplementary Fig. 2).

Eight loci (1 Mb regions) were associated with both traits
(Tables 1 and 2). Two of the lead SNPs were identical (RNF220

and MCTP2) for both traits, five were in high linkage
disequilibrium (LD; r2≥0.8 at SCN10A, SNCA1P, CAV2, PAX2
and LINC00477-SOX5), thus tagging the same signal, and one
variant at SYT10 was in relatively low LD (with the variant for the
other trait (r2= 0.32).

Conditional analysis showed evidence for two secondary
independent signals, rs2539671 at the BCL11A locus and
rs17180489 at the RGS6 locus, associated with ΔHRrec (Table 2,
Supplementary Fig. 3). The secondary signal at BCL11A was
located 147 Kb away from the lead SNP (rs1372876) and it was
not in LD with any SNP known to be associated with resting HR
or HR variability (HRV, r2 < 0.1). The secondary signal at the
RGS6 locus was located 41 Kb away from the lead SNP
(rs150330648) and has been previously reported to be associated
with resting HR7.

The heritability estimations (Methods) of ΔHRex and ΔHRrec

were 17.1% and 12.0%, respectively, and their respective
genetic correlation was 75.5%. In addition, the 14 newly
identified lead SNPs for ΔHRex explained 0.8% of the trait
variance, whereas the 16 lead SNPs and the two secondary signals
at the BCL11A and RGS6 loci explained 0.79% of ΔHRrec

variance.

Table 1 Loci associated with HR response to exercise

Discovery Replication Full

Locus SNP CHR BP EA EAF P N β SE P N β SE P N β SE

RNF220* rs272564 1 45012273 A 0.716 4.30E-05 38757 0.360 0.088 1.10E-08 25614 0.619 0.108 7.40E-12 65166 0.462 0.068
CCDC141 rs10497529 2 179839888 G 0.964 7.80E-07 39735 −1.049 0.212 9.10E-04 26261 −0.860 0.259 2.50E-09 66811 −0.968 0.162
SCN10A* rs7433723 3 38784957 G 0.420 4.80E-06 39674 −0.364 0.080 7.40E-04 26221 −0.333 0.099 4.50E-08 66709 −0.335 0.061
SNCA1P* rs4836027 5 121866990 T 0.693 5.70E-13 39214 0.617 0.086 1.20E-08 25917 0.599 0.105 9.90E-21 65935 0.613 0.066
PPIL1 rs236352 6 36817113 A 0.341 4.20E-06 39213 0.383 0.083 9.40E-05 25916 0.401 0.103 6.40E-10 65933 0.395 0.064
CAV2* rs28495552 7 116113744 C 0.485 6.40E-06 39671 −0.355 0.079 1.70E-06 26219 −0.467 0.097 2.80E-11 66703 −0.403 0.061
RP1L1 rs58065122 8 10526186 G 0.582 6.60E-08 39187 −0.434 0.080 2.90E-03 25899 −0.294 0.099 3.90E-10 65889 −0.385 0.062
PAX2* rs11190709 10 102552663 G 0.112 1.10E-04 39359 0.484 0.125 2.70E-08 26013 0.852 0.153 1.30E-11 66180 0.649 0.096
SOX5* rs4246224 12 24784139 G 0.851 2.30E-10 39716 −0.702 0.111 5.40E-06 26248 −0.615 0.135 1.80E-14 66778 −0.649 0.085
SYT10* rs1343676 12 33537387 T 0.494 2.20E-07 39537 −0.408 0.079 3.10E-05 26130 −0.404 0.097 1.50E-11 66477 −0.407 0.060
HMGA2 rs1480470 12 66412130 A 0.371 7.90E-06 39139 0.367 0.082 3.30E-03 25867 0.294 0.100 3.40E-08 65810 0.347 0.063
MCTP2* rs12906962 15 95312071 T 0.680 5.60E-09 39222 0.496 0.085 1.10E-05 25922 0.461 0.105 3.50E-13 65949 0.475 0.065
TCF4 rs1125313 18 52859261 A 0.501 1.10E-05 39348 −0.349 0.079 1.30E-04 26005 −0.375 0.098 3.90E-09 66161 −0.359 0.061
POP4 rs7255293 19 30104198 A 0.580 9.60E-06 39405 0.354 0.080 3.40E-04 26043 0.352 0.098 3.20E-09 66257 0.363 0.061

The locus name indicates the gene that is in the closest proximity to the most associated SNP
Replicated SNPs are indicated in bold type
* indicates the SNP is the same or in high LD (r2 > 0.8) with a SNP associated with the other HR response trait
SNP single-nucleotide polymorphism, CHR Chromosome, BP Base pair Position, based on HG build 19, EA Effect allele, EAF Effect allele frequency from discovery data set, β Beta in beats per minute, SE
Standard Error, N effective number of participants, P P-value

Table 2 Loci associated with HR response to recovery

Discovery Replication Full

Locus SNP CHR BP EA EAF P N β SE P N β SE P N β SE

RNF220* rs272564 1 45012273 A 0.716 5.20E-06 38674 0.359 0.079 5.00E-05 25571 0.391 0.096 8.80E-10 65036 0.370 0.060
BCL11Aa rs1372876 2 60025963 A 0.414 1.10E-06 38731 −0.350 0.072 2.E-03 25608 −0.271 0.088 3.30E-09 65133 −0.326 0.055
SCN10A* rs6795970 3 38766675 A 0.404 4.80E-07 39650 −0.360 0.072 6.E-03 26216 −0.244 0.088 2.60E-08 66678 −0.306 0.055
CNTN3 rs6549649 3 74786491 G 0.559 1.20E-07 39438 −0.375 0.071 1.50E-03 26076 −0.275 0.087 1.40E-09 66321 −0.328 0.054
SNCA1P* rs1993875 5 121869310 G 0.697 1.00E-05 39185 0.339 0.077 1.80E-04 25908 0.352 0.094 9.50E-09 65895 0.338 0.059
ACHE rs3757868 7 100482720 G 0.815 1.10E-05 39602 0.396 0.090 1.50E-06 26184 0.539 0.112 6.90E-11 66597 0.454 0.070
CAV2* rs2109514 7 116159961 G 0.501 3.10E-08 39462 −0.391 0.071 2.80E-03 26092 −0.259 0.087 7.10E-10 66362 −0.334 0.054
CHRM2 rs6943656 7 136639436 A 0.842 1.40E-06 39113 0.466 0.097 1.00E-04 25861 0.462 0.119 2.30E-10 65775 0.470 0.074
PAX2* rs4917911 10 102559421 G 0.111 2.60E-08 39470 0.622 0.112 7.10E-07 26097 0.673 0.136 6.60E-15 66376 0.665 0.085
SOX5* rs112630705 12 24773919 G 0.851 1.10E-08 39625 −0.565 0.099 9.70E-04 26199 −0.397 0.120 3.20E-11 66636 −0.502 0.076
SYT10* rs2218650 12 33734783 A 0.641 2.50E-18 39522 0.642 0.073 1.40E-09 26131 0.545 0.090 1.10E-26 66463 0.602 0.056
ALG10B rs4533105 12 38214611 T 0.570 1.00E-08 38916 0.411 0.072 8.20E-06 25731 0.392 0.088 1.90E-13 65444 0.404 0.055
MED13L rs11067773 12 116228495 T 0.910 4.70E-07 39403 0.621 0.123 2.80E-05 26053 0.635 0.152 3.10E-11 66262 0.628 0.095
RGS6b rs150330648 14 72844765 G 0.987 1.70E-07 35768 1.734 0.331 6.10E-02 23649 0.765 0.408 4.30E-08 60150 1.395 0.255
MCTP2* rs12906962 15 95312071 T 0.680 2.40E-08 39139 0.425 0.076 2.E-02 25878 0.218 0.093 5.10E-09 65818 0.341 0.058
NDUFA11 rs12974991 19 5894584 G 0.912 3.30E-05 39532 0.512 0.123 5.20E-05 26138 0.616 0.152 2.10E-09 66479 0.568 0.095

The locus name indicates the gene that is in the closest proximity to the most associated SNP
Replicated SNPs are indicated in bold type
* indicates the SNP is the same or in high LD (r2 > 0.8) with a SNP associated with the other HR response trait
SNP single-nucleotide polymorphism, CHR Chromosome, BP Base pair Position, based on HG build 19, EA Effect allele, EAF Effect allele frequency from discovery data set, β Beta in beats per minute, SE
Standard Error, N effective number of participants, P P-value.
a Secondary SNP identified (rs2539671) at same locus using conditional analysis
b Secondary SNP identified (rs17180489) at same locus using conditional analysis
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Individuals taking beta-blockers were not excluded from our
analyses. Sensitivity analysis comparing the P values (ρ= 0.93
and ρ= 0.83 for ΔHRex and ΔHRrec, respectively) and the β
estimates (ρ= 0.99 and ρ= 0.96 for ΔHRex and ΔHRrec,
respectively) from the full GWAS results including or excluding
beta-blocker users showed that these were highly correlated,
indicating that inclusion of individuals receiving beta-blockers
has no relevant effect on our results (Supplementary Table 5).

Specificity of loci for ΔHRex and ΔHRrec. To assess whether the
loci identified in the full data set GWAS were specific to ΔHRex

and ΔHRrec, we performed an additional GWAS for resting HR in
the full cohort (~67,000) and conducted a lookup of lead SNPs
identified for the HR response to exercise and to recovery traits.
Genetic variants at five loci (SNCAIP, CAV2, RP1L1, HMGA2 and
POP4) for ΔHRex and at five loci (BCL11A, CNTN3, SNCAIP,
CAV2 and MED13L) for ΔHRrec were non-significant for resting
HR (P > 0.05; loci SNCAIP and CAV2 were in common). These
results indicate these SNPs may be specifically associated with HR
response traits (Supplementary Table 6). Variants at three loci
associated with ΔHRex (CCDC141, LINC00477 and SYT10) and
four loci associated with ΔHRrec (ACHE, CHRM2, LINC00477
and SYT10) were genome-wide significant for resting HR, with
two loci common to both traits (Supplementary Table 6, Fig. 3).

To further explore the relationship and overlap of our
discovered loci and those associated with resting HR or HRV,
we performed a reciprocal lookup of all published genome-wide
significant SNPs7,9,13 associated with resting HR (N= 73) and

one SNP reported for association with HRV23 in the HR response
to exercise and to recovery GWAS datasets. Prior work has
indicated there is an overlap of loci between resting HR and HRV,
with only one variant being solely associated with HRV23.
Imputed SNPs or good proxies (r2>0.8) were available for 68/73
SNPs associated with resting HR, and the one HRV variant
(Methods). For the ΔHRex trait, published resting HR SNPs at
four loci were genome-wide significant (SOX5, RNF220, SYT10
and PPIL1), while 25 additional loci were nominally significant
(5 × 10−8 < P < 0.05; Supplementary Data 2). For the ΔHRrec trait,
SNPs at seven resting HR loci (SYT10, SOX5, UFSP1, RNF220,
ALG10, BCL11A and CHRM2) and one SNP associated with HRV
at the NDUFA11 locus were genome-wide significant, while 21
variants were nominally associated (Supplementary Data 3). A
lookup of all published resting HR SNPs in our resting HR
GWAS results indicated 62/68 SNPs with significant associations
(P < 0.05), where 15 were genome-wide significant (Supplemen-
tary Data 4). The overlap of genome-wide significant loci across
resting HR and the HR response to exercise and to recovery traits
in our data set is illustrated in Fig. 3.

We observed an overlap of genome-wide significant loci
between resting HR and the HR response to exercise and recovery
traits. Notably, for ΔHRex apart from associations with the same
SNP or a proxy variant (r2≥0.8; n= 4), there were five additional
loci that mapped to the same chromosomal region as a resting
HR locus. The lead variant at these five loci was less than 1Mb
away (CCDC141, SCN10A, CAV2, PAX2 and SYT10) from the
lead variant of the respective resting HR loci. However, of these
five SNPs only the one at the SYT10 locus was in moderate LD
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Fig. 2Manhattan plots of ΔHRex and ΔHRrec in the full cohort analysis. Genome-wide association study for ΔHRex (a) and ΔHRrec (b) in 67,257 individuals
in the UK Biobank. P values, expressed as −log10(P), are plotted according to physical genomic locations by chromosome. Lead SNPs are marked by the
triangles. The crosses indicate the P values of these SNPs in the discovery data set. Crosses are encircled for SNPs that formally replicated. Locus names of
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04148-1

4 NATURE COMMUNICATIONS |  (2018) 9:1947 | DOI: 10.1038/s41467-018-04148-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(r2= 0.62) with the known resting HR SNP, while all other SNPs
were in very low LD (r2 < 0.1) with known resting HR SNPs. For
ΔHRrec, there were six SNPs associated with a known resting HR
variant (r2≥0.8) and six SNPs mapped to a known resting HR
locus based on distance of < 1Mb. Of these, two SNPs at CHRM2
and SYT10 were in moderate LD (r2>0.57), the four other SNPs at
SCN10A, CAV2, PAX2 and RGS6 were in low LD (r2 < 0.1,
Supplementary Table 7).

Sex-stratified analyses. The clinical course and incidence of
many cardiovascular states are well recognised to differ according
to gender24–26. Related to this, it has been suggested that females
have increased parasympathetic and decreased sympathetic con-
trol of HR with respect to males27. Since the autonomic nervous
system plays a key role in the HR response to exercise, we were
interested in whether there were sex-based differences in genomic
associations with HR response to exercise and recovery traits
between males and females. We performed a sex-stratified ana-
lysis in the full cohort (N= 67,257, with 35,455 females and
31,802 males) for each trait. We identified two additional (i.e., not
significantly associated in the primary analysis) new genome-wide
significant loci for the ΔHRex trait. One locus was only significant
(P < 5 × 10−8) in females (HLA-DRB5/HLA-DRB1, rs9270779,
P= 1.20 × 10−8) and one in males (TAF2, rs60717250,
P= 2 × 10−8, Supplementary Table 8). The identified SNPs at the
two loci were not in LD (r2<0.1) with other loci identified for
ΔHRex or with loci associated with resting HR. We did not
observe any sex specific loci for the ΔHRrec trait that were not
previously identified in the main analysis (Supplementary
Table 8).

Association of ΔHRex and ΔHRrec loci with other traits. To
explore shared mechanisms of disease, we assessed association of
our discovered SNPs (and their proxies, r2 ≥ 0.8) with other traits
from published GWAS (PhenoScanner, see URLs). We observed

genome-wide phenotype-genotype associations at four loci for
ΔHRex and four loci for ΔHRrec. Three loci (SCN10A,
LINC00477-SOX5 and SYT10) were common across traits (Sup-
plementary Table 9). The SNPs at SYT10, LINC00477-SOX5 and
SCN10A were all associated with resting HR and other ECG traits.
The SNP associated with ΔHRex at HMGA2 was associated with
aortic root size and height, and the SNP at ACHE for ΔHRrec was
associated with resting HR and other ECG traits. The SNP at the
HLA-DRB1/HLA-DRB5 locus associated with ΔHRex in females
was also significantly associated with inflammatory bowel disease
and ulcerative colitis.

A lookup of all SNPs associated with HR response to exercise
and to recovery (Tables 1 and 2) in the UKB Gene Atlas PheWAS
data set, a large database with association results from hundreds
of traits in UKB revealed no genome-wide significant associa-
tions. One SNP, rs10497529 at CCDC141 was associated (P=
5.24 × 10−7) with code I45 conduction disorders.

Functional annotation of discovered loci. Four lead variants or
their close proxies (r2>0.8) mapping to CCDC141, SCN10A,
UFSP1 and NDUFA11 were annotated as missense variants
(Tables 1 and 2). Only one variant in CCDC141 was predicted to
be damaging using PolyPhen. This variant has previously been
reported to be associated with resting HR7. A close proxy
(rs372634318, r2= 0.86) of the SNP at the HLA-DRB1/HLA-
DRB5 locus associated with ΔHRex in females only is also a
missense variant and is predicted to be damaging using two
bioinformatics tools.

Regulatory variants at ΔHRex and ΔHRrec loci. As the majority
of HR response to exercise and to recovery associated SNPs are
non-coding, we also identified regulatory variants, that might
affect gene expression levels of their target genes. We interrogated
publicly available expression quantitative trait loci (eQTL) data-
sets through GTEx to highlight potential causal genes and
mechanisms at each of the newly identified loci for both HR
response traits. The ΔHRrec associated SNP, rs6549649 at CNTN3
was correlated (r2 > 0.8) with the top eQTL for CNTN3 levels in
brain nucleus accumbens basal ganglia (P= 3.42 × 10−8) and
spleen (P= 1.15 × 10−8). The ΔHRrec associated SNP, rs3757868
variant at the ACHE locus was associated with expression levels of
ACHE in the aorta (P= 8.37 × 10−12) and tibial artery (P=
2.04 × 10−12) and SSRT levels in tibial nerves (P= 7.38 × 10−9,
Supplementary Data 5).

Genetic variants may have a causal effect through regulatory
chromatin interactions. We investigated variants at the 30
independent loci associated with ΔHRex and ΔHRrec, as well as
those associated with gender specific associations. We identified
variants with regulatory potential using RegulomeDB28 and
found genes whose promoter regions form significant chromatin
interaction with them from a range of tissues, we report results
from brain, heart and adrenal Hi–C data. We found 32 potential
target genes in 17 HR response to exercise and to recovery loci
(Supplementary Data 6).

We performed DEPICT analyses to identify enriched pathways
and tissues for each HR response to exercise and to recovery trait.
We observed no significant results from this analysis. Subse-
quently, we performed pathway analyses using gprofiler including
only candidate genes indicated from eQTL and long-range
interaction results (Supplementary Table 10). These analyses
indicated enrichment for growth factor response and abnormal
autonomic nervous system physiology using ΔHRex candidate
genes and nervous system development and regulation of
potassium channel activity using ΔHRrec genes (Supplementary
Fig. 4).

Resting HR
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Fig. 3 Overlap of loci for ΔHRex, ΔHRrec and resting HR in the full cohort
GWAS. The locus names indicate the nearest annotated genes. A substantial
number of loci associated with ΔHRex and ΔHRrec were not associated with
resting HR and vice versa. The loci SOX5 and SYT10were identified in all three
traits. *: indicates loci that have previously been associated with resting HR
but did not reach genome-wide significance in our study
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We also observed HR response to exercise and to recovery loci
to be significantly enriched for DNase I hypersensitive sites
(DHSs, Supplementary Fig. 5). We evaluated regions containing
all ΔHRex loci (14 SNPs) and 18 SNPs associated with ΔHRrec

including the secondary signals at BCL11A and RGS6. The
highest enrichment for DHSs in ΔHRex loci was within regions
that are transcriptionally active in fetal kidney and fetal renal
cortex. For ΔHRrec we observed significant enrichment for DHSs
in fetal heart samples.

Genetic risk score analyses. We created genetic risk scores
(GRSs) for each trait to evaluate the impact of the combination of
all loci reported here on HR response and cardiovascular mor-
tality risk. We observed individuals in the highest quintile of the
distribution of the GRS had a HR response to exercise that was
3.15 (s.e. of 1.15) bpm lower than that of those in the lowest
quintile (P < 10−16). Regarding the GRS for the HR response to
recovery, individuals in the highest quintile of the distribution of
the GRS had a HR response to recovery that was 10.4 (s.e. of 1.13)
bpm lower than that of those in the lowest quintile (P < 10−16).
We did not observe significant associations between the GRSs and
cardiovascular mortality risk probably due to a lack of power.
There were a total of 118 victims (0.18%) in the full cohort of
~67,000 individuals up to March 2016).

Discussion
This study systematically investigates the genetic basis of HR
response to exercise and recovery using a robust framework
including independent discovery and validation samples. Dense
HRC imputation yielded a high-quality data set including ~7.8
million variants at minor allele frequencies (MAF)>1% for testing
in ~67,000 individuals29. The reliability of the phenotypes was
examined by analysing raw-ECG recordings to identify and
exclude any unreliable automated HR phenotypes before applying
genetic analysis.

This strategy allowed us to robustly validate six SNPs asso-
ciated with HR response to exercise and seven SNPs associated
with HR response to recovery. In a GWAS of the full data set, we
further identified eight and nine loci for each trait, respectively. In
total, 30 loci are reported therein and two additional loci from
sex-stratified analyses. In fact, our findings from the sex-stratified
analyses confirm that there are gender differences in the genetic
architecture of HR response to exercise and to recovery, sup-
porting conclusions from previous studies24–27.

Eight loci were common to both HR response to exercise and
recovery traits (Fig. 3). This was expected due to the relatively
high genotypic correlation between them (ρ= 0.75). The overlap
of loci between the HR response to exercise and to recovery traits
and resting HR in our study was smaller (6 loci, Fig. 3), probably
due to the lower phenotypic and genotypic correlations between
each trait with resting HR (phenotypic correlation of ρ=−0.30
and genotypic correlation of ρ= 0.41 for both traits). Small effect
sizes were observed for all SNPs reported in this study, having
similar magnitudes as variants previously associated with resting
HR (0.12–0.63 bpm per allele)7 (Tables 1 and 2).

In our data set, the heritability of resting HR, HR response to
exercise and to recovery was 18%, 17% and 12%, respectively,
suggesting that the response of HR to exercise and to recovery is
complex and largely affected by environmental contributions like
the resting HR. A recent study including ~150,000 individuals in
UKB has estimated a similar heritability of resting HR (21% using
BOLT-REML7), which suggests that our calculations for exercise
and recovery traits were sufficiently powered.

Bioinformatics analyses indicated several candidate genes at
loci specifically associated with HR response to exercise, recovery

or with both traits in our data set. We highlight the function of
four genes. For HR response to exercise, a potential candidate
gene is BTB (broad complex, tramtrack and bric à brac) Domain
Containing 9 (BTBD9). Although its specific function is difficult
to ascertain due to its ubiquitous expression, it has been shown
that BTB proteins play a role in synaptic plasticity and neuro-
transmission30. Notably, BTBD9 is among pathways related to the
regulation of the circadian rhythm31, which is known to be
involved in cardiac parasympathetic modulation32. Further evi-
dence of the involvement of BTBD9 in neurophysiology has been
suggested in other studies including disruption of sleep and
motor activity33.

Three new candidates are highlighted for the HR response to
recovery. CNTN3, which encodes Contactin-3 or BIG1, is part of
a subgroup of molecules belonging to the immunoglobulin
superfamily that are expressed exclusively in the nervous sys-
tem34. At present, CNTN3 expression on the cardiac neural axis is
unknown. However, the SNP associated with ΔHRrec was sig-
nificantly associated with changes in expression levels of CNTN3
in the nucleus accumbens (basal ganglia). Specifically, the allele
associated with a decrease in ΔHRrec was associated with
increased expression of CNTN3. Since reduced HR recovery is
likely to be a reflection of decreased vagal activity35, our work
suggests that CNTN3 may also be relevant to cardiac para-
sympathetic modulation. A second candidate gene indicated is
the Ca2+-dependent activator protein for secretion 1 (CAPS1)
gene at the FUT5 locus. CAPS1 is present in neurones and
endocrine cells, and is involved in mediating exocytosis from
large dense-core vesicles36. This is particularly relevant in the
adrenal medulla where it has been shown to affect catecholamine
release37. It is therefore plausible that the association between
CAPS1 and increased HR response to recovery is mediated by the
sympathetic nervous system. A third candidate gene is ALG10B,
which has been linked with the K(+) channel regulatory protein
KCR138, may regulate cardiac automaticity39. Consequently,
ALG10B could be important in reducing the heart rate during
recovery.

The bioinformatics and pathway analysis highlight the role of a
number of genes linked to autonomic nervous system activity and
cellular electrophysiology. It is recognised that HR response to
exercise is driven by an initial parasympathetic withdrawal and
then an increased sympathetic neural drive acting directly on the
sino-atrial node. This process involves baro-reflex resetting and
feedback from muscle mechanoreceptors40.

HR response to recovery is driven by a sympathetic withdrawal
and a parasympathetic reactivation to slow HR. It is interesting to
note that the DNase I hypersensitivity enrichment in renal tissue
identified by the FORGE analysis was associated with fetal kidney
and renal cortical tissue. This is where renin secreting juxtaglo-
merular cells reside, these determine angiotensin II levels and
systemic vascular resistance, and may modify sympathetic activity
and hence HR as a result of baro-receptor reflex effects. Our
pathway analysis results suggest that HR might be modified by an
increased potassium channel activity during repolarization. This
would allow the adaptation of the action potential duration to
changes in HR. In addition, the HR could also be reduced by the
activation of potassium currents around the resting membrane
potential that affect the pacemaking diastolic depolarisation in
sinoatrial cells. Thus, genes modulating both autonomic activity
and cardiac cellular electrophysiology, may play key roles in HR
responses to exercise and to recovery.

We did not observe any significant association between our
GRSs and cardiovascular mortality risk. This was in part expected
due to the design of the UKB study to recruit relatively healthy
individuals aged 40–69 years and the low number of victims at
the moment in this study41. However, we did observe that
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individuals in the highest quintile of the GRSs had a significantly
reduced capacity to adapt their HR to exercise and to recovery,
both indicators of cardiovascular mortality risk. These results are
encouraging, and we expect the lack of significant associations
between the GRSs and cardiovascular mortality risk might be due
to an issue of power, due to the reduced number of subjects in the
risk group and to the limited number of identified variants.
Future studies will permit expansion of these analyses in the full
(N~500,000) UKB cohort and in other datasets.

Our study has some limitations. Although we have utilised data
from one of the largest datasets with HR measured both during
exercise and recovery stages, we identified a total of 30 SNPs, of
which 13 formally replicated. Although the remaining identified
SNPs were genome-wide significant, they still require formal
replication in an independent data set. The relatively small
sample size available with these phenotypes might have also
hampered the discovery of additional loci that could contribute to
the heritability of these traits. Another potential limitation is that
the adjustment for resting HR might have underpowered the
identification of genetic signals with a similar impact on resting
HR and on HR response to exercise and to recovery traits. Finally,
the test was designed in a way that participants were at their sub-
maximal effort. Therefore, participants did not reach their max-
imum HR during the test and this might have limited the
quantitative span of our HR response to exercise and to recovery
traits.

Whilst our paper was under consideration a study investigating
HR response to exercise and recovery traits was published21.
Verweij et al performed a GWAS in ~ 50 k individuals using ECG
derived HR measurements in UKB. They identified 25 SNPs at 23
independent loci, with a P-value threshold of 8.3 × 10−9. As
expected, there is overlap between our findings and theirs: we
report 16 of their 23 loci. There are seven loci which were not
significantly associated in our analyses with either of our traits,
and we identified six loci that were not reported in their study.
The dissimilarities in findings may in part be explained by the
differences in our phenotype definitions. Although the trait of HR
response to exercise is similar in theory, Verweij et al.21 calculated
five HR response to recovery traits; of these, one (HRR50—the
response of HR 50 s after peak) would be the comparable trait to
HR response to recovery in our study. Other possible reasons for
the differences may include sample size; ours was slightly larger as
we used validated UKB HR measurements together with our in-
house derived ECG HR measurements.

In summary, our findings reinforce current understanding of
autonomic response to exercise and to recovery and will guide
future studies evaluating its contribution in cardiovascular risk
prediction as well as identifying new therapeutic targets to
modulate heart rate response to exercise and to recovery.

Methods
UK Biobank. UKB is a prospective study of 500,000 volunteers, comprising rela-
tively even numbers of men and women aged 40–69 years old at recruitment, with
extensive baseline and follow-up clinical, biochemical, genetic and outcome mea-
sures. The UKB study has approval from the North West Multi-Centre Research
Ethics Committee, and all participants provided informed consent.

Genotyping was performed by UKB using the Applied Biosystems UK BiLEVE
Axiom Array or the UKB AxiomTM Array41. SNPs were imputed centrally by
UKB using the Haplotype Reference Consortium (HRC) panel. Information on
UKB array design and protocols is available on the UKB website (URLs).

Exercise test protocol and data acquisition. The exercise test started with 15 s of
rest (pre-test), followed by 6 min of exercise (cycling) initially at constant load (2
min), then at increasing workload (4 min), and a 1 min recovery period without
pedalling. Automatic HR measurements were taken throughout the protocol and
were provided by UKB, together with the raw ECG recordings42.

Approximately 95,000 individuals participated in the exercise test using a
stationary bicycle in conjunction with a 4-lead electrocardiograph device at the

initial assessment (2006–2008), from which ~20,000 individuals were invited to the
first repeat assessment in 2011–2013.

Selection of individuals for analysis. An overview of the process used to select
individuals who participated in the exercise test for subsequent genetic analysis is
presented in Supplementary Fig. 6. From the ~95,000 individuals invited, 79,745
completed the test. Automated HR measurements provided by UKB (UKB HR
measurements) were available in 78,655 individuals. If available, data from the test
performed at initial assessment (63,972 individuals) were analysed; otherwise, data
from the first repeat assessment (14,683 individuals) were included in the analysis.

Validation of UKB HR measurements was performed by comparing them with
traits derived from available raw ECG recordings (N= 62,272; ECG HR
measurements) using our bespoke algorithms43. ECGs were selected for visual
inspection when ECG and UKB HR measurements did not match for resting, peak
HR or recovery HR. The visual inspection was to ensure whether the UKB HR
values could be trusted. UKB HR measurements were rejected if the ECG
recordings contained episodes without clear identifiable QRS complexes. In other
cases the mismatch in HR values was caused by failure of the algorithm to detect
QRS complexes. Detection of QRS complexes was then corrected by hand and the
UKB HR values were accepted for analysis. Correlation for resting HR, maximum
exercise and recovery was >0.9 (Supplementary Fig. 7). After visual inspection,
1,482 individuals were excluded. In 16,383 individuals’ validation was not possible
due to the absence of raw ECG recordings. However, the statistical distribution of
UKB HR measurements at rest, maximum exercise and recovery for these
individuals closely matched that of the validated measurements (Supplementary
Table 11) and traits from these individuals were included in the analysis. In total
77,173 individuals with reliable UKB HR measurements at three different phases of
the exercise test were used to derive our phenotypes of interest.

Genetic and phenotypic QC. Genetic quality control (QC) was performed on the
set of individuals who participated in the exercise test protocol (N= 95,216).
Individuals with bad genotype quality, provided by UKB, i.e. high missingness or
heterozygosity (N= 1472) and discordance between the self-reported sex and the
sex inferred from the genotypes (N= 982) were excluded41. We then restricted our
data set to individuals of European ancestry only (N= 85,522).

We used the k-means function in R as a clustering algorithm, to objectively and
statistically select the clusters according to information from PC1 and PC2. The k-
means algorithm ‘partitions the points into k groups such that the sum of squares
from points to the assigned cluster centres is minimised.’ Then, we applied k-
means separately to cluster according to each of PC1 and PC2, and initially only
with k= 4, for a 4-way clustering, to correspond to the 4 main ethnic clusters
within UKB: White, African, Asian and Chinese.

We then created an overall clustering, according to the intersections of the PC1-
4means-clustering and the PC2-4means-clustering, so that participants were only
categorised as ‘White’ overall, if they were contained in the ‘White’ cluster for both
PC1 and PC2. Next, we created an overall ‘Mixed/Other’ cluster, for any
participants, whose clustering differed between PC1 and PC2. Finally, we combined
the PCA ancestry clusters with the self-reported ethnicity. Individuals were only
included if the results PCA-clustering results matched the self-reported ancestry.
However, we count ‘mixed’, ‘other’ and ‘missing’ as being broad/uncertain self-
reported ethnicity, which have now been validated more objectively from the
genetic PCA data. Over the 77,173 individuals for whom it was possible to derive
the phenotypes, 69,353 complied with genetic QC and were of European ancestry
(Supplementary Fig. 8).

Before genetic analysis, we further excluded individuals (N= 2,317) based on
existing medical conditions known to affect HR (namely atrial fibrillation, history
of myocardial infarction or heart failure, (supra)-ventricular tachycardia, atrio-
ventricular nodal re-entrant tachycardia, second or third degree atrioventricular
block, and use of a pacemaker) and/or individuals on HR altering medications
(non-dihydropyridine calcium antagonists; Anatomic Therapeutic Chemical
(ATC) code C08D; digoxin (ATC code C01AA5), and amiodarone (ATC code
C01BD01; Supplementary Fig. 8).

Individuals with extreme UKB HR measurements at rest (<40 or >120 bpm),
peak exercise (>200 bpm) or at 1 min post-exercise (<40 or >200 bpm) were also
excluded. This led to N= 66,800 individuals with ΔHRex measurements and N=
66,665 individuals with ΔHRrec measurements for analysis. A total of N= 66,844
individuals with resting HR measurements were also available for analysis
(Supplementary Fig. 8).

Derivation of ΔHRex and ΔHRrec. HR response to exercise (ΔHRex) and HR
response to recovery (ΔHRrec) were computed from the resting HR, peak HR and
recovery HR, where resting HR was defined as the mean HR during pre-test period,
peak HR as the maximum HR during exercise, and recovery HR as the minimum
HR 1min after the peak exercise. The phenotypic traits ΔHRex and ΔHRrec were
then computed as:

ΔHRex ¼ Peak HR � RestingHR

ΔHRrec ¼ Peak HR � Recovery HR
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Inverse-normal transformation of the traits was not performed since their dis-
tribution approximated a normal distribution (Supplementary Fig. 9).

Genetic analyses. As we did not have access to an independent study with raw
ECG recordings during exercise and genetic data that could serve as a replication
study, and with the limited sample size we randomly divided our cleaned data set
into discovery (N ~ 40,000) and replication (N ~ 27,000) datasets (Fig. 1). For the
discovery data set, we selected the model SNPs from the genotyped SNPs, required
for the subsequent GWASs using PLINK 1.944. This selection was based on the
following criteria: a minor allele frequency (MAF) > 1%, a Hardy–Weinberg
equilibrium (HWE) with a threshold of P-value= 1 × 10−6, and missingness <
0.0015.

Then, we estimated the proportion of ΔHRex and ΔHRrec explained by additive
genetic variation (heritability) using a variance components method (BOLT-
REML)45, with the model SNPs and ~ 7.8 million imputed variants with MAF ≥
1%, imputation quality (INFO) > 0.3 using the full data set.

Next, we performed a GWAS for each trait using a linear mixed model method
(BOLT-LMM)46 under the additive genetic model including ~ 7.8 million imputed
SNPs with MAF ≥ 1% and INFO > 0.3. We used the heritability estimation
obtained from BOLT-REML.

For ΔHRex and ΔHRex traits we included the following covariates: sex, age, body
mass index (BMI), resting HR, resting HR2 and a binary indicator variable for the
genotyping array (UK Biobank versus UK BiLEVE).

Although BOLT-LMM software accounted for genetic relatedness within the
analysed cohort, individuals across discovery and replication cohorts could be
related, making both datasets not completely independent from each other.
Therefore we removed a total of N= 818 first and second degree related
individuals (kinship coefficient > 0.88) from the replication cohort as indicated
from UK Biobank41.

We also performed a GWAS for both traits in the replication data set following
removal of related individuals using the heritability parameter estimated in the
discovery data set.

All of our genetic analysis in UKB were restricted to variants imputed using the
HRC panel41.

Replication analyses. All SNPs with P < 1 × 10−6 from the discovery analysis for
both traits were compiled and SNPs were mapped to individual loci based on
genomic distance of >500 Kb to each side of another SNP. If multiple SNPs fit the
selection criteria for a single region, only the SNP with the smallest P value was
considered for follow-up. As a QC step, we reviewed each selected SNP to check for
unrealistically high beta values, large standard errors, and none were observed.
Locus Zoom plots were produced for all selected SNPs and these were carefully
reviewed. Fourteen variants for ΔHRex and 17 variants for ΔHRrec were taken
forward into replication. Replication was confirmed if P (one-tailed) ≤0.05/14=
2.60 × 10−3 for ΔHRex and ≤0.05/16= 3.10 × 10−3 for ΔHRrec and the effect (β)
was in the direction observed in discovery analyses for each trait in the replication
cohort.

Full data set analyses. We also performed a full data set GWAS for each trait
using BOLT-LMM. Additional loci for each trait reaching a genome-wide sig-
nificance threshold (P ≤ 5 × 10−8) from the full data set GWAS are reported.

We additionally performed a GWAS for resting HR in the full data set, N=
67,257 to serve as a reference for interpreting results from our traits. The regression
model included the following covariates: sex, age, BMI and a binary indicator
variable for UKB versus UK BiLEVE genotyping arrays.

Conditional analyses. To examine the existence of independent SNPs to lead
SNPs, we applied genome-wide complex trait analysis (GCTA)47 for all validated
and genome-wide significant loci from the full data set GWAS. A secondary signal
would be declared if: (i) the newly identified SNP original P value was lower than
1 × 10−6; (ii) there was less than a 1.5-fold difference between the lead SNP and
secondary association P values on a –log10 scale, i.e., if –log10(Plead)/-log10(Psec) <
1.5; and (iii) if there was less than a 1.5-fold difference between the main asso-
ciation and conditional association P values on a –log10 scale, i.e., if –log10(Psec)/-
log10(Pcond) < 1.5.

Percent variance. The percent of variance explained in ΔHRex and ΔHRrec by all
genome-wide significant variants and the secondary signal for ΔHRrec (N= 14 and
N= 18, respectively) was calculated using standard regression models including
analysis covariates (see above) and each SNP separately for each trait. Each trait,
ΔHRex and ΔHRrec, was regressed initially only on analysis covariates and then on
covariates and the respective SNPs. Both r2 values obtained from these two
regressions were used as estimations of the percent variance explained by the
respective models. Through subtraction of the both r2 values, we determined the
percent variance explained by all newly discovered SNPs.

Sensitivity analyses. Previous GWAS and Exome-chip analyses for resting HR
have shown that use of beta-blockers do not significantly affect the effect sizes of

associated variants9. However, since the traits analysed in study might not only
depend on resting HR, we undertook additional association analyses excluding
individuals taking beta-blockers for our reported SNPs using the full data set. We
then calculated the Spearman’s correlation coefficient between the β estimates and
P values for the results including and excluding individuals under beta-blockers for
each trait.

Sex-stratified analyses. For each trait, we performed a GWAS for men and
women separately in the full cohort including the same covariates in the regression
model as specified above, but excluding sex.

Bioinformatics analyses. We performed several analyses to annotate the HR
response to exercise and recovery associated SNPs, at the variant and gene level (all
SNPs in LD r2≥0.8 with the HR response to exercise and to recovery associated
SNPs were considered). LD was calculated using genetic data from UKB if the lead
SNP was imputed using the HRC reference panel in order to calculate pairwise-LD
for all associated SNPs. For SNPs not available in UKB, we used the 1000 Genomes
Project phase 3 (1000 G) reference panel. The r2 of pairwise SNPs (minimum r2=
0.8 and maximum distance between a pair of SNPs is 1 Mb) were computed using
PLINK44.

Using University of California, Santa Cruz (UCSC) known genes, we annotated
each lead SNP with the nearest genes and those found within 5 kb. We used VEP48

to characterise the variants, including the impact of amino acid substitutions based
on a range of prediction tools including SIFT and PolyPhen-2 and we also assessed
the conservation scores. Missense variants were annotated to be damaging if
indicated by two or more methods.

We evaluated all SNPs in LD (r2≥0.8) with our validated lead SNPs to explore if
there was support for mediation of eQTLs in 44 tissues in the GTEx database. We
also sought to identify if the validated variant at each locus was coincident with the
the strongest evidence of eQTL association for that gene, and we focussed on
reporting results from the brain, heart and adrenal tissue.

We identify potential target genes of regulatory SNPs using long-range
chromatin interaction (Hi–C) data from left and right ventricles, adrenal glands,
neural progenitor stem cells, hippocampus and cortex49 which tissues and cell
types are considered relevant for regulating heart rate. Hi–C data is corrected for
genomic biases and distance using the Hi–C Pro and Fit-Hi-C pipelines according
to Schmitt et al.49 (40 kb resolution—correction applied to interactions with 50 kb-
5 Mb span). We find the most significant promoter interactions for all potential
regulatory SNPs (RegulomeDB score ≤5) in LD (r2 ≥ 0.8) with our sentinel SNPs
and choose the interactors with the SNPs of highest regulatory potential to
annotate the loci.

We also performed enrichment testing across all loci. We used DEPICT50

(Data-driven Expression-Prioritised Integration for Complex Traits) to identify
cells and tissues in which the HR response to exercise and to recovery loci were
highly expressed. Subsequently, for the best candidate genes per locus
(Supplementary Table 10), we used g:profiler that performs functional profiling of
gene lists using various kinds of biological evidence (including GO, HPO
annotation). Enrichments with FDR < 0.05 were deemed significant.

Furthermore, to investigate regulatory regions, we used FORGE to investigate
cell-type-specific enrichment within DNase I-hypersensitive sites in 123 cell types
from ENCODE and the Epigenomics Roadmap Project51. Validated lead SNPs
from our study were analysed along with independent secondary signals (with P <
10−6) to evaluate the overall tissue-specific enrichment of the HR response to
exercise and to recovery variants. Our directly our curated candidate regulatory
SNPs were checked for overlap with cell-type-specific DNase I-hypersensitive
signals in a second analysis which did not include an LD filter.

We queried associated SNPs against PhenoScanner52 to investigate trait
pleiotropy, extracting all association results with a nominal significance of P < 0.05
for full reporting, and then extracted genome-wide significant results to highlight
loci with the strongest evidence of association with other traits and we also indicate
results with P < 1 × 10−4. We also accessed results from GeneAtlas to determine
further phenotypic associations of our associated variants. We next performed an
extensive review of all highlighted candidate genes from bioinformatics analyses at
the 31 loci. The National Center for Biotechnology Information (NCBI) Gene
database and GeneCards®: The Human Gene Database were used to obtain official
full names and, where relevant, common aliases for each candidate gene product.
NCBI’s PubMed was used to interrogate primary literature pertaining to gene
function. We also reviewed gene-specific animal models using International Mouse
Phenotyping Consortium and the Mouse Genome Informatics database.

Genetic risk scores. We constructed GRSs in the full data set by aggregating all
lead and secondary SNPs separately for each trait using the beta estimates from the
replication GWASs as independent, unbiased weights, to assess the combined effect
of the identified variants on each trait, respectively, and cardiovascular mortality
risk, while avoiding bias from ‘winner’s curse’.

The GRS for each trait was standardised to have a mean of 0 and a standard
deviation of 1. We then assessed the association of the continuous GRS variable
with each HR response trait by simple linear regression adjusting for the same
covariates used in the genetic analyses and for the ten first principal components.
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Related individuals were also excluded. We also ran logistic regression to examine
the association of the GRSs with cardiovascular mortality risk. We then compared
HR response levels and cardiovascular mortality risk for individuals in the top
(highest quintile) and bottom (lowest quintile) 20% of the GRSs distributions.

URLs. For UK Biobank, www.ukbiobank.ac.uk; for Haplotype Reference Con-
sortium panel, http://www.haplotype-reference-consortium.org/site; for National
Center for Biotechnology Information (NCBI) Gene database, see http://www.ncbi.
nlm.nih.gov/gene/; for NCBI’s PubMed, http://www.ncbi.nlm.nih.gov/pubmed/; for
International Mouse Phenotyping Consortium, http://www.mousephenotype.org/;
for Mouse Genome Informatics, http://www.informatics.jax.org; for Gene Atlas
PheWas, http://geneatlas.roslin.ed.ac.uk; for The Human Gene Database, http://v4.
genecards.org/. For FORGE, http://browser.1000genomes.org/Homo_sapiens/
UserData/Forge?db=core. For GTEx, www.gtexportal.org; for Phenoscanner,
http://www.phenoscanner.medschl.cam.ac.uk; for RegulomeDB, http://www.
regulomedb.org.

Data availability. The HR data generated during the current study are available
from the UK Biobank data repository, which can be accessed by researchers upon
application. These data include the GWAS summary data for the HR responses to
exercise traits and resting HR. The genetic and phenotypic UK Biobank data are
also available upon application to the UK Biobank. All replication data generated
during this study are included in the published article and are contained within the
supplementary tables provided.
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