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The inventory-routing problem (IRP) dates back 30 years. It can be described as the combination of vehicle-
routing and inventory management problems, in which a supplier has to deliver products to a number

of geographically dispersed customers, subject to side constraints. It provides integrated logistics solutions
by simultaneously optimizing inventory management, vehicle routing, and delivery scheduling. Some exact
algorithms and several powerful metaheuristic and matheuristic approaches have been developed for this class
of problems, especially in recent years. The purpose of this article is to provide a comprehensive review of
this literature, based on a new classification of the problem. We categorize IRPs with respect to their structural
variants and the availability of information on customer demand.
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1. Introduction
The inventory-routing problem (IRP) integrates
inventory management, vehicle routing, and delivery-
scheduling decisions. Its study is rooted in the sem-
inal paper of Bell et al. (1983), published 30 years
ago. The IRP arises in the context of vendor-managed
inventory (VMI), a business practice aimed at reduc-
ing logistics costs and adding business value. In VMI,
a supplier makes the replenishment decisions for
products delivered to customers, based on spe-
cific inventory and supply chain policies (Angulo,
Nachtmann, and Waller 2004; Lee and Seungjin 2008;
Simchi-Levi, Chen, and Bramel 2005). This practice is
often described as a win-win situation: vendors save
on distribution and production costs because they can
coordinate shipments made to different customers,
and buyers also benefit by not allocating efforts to
inventory control. In such contexts, the supplier has to
make three simultaneous decisions: (1) when to serve
a given customer, (2) how much to deliver to this
customer when it is served, and (3) how to combine
customers into vehicle routes.

1.1. Origins of the Inventory-Routing Problem
The first studies published on the IRP were mostly
variations of models designed for the vehicle-routing
problem (VRP) and heuristics developed to take
inventory costs into consideration. Bell et al. (1983)
dealt with the case where only transportation costs

are included, demand is stochastic, and customer
inventory levels must be met. This was followed
by a number of variants of the problem defined by
the same authors. Some other early papers on the
IRP are worthy of mention: Federgruen and Zipkin
(1984) have modified the VRP heuristic of Fisher
and Jaikumar (1981) to accommodate inventory and
shortage costs in a random demand environment;
Blumenfeld et al. (1985) have considered distribu-
tion, inventory, and production setup costs; Burns
et al. (1985) have analyzed trade-offs between trans-
portation and inventory costs, using an approxima-
tion of travel costs; Dror, Ball, and Golden (1985)
have studied short-term solutions. The latter study
was extended to stochastic demand by Dror and Ball
(1987). The paper of Dror and Levy (1986) adapts ear-
lier VRP heuristics to the solution of a weekly IRP,
whereas Anily and Federgruen (1990) have proposed
the first clustering algorithm for the IRP. Most of these
papers assume that the consumption rate at the cus-
tomer locations is known and deterministic. Despite
the large number of contributions on distribution and
inventory problems before this period, the integration
of these two features proved difficult to handle, not
only because of limited computing power, but also
because the available algorithms could not easily han-
dle large and complex combinatorial problems, such
as those combining routing and inventory manage-
ment decisions.
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1.2. Typologies of the Problem
We classify IRPs according to two schemes: the first
one refers to the structural variants present in IRPs,
whereas the second one is related to the availabil-
ity of information on the demand. This classifica-
tion scheme is different from the one proposed in
Andersson et al. (2010) as we separate the struc-
ture of the problem from the availability of informa-
tion, whereas Andersson et al. combine both. Our
motivation is to better distinguish models from algo-
rithms. We also include more structural criteria than
Andersson et al. (2010), e.g., the inventory policy
employed.
Many variants of the IRP have been described over

the past 30 years. There does not really exist a stan-
dard version of the problem. We will therefore refer
to “basic versions” of the IRP, on which most of the
research effort has concentrated, and to “extensions
of the basic versions,” which are more elaborate. The
basic versions are presented in Table 1. They can be
classified according to seven criteria, namely, time
horizon, structure, routing, inventory policy, inven-
tory decisions, fleet composition, and fleet size.
In Table 1, time refers to the horizon taken into

account by the IRP model. It can either be finite or
infinite. The number of suppliers and customers may
vary, and therefore the structure can be one-to-one
when there is only one supplier serving one cus-
tomer, one-to-many in the most common case with
one supplier and several customers, or less frequently,
many-to-many with several suppliers and several cus-
tomers. Routing can be direct when there is only one
customer per route, multiple when there are several
customers in the same route, or continuous when
there is no central depot, like in several maritime
applications. Inventory policies define preestablished
rules to replenish customers. The two most common
are the maximum-level (ML) policy and the order-up-
to level (OU) policy. Under an ML inventory policy,
the replenishment level is flexible, but bounded by
the capacity available at each customer. Under an OU
policy, whenever a customer is visited, the quantity
delivered is that to fill its inventory capacity. Inven-
tory decisions determine how inventory management

Table 1 Structural Variants of the IRP

Criteria Possible options

Time horizon Finite Infinite
Structure One-to-one One-to-many Many-to-many
Routing Direct Multiple Continuous
Inventory policy Maximum Order-up-to

level (ML) level (OU)
Inventory decisions Lost sales Back-order Nonnegative
Fleet composition Homogeneous Heterogeneous
Fleet size Single Multiple Unconstrained

Source. Adapted from Andersson et al. (2010).

is modeled. If the inventory is allowed to become neg-
ative, then back-ordering occurs and the correspond-
ing demand will be served at a later stage; if there
are no back orders, then the extra demand is con-
sidered as lost sales. In both cases there may exist
a penalty for the stockout. In deterministic contexts,
one can also restrict the inventory to be nonnegative.
Finally, the last two criteria refer to fleet composition
and size. The fleet can be either homogeneous or het-
erogeneous, and the number of vehicles available may
be fixed at one, fixed at many, or unconstrained.
The second classification refers to the time when

information on demand becomes known. If it is fully
available to the decision maker at the beginning of the
planning horizon, the problem is then deterministic;
if its probability distribution is known, it is stochastic,
which yields the stochastic inventory-routing problem
(SIRP). Dynamic IRPs arise when demand is not fully
known in advance, but is gradually revealed over
time, as opposed to what happens in a static context.
In this case, one can still exploit its statistical distribu-
tion in the solution process, yielding a dynamic and
stochastic inventory-routing problem (DSIRP).

1.3. Applications
Several applications of the IRP have been docu-
mented. Most arise in maritime logistics, namely in
ship routing and inventory management. Literature
reviews are provided in Ronen (1993); Christiansen,
Fagerholt, and Ronen (2004); Christiansen et al. (2007);
Christiansen et al. (2013). The problems described in
these surveys involve a many-to-many structure with
continuous routes (Christiansen 1999; Christiansen
and Nygreen 1998a, b), direct deliveries (Stålhane
et al. 2012), several products (Bausch, Brown, and
Ronen 1998; Persson and Göthe-Lundgren 2005;
Ronen 2002), and stochastic demand (Qu, Bookbinder,
and Iyogun 1999). More complex configurations
involve the presence of time windows and the typ-
ical cost structure of the maritime environment (i.e.,
demurage and overage rates) (Song and Furman
2013), and soft data-derived time windows to help
gain robustness (Christiansen and Nygreen 2005).
Problems in which storage capacities, production, and
consumption rates are variable have been studied by
Engineer et al. (2012); Grønhaug et al. (2010); Uggen,
Fodstad, and Nørstebø (2013). Problems arising in the
chemical components industry (Dauzère-Pérès et al.
2007; Miller 1987) and in the oil and gas industries
(Al-Khayyal and Hwang 2007; Grønhaug et al. 2010;
Persson and Göthe-Lundgren 2005; Rakke et al. 2011;
Shen, Chu, and Chen 2011; Song and Furman 2013)
are also a frequent source of applications in a mar-
itime environment.
Nonmaritime applications of the IRP arise in a

large variety of industries, including the distribu-
tion of gas-using tanker trucks (Bard et al. 1998; Bell
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et al. 1983; Campbell and Savelsbergh 2004; Golden,
Assad, and Dahl 1984; Trudeau and Dror 1992), road-
based distribution of automobile components (Alegre,
Laguna, and Pacheco 2007; Blumenfeld et al. 1985,
1987; Stacey, Natarajarathinam, and Sox 2007) and
of perishable items (Federgruen and Zipkin 1984;
Federgruen, Prastacos, and Zipkin 1986).
Other applications include the transportation

of groceries (Custódio and Oliveira 2006; Gaur
and Fisher 2004; Mercer and Tao 1996), cement
(Christiansen et al. 2011), fuel (Popović, Vidović, and
Radivojević 2012), blood (Hemmelmayr et al. 2009),
livestock (Oppen, Løkketangen, and Desrosiers 2010),
and waste organic oil (Aksen et al. 2012).
Note that not all of these papers deal with the IRP

as described. Some of them optimize vehicle routes
or dispatching of vehicles only, without considering
inventory costs. However, inventory concerns appear
as constraints, ensuring that demand is satisfied
and that customer and transportation capacities are
respected (Bard et al. 1998; Bausch, Brown, and Ronen
1998; Oppen, Løkketangen, and Desrosiers 2010).

1.4. Aim and Organization of the Paper
The aim of this paper is to present a comprehen-
sive literature review of the IRP, including its main
variants, models, and algorithms. It complements the
survey of Andersson et al. (2010), which puts more
emphasis on industrial applications. In contrast, our
contribution focuses on the methodological aspects
of the problem. Other less recent reviews are those
of Cordeau et al. (2007) and Bertazzi, Savelsbergh,
and Speranza (2008). Our aim is to provide an up-to-
date and in-depth presentation and classification of
the research conducted in this area.
The remainder of the paper is organized as follows.

In §2 we describe the basic versions of the IRP as
well as its models and solutions procedures. A num-
ber of meaningful extensions of the problem are then
presented in §3. This is followed by the description
of the stochastic version of the problem in §4 and
by the dynamic and stochastic IRP in §5. Benchmark
instances are described in §6, and our conclusions fol-
low in §7.

2. Basic Versions of the
Inventory-Routing Problem

The basic IRP is defined on a graph G = 4V 1A5,
where V = 801 0 0 0 1n9 is the vertex set and A= 84i1 j52

i1 j 2 V 1 i 6= j9 is the arc set. Vertex 0 represents the
supplier, and the vertices of V 0 =V \809 represent cus-
tomers. Both the supplier and customers incur unit
inventory-holding costs h

i

per period (i 2 V ), and
each customer has an inventory-holding capacity C

i

.
The length of the planning horizon is p, and at each

time period t 2 T = 811 0 0 0 1p9 the quantity of prod-
uct made available at the supplier is r

t . We assume
the supplier has sufficient inventory to meet all of the
demand during the planning horizon and that inven-
tories are not allowed to be negative. The variables I t0
and I

t

i

are defined as the inventory levels at the end
of period t, respectively, at the supplier and at cus-
tomer i. At the beginning of the planning horizon the
decision maker knows the current inventory level of
the supplier and of all customers (I 00 and I

0
i

for i 2V 0),
and has full knowledge of the demand d

t

i

of each cus-
tomer i for each time period t. A set K= 811 0 0 0 1K9 of
vehicles with capacity Q

k

are available. Each vehicle
is able to perform one route per time period to deliver
products from the supplier to a subset of customers.
A routing cost c

ij

is associated with arc 4i1 j5 2A.
The objective of the problem is to minimize the total

inventory distribution cost while meeting the demand
of each customer. The replenishment plan is subject
to the following constraints:
• the inventory level at each customer can never

exceed its maximum capacity;
• inventory levels are not allowed to be negative;
• the supplier’s vehicles can perform at most one

route per time period, each starting and ending at the
supplier;
• vehicle capacities cannot be exceeded.
The solution to the problem determines which cus-

tomers to serve in each time period, which of the sup-
plier’s vehicles to use, how much to deliver to each
visited customer, and the delivery routes. Clearly, the
IRP just defined is deterministic and static because
consumption rates are fixed and known beforehand.
The basic IRP is NP-hard because it subsumes the

classical VRP. As a result, most papers propose heuris-
tics for its solution, but a number of exact algorithms
are also available. In Table 2 we present the papers
mentioned in this section on the deterministic IRP.
These will be further described when we present exact
algorithms in §2.1 and heuristics in §2.2.

2.1. Exact Algorithms
All models presented in this section were developed
assuming the cost matrix is symmetric. In such cases,
it is natural to define the problem on an undirected
graph G = 4V 1E5, where E= 84i1 j52 i1 j 2V 1 i < j9,
and to use routing variables associated with the
edges, which is computationally more efficient. It is
straightforward to extend edge-based formulations to
the directed case.
Archetti et al. (2007) have developed the first

branch-and-cut algorithm for a single-vehicle IRP.
This algorithm is able to solve both the OU and the
ML versions, differing by a single constraint. Subtour
elimination constraints are added dynamically as cuts
in the search tree whenever an incumbent solution
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violates them. Archetti et al. have also derived some
valid inequalities to strengthen the model and were
able to solve instances with up to 50 customers in a
three-period horizon, and 30 customers in a six-period
horizon within two hours of computing time. Despite
considering only one vehicle, the Archetti et al. (2007)
model is somewhat more general than others because
it incorporates not only inventory holding costs at
the customers, but also at the supplier. It was later
improved by Solyalı and Süral (2011), who used
a stronger formulation with shortest-path networks
representing customer replenishments, as well as a
heuristic to provide an initial upper bound to the
branch-and-cut algorithm. Solyalı and Süral consid-
ered only the OU policy and solved larger instances
with up to 15 customers and 12 periods, 25 customers
and nine periods, and 60 customers in a three-period
horizon.
Recently, algorithms capable of solving exact mul-

tivehicle versions of the IRP have been introduced.
Coelho and Laporte (2013b) and Adulyasak, Cordeau,
and Jans (2013) have proposed an extension of the
Archetti et al. (2007) formulation under the OU and
ML policies to account for multiple vehicles, and have
solved it in a branch-and-cut fashion. Assuming again
that the transportation cost matrix is symmetric, their
proposed model is undirected to reduce the number
of variables. Thus, their model uses variables xkt

ij

equal
to the number of times edge 4i1 j5 is used on the route
of vehicle k in period t. It also uses variables ykt

i

equal
to one if and only if vertex i (the supplier or a cus-
tomer) is visited by vehicle k in period t. Let I t

i

denote
the inventory level at vertex i 2V at the end of period
t 2 T , and q

kt

i

denote the quantity of product deliv-
ered from the supplier to customer i using vehicle k in
time period t. Assuming that the OU inventory policy
applies, the problem can then be formulated as

minimize
⇢X

i2V

X

t2T
h

i

I

t

i

+X

i2V

X

j2V 1 i<j

X

k2K

X

t2T
c

ij

x

kt

ij

�
(1)

subject to

I

t

0 = I

tÉ1
0 + r

t É X

k2K

X

i2V 0
q

kt

i

t 2T 1 (2)

I

t

0 � 0 t 2T 1 (3)

I

t

i

= I

tÉ1
i

+ X

k2K
q

kt

i

É d

t

i

i 2V 0
t 2T 1 (4)

I

t

i

� 0 i 2V t 2T 1 (5)

I

t

i

C

i

i 2V t 2T 1 (6)
X

k2K
q

kt

i

C

i

É I

tÉ1
i

i 2V 0
t 2T 1 (7)

q

kt

i

�C

i

y

kt

i

É I

tÉ1
i

i 2V 0
k 2K t 2T 1 (8)

q

kt

i

C

i

y

kt

i

i 2V 0
k 2K t 2T 1 (9)

X

i2V 0
q

kt

i

Q

k

y

kt

0 k 2K t 2T 1 (10)

X

j2V 1i<j

x

kt

ij

+ X

j2V 1 i>j

x

kt

ji

= 2ykt

i

i 2V k 2K t 2T 1 (11)
X

i2S

X

j2S 1 i<j

x

kt

ij

X

i2S
y

kt

i

É y

kt

m

S ✓V 0
k 2K t 2T m 2S 1 (12)

q

kt

i

� 0 i 2V 0
k 2K t 2T 1 (13)

x

kt

i0 2 8011129 i 2V 0
k 2K t 2T 1 (14)

x

kt

ij

2 80119 i1 j 2V 0
k 2K t 2T 1 (15)

y

kt

i

2 80119 i 2V k 2K t 2T 0 (16)

Constraints (2) define the inventory at the supplier,
whereas constraints (3) prevent stockouts at the sup-
plier; constraints (4) and (5) are similar and apply to
the customers. Constraints (6) impose maximal inven-
tory level at the customers. Note that these constraints
assume that the inventory at the end of the period
cannot exceed the maximum available holding capac-
ity, which means that during the period, before all
demand has happened, the inventory capacity could
be temporarily exceeded. This is a usual assumption
in IRP models. Constraints (7)–(9) link the quantities
delivered to the routing variables. In particular, they
only allow a vehicle to deliver products to a customer
if the customer is visited by this vehicle, and enforce
the OU policy. Constraints (10) ensure that vehicle
capacities are respected, whereas constraints (11) and
(12) are degree constraints and subtour elimination
constraints, respectively. The latter are relaxed and
added as cuts whenever they are violated in the search
tree. Constraints (13)–(16) enforce integrality and non-
negativity conditions on the variables.
This formulation can be solved using branch and

cut by making use of the capabilities of modern MIP
solvers. Instances with up to 45 customers, three peri-
ods, and three vehicles have been solved to optimal-
ity with CPLEX. Adulyasak, Cordeau, and Jans (2013)
have compared this model with a two-index formu-
lation that yielded better lower bounds on larger
instances that could not be solved exactly with the
three-index formulation. This formulation has been
recently extended to solve a multiproduct version of
the IRP by Coelho and Laporte (2013a), for which
details are presented in §3.2

2.2. Heuristic Algorithms
Most of the early papers on the IRP have applied sim-
ple heuristics to simplified versions of the problem.
These explore the solution space through the use of
simple neighborhood structures such as interchanges,
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and typically decompose the IRP into hierarchical
subproblems, where the solution to one subprob-
lem is used in the next step. Examples include an
assignment heuristic (Dror, Ball, and Golden 1985),
interchange algorithm (Dror and Levy 1986), trade-
offs based on approximate routing costs (Burns
et al. 1985), and a clustering heuristic (Anily and
Federgruen 1990).
Current heuristic algorithms are rather involved

and are able to obtain high-quality solutions to diffi-
cult optimization problems. They rely on the concept
of metaheuristics, which apply local search proce-
dures and a strategy to avoid local optima, and
perform a thorough evaluation of the search space
(Gendreau and Potvin 2010). New developments in
this area include the hybridization of different meta-
heuristic concepts to create more powerful algo-
rithms (Raidl, Puchinger, and Blum 2010) and also
the hybridization of a heuristic and a mathematical
programming algorithm, yielding so-called matheuris-
tic algorithms (Maniezzo, Stützle, and Voß 2009).
Recent IRP papers using some of these techniques
include iterated local search (Ribeiro and Lourenço
2003), variable neighborhood search (Zhao, Chen,
and Zang 2008), greedy randomized adaptive search
(Campbell and Savelsbergh 2004), memetic algo-
rithms (Boudia and Prins 2009), tabu search (Archetti
et al. 2012), and adaptive large neighborhood search
(Coelho, Cordeau, and Laporte 2012c).
Bell et al. (1983) analyzed the case where only

transportation costs are included, but inventory levels
must be met at the customers. A short term solution
is presented in Dror and Ball (1987) and Dror, Ball,
and Golden (1985), based on the assignment of cus-
tomers to optimal replenishment periods, and on the
computation of the expected increase in cost when the
customer is visited in another period. Dror, Ball, and
Golden (1985) offered the first algorithmic compari-
son for the IRP with two major simplifications: (1) an
OU policy applies and (2) customers are only visited
once during the planning period. Dror and Ball (1987)
also applied the OU policy, and has been widely used
by many researchers.
Building on the idea of adapting previous VRP

algorithms and heuristics, Dror and Levy (1986) pro-
posed a vertex interchange algorithm for a weekly
IRP. They generated an initial solution to a VRP
by keeping track of vehicle capacities and cus-
tomer inventories, thus improving the initial solution
scheme presented in Dror, Ball, and Golden (1985).
Burns et al. (1985) developed formulas based on
the trade-offs between transportation and inventory
costs using an approximation of traveling costs. They
showed that under direct shipping, the optimal deliv-
ery size is the economic order quantity.

Clustering heuristics were proposed by Anily and
Federgruen (1990) and Campbell and Savelsbergh
(2004). Direct deliveries were studied by Gallego and
Simchi-Levi (1990), who evaluated their long-term
effectiveness. Aghezzaf, Raa, and van Landeghem
(2006) allowed vehicles to perform more than one
route per period and modified the approach employed
by Anily and Federgruen (1990) by using heuristic
column generation. Their work was later extended
by Raa and Aghezzaf (2009) who have added driv-
ing time constraints. Construction and improvement
heuristics were proposed by Chien, Balakrishnan, and
Wong (1989) for a version of the problem with a
heterogeneous fleet. Considering backlogging, a con-
struction heuristic was put forward by Abdelmaguid
(2004) and was later outperformed by the genetic algo-
rithm of Abdelmaguid and Dessouky (2006). Heuris-
tics for the IRP with backlogging were later reviewed
by Abdelmaguid, Dessouky, and Ordóñez (2009).
Savelsbergh and Song (2008) solved a problem in

which a single producer cannot usually meet the
demand of its customers because they are too far
away. This leads to the formulation of a problem with
several suppliers and trips lasting longer than one
period. This problem is called the IRP with continu-
ous moves and is solved through a local search algo-
rithm applied on an initial solution generated by a
randomized greedy heuristic.
Considering a cyclic planning approach where a

long-term distribution pattern can be derived, Raa
and Aghezzaf (2008) developed an algorithm allow-
ing vehicles to perform multiple tours. Initially, cus-
tomers are partitioned over vehicles using a column
generation algorithm. Then, for each vehicle, the set
of customers assigned to it is partitioned over differ-
ent tours for which frequencies are then determined.
For each partition of customers over tours and each
combination of tour frequencies, a delivery schedule
is then made to check feasibility.
With the aim of identifying Pareto-optimal solu-

tions, Geiger and Sevaux (2011a) compared different
solutions with respect to the two opposing terms in
the objective function. When a customer is visited
very frequently, its inventory cost is low but routing
becomes expensive, and vice versa. This is important
when considering changes in some of the parameters,
for example, when fuel prices increase or when focus-
ing on the computation of “green” solutions.
A heuristic column generation algorithm is used to

solve a tactical IRP in Michel and Vanderbeck (2012),
where customer demands are deterministic and are
clustered to be served by different vehicles; routing
costs are approximated. This heuristic yields solu-
tions that deviate by approximately 6% from the opti-
mum and improve upon industrial practice by 10%
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with respect to travel distances and the number of
vehicles used.
A two-phase heuristic based on a linear program-

ming model was proposed by Campbell et al. (1998).
In the first phase, the exact visiting period and
quantity to be delivered to each customer are cal-
culated. Then, in the second phase, customers are
sequenced into vehicle routes. This model is diffi-
cult to solve because of the high number of possible
routes, and also because of the length of the plan-
ning horizon. Considering a small set of routes and
aggregating periods toward the end of the horizon
makes the model more tractable. The output of this
first phase specifies how much to deliver to each cus-
tomer in each period of the planning horizon. This
information then becomes the input of a standard
algorithm for the VRP with time windows, which is
solved for each period in the second phase. Since
decisions are taken separately in the two phases, the
second phase can only be optimal with respect to
the solution obtained from the first phase. Besides,
this model considers time constraints explicitly, but
does not include any consideration for the inventory
holding costs.
Bertazzi, Paletta, and Speranza (2002) have pro-

posed a fast local search algorithm for the single-
vehicle case in which an OU inventory policy is
applied. This policy decreases the flexibility of the
decision maker by restricting the set of possible
solutions to the problem—the simplified problem is
solved heuristically. A first step creates a feasible solu-
tion, and a second one is applied as long as a given
minimum improvement is made to the total cost func-
tion. This is achieved by removing all possible cus-
tomer pairs and computing a series of shortest paths
to determine the periods in which the customers
should be reinserted. Specifically, shortest paths are
computed on acyclic networks N

i

, one for each cus-
tomer i. Each node of N

i

corresponds to a discrete
time instant between 0 and p + 1, and an arc 4t1 t

0
5

is defined if no stockout occurs at customer i when-
ever it is not visited in the interval 6t1 t07; the quan-
tity delivered to i at each time period will be that
to fill the customer capacity, and each arc cost is the
sum of the inventory and routing costs associated
with visiting customer i in the interval 6t1 t07. Bertazzi,
Paletta, and Speranza (2002) consider both inventory
and transportation costs, and it is relevant to note
that the supplier also incurs inventory costs, which
was not generally the case in previous papers. Com-
putational experiments have shown that this heuristic
works extremely fast, but the optimality gap is some-
times larger than 5%.
Archetti et al. (2012) have designed a more involved

heuristic combining tabu search with the exact solu-
tion of mixed-integer linear programs (MILPs) used

to approximate routing decisions. It operates with
a combination of a tabu search heuristic embedded
within four neighborhood search operators and two
MILPs to further refine the solutions. Starting from
a feasible solution, the algorithm explores the neigh-
borhood of the current solution and performs occa-
sional jumps to new regions of the search space.
Infeasible solutions are temporarily accepted, namely,
because of a stockout at the supplier or exceeded
vehicle capacity. Results show that the heuristic per-
forms remarkably well on benchmark instances, with
an optimality gap usually below 0.1%.
Coelho, Cordeau, and Laporte (2012c) have devel-

oped an adaptive large neighborhood search (ALNS)
matheuristic that can solve the IRP as a special case
of a broader problem including transshipments. This
algorithm works in two phases, first creating vehi-
cle routes by means of the ALNS operators and then
determining delivery quantities through the use of an
exact minimum-cost network flow algorithm. When
no transshipments are considered, this matheuristic
performs slightly worse than the algorithm of Archetti
et al. (2012). Finally, Coelho, Cordeau, and Laporte
(2012a) have proposed an extension of the previ-
ous algorithm to the multivehicle version of the IRP.
In this problem, the ALNS creates vehicle routes,
and delivery quantities are again optimized by means
of a min-cost network flow algorithm. Better solu-
tions are obtained by approximating the costs of
inserting or removing customers from existing solu-
tions through the exact solution of a MILP, as in
Archetti et al. (2012).
Fast primal solutions are obtained by a branch-

and-price guided search in Hewitt et al. (2013). The
problem at hand is a maritime IRP dealing with a
single product, many-to-many structure, distributed
by a heterogeneous fleet of vessels over a finite hori-
zon. Experiments show that it performs significantly
faster than solving the MILP using a state-of-the-art
solver, and it is able to obtain solutions that are com-
parable in terms of cost.

3. Extensions of the Basic Versions
Almost every combination of the criteria presented in
Table 1 has been studied at some point over the past 30
years. Specific versions of the IRP include the IRP with
a single customer (Bertazzi and Speranza 2002; Dror
and Ball 1987; Speranza and Ukovich 1996; Solyalı and
Süral 2008), the IRP with multiple customers (Archetti
et al. 2007; Bell et al. 1983; Chien, Balakrishnan,
and Wong 1989; Coelho and Laporte 2013b; Coelho,
Cordeau, and Laporte 2012c), the IRP with direct
deliveries (Bertazzi 2008; Gallego and Simchi-Levi
1990, 1994; Hall 1992; Kleywegt, Nori, and Savelsbergh
2002; Mishra and Raghunathan 2004), the multi-item
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IRP (Bausch, Brown, and Ronen 1998; Qu, Bookbinder,
and Iyogun 1999; Sindhuchao et al. 2005; Speranza and
Ukovich 1994), the IRP with several suppliers and cus-
tomers (Benoist et al. 2011), and the IRP with hetero-
geneous fleet (Chien, Balakrishnan, and Wong 1989;
Christiansen 1999; Coelho and Laporte 2013b; Persson
and Göthe-Lundgren 2005), among others. However,
some common criteria are more relevant and have
received more attention. Table 3 presents the papers
cited in this section, which covers deterministic exten-
sions of the IRP.

3.1. The Production-Routing Problem
Because VMI provides advantages to both the sup-
plier and the customers, it is natural to think that
integrating one more element of the supply chain
may lead to an even better performance. This extra
element may be external (the supplier of the sup-
plier) or may include other activities of the sup-
plier, such as production planning. This leads to
the production-inventory-routing problem, also called
the production-routing problem (PRP). The PRP inte-
grates inventory and lot-sizing decisions over a given
planning horizon with the design of vehicle routes
to perform the deliveries. Thus, it integrates the lot-
sizing problem and the vehicle-routing problem. With
respect to the IRP, the PRP is more general in that it
integrates production and distribution decisions.
Chandra (1993) and Chandra and Fisher (1994)

were among the first to integrate production decisions
within the IRP. They were followed by Chandra and
Fisher (1994); Herer and Roundy (1997); Fumero and
Vercellis (1999); Bertazzi, Paletta, and Speranza (2005);
Bard and Nananukul (2009, 2010). More recent works
in this direction include those of Archetti et al. (2011)
and Adulyasak, Cordeau, and Jans (2012).
In the same vein, other levels of integration have

been proposed. For instance, Blumenfeld et al. (1985)
considered distribution, inventory, and production
setup costs. Ahmadi-Javid and Azad (2010) proposed
a broader mechanism that simultaneously optimizes
location, allocation, capacity, inventory, and routing
decisions in supply chain design under stochastic
demand.

3.2. The IRP with Multiple Products
In some versions of the IRP, several products are
handled at once. Speranza and Ukovich (1994, 1996)
studied the case with predetermined frequencies for
a multiproduct flow for a single customer. Bertazzi,
Speranza, and Ukovich (1997) later extended these
studies to handle multiple customers. Carter et al.
(1996) have also proposed a two-phase heuristic to
solve the multiproduct version of the IRP. A particular
case of the multi-item IRP was analyzed by Popović,
Vidović, and Radivojević (2012), in which different

types of fuel are delivered to a set of customers by
vehicles with compartments. The problem was solved
by means of a variable neighborhood search heuris-
tic because the proposed MILP could only handle the
smallest instance from a practical application. Moin,
Salhi, and Aziz (2011) analyzed variation of the multi-
product version that also considers multiple suppliers
but only one customer (many-to-one structure). The
authors derived lower and upper bounds after solv-
ing a linear mathematical formulation with a commer-
cial solver and then compute better upper bounds by
means of a genetic algorithm. Most of these results
were improved by Mjirda et al. (2012) who devel-
oped a variable neighborhood search heuristic. Build-
ing up on the previous structure, Ramkumar et al.
(2012) studied the many-to-many case and proposed
a MILP formulation for a multi-item multidepot IRP.
However, their computational results show the limita-
tions of the method since several small instances with
only two vehicles, two products, two suppliers, three
customers, and three periods could not be solved to
optimality in eight hours of computing time.
An exact MILP was proposed by Coelho and

Laporte (2013a) to solve a multivehicle multiproduct
version of the problem. It deals with shared inventory
capacity and shared vehicle capacity for all products.
Their implementation is able to solve instances with
up to five products, five vehicles, three periods, and
30 customers. Note that a multiproduct formulation
for a deterministic maritime problem was proposed
by Ronen (2002), but only very small instances could
be solved. For this reason, the author developed a
heuristic to solve the problem, which was a simplifi-
cation of a stochastic one based on forecasts and pre-
determined safety stocks levels.

3.3. The IRP with Direct Deliveries
and Transshipment

Another variation of the IRP deals with direct
deliveries, as the one studied by Kleywegt, Nori, and
Savelsbergh (2002) and Bertazzi (2008). Making exclu-
sive use of direct deliveries simplifies the problem
because it removes the routing dimension from it.
Direct deliveries are shown to be effective when eco-
nomic order quantities for the customers are close to
the vehicle capacities (Gallego and Simchi-Levi 1990,
1994). Li, Chen, and Chu (2010) developed an analytic
method for performance evaluation of this delivery
strategy, and the effectiveness can be represented as a
function of system parameters.
A number of replenishment policies have been pro-

posed in this context. Power-of-two policies were ana-
lyzed by Herer and Roundy (1997), a fixed partition
policy combined with a tabu search heuristic was
studied by Zhao, Wang, and Lai (2007), and a station-
ary nested joint replenishment policy was developed
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by Viswanathan and Mathur (1997) for a multiprod-
uct case. Most of the IRP literature considers contin-
uous decision variables for the delivery times. Under
this assumption, the optimal replenishment time may
be noninteger, which can constitute an inconvenience
for some suppliers. Roundy (1985) studied the case
with multiple customers receiving direct deliveries at
discrete times, and defined frequency-based policies
proven to be within 2% of the optimum in the worst
case. In this model, inventory holding costs are linear,
but there are fixed ordering and delivery costs.
Direct deliveries from the supplier and lateral

transshipments between customers have also been
used in conjunction with multicustomer routes to
increase the flexibility of the system. Transshipments
were formally introduced within the IRP frame-
work by Coelho, Cordeau, and Laporte (2012c). They
included planned transshipment decisions within a
deterministic framework as a way of reducing distri-
bution costs. Coelho, Cordeau, and Laporte (2012b)
later used transshipments within a DSIRP framework
as a means of mitigating stockouts when demand
exceeded the available inventory. Emergency trans-
shipments proved to be a valuable option for decreas-
ing average stockouts while significantly reducing
distribution costs.

3.4. The Consistent IRP
Some authors have noted that a cost-optimal solu-
tion may sometimes result in inconveniences both to
the supplier and to the customers. This is the case,
for example, when very small deliveries take place
on consecutive days, followed by a very large deliv-
ery, after which the customer is not visited for a
long period. Another example, this time undesirable
for the supplier, is that it could be optimal to dis-
patch a mix of almost full and almost empty vehi-
cles, which does not yield a proper load balancing
and may irritate some drivers. It is possible to alle-
viate some of these problems by introducing some
consistency features into the basic IRP, which has
already been done in the context of the VRP. Thus,
some authors have included workforce management
within the periodic VRP for assigning territories to
drivers as in Christofides and Beasley (1984); Beasley
(1984); Barlett and Ghoshal (2002); Zhong, Hall, and
Dessouky (2007). This is an indirect way of enforc-
ing driver consistency, which was formally put for-
ward by Groër, Golden, and Wasil (2009). Smilowitz,
Nowak, and Jiang (2013) analyzed potential trade-offs
between workforce management and travel distance
goals in a multiobjective PVRP. Another example
of consistency is the spacing of deliveries to cus-
tomers, which ensures smoother operations (see,
e.g., Ohlmann, Fry, and Thomas 2008). This type of
requirement is often modeled as constraints in the

context of the periodic VRP (Christofides and Beasley
1984; Francis, Smilowitz, and Tzur 2008). Finally, the
quantities delivered to customers were also controlled
to avoid large variations over time, which are nega-
tively perceived by customers (Beamon 1999).
Quality-of-service features were incorporated in IRP

solutions by Coelho, Cordeau, and Laporte (2012a).
This was achieved by ensuring consistent solutions
from three different aspects: quantities delivered, fre-
quency of the deliveries, and workforce management.
These authors have shown through extensive com-
putational experiments on benchmark instances that
ensuring consistent solutions over time increases the
cost of the solution between 1% and 8% on average.

4. Stochastic Inventory Routing
In the SIRP, the supplier knows customer demand
only in a probabilistic sense. Demand stochasticity
means that shortages may occur. To discourage them,
a penalty is imposed whenever a customer runs out
of stock, and this penalty is usually modeled as a
proportion of the unsatisfied demand. Unsatisfied
demand is typically considered to be lost, that is, there
is no backlogging. The objective of the SIRP remains
the same as in the deterministic case, but is written
to accommodate the stochastic and unknown future
parameters: the supplier must determine a distribu-
tion policy that maximizes its expected discounted
value (revenue minus costs) over the planning hori-
zon, which can be finite or infinite. Typical problems
dealing with SIRP applications arise in the oil and
gas industry (Bard et al. 1998; Federgruen and Zipkin
1984; Trudeau and Dror 1992). Table 4 lists the papers
cited in this section.

4.1. Finite Horizon
Several heuristic algorithms exist for the SIRP with
a finite horizon. Federgruen and Zipkin (1984) have
modified the VRP heuristic of Fisher and Jaikumar
(1981) to accommodate inventory and shortage costs
in a random demand environment. Federgruen,
Prastacos, and Zipkin (1986) extended the work of
Federgruen and Zipkin (1984) to allow multiple prod-
ucts, in their case, perishable items. Using a different
approach, Golden, Assad, and Dahl (1984) deter-
mined which customers to visit based on their degree
of urgency, before solving the routing problem heuris-
tically by means of the Clarke and Wright (1964)
algorithm.
Jaillet et al. (2002) solved a short-term problem

using the rolling horizon framework of Bard et al.
(1998), which is later approximated as a periodic solu-
tion over a long-term horizon. This problem includes
satellite facilities where trucks can be replenished dur-
ing their route, and direct deliveries for emergency
deliveries when customers run out of stock.

C
op

yr
ig
ht
:
IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Coelho, Cordeau, and Laporte: Thirty Years of Inventory Routing
12 Transportation Science, Articles in Advance, pp. 1–19, © 2013 INFORMS

T
a
b
l
e
4

C
l
a
s
s
i
fi
c
a
t
i
o
n
o
f
t
h
e
P
a
p
e
r
s
o
n
t
h
e
S
t
o
c
h
a
s
t
i
c
I
R
P

St
ru
ct
ur
e

In
ve
nt
or
y
po

lic
y

Ti
m
e
ho

riz
on

On
e-

On
e-

M
an
y-

Ro
ut
in
g

M
ax
im

um
Or
de
r-u

p-
In
ve
nt
or
y
de
ci
si
on

s
Fl
ee
tc
om

po
si
tio

n
Fl
ee
ts
ize

to
-

to
-

to
-

le
ve
l

to
le
ve
l

Re
fe
re
nc
e

Fi
ni
te

In
fin

ite
on

e
m
an
y

m
an
y

Di
re
ct

M
ul
tip

le
Co

nt
in
uo

us
(M

L)
(O
U)

Lo
st
sa
le
s

Ba
ck
lo
gg

in
g

Ho
m
og

en
eo
us

He
te
ro
ge
ne
ou

s
Si
ng

le
M
ul
tip

le
Un

co
ns
tra

in
ed

Fe
de
rg
ru
en

an
d
Zi
pk
in

(1
98

4)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Go
ld
en
,A

ss
ad
,a
nd

Da
hl

(1
98

4)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Fe
de
rg
ru
en
,P

ra
st
ac
os
,

an
d
Zi
pk
in
(1
98

6)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Tr
ud

ea
u
an
d
Dr
or

(1
99

2)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

M
in
ko
ff
(1
99

3)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Ba
rd

et
al
.(
19

98
)

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
Ca

m
pb

el
le
ta
l.
(1
99

8)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Qu
,B

oo
kb
in
de
r,
an
d

Iy
og

un
(1
99

9)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Be
rm

an
an
d
La
rs
on

(2
00

1)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Ja
ill
et
et
al
.(
20

02
)

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
Kl
ey
w
eg
t,
No

ri,
an
d

Sa
ve
ls
be
rg
h
(2
00

2)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Ad
el
m
an

(2
00

4)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Kl
ey
w
eg
t,
No

ri,
an
d

Sa
ve
ls
be
rg
h
(2
00

4)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Ag
he
zz
af
(2
00

8)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Hv
at
tu
m

an
d
Lø

kk
et
an
ge
n

(2
00

9)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Hv
at
tu
m
,L

øk
ke
ta
ng

en
,

an
d
La
po

rte
(2
00

9)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Hu
an
g
an
d
Li
n
(2
01

0)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Ge
ig
er

an
d
Se

va
ux

(2
01

1a
)

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

Li
u
an
d
Le
e
(2
01

1)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

So
ly
al
ı,
Co

rd
ea
u,

an
d

La
po

rte
(2
01

2)
ÿ

ÿ
ÿ

ÿ
ÿ

ÿ
ÿ

C
op

yr
ig
ht
:
IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Coelho, Cordeau, and Laporte: Thirty Years of Inventory Routing
Transportation Science, Articles in Advance, pp. 1–19, © 2013 INFORMS 13

Geiger and Sevaux (2011b) studied a problem with
unknown demand varying within 10% of a mean
value. They proposed several policies based on deliv-
ery frequencies for each customer. They provide the
Pareto front approximation of such policies when
moving from a total routing-optimized solution to an
inventory-optimized one. To solve the problem for
many periods, they apply the record-to-record travel
heuristic of Li, Golden, and Wasil (2007).
The classical road-based IRP with time windows

was solved by Liu and Lee (2011). Their algorithm
uses a combination of variable neighborhood search
and tabu search. However, the effectiveness of the
algorithm cannot be completely assessed because the
computational comparison is made against three algo-
rithms designed for the VRP with time windows.

4.2. Infinite Horizon
Given the size and the complexity of the SIRP,
Minkoff (1993) proposed a heuristic approach based
on a Markov decision model to a problem somewhat
similar to the IRP, called the delivery dispatching
problem. He simplified the objective function, making
it a sum of smaller and simpler objective functions,
one for each customer, and solved the problem heuris-
tically. This model is one of the few to work with an
unconstrained fleet. Also working with a variant of
the IRP, Berman and Larson (2001) used dynamic pro-
gramming to solve the case where the demand prob-
ability distributions are known, adjusting the amount
of goods delivered to each customer, to minimize the
expected sum of penalties associated with early or late
deliveries.
Campbell et al. (1998) introduced a dynamic pro-

gramming model for the SIRP in which only trans-
portation and stockout costs are taken into account.
To simplify the model, no inventory holding costs are
incurred. At the beginning of each period, the sup-
plier knows the inventory level at each of the cus-
tomers and decides which customers to visit, how
much to deliver to each, how to combine them into
routes, and which routes to assign to each of the avail-
able vehicles. The components of their Markov deci-
sion process are the following (Campbell et al. 1998):
• The state x is the current inventory at each cus-

tomer and the state space X is 601C17⇥ 601C27⇥ · · ·⇥
601C

n

7. Let X
t

2X denote the state at time t.
• The action space A4x5 for each state x is the set

of all itineraries satisfying constraints such as vehicle
capacities and customer inventory capacities. Let A⌘S

x2X A4x5 denote the set of all possible itineraries and
A

t

2A4X
t

5 denote the itinerary chosen at time t.
• The Markov transition function R obtained from

the known demand probability distribution. For
any state x 2 X , any itinerary a 2 A4x5, and any

(measurable) subset B✓X , the transition follows

P 6X

t+1 2 B óX
t

= x1A

t

= a7=
Z

B

R6dy ó x1a70 (17)

• The only costs taken into account are transporta-
tion costs, which depend on the vehicle tours, and a
stockout penalty cost. Let c4x1a5 denote the expected
daily cost if the process is in state x and itinerary a 2
A4x5 is chosen.
• Let Å 2 60115 denote the discount factor. The

objective is to minimize the expected total discounted
cost over an infinite horizon. Let V

⇤
4x5 denote the

optimal expected cost given that the initial state
is x, i.e.,

V

⇤
4x5⌘ inf

8A

t

9

à
t=0

E

 àX

t=0

Å

t

c4X

t

1A

t

5

�����
X0 = x

�
0 (18)

The actions are restricted in the sense that A

t

depends only on the history of the system; when one
decides which itinerary to choose, one does not know
what the future holds. Under certain usual conditions,
equation (18) can be written as

V

⇤
4x5⌘ inf

a2A4x5

⇢
c4x1a5+Å

Z

X

V

⇤
4y5R6dy ó x1a7

�
0 (19)

Equation (19) can only be solved using classical
dynamic programming algorithms if the state space X
is small, which is not the case for practical instances
of the SIRP. Campbell et al. (1998) state that it is pos-
sible to solve the problem by approximating the value
function V

⇤
4x5 with a function V̂ 4x1Ç5 that depends

on a vector of parameters Ç. This is the approach
followed by Kleywegt, Nori, and Savelsbergh (2002,
2004) who, as in Campbell et al. (1998), use a Markov
decision process to formulate the SIRP. Here, a set
of customers must be served from a warehouse by
means of a fleet of homogeneous capacitated vehi-
cles. Each customer has an inventory capacity, and
the problem is modeled in discrete time. Inventory at
each customer at any given time is known to the sup-
plier. Customer demands are stochastic and indepen-
dent from each other, and the supplier knows the joint
probability distribution of their demands, which does
not change over time. The supplier must decide which
customers to visit, how much to deliver to them, how
to combine customers into routes, and which routes
to assign to each vehicle. The set of admissible deci-
sions is constrained by vehicle and customer capaci-
ties, driver working hours, possible time windows at
the customers, and by any other constraint imposed
by the system or the application. Although demands
are stochastic, the cost of each decision is known to
the supplier. Thus, Kleywegt, Nori, and Savelsbergh
(2002, 2004) consider traveling costs, shortages that

C
op

yr
ig
ht
:
IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Coelho, Cordeau, and Laporte: Thirty Years of Inventory Routing
14 Transportation Science, Articles in Advance, pp. 1–19, © 2013 INFORMS

are proportional to the amount of unsatisfied and lost
demand and holding costs. These models consider a
revenue proportional to the quantities delivered. The
problem is formulated to maximize the expected dis-
counted value over an infinite horizon as a discrete
time Markov decision process.
Kleywegt, Nori, and Savelsbergh (2002) studied the

case with direct deliveries only, whereas Kleywegt,
Nori, and Savelsbergh (2004) limited the routing to
at most three customers per route. In the paper by
Adelman (2004), there is no limit on the number of
customers to be served in a route, except for the limits
resulting from maximal route duration and vehicle
capacity. The approach taken by Adelman is a little
different and works as follows. Using a value func-
tion not made up of individual customer values, but
of marginal transportation costs, he compares stockout
costs with replenishment policies, choosing the one
that maximizes the value. A linear program is derived
from the value function, and its optimal dual prices
are used to calculate the optimal policy of the semi-
Markov decision process. In the direct deliveries study
of Kleywegt, Nori, and Savelsbergh (2002), optimal
solutions were obtained on instances with up to 60
customers and up to 16 vehicles, whereas in Kleywegt,
Nori, and Savelsbergh (2004) instances with up to 15
customers and five vehicles were solved.
There are few exceptions to the dynamic pro-

gramming approach. Qu, Bookbinder, and Iyogun
(1999) develop a periodic policy for a multi-item IRP
and Huang and Lin (2010) solve it by means of
an ant colony optimization algorithm. Hvattum and
Løkketangen (2009) and Hvattum, Løkketangen, and
Laporte (2009) solve the IRP by capturing the stochas-
tic information over a short horizon. In Hvattum
and Løkketangen (2009), the problem is solved using
a GRASP, which successively increases the volume
delivered to customers. Hvattum, Løkketangen, and
Laporte (2009) state that it is sufficient to capture the
stochastics of the SIRP over a finite horizon, which
is achieved through truncated scenario trees, both
breadthwise and depthwise.

4.3. Robust Optimization
A different way to model and solve the SIRP is
through the use of robust optimization. This solu-
tion framework is appropriate to deal with uncertainty
where no information is available on the parameter
probability distributions. This is achieved by optimiz-
ing the problemwhile ensuring feasibility for all possi-
ble realizations of the bounded uncertain parameters,
also called a minimax solution. Usually, studies on the
SIRP assume that one knows the probability distri-
bution of demand, which is generally not the case in
practice. Aghezzaf (2008) considers the case of nor-
mally distributed customer demands and travel times

with constant averages and bounded standard devi-
ations. He uses robust optimization to determine the
distribution plan through a nonlinear mixed-integer
programming formulation, which is feasible for all
possible realizations of the random variables. Monte
Carlo simulation is used to improve the plan’s criti-
cal parameters (replenishment cycle times and safety
stock levels). Solyalı, Cordeau, and Laporte (2012) pro-
posed such an exact approach based on robust opti-
mization, which we describe as follows.
In their model, a supplier distributes a single prod-

uct to n customers, using a vehicle of capacity Q, over
a finite discrete time horizon p. The dynamic uncer-
tain demand at each customer i 2 V = 811 0 0 0 1n9 in
period t 2 T = 811 0 0 0 1p9 is d

t

i

. The probability distri-
bution of the demand is unknown, but one knows
that it can take any value in the interval 6d̄

t

i

É d̂

t

i

1

d̄

t

i

+ d̂

t

i

7, where d̄t

i

is the nominal value (point estimate),
and d̂

t

i

is the maximum deviation for the demand
of i in period t. An inventory holding cost equal to
h

t

i

per unit at customer i in period t is incurred at
the customers. Backlogging is allowed, and each unit
backlogged in period t at customer i costs g

t

i

, where
g

t

i

> h

t

i

. There is a fixed-vehicle dispatching cost f
t

for
using the vehicle in period t. If the vehicle leaves cus-
tomer i 2V 0 =V [ 809 heading to customer j , it incurs
a cost c

ij

, and transportation costs are assumed to be
symmetric.
The problem is formulated as follows. Let qitk be

the total inventory cost of replenishing customer i in
period t 2 T to satisfy its demand in period k 2 T ;
q

i1T+11k is the total inventory cost of not meeting the
demand of customer i in period k 2T ; witk is the frac-
tion of the demand of customer i in period k 2 T
delivered in period t 2 T ; and w

i1T+11k is the fraction
of the unsatisfied demand of customer i in period
k 2T . Additionally, let y

it

be 1 if the inventory of cus-
tomer i is replenished in period t 2T and 0 otherwise;
let y0t be 1 if the vehicle is used in period t 2T and 0
otherwise; and let xt

ij

be the number of times the edge
4i1 j5 is traversed in period t 2T . The derivation of the
robust formulation is rather involved, and the reader
is referred to Solyalı, Cordeau, and Laporte (2012) for
details. Their final robust formulation ensuring feasi-
bility for any d

k

i

2 6d̄

t

i

É d̂

t

i

1 d̄

t

i

+ d̂

t

i

7 is

minimize
⇢X

t2T
f

t

y0t +
X

i2V 0

X

j2V 0
1 i<j

X

t2T
c

ij

x

t

ij

+X

i2V

p+1X

t=1

pX

k=1

qitkw
0
itk

�
(20)

subject to
X

i2V

pX

k=1

w

0
itk Qy0t t 2T 1 (21)

w

0
itk � 0 i 2V k 2T 1 t  p+ 11 (22)
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p+1X

t=1

w

0
itk � d̄

t

i

+ d̂

t

i

i 2V k 2T 1 (23)

w

0
itk  4d̄

t

i

+ d̂

t

i

5y

it

i 2V t 2T k 2T 1 (24)
X

j2V 0
1 i<j

x

t

ij

+ X

j2V 0
1 i>j

x

t

ji

= 2y
it

i 2V 0
t 2T 1 (25)

X

i2S

X

j2S 1 i<j

x

t

ij

X

i2S
y

it

É y

mt

S ✓V t 2T m 2S 1 (26)

y

it

 y0t i 2V t 2T 1 (27)

x

t

ij

2 80119 i1 j 2V 1 i < j t 2T 1 (28)

x

t

i0 2 8011129 i 2V t 2T 1 (29)

y

it

2 80119 i 2V 0
t 2T 1 (30)

witk � 0 i 2V k 2T 1 t  p+ 11 (31)

where qitk =
P

kÉ1
l=t

h

l

i

if t  k, qitk =
P

tÉ1
l=k

g

l

i

if t > k, and
w

0
itk = d

k

i

witk.
The objective function (20) is the sum of the fixed

vehicle dispatching, transportation, inventory hold-
ing, and shortage costs. Constraints (21) ensure that
the vehicle capacity is not exceeded. Constraints (22)
and (23) guarantee that quantities delivered are non-
negative and ensure robustness for any realization of
the demand. Constraints (24) link variables w

0
itk and

y

it

, forcing the y variables to take value 1 if the w

0

variables are positive. Thus, 4d̄

t

i

+ d̂

t

i

5 is used as a
big-M value. Constraints (25) are degree constraints,
guaranteeing that if i is visited in period t, then there
are two edges incident to it. Constraints (26) are sub-
tour elimination constraints. Constraints (27) ensure
that the vehicle starts its tour from the supplier and
are used to strengthen the formulation. Constraints
(28)–(30) and (31) are integrality constraints and non-
negativity constraints, respectively.
Using this formulation, Solyalı, Cordeau, and

Laporte (2012) have solved instances with up to seven
periods and 30 customers within a reasonable com-
puting time.

5. Dynamic and Stochastic
Inventory-Routing Problem

In the dynamic IRP, customer demand is gradually
revealed over time, e.g., at the end of each period,
and one must solve the problem repeatedly with the
available information. We are aware of two stud-
ies on this problem, both making use of proba-
bilistic knowledge of the demand. In dynamic and
stochastic inventory-routing problems (DSIRP), cus-
tomer demand is known in a probabilistic sense and
revealed over time, thus yielding a dynamic and
stochastic problem.

Solving a dynamic problem consists of proposing a
solution policy as opposed to computing a static out-
put (Berbeglia, Cordeau, and Laporte 2010). A possi-
ble policy is to optimize a static instance whenever
new information becomes available. The drawback of
such a method is that it is often very time consuming
to solve a large number of instances. A more com-
mon policy is to apply the static algorithm only once
and then reoptimize the problem through a heuristic
whenever new information is made available. A third
policy, which can be combined with either of the first
two, is to take advantage of the probabilistic knowl-
edge of future information and make use of forecasts.
For more information on the solution of dynamic
problems, see Psaraftis (1998); Ghiani et al. (2003);
Berbeglia, Cordeau, and Laporte (2010).
Recently, Bertazzi et al. (2013) and Coelho, Cordeau,

and Laporte (2012b) introduced solution methodolo-
gies that can handle DSIRPs, with a goal of mini-
mizing the total inventory, distribution, and shortage
costs. The paper by Bertazzi et al. proposes a heuris-
tic rollout algorithm that uses a sampling approach
to generate demand scenarios for the current period
and considers the average demand for future ones.
Decisions are made by solving a MIP by branch and
cut in each period. Bertazzi et al. considered the OU
policy, and tested their algorithm on instances with
up to 35 customers and three periods, 15 customers
and six periods, and 10 customers and nine periods.
Coelho, Cordeau, and Laporte (2012b) introduced a
different methodology that can make use of historical
data in the form of forecasts to take future unknown
demands into account, thus being able to efficiently
solve instances in which the demand presents a trend
or seasonality. The problem at each time period is
solved by ALNS and the heuristic was implemented
in a rolling horizon framework. Both the OU and ML
policies were considered and results were reported on
instances with up to 200 customers and 20 periods.

6. Benchmark Instances
Benchmark instance sets are now available to the
research community and allow for a better assess-
ment and comparison of algorithms. We have aggre-
gated these instances into a single website to make
their access easier and to encourage other researchers
to use them; they are all available at http://www
.leandro-coelho.com/instances. The first set was pro-
posed by Archetti et al. (2007) and comprises 160
instances ranging from five to 50 customers, with
three and six periods, respectively. These were used
to evaluate the algorithms of Bertazzi, Paletta, and
Speranza (2002); Archetti et al. (2007); Solyalı and
Süral (2011); Archetti et al. (2012); Coelho, Cordeau,
and Laporte (2012a, c); Coelho and Laporte (2013b).
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A newer, larger, and more challenging data set pro-
posed by Archetti et al. (2012) contains 60 instances
with six periods and up to 200 customers. This
set has been used to evaluate the algorithms of
Archetti et al. (2012); Coelho, Cordeau, and Laporte
(2012a); and Coelho and Laporte (2013b). A large set
for the problem with multiple vehicles and multi-
ple products with 675 instances with varying num-
ber of vehicles, periods, customers, and products
has been proposed by Coelho and Laporte (2013a).
Finally, Coelho, Cordeau, and Laporte (2012b) have
proposed a large test bed for the DSIRP, containing
450 instances.

7. Conclusions
The IRP was introduced 30 years ago by Bell et al.
(1983) and has since evolved into a rich research area.
Several versions of the problem have been studied,
and applications are encountered in many settings,
primarily in maritime transportation. Our survey pro-
vides a classification of the IRP literature under two
dimensions: the structure of the problem and the time
at which information becomes available. Because IRPs
are typically very hard to solve, most algorithms are
heuristics. These have gradually evolved from sim-
ple interchange schemes to more sophisticated meta-
heuristics, sometimes combined with exact methods.
In recent years, we have also witnessed the emer-
gence of exact branch-and-cut algorithms that can
be implemented within the framework of general-
purpose solvers. Over the years, part of the research
effort has shifted toward the study of rich extensions
of the basic IRP model. These include the production-
routing problem, the IRP with multiple products, the
IRP with direct deliveries and transshipment, and the
consistent IRP. Finally, several authors have moved
away from the deterministic and static version of the
IRP and have proposed models and algorithms capa-
ble of handling its stochastic and dynamic versions.
We believe this paper has helped unify the rapidly
expanding body of knowledge on the IRP and will
stimulate other researchers to pursue the study of this
fascinating field.
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