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Abstract

Music generation has generally been focused on either creating scores or interpreting them. We discuss differences

between these two problems and propose that, in fact, it may be valuable to work in the space of direct performance

generation: jointly predicting the notes and also their expressive timing and dynamics. We consider the significance and

qualities of the dataset needed for this. Having identified both a problem domain and characteristics of an appropriate

dataset, we show an LSTM-based recurrent network model that subjectively performs quite well on this task. Critically, we

provide generated examples. We also include feedback from professional composers and musicians about some of these

examples.
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1 Preamble/request

Recognizing that ‘‘talking about music is like dancing

about architecture’’,1 we kindly ask the reader to listen to

the linked audio in order to effectively understand the

motivation, data, results, and conclusions of this paper. As

this research is ultimately about producing music, we

believe the actual results are most effectively perceived—

indeed, only perceived—in the audio domain. This will

provide necessary context for the verbal descriptions in the

rest of the paper.

2 Introduction

In this work, we discuss training a machine-learning sys-

tem to generate music. The first two keywords in the title

are time and feeling: not coincidentally, our central thesis is

that, given the current state of the art in music generation

systems, it is effective to generate the expressive timing

and dynamics information concurrently with the music.

Here, we do this by directly generating improvised per-

formances rather than creating or interpreting scores. We

begin with an exposition of some relevant musical

concepts.

2.1 Scores, performances, and musical
abstraction

Music exists in the audio domain and is experienced

through individuals’ perceptual systems. Any ‘‘music’’ that

is not in the audio domain (e.g., a text or binary file of any

sort) is of course a representation of music: if it is not

physically vibrating, it is not (yet) sound, and if it is not

sound, it is certainly not music. The obvious implication is

that for any representation, there are additional steps to

transform that representation—whatever it might be—into

sound. Those steps might be as local as the conversion

from digital to analog waves, or as global as the human
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performance of written score, for example. In generating

music,2 therefore, one must be aware of which of those

steps is addressed directly by their generative system,

which ones must be addressed in other ways, and, impor-

tantly, the impact of all of those choices on the listener’s

perception of the music, where it is ultimately experienced.

A defining characteristic of a representation, then, is

what is omitted: what still needs to be added or done to it in

order to create music from it, and the relation of that

abstraction to our perceptual experience. With that con-

sideration in mind, we now discuss some common sym-

bolic representations.

2.1.1 Scores

Figure 1 is an example of a musical score [7]. It shows

which notes to play and when to play them relative to each

other. The timing in a score is aligned to an implicit and

relative metrical grid. For example, quarter notes are the

same duration as quarter note rests, twice the duration of

eighth notes, and so on. Some scores additionally specify

an absolute tempo, for example, in quarter notes per

minute.

And yet, by the time the music is heard as audio, most of

this timing information will have been intentionally not

followed exactly! For example, in classical music from the

1800s onward, rubato developed: an expressive mal-

leability of timing that overrides metrical accuracy (i.e.,

can deviate very far from the grid), and this device is both

frequent and essential for making perceptual sense of cer-

tain pieces. Another example of a rhythmic construct that is

not written in scores is swing, a defining quality of many

African American music traditions.3

But tempo is not the only way in which the score is not

followed exactly. Dynamics refers to how the music gets

louder and quieter. While scores do give information about

dynamics, in this respect, too, their effectiveness relies

heavily on conventions that are not written into the score.

For example, where the above score says ‘‘p,’’ it means to

play quietly, but that does tell us how quietly, nor will all

the notes be equally quiet. When there is a crescendo

marking indicating to get louder, in some cases the per-

former will at first get momentarily quieter, creating space

from which to build. Furthermore, when playing poly-

phonic piano music, notes played at the same time will

usually be played at different dynamic levels and articu-

lated differently from one another in order to bring out

some voices over others.

Phrasing includes a joint effect of both expressive

timing and dynamics. For example, there is a natural cor-

relation between the melody rising, getting louder, and

speeding up. These are not rules, however; skilled per-

formers may deliberately choose to counteract such pat-

terns to great effect.

We can think of a score as a highly abstract represen-

tation of music. The effective use of scores, i.e., the

assumption by a composer that a score will subsequently be

rendered well as music, relies on the existence of con-

ventions, traditions, and individual creativity. For example,

Chopin wrote scores where the pianist’s use of rubato is

expected; indeed, the score requires it in order to make

sense. Similarly, the melodies in jazz lead sheets were

written with the understanding that they will be swung and

probably embellished in various ways. There are numerous

other instrument-specific aspects that scores do not

explicitly represent, from the vibrato imbued by a string

player to the tone of a horn player. Sometimes, the score

won’t make perceptual sense without these elements.

In short, the mapping from score to music is full of

subtlety and complexity, all of which turns out to be very

important in the perceptual impact that the music will have.

To get a sense of the impact of these concepts, we rec-

ommend that the reader listen:

• first to a direct rendering of the above score here:

https://clyp.it/jhdkghso, played according to the written

grid and quantized to 16th notes. Then,

• listen to an expressive performance [33] of it here:

https://clyp.it/x24hp1pq.2 In this text, we use the term ‘‘generation’’ to refer to computational

generation, as opposed to human creation or performance.

Fig. 1 Excerpt from the score of Chopin’s Piano Concerto No. 1

3 While explaining swing is outside the current scope, we do note that

it is occasionally incorrectly described in terms of triplets.
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2.1.2 MIDI

MIDI is a communication protocol for digital musical

instruments: a symbolic representation, transmitted seri-

ally, that indicates NOTE_ON and NOTE_OFF events and

allows for a high temporal sampling rate. The loudness of

each note is encoded in a discrete quantity referred to as

velocity (the name relates to how fast a piano key is

pressed). While MIDI encodes note timing and duration, it

does not encode qualities such as timbre; instead, MIDI

events are used to trigger playback of audio samples.

MIDI can be visualized as a piano roll—a digital version

of the old player piano rolls. Figure 2 is an example of a

MIDI piano roll corresponding to the score shown in

Fig. 1. Each row corresponds to one of the 128 possible

MIDI pitches. Each column corresponds to a uniform time

step. If note i is ON at time t and had been pressed with

velocity v, then element ðt; iÞ ¼ v. So, at 125 Hz, 6 s of

MIDI data would be represented on a grid of size

128� ð6� 125Þ. Actual MIDI sampling can be faster than

this, so even at 125 Hz we are still subsampling from the

finest available temporal grid.

We refer to a score that has been rendered directly into a

MIDI file as a MIDI Score. That is, it is rendered with no

dynamics and exactly according to the written metrical

grid. As given earlier, https://clyp.it/jhdkghso is an exam-

ple of this.

If, instead, a score has been performed, by a musician

for example, and that performance has been encoded into a

MIDI stream, we refer to that as a MIDI Performance.

https://clyp.it/x24hp1pq is an example (also given previ-

ously) of a MIDI performance.

3 Factoring the music generation process:
related work

Figure 3 shows one way of factoring the music generation

process. The first stage shown in this figure is composition,

which yields a score. The score is then performed. The

performance is rendered as sound, and finally that sound is

perceived. In the analog world, of course, performance and

rendering the sound are the same on a physical instrument,

but in the digital world, those steps are often separate.

While other views of the process are possible, this one

provides us a helpful context for considering much of the

existing relevant work. Noting that sound generation and

perception (the last two steps in Fig. 3) are outside our

scope, in the rest of this section we focus primarily on

composition and performance.

Perhaps it is precisely because music is so often per-

ceived as a profoundly human endeavor that there has also

been, in parallel, an ongoing fascination with automating

its creation. This fascination long predates notions such as

the Turing test (ostensibly for discriminating automation of

the most human behavior) and has spawned a range of

efforts: from attempts at the formalization of unambigu-

ously strict rules of composition to incorporation of com-

plete random chance into scores and performances. The use

of rules exemplifies the algorithmic (and largely deter-

ministic) approach to music generation, one that is inter-

esting and outside the scope of the current work; for

background on this, we refer the reader, for example, to the

text by Nierhaus [31]. Our present work, on the other hand,

lies in a part of the spectrum that incorporates probability

and sampling.

Aleatory refers to music or art that involves elements of

randomness, derived from the Latin alea (alee), meaning

Fig. 2 Piano roll based on the

score in Fig. 1. The horizontal

axis represents time; the vertical

axis represents pitch; each

rectangle is a note; and the

length of the rectangle

corresponds to the duration of

the note
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‘‘die (dice).’’ Dice were used in the 1700s to create music

in a game referred to as Musikalisches Würfelspiel

[1, 16, 31]: the rolled numbers were used to select from

pre-composed fragments of music. Some of these compo-

sitions were attributed to Mozart and Haydn, though this

has not been authenticated.

Two centuries later, as the foundations of AI were being

set, the notion of automatically understanding (and there-

fore generating) music was among the earliest applications

to capture the imagination of researchers, with papers on

computational approaches to perception, interpretation, and

generation of music by Simon, Longuet-Higgins, and oth-

ers [23–26, 36]. Since then, many interesting efforts were

made [8, 15, 19, 30, 34, 40], and it is clear that in recent

years both interest and progress in score generation have

continued to advance, for example Lattner et al. [22],

Boulanger-Lewandowski et al. [2], Bretan et al. [4], Her-

remans et al. [17], Roberts et al. [35], Sturm [37], to name

only a few. Briot et al. [5] provide a survey of generative

music models that involve machine learning. Herremans

et al. [18] provide a comprehensive survey and satisfying

taxonomy of music generation systems. McDonald [28]

gives an overview highlighting some key examples of such

work.

Corresponding to the second step in Fig. 3 is a body of

work often referred to as EMP (Expressive Musical Per-

formance) systems. For example, the work by Chacon and

Grachten [6], inspired by the Linear Basis Models pro-

posed by Grachten and Widmer [14], involves defining a

set of hand-engineered features, some of which depend on

having a score with dynamic expression marks, others on

heuristics for musical analysis (e.g., a basis function indi-

cating whether the note falls on the first beat of a measure

of 4/4). Widmer and Goebl [44] and Kirke and Miranda

[21] both present extensive and detailed surveys of work

done in the field of computational EMPs. In the latter

survey, the authors also provide a tabular comparison of 29

systems that they have reviewed. Out of those systems, two

use neural networks (one of which also uses performance

rules) and a few more use PCA, linear regression, KCCA,

etc. Some of the other systems that involve some learning

do so by learning rules in some way. For example, the KTH

model [10] consists of a top-down approach for predicting

performance characteristics from rules based on local

musical context. Bresin [3] presents two variations of a

neural network-based system for learning how to add

dynamics and timing to MIDI piano performance.

Grachten and Krebs [13] use a variety of unsupervised

learning techniques to learn features with which they then

predict expressive dynamics. Building on that work, van

Herwaarden et al. [43] use an interesting combination of an

RBM-based architecture, a note-centered input represen-

tation, and multiple datasets to—again—predict expressive

dynamics. In both of these cases, the dynamics predictions

appear to depend on the micro-timing rather than being

predicted jointly as in the present work.

Teramura et al. [38] observe that many previous per-

formance rendering systems ‘‘often consist of many

heuristic rules and tend to be complex. It makes [it] diffi-

cult to generate and select the useful rules, or perform the

optimization of parameters in the rules.’’ They thus present

a method that uses Gaussian Processes to achieve this,

where some parameters can be learned. In their ostensibly

simpler system, ‘‘for each single note, three outputs and

corresponding thirteen input features are defined, and three

functions each of which returns one of three outputs and

receive the thirteen input features, are independently

learned.’’ However, some of these features, too, depend on

certain information; for example, they compute the dif-

ferences between successive pitches, and this only works in

compositions where the voice leading is absolutely clear; in

the majority of classical piano repertoire, this is not the

case. In Laminae, Okumura et al. [32] systematize a set of

context-dependent models, building a decision tree which

allows rendering a performance by combining contextual

information.

Moulieras and Pachet [29] use a maximum entropy

model to generate expressive music, but their focus is again

Fig. 3 Factoring music generation. We can see music as starting with

the composition of a score; that score gets turned into a performance

(shown as a MIDI piano roll); that MIDI roll, in turn, gets rendered

into sound using a synthesizer; and finally the resulting audio gets

perceived as music by a human listener
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monophonic plus simple harmonic information. They also

explicitly assume that ‘‘musical expression consists in local

texture, rather than long-range correlations.’’ While this is

fairly reasonable at this point, and indeed it is hard to say

how much long-range correlation is captured by our model,

we wished to choose a model which, at least in principle,

allowed the possibility of modeling long-range correlation:

ultimately, we believe that these correlations are of fun-

damental importance. Malik and Ek [27] use a neural

network to learn to predict the dynamic levels of individual

notes while assuming quantized and steady timing.

4 Choosing Assumptions and a Problem
Domain

4.1 Assumptions

While we have briefly surveyed systems including both

compositional and EMP, we note that our focus is to

generate new music, not to perform existing scores (an

interesting problem in itself, for which there are some very

effective systems as described above). In this context,

computational models naturally make assumptions; let us

review potential implications of some of these when gen-

erating music and identify some of the choices we make in

our own model in these respects.

• Metric Abstraction Many compositional systems

abstract rhythm in relation to an underlying grid, with

metric-based units such as eighth notes and triplets.

Often this is further restricted to step sizes at powers of

two. Such abstraction is oblivious to many essential

musical devices, including, for example, rubato and

swing as described in Sect. 1.1.1.

We choose a temporal representation based on absolute

time intervals between events, rounded to 8 ms.

• No Dynamics Nearly every compositional system

represents notes as ON or OFF. This binary represen-

tation ignores dynamics, which constitute an essential

aspect of how music is perceived. Even if dynamic level

were treated a global parameter applied equally to

simultaneous notes, this would still defeat the ability of

dynamics to differentiate between voices, or to com-

pensate for a dense accompaniment (that is best played

quietly) underneath a sparse melody.

We allow each note to have its own dynamic level.

• Monophony Some systems only generate monophonic

sequences. Admittedly, this is a natural starting point: the

need to limit to monophonic output is in this sense

entirely understandable. This can work very well for

instruments such as voice and violin,where the performer

also has sophisticated control beyond quantized pitch and

the velocity of the note attack. The perceived quality of

monophonic sequences may be inextricably tied to these

other dimensions that are difficult to capture and usually

absent from MIDI sequences.

In our experience, the leap from monophonic to

polyphonic generation is a significant one. A survey of

the literature shows that most systems that admit

polyphony still make assumptions about its nature—

either that it is separable into chords, or that it is separable

into voices, or that anymicrovariation in tempo applies to

all voices at once (as opposed to allowing one voice to

come in ahead of the beat), and so forth. Each of these

assumptions is correct only sometimes. We settled on a

representation that turned out to be simpler and more

agnostic than this, in that it does not make any of these

assumptions:

We specify note events one at a time, but allow the system

to predict an arbitrary number of simultaneous notes,

should it be so inclined.

Generally speaking, in contrast to many of the methods

discussed in Sect. 2, our approach makes no assumptions

about the features other than the information that is known

to exist in MIDI files: velocity, timing, and duration of each

note. We do not require computing or knowing the time

signature, we do not require knowing the voice leading, we

do not require inferring the chord, and so on. While addi-

tional information could be both useful and interesting,

given the current state of the art and available data, we are

focused on showing how much can be done without

defining any rules or heuristics at all; we simply try to

model the distribution of the existing data. Listening to

some of the examples, one hears that our system generates

a variety of natural time feels, including 3/4, 4/4, and odd

time signatures, and they never feel rhythmically heavy-

handed.

4.2 Problem Domain: Simultaneously
Composing and Performing

In Fig. 4, we show a few different possible entry points to

the music generation process. For example, at one extreme,

we can subsume all steps into a single mechanism so as to

predict audio directly, as is done by WaveNet, with

impressive results [42]. Another approach is to focus only

on the instrument synthesis aspect [9], which is an inter-

esting problem outside the scope of our present work. As

described in Sect. 2, compositional systems generate scores

that require performances, and EMP systems take scores

and generate corresponding performances.

Here, we demonstrate that jointly predicting composi-

tion and performance with expressive timing and dynamics,

as illustrated in Fig. 4d, is another effective domain for
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music generation given the current state of the art. Fur-

thermore, it creates output that can be listened to without

requiring additional steps beyond audio synthesis as pro-

vided by a piano sample library.

While the primary evidence for this will be found sim-

ply by listening to the results, we mention two related

discussion points about the state of the art:

– Music with very long-term, fully coherent structure is

still elusive. In ‘‘real’’ compositions, long-term struc-

ture spans the order of many minutes and is coherent on

many levels. There is no current system that is able to

learn such structure effectively. That is, if Dt ¼ 8ms,

then even for just 2 minutes, Pðeiþ15000jeiÞ should be

different from Pðeiþ15000Þ. There is no current system

that effectively achieves anywhere near this for sym-

bolic MIDI representation.

– Metrics for evaluating generated music are very

limited. Theis and others [39, 41] have given clear

arguments about the limitations of metrics for evaluat-

ing the quality of generative models in the case of

visual models, and their explanations extend naturally

to the case of musical and audio models. In particular,

they point out that ultimately, ‘‘models need to be

evaluated directly with respect to the application(s) they

were intended for.’’ In the case of the generative music

models that we are considering, this involves humans

listening.

Taken together, what this means is that systems that gen-

erate musical scores face a significant evaluation dilemma.

Since by definition any listening-based evaluation must

operate in the audio space, either (a) the scores must be

rendered directly and will lack expression entirely, or (b) a

human or other system must perform the scores, in which

case the quality of the generated score is hard to disen-

tangle from the quality of the performance.4 Furthermore,

the lack of long-term structure compounds the difficulty of

evaluation, because one of the primary qualities of a good

Fig. 4 Here are four different

entry points into the generative

process. The magenta arrows

represent machine-learned

generators. a One extreme,

exemplified by WaveNet [42], is

to jump directly into the

generation of the audio, as

shown on the top. b The next

diagram represents learning the

instrument synthesizer model

(e.g., NSynth [9]). c The third

diagram represents generating

scores, i.e., learning to compose.

In that case, some unspecified

process is still needed in order

to convert the score into audio,

and therein lies one of the

problems with score-based

generation at the moment.

d Finally, the bottom diagram

represents bypassing the

generation of scores, and

directly generating

performances, as we propose

here. In this case, a synthetic

instrument is needed in order to

convert the performance into

audio. For an instrument such as

piano, doing this quite well is

feasible

4 For example, listening to the direct score and performance clips

given above, it should be clear that other than perhaps very

experienced musicians, it would be extremely difficult for a listener
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score is precisely in its long-term structure. This implicitly

bounds the potential significance of evaluating a short and

context-free compositional fragment.

With these considerations in mind, we generate directly

in the domain of musical performance. A side benefit of

this is that informal evaluation becomes more potentially

meaningful: musicians and non-musicians alike can listen

to clips of generated performances while (1) not being put

off by the lack of expressiveness and (2) not needing to

disentangle the different elements that contributed to what

they hear, since both the notes and how they are all played

were all generated by the system.5 We also note that our

approach is consistent with many of the points and argu-

ments recently made by Widmer [45]. As one example,

where Widmer points out that ‘‘details of the performance

contribute much to the character of the music, and how it

affects listeners,’’ a premise of our work is that it is valu-

able to incorporate performance into the generative musical

model even at the compositional level.

5 Data

If we wish to predict expressive performance, we need to

have the appropriate data. We use the International Piano-

e-Competition dataset [20], which contains MIDI captures

of roughly 1400 performances by skilled pianists. The

pianists were playing a Disklavier, which is a real piano

that also has internal sensors that record MIDI events

corresponding to the performer’s actions. The critical

importance of good data is well known for machine

learning in general, but here we note some particular

aspects of this dataset that made it well suited for our task.

5.1 Homogeneous

The dataset was sufficiently homogeneous in a set of

important ways. It might be easy to underestimate the

importance of any of the following criteria, and so we list

them all explicitly here with some discussion:

First, it was all classical music This helps the coherence

of the output.

Second, it was all solo instrumental music If one

includes data that is for two or more instruments, then it no

longer makes sense to train a generative model that is

expected to generate for a solo instrument; there will be

many (if not most) passages where what one instrument is

doing is entirely dependent on what the other instrument is

doing. The text analogy would be hoping for a system to

learn to write novels by training it on only one character’s

dialogue from movies and plays. There will occasionally be

self-sufficient monologues, but generally speaking, well-

written dialogue has already been distilled by the play-

wright and makes more sense when voices are not removed

from it.

Third, that solo instrument was consistently piano

Classical composers generally write in a way that is very

specific to whichever instrument they are writing for. Each

instrument has its own natural characteristics, and classical

music scores (i.e., that which is captured in the MIDI

representation) are very closely related to the timbre of that

instrument (i.e., how those notes will be ‘‘rendered’’). One

exception to this is that Bach’s music tends to sound quite

good on any instrument; for example, it is OK to train a

piano system on Bach vocal chorales.

Fourth, the piano performances were all done by

humans The system did not have to contend with learning

from a dataset where some of the examples were synthe-

sized, some were ‘‘hand-synthesized’’ to appear like human

performances, etc. Each of those classes has its own pat-

terns of micro-timing and dynamics, and each may be well

suited for a variety of music-related tasks, but if the goal is

to have a system trained on performances, it is helpful that

the training data are in fact performances and not proxies of

performances.

Finally, all of those humans were experts If we wish the

system to learn about human performance, that human

performance must match the listener’s concept of what

‘‘human performance’’ sounds like, which is usually per-

formances by experts. The casual evaluator might find

themselves slightly underwhelmed were they to listen to a

system that has learned to play like a beginning pianist,

even if the system has done so with remarkable fidelity to

the dynamic and velocity patterns that occur in that

situation.

5.2 Realizable

The fact that the solo instrument was piano had additional

advantages. Synthesizing audio from MIDI can be a chal-

lenging problem for some instruments. For example, hav-

ing velocities and note durations and timing of violin music

would not immediately lead to good-sounding violin audio

at all. The problems are even more evident if one considers

synthesizing vocals from MIDI. Here, that the piano is a

percussive instrument buys us an important benefit: syn-

thesizing piano music from MIDI can sound quite realistic

(compared to synthesizing instruments that allow

Footnote 4 continued

to hear the audio of the MIDI Score and intuitively understand that

that same passage could sound as it does in the MIDI Performance.
5 We emphasize that these observations do not apply to the

development of tools for composers, where score fragment generation

might be appropriate. Also, we reiterate that this discussion is made in

relation to the current state of the art.
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continuous timbral control). Thus, when we generate data,

we can properly realize it in audio space and therefore have

a good point of comparison. Conversely, capturing the

MIDI data of piano playing provides us with a sufficiently

rich set of parameters that we can later learn enough in

order to be able to render audio. Note that with violin or

voice, for example, we would need to capture many more

parameters than those typically available in the MIDI

protocol in order to get a sufficiently meaningful set of

parameters for expressive performance.

6 RNN model

We modeled the performance data with an LSTM-based

Recurrent Neural Network. The model consisted of three

layers of 512 cells each, although the network did not seem

particularly sensitive to this hyperparameter. We used a

temporally non-uniform representation of the data, as

described next.

6.1 Representation: time shift

A MIDI excerpt is represented as a sequence of events

from the following vocabulary of 413 different events:

• 128 NOTE-ON events: one for each of the 128 MIDI

pitches. Each one starts a new note.

• 128 NOTE-OFF events: one for each of the 128 MIDI

pitches. Each one releases a note.

• 125 TIME-SHIFT events: each one moves the time

step forward by increments of 8 ms up to 1 s.

• 32 VELOCITY events: each one changes the velocity

applied to all subsequent notes (until the next velocity

event).

The neural network operates on a one-hot encoding over

this event vocabulary. Thus, at each step, the input to the

RNN is a single one-hot 413-dimensional vector. For the

piano-e-competition dataset, a 15-s clip typically contains

600 such one-hot vectors, although this varies considerably

(and roughly linearly with the number of notes in the clip).

While the minimal time step is a fixed absolute size

(8 ms), the model can skip forward in time to the next note

event. Thus, any time steps that contain rests or simply

hold existing notes can be skipped with a single event. The

largest possible single time shift in our case is 1 s but time

shifts can be applied consecutively to allow effectively

longer shifts. The combination of fine quantization and

time-shift events helps maintain expressiveness in note

timings while greatly reducing sequence length compared

to an uncompressed representation.

This fine quantization is able to maintain expressiveness

in note timings while not being as sparse as a grid-based

representation. This sequence representation uses more

events in sections with higher note density, which matches

our intuition.

Figure 5 shows an example of a small excerpt of MIDI

performance data converted to our representation. Figure 6

shows a diagram of the basic RNN architecture.

6.2 Generation

The model generates output auto-regressively: it samples

stochastically from the softmax output distribution and

uses beam search; the selected event is then fed back as an

Fig. 5 Example of the representation used for PerformanceRNN. The

progression illustrates how a MIDI sequence (e.g., shown as a MIDI

roll consisting of a long note followed by a shorter note) is converted

into a sequence of commands (on the right-hand side) in our event

vocabulary. Note that an arbitrary number of events can in principle

occur between two time shifts
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input into the system. Teacher forcing is used during

training. It is worth noting that, in this form, the model

cannot, for example, follow a given score, but it can be

given an initial priming sequence at the beginning of

generation if one wishes, though we have typically started

with an empty sequence. The output generation is some-

what analogous to musical free improvisation, where the

model’s next choice depends on the choices it has made up

to that point.

6.3 Training and data augmentation

We train the models by first separating the data into 30-s

clips, from which we then select shorter segments. We train

using stochastic gradient descent with a mini-batch size of

64 and a learning rate of 0.001 and teacher forcing.

6.3.1 Augmentation

We augment the data in two different ways, for different

runs:

Less augmentation:

• Each example is transposed up and down all intervals

up to a major third, resulting in eight new examples plus

the original.

• Each example is stretched in time uniformly by � 2:5%

and � 5%, resulting in four new examples plus the

original.

More augmentation:

• Each example is transposed up and down all intervals

up to five or six semitones to span a full octave,

resulting in 11 new examples plus the original.

• Each example is stretched in time uniformly by up to

�10%.

6.3.2 Quantization

In Sect. 3, we describe some forms of quantization that can

be harmful to perceived musical quality. Our models also

operate on quantized data; however, unlike much prior

work, we aim for quantization levels that are below

noticeable perceptual thresholds.

Timing Friberg and Sundberg [11] found that the just

noticeable difference (JND) when temporally

displacing a single tone in a sequence was

generally no finer than roughly 10 ms. Other

studies have found that the JND for change in

tempo is no finer than roughly 5%. We note

that for a tempo of 120 bpm, each beat lasts

for 500 ms, and therefore this corresponds to a

change of roughly 25 ms. Given that at that

tempo beats will frequently still be subdivided

into two or triplets, that would correspond to a

change of roughly 8 ms per subdivided unit.

We therefore assume that using a sampling

rate of 125 Hz (i.e., 1000/8) should generally

be below the typical perceptual threshold.

Dynamics Working with piano music, we have found

that 32 different ‘‘steps’’ of velocity are

sufficient. Note that there are about eight

levels of common dynamic marking in

classical music (from ppp to fff), so it may

well be the case that we could do with fewer

than 32 bins, but our objective was not to find

the lower bound here.

6.3.3 Predicting pedal

In the RNN model, we experimented with predicting sus-

tain pedal. We applied PEDAL_ON by directly extending the

lengths of the notes: for any notes on during or after a

PEDAL_ON signal, we delay their corresponding NOTE_OFF

events until the next PEDAL_OFF signal. This made it a lot

easier for the system to accurately predict a whole set of

NOTE_OFF events all at once, as well as to predict the

corresponding delay preceding this. Doing so may have

also freed up resources to focus on better prediction of

other events as well. Finally, as one might expect,

including pedal made a significant subjective improvement

in the quality of the resulting output.

Fig. 6 Basic RNN architecture consists of three hidden layers of

LSTMs, each layer with 512 cells. The input is a 413-dimensional

one-hot vector, as is the target, and the model outputs a categorical

distribution over the same dimensionality as well
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7 Results

We begin with the most important indicator of perfor-

mance: generated audio examples.

7.1 Examples

In these examples, our systems generated all MIDI events:

timing and duration of notes as well as note velocities. We

then used freely available piano samples to synthesize

audio from the resulting MIDI file.

A small set of examples are available at https://clyp.it/

user/3mdslat4. We strongly encourage the reader to listen.

These examples are representative of the general output of

the model. We comment on a few samples in particular, to

give a sense of the kind of musical structure that we

observe:

• RNN Sample 4: This starts off with a slower segment

that goes through a very natural harmonic progression

in G minor, pauses on the dominant chord, and then

breaks into a faster section that starts with a G major

chord, then passes through major chords related to G

minor (Bb, etc). Harmonically, this shows structural

coherence even while the tempo and feel shift. At

around 12s, the ‘‘left hand’’ uses dynamics to bring out

an inner voice in a very natural and appropriate way.

• RNN Sample 7: This excerpt begins very reminiscent of

a Schubert Impromptu, although it is sufficiently

different that it has clearly not memorized it. There is

a small rubato at the very beginning of the phrase,

especially on the first note, which is musically appro-

priate. The swells in the phrasing make musical sense,

as do the slight pauses right before some of the isolated

notes in the left hand (e.g., the E at 0:10s, the F] at

around 12.5 s).

• RNN Sample 2: This excerpt begins in a classical style

(e.g., Haydn or Mozart). Interestingly, the same way

that one note (an F) is repeated in the right hand in the

first few seconds, after a pause, the next phrase begins,

and then at around 8 s, the left hand mirrors that

articulation pattern with a set of descending repeated

notes (A[, G, F).

7.2 Log-likelihood

We begin by noting that objective evaluation of these kinds

of generative is fundamentally very difficult, and measures

such as log-likelihood can be quite misleading [39]. Nev-

ertheless, we provide comparisons here over several dif-

ferent hyperparameter configurations for the RNN.

Table 1 contains the per-time-step log-loss of several

RNN model variants. The baseline model is trained on 15-s

performance clips, ignoring sustain pedal and with the two

forms of data augmentation described in Sect. 5.3.

Note that while RNN-NV has the best log-loss, this

variant is inherently easier as the model does not need to

predict velocities. In the RNN-SUS variant, sustain pedal is

used to extend note durations until the pedal is lifted; this

aids prediction as discussed in Sect. 5.3.3.

7.3 Feature-based Analysis

One way to evaluate the generated samples is to compare

hand-selected statistical features with the same features

computed over the real data. For example, Grachten and

Widmer [14] compute the relationship between MIDI pitch

number and MIDI velocity and show that for two different

datasets with different performers, the best fit first three

orders of polynomials are remarkably similar. Following

this, we compute the same statistics over the Yamaha

dataset and over our generated samples. In Fig. 7, we plot

these results analogously to the plots given by Grachten

and Widmer. Both of our plots are indeed extremely sim-

ilar to theirs.

In another example of a carefully selected musical fea-

ture, Goebl [12] observes that when two or more notes are

played nearly simultaneously in piano performance, the

note corresponding to the melody is generally played

slightly in advance of the other notes. While Goebl had

repeated performances of the same piece, and therefore the

melody/accompaniment split could be computed a single

time and applied to many performances, it was impractical

to measure this directly in our case, because each sample is

an entirely different set of notes, so that would involve

determining the melody notes by hand over thousands of

notes of generated examples. However, if we crudely

assume that, most of the time, the melody occurs in the

upper register, then if we look for nearly simultaneous

groups of notes (i.e., occurring within a 30 ms window)

Table 1 Log-loss of RNN model variants trained on the Piano-e-

competition performance dataset and evaluated on a held-out subset

Model Log-loss Description

RNN .765 Baseline RNN trained on 15-s clips

RNN-NV .619 Baseline without velocity

RNN-SUS .663 Baseline with pedaled notes extended

RNN-AUG? .755 Baseline with more data augmentation

RNN-AUG- .784 Baseline with less data augmentation

RNN-30s .750 Baseline trained on 30-s clips

RNN-SUS-30s .664 Baseline ? pedal ? 30-s clips
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that span both above and below C4, then we would expect

to see more drops in pitch within such windows than rises.

When we measured this, then, both for the real data and for

the generated samples, we found that this was the case.

That is, when groups of notes were played nearly simul-

taneously, and some of those notes were above C4 and

others were below C4, then it was indeed the case that the

upper notes were usually played before the lower ones.

Thus, we see that both our real and generated samples

display characteristics that match other datasets for which

the same, musically informed features have been com-

puted. Yet, we do not know how these samples sound. We

thus solicited feedback from professional musicians.

7.4 Informal Feedback From Professional
Composers and Musicians

We gave a small set of clips to professional musicians and

composers for informal comments. We were not trying to

do a Turing test, so we mentioned that the clips were

generated by an automated system, and simply asked for

any initial reactions/comments. Here is a small, represen-

tative subset of the comments we received (musical back-

ground in bold, some particularly interesting excerpts are

italicized for later discussion):6

TV/Film composer:

Fantastic!!!! How many hours of learning [. . .] here?

This [. . .] absolutely blows the stuff I’ve heard online

out of the solar system. The melodic sense is still

foggy, in my view, but it’s staggering that it makes

nice pauses with some arcing chord progressions

quite nicely. I think that it’s not far from actually

coming up with a worthwhile melody. [. . .] How does

it know what ‘‘inspirational emotion’’ to draw from?

or is it mostly doing things ‘‘in the likeness of’’?

Fascinating!!

Composer and Professional Musician

In terms of performance I’m quite impressed with the

results. It sounds more expressive than any playback

feature I’ve worked with when using composition

software.

In terms of composition, I think there is more room

for improvement. The main issue is lack of consis-

tency in rhythmic structure and genre or style. For

example, Sample 1 starts with a phrase in Mozarts

style, then continues with a phrase in Waltons style

perhaps, which then turns into Scott Joplin. . . Sample

2 uses the harmonic language of a late Mahler sym-

phony, along with the rhythmic language of a free

jazz improvisation (I couldn’t make a time signature

out of this clip). Sample 3 starts with a phrase that

could be the opening of a Romantic composition, and

then takes off with a rhythmic structure that resem-

bles a Bach composition, while keeping the Romantic

harmonic language. Sample 4 is the most consistent

of all. It sounds like a composition in the style of one

Fig. 7 Left: Pitch–velocity relationship for the real dataset. Right:

Pitch–velocity relationship for a set of generated examples. Each data

point is a pair (pitch, average velocity) for one MIDI file/excerpt,

where mean velocity is taken over the nonzero velocities. For clarity,

only approximately 1
10
of the real data is shown in the scatterplot, but

all of it is used to calculate the interpolation. Roughly 1000 data

points were computed analogously from a generated set of samples

from the model

6 It is worth considering some of the qualitative remarks given below

with respect to characteristics such as those listed in Table 1 in the

work by Friberg et al. [10].
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of the Romantic piano composers (such as Liszt

perhaps) and remains in that style throughout the clip.

Music Professor:

[. . .] I’d guess human because of a couple of ‘‘errors’’

in there, but maybe the AI has learned to throw some

in! [ . . .]

Pianist, TV & Film Composer:

Sample 1: resembles music in the style of Robert

Schumann’s Kinderszenen or some early romantic

salon music. I’m fond of the rest after the little initial

chord and melody structure. The tempo slows down

slightly before the rest which sounds really lively and

realistic—almost a little rubato. Then, the distinct

hard attack. Nice sense of dynamics. Also nice

ritardando at the end of the snippet. Not liking the

somewhat messy run but this almost seems as if

someone had to study a little bit harder to get it

right—it seems wrong in a human way.

Sample 2: reminds me of some kind of Chopin waltz,

rhythm is somewhat unclear. The seemingly wrong

harmony at the beginning seems to be a misinter-

pretation of grace notes. The trill is astonishing and

feels light and airy.

Sample 3: Could be some piece by Franz Schubert.

Nice loosely feeling opening structure which shifts

convincingly into fierce sequence with quite static

velocity. This really reminds me of Schubert because

Johann Sebastian Bach shines through the harmonic

structure as it would have with Schubert. Interesting

effort to change the dynamic focus from the right to

the left hand and back again.

This is really interesting!

Piano Teacher:

Sample 1: Sounded almost Bach-like for about the

first bar, then turned somewhat rag-timey for the rest

Sample 2: Here we have a very drunken Chopin,

messing around a bit with psychedelics

Does that help at all? Also, what do you mean by a

regular piano sample library? Did you play these clips

as composed by the AI system?

Overall, we note that the comments were quite consistent

in terms of perceiving a human quality to the performance.

Indeed, even though we made an effort to explain that all

aspects of the MIDI file were generated by the computer,

some people still wanted to double-check whether in fact

these were human performances.

While acknowledging the human quality of the perfor-

mances, many of the musicians also questioned the strength

of the long-term compositional structure. Indeed, creating

music with long-term structure (e.g., more than several

seconds of structure) is still a very challenging problem.

Many musicians identified the ‘‘style’’ as the mix of

classical composers of which the data indeed consisted.

8 Conclusion

We have considered various approaches to the question of

generating music and propose that it is currently effective

to generate in the space of MIDI performances. We

describe the characteristics of an effective dataset for doing

so and demonstrate a system that achieves this quite

effectively.

Our resulting system creates audio that sounds, to our

ears, like a pianist who knows very well how to play, but

has not yet figured out exactly what they want to play, nor

is quite able remember what they just played. Professional

composers and musicians have provided feedback that is

consistent with the notion that the system generates music

which, on one hand, does not yet demonstrate long-term

structure, but where the local structure, for example

phrasing, dynamics, is very strong. Indeed, even though we

did not frame the question as a Turing test, a number of the

musicians assumed that (or asked whether) the samples

were performed by a human.
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