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Abstract 

Modelling of coupled thermal (T), hydro (H), mechanical (M) and chemical (C) processes 

in geomaterials has attracted attention in the past decades due to many significant 

contemporary engineering applications such as nuclear waste disposal, carbon capture 

and storage etc. However, in very-low permeability membrane geomaterials, the 

couplings between chemical osmosis and thermal osmosis and their consequent 

influence on temperature, water transport and mechanical deformation remain as a long-

lasting challenge due to the gap between geomechanics and geochemistry. This paper 

extends Mixture Coupling Theory by bridging the chemical-thermal field based on non-

equilibrium thermodynamics, and develops a new constitutive THMC fully-coupled model 

incorporating the interactions between chemical and thermal osmosis. Classic Darcy’s 

law has been fundamentally extended with osmosis as the major driving force of the 

diffusion process. A simple numerical simulation used for the demonstration purpose has 

illustrated that the couplings between chemical and thermal osmosis will significantly 

change the water flow directions, consequently influencing the saturation variation and 

mechanical deformation. 

Keywords: THMC model; Diffusion; Non-equilibrium thermodynamics; Thermo osmosis, 

Chemical osmosis;  
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1 Introduction 

Very low permeability geomaterials can act as actual semi-permeable membranes, 

having good functions for chemical retardation or sorption [1]. They are widely used in 

engineering applications such as nuclear waste disposal, carbon capture and storage, 

landfill etc [2]. Due to the low permeability, hydraulic flow is not the dominant form of fluid 

movement [3]. Thermal and chemical gradients will induce fluid flux into or out of the 

formation, leading to thermal and chemical osmosis [4]. The chemical osmosis flow 

direction is from lower chemical concentration to higher chemical concentration, and 

maybe opposite to the pressure gradient-induced flow direction, thereby reducing the 

flow velocity [5]. Similarly, temperature gradient would also cause a thermal osmosis flow, 

which has been observed in different experiments [6, 7]. This kind of flow may occur from 

high temperature to low temperature or in the opposite direction [8], depending on the 

entropy difference between water in the membrane and external to the membrane[9]. 

 

Coupled thermal (T), hydraulic (H), mechanical (M) and chemical processes (C) have 

been studied mainly by three theoretical approaches, namely: the mechanics approach, 

the mixture theory approach, and Mixture Coupling Theory [10-12]. The mechanics 

approach is based on the classic consolidation theory of Terzaghi [13] and Biot [14, 15]. 

This approach focuses on the macroscopic process of THMC (e.g. 

pressure/displacement/concentration/temperature). This makes it very practical since 

the equations may be specially developed for the intended specific application without 

deep understanding of the microscopic mechanisms. A lot of research has been done 

using this approach [16-19]. However, the theoretical foundation of the mechanics 

approach has led to the difficulties of coupling of chemical processes (micro-process 

dominated), due to the gap between geophysics and geochemistry. The mechanics 

approach has tried to borrow uncoupled equations from other disciplines to form new 

governing equations to overcome the challenge. However, such governing equations are 
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highly semi-empirical and rely heavily on experiments, hence they are not rigorously 

mathematically derived. Mixture theory was firstly developed by Truesdell [20] and 

further extended by Bowen [21, 22] and Rajagopal & Tao [23-25]. This approach gives 

detailed couplings between solids and fluids. Mixture theory maintains the individuality 

of the constituents, which has led to the difficulties of obtaining detailed interaction 

information between constituents and therefore restricted its application.  

 

Mixture coupling theory originates from mixture theory, but adopts Biot’s poroelasticity 

viewing a fluid-infiltrated rock/soil as a single continuum and employs thermodynamic 

force-flux couplings, rather than introducing body forces between the constituents in the 

constituent equilibrium equations (or constituent equations of motion in the general case) 

as in classic mixture theory [26]. This approach combines Biot’s theory and non-

equilibrium thermodynamics. It simplifies the variables of interactions between solids 

particles which are normally difficult to obtain in geomaterials, and enables incorporating 

the well-developed continuum mechanics for solids deformation. By using fundamental 

principles of non-equilibrium thermodynamics (e.g. entropy), mixture coupling theory is 

capable of mathematically building the coupling between energy and dynamics in the 

mixture system, and has the potential to smoothly bridge geomechanics and 

geochemistry [1, 2, 27-29]. 

 

In this paper, a new coupled THMC formulation has been developed by extending 

mixture coupling theory. Classic Darcy’s law has been extended to include coupled 

chemical osmosis and thermal osmosis through using standard arguments of non-

equilibrium thermodynamics. Helmholtz free energy has been used to derive the 

relationship between solid and fluid phase and thermal behaviour. A simple numerical 

model has been given to illustrate the influence of chemical osmosis and thermal 

osmosis. 
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2 Balance and Conservation Equations 

The mixture within a porous medium contains   states of matter which may include 

solids (denoted as subscript s), liquids (l), and gases (g);     constituents ( 1: n   ) 

which may include examples as water (denoted as w ) or chemicals (as c in general). 

One state of matter may consist of multiple constituents, if there is only one constituent 

in a matter state, it leads to a simplified   . V is a selected microscopic volume of an 

arbitrary domain within the porous medium and S is its boundary that is attached to the 

solid matter. V is assumed to be big enough to include all types of constituents present 

in the local region, and there is no movement of solids across the domain boundary S; 

only movement of fluids (including chemicals in the liquid) or energy (e.g. thermal). The 

gases’ contribution to the pore pressure (as well as the mass) is ignored to simplify the 

discussion [30, 31], as this research is focused on osmosis in a liquid, and the gas (air) 

pressure is quite low compared with water pressure for unsaturated soils close to the 

ground surface.  

 

Mixture coupling theory considers that the porous medium may deform, especially for 

large deformation of soft materials. A material point 
X  for the   th constituent in an 

arbitrary reference configuration will change to the position 
x at time t , which can be 

defined as 

 ( , )t x x X  (1) 

Such definition also applies to  th matter. 

V
 (V  )is defined as the volume of the   th constituent ( th matter)in V , V  is the 

volume of the mixture, pore
V is the volume of the pore space and, therefore, the volume 

fraction of the   th matter, the porosity   and the saturation of   th matter state (fluids 

only) are 
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The mass density can be defined in two different ways:   (  )and  
 ( 

 ).   (  ) 

is the mixture mass density of  th constituent ( or the  th matter) relative to the volume 

of the whole mixture (V );  
 ( 

 ) is the matter state density of the  th constituent (or 

the th matter) relative to the volume of the state of the mater V  . For any constituents 

or matters in the mixture, the two densities relationship may be described as:  

   
   ,   

    (3) 

where 
  is the volume fraction of   th matter. For example, in a solid-liquid mixture 

with a chemical dissolved in the liquid (denote by subscript ‘ c ’), the relationship of 

mixture density 
l  and the state density l

l
 , and the mixture density of the chemical 

c  

and its corresponding state density c

l
  can be obtained as  

 l l l l l

l lS     , l l
S  , c l c l c

l lS      (4) 

where
l is the volume fraction of pore liquid, 

l
S is the saturation ratio of the liquid.   

 

2.1 Balance equations for mass 

The general balance laws for a thermodynamic open system may be described as [32-

34]  

 , ,ncon con

V S S V

D
dV dS dS r dV

Dt
  

 
      

 
   I n I n  (5) 

where  denotes the bulk density of some extensive thermodynamic quantity (e.g. mass 

density, energy and so on), ,conI  and ,nconI   are the convective flux and non-convective 

flux leave the region V, respectively, n is the outward unit normal vector on S  , and r is 

a source term pertaining to the production of  .   
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In this research, it is assumed that there is no mass exchanges/reactions between 

constituents or point-mass sources, and the chemical constituents do not react. Then, 

the general mass balance law for the α-th constituent (also applies to the  th matter) 

can be obtained using equation (5) as [28] 

 ( )s

V S

D
dV dS

Dt

        v v n  (6) 

where 
 is the mass density of the  th constituent, n is the unit outward normal, 

v is 

the velocity of  the  th constituent, s
v is the velocity of the solid, and the time derivative 

following the motion of the solid is 

 s

v t

D
D

Dt
    v  (7) 

where t
 is the time derivative and   the gradient.  

 

Equation (6) includes all types of constituents/matters. Multiphase fluids/chemicals in 

the porous medium (with consideration of the movement or deformation) can be 

obtained as 

 
V S

D
dV dS

Dt

      I n  (8) 

where 


I is the mass flux defined as  

 ( )s   I v v  (9) 

For example, the liquid flux can be derived as  

( )l l l s I v v  

The local balance equations of constituents can be derived by substituting equation (7) 

into equation (6), which leads to: 

Solid mass: 

 0s s s   v  (10) 
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Water: 

 0w w s w    v I  (11) 

Chemicals:  

 0c c s c    v I  (12) 

in which the over dot ‘  ’ is the time derivative 
t
 .  

For the pore liquid containing water and chemics. The mass balance for the liquid as a 

whole can be rewritten as  

 0l l s l    v I  (13) 

in which there is relationship 
l w c     and 

l w c I I I . 

2.2 Balance equation for energy 

2.2.1 Heat 

In the domain V, the thermal density changes only through the influx and efflux of thermal 

flow across the boundary S in the absence of chemical reaction. The thermal density of 

constituent   is 

 q C T
    (14) 

In a mixture of solid and liquid (water and chemical), 
s s s

q C T denotes the heat 

density of solids, 
l w c l l

q q q C T    denotes the heat density of liquid,  s
C , l

C  are the 

specific heat capacities of solid and liquid, respectively.  

q


 in equation (14) is related to mass density 
 which is express relative to the 

mixture volume, similar to the mass density relationship, the thermo density can be 

relative to the matter state volume through  

 s s s s s s

s sq q C T    , l l l l l l

l lq S q S C T    (15) 

where 1s   is the volume fraction of the solid, s

s
 , s

s
q  are the mass and heat density 

relative to the solid volume, l

l
q  is the heat density of liquid relative to the liquid volume. 
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The total thermal flow q  across the boundary S can be separated into two parts: 1) the 

heat flow contained in the liquid (e.g. water and chemical flow), which can be expressed 

as w w
h I  and c c

h I , in which w
h and c

h are the enthalpy of water and chemical, 

respectively; 2) the reduced heat flow w w c c

q h h   Ι q I I , which is the difference 

between the total heat flow and the heat flow carried by the liquid [35]. Following the 

fundamental balance equation (5) for thermodynamically open systems, the heat 

balance equation can be derived as (neglecting point-heat source) 

 ( ) ( )s w c w w c c

q
S

V

D
q q q dV h h dS

Dt
        Ι I I n  (16) 

It is worth noting that the use of flow enthalpy to characterize flow heating influx and 

egress is valid only for quasi-equilibrium processes where there is no viscous/lost work 

done on the liquid and the pressure variation can be neglected, for any subvolume 

modelled. 

Using equation (7), the equation (16) can be rewritten as  

 ( ) ( ) 0s w c s w c s w w c c

q
q q q q q q h h         v Ι I I  (17) 

To simplify the discussion, the heat density of the mixture is expressed  as 

mix s w c
q q q q   , then equation (17) can be simplified as  

 0mix mix s w w c c

qq q h h     v Ι I I  (18) 

 

2.2.2 Helmholtz free energy 

The Helmholtz free energy density can be obtained using the function T    , where 

  is the internal energy density and  is the entropy density[36]. The balance of internal 

energy is 

 ( ) ( )s w w c c

q
S S

V

D
dV dS h h dS

Dt
       σv - Ι n I I n  
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and its local form as  

 ( ) 0s s w w c c

q h h        v σv Ι I I   (19) 

where σ  is the Cauchy stress tensor. 

 

Similar to equation (18), the balance of entropy for the mixture system is 

 
mix

S V
V

D
dV dS dV

Dt
      I n  

and its local form as  

 0mix mix s

      v I  (20)  

in which  

(1) 
mix  is the entropy density of the mixture system described as 

 mix s w c s l w l c

l lS S               

and , ,s w c    are the entropy of the solid, water and chemical per unit mixture volume, 

,w c

l l
   are the entropy of the water and chemical per unit liquid volume. 

(2)
w w c c

q w w c c

T T


   
 

   
Ιq I I

I I I  is the entropy flux exchange with the 

surroundings [35] (the relationship h T
     is used);  

(3)  is the entropy produced per unit volume.  

 

Assuming the temperature (T) is time-dependent only, from the definition of Helmholtz 

free energy density T    , using material time derivative leads to the Helmholtz 

free energy density relationship in local form as 

  s s s
T T              v v v  (21)  

Then, from equations (19) and (20), the balance equation for free energy density is 

 ( ) 0s s w w c c mix

q h h T T T              v σv Ι I I I  (22)  
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3 Constitutive relations 

Following the discussion of the balance equations in section 2, this section will establish 

the coupled relationship between the solid/liquid and the stress, strain and temperature 

response, using the dissipation function. 

3.1 Coupling of water and thermal behaviour from entropy analysis 

The transport process of liquid in the porous media will lead to frictional resistance at the 

solid and liquid interface, generating entropy production. A macroscopic expression for 

the dissipation is obtained by using standard arguments of non-equilibrium 

thermodynamics [12, 35] 

 w w c c
T T        I I I  (23)  

Equation (23) is different from the dissipation function under an isothermal condition 

because of the thermo related term I  [12]. 

 

As pressure other than chemical potential is widely used in geotechnical engineering, it 

is necessary to build a relationship between chemical potential and pressure, which can 

be derived by using the Gibbs-Duhem equation[37] based on the assumption that the 

temperature influence on non-reactive chemical potential (e.g. water) can be ignored [38],  

leading to  

 
w w c c

l l lp        (24) 

in which 
l

p is the pore liquid pressure. Also, the Darcy velocity is defined through the 

definition [39] 

 ( )l l s u v v  (25)  

where l
v is the barycentric velocity of the liquid which can be defined as

w c
l w c

l l

 
 

 v v v . 

Hence, equations (15) and (16) can be used to rewrite the dissipation function as [12] 



 12 

 
( )

0 ( )w w c c

q l

T
T p

T
           I u J J  (26)  

where w w w

l
 J I u , c c c

l J I u  are the diffusion flux of the water and chemical.  

Using the phenomenological equation, the full coupling matrix can be written as [12] 

 

 

l lw
ef ef l l ef q l

w c

ll

c l cl T
l

l

q l

q l l

l q

l

k k r k r

v vc c vT
p

L L
D c

p T
T

L
D

p

 





 

  
                     

 
  

u

J

Ι
 (27) 

where 

 efk is the effective permeability and v  is the fluid viscosity. Comparing to 

research on Darcy’s law(e.g. [40, 41]), one could write ef rlk kk , with k  being 

the absolute permeability and 
rlk  being the relative permeability.  

 
l

r  is the chemical reflection coefficient, which serves as a measure of the 

efficiency of the osmotic transport [42, 43]. 

 
q

r  is the thermal reflection coefficient, which serves as a measure of the 

efficiency of the osmotic transport. [11] 

 L  is the pressure diffusion coefficient for chemical transport. 

 D  is the dispersion-diffusion coefficient for chemical transport. 

 c
c is the mass fraction of chemical c , w

c is the mass fraction of water. 

 TL is the thermal conduction coefficient for chemical transport.    

 q
L  is the pressure diffusion coefficient for thermal transport.  

 q
D  is the dispersion-diffusion coefficient for thermal transport. 

   is the conduction coefficient. 

 

It would be worth noting that from equation (26), It would be expected  T

, , ,w c

q
I u J J can 

be given by a matrix relationship with associate variables  T

, , ,w c

l
T p    , these 

variables must be related in general in order to enforce equation (26). Assuming that 

0w w  J always and the remainder of the inequality is still true, lead to a reduced 

form  T

, , c

q
I u J with associate variables  T

, , c

l
T p   . Since the inputs and outputs of 

(27) are directional and the resulting form of (26) is not quadratic or otherwise 
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constrained to be non-negative, verification of (26) stepwise is a requirement of any 

solution. 

 
 

3.2 Basic equation of state 

By assuming that the rock maintains mechanical equilibrium so that  σ 0 , and  

combining equations (22) and (23), the resulting balance equation for  is derived as 

 ( ) 0s s w w c c mix
tr T             v σ v I I  (28) 

Equation (28) has included the temperature part 
mix

T  compared with previous work 

[28].  

 

In order to obtain the expression of the referential equivalent of equation (28), the 

following classical continuum mechanics equations [10] will be needed.  

 ( , )
s

s

s
t





x
F X

X
, 

1
( 1)

2
 TE F F , 

1 T
J

 T F σF , 
0

dV
J

dV
 , s

J J v  (29) 

where F is the solid deformation, E is the Green strain, T is the second Piola-Kirchhoff 

stress, J  is the determinant of F which determine the volume change of the volume 

defined by the solid boundary, dV  is the volume of a region bounded by solid in the 

current configuration, and 0dV  is the volume of the reference configuration bounded by 

the corresponding solid. 

 

Using the continuum mechanics equation (29) and the mass balance equations (11), 

(12), the free energy in the reference configuration can be rewritten as 

 ( ) w w c c mix
tr m m J T      TE  (30) 

where J   is the free energy in the reference configuration; 
w w

m J  and 

c c
m J are the mass of the water and chemical per unit referential volume, respectively. 
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3.3 Helmholtz free energy density of the pore water and wetted mineral matrix 

3.3.1 Pore liquid 

If the Helmholtz free energy density of the pore fluid is pore
 , based on classical 

thermodynamics [35, 44], pore
  can be expressed as 

 
pore l c c l w w

pore l lp S S         (31) 

where pore
p is the pore pressure and it satisfies pore l l

p S p , as the gas is ignored. 

 

According to the Gibbs-Duhem equation for time derivative [35, 37]  

 
pore l l l c c l w w

l l lp S T S S        (32) 

where l

l
 is the entropy of pore liquid per liquid volume. 

Equation (32) can be arranged as 
pore l c c l w w l l

l l lp S S S T       . By substituting this 

equation into the time derivation of equation (31) as 

 ( ) ( )pore l c c l w w c l c w l w

pore l l l l
p S S S S               (33) 

it leads to in a simplified 
pore

  as 

 ( ) ( )l l c l c w l w

pore l l l
S T S S          (34) 

3.3.2 Free energy density of the solid matrix 

The free energy density of the solid matrix can be derived by subtracting the contribution 

of pore space pore
J  due to pore liquid from the total free energy   of the combined 

rock/fluid system. The free energy density of the solid matrix is: 

 ( )
pore pore pore

J       (35) 

where J   is the pore volume per unit referential volume. By invoking equation (30) 

for  , (34) for 
pore

 , and (31) for 
pore

  into equation (35), it leads to 
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   
( ) ( )

( ) ( )

w w c c mix

pore

l l c l c w l w pore l c c l w w

l l l l l

J tr m m J T

S T S S p S S

   

          

       

       

TE
 (36) 

Equation (36) can be rewritten as  

 

   
( ) ( ) w w c c mix

pore

pore l l w l w c l c

l l l

J tr m m J T

p S T S S

   

        

       

   

TE
 (37)                                  

Since 
mix s w c s l w l c

l lJ J J J J J S J S              , ( ) ( )w w f w

l
m J S     ,

( ) ( )c c f c

l
m J S    , equation (37) can be simplified as 

 ( ) ( ) pore s

pore
J tr p T    TE   (38) 

 where 
s s mix l w l c

l lJ J J S J S           is the referential entropy density of the 

solid matrix. 
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4 Constitutive equations structure 

For reasons of convenience, the dual potential (the solid deformation energy) is used as 

 ( ) pore

poreW J p     (39) 

By substituting equation (38) into the time derivative of W , it satisfies the relationship  

 ( , , ) ( )pore pore s
W p T tr p T  E TE  (40) 

which indicates that W is a function of E , 
pore

p  and T , and expressions for T ,   and 

s  may be obtained. 

 

Since 

 
,,,

( , , )
pore

pore ijij

pore pore

ij pore

E pij E Tp T

W W W
W p T E p T

E p T

                   
E  (41) 

the following equations are obtained: 

 

,pore

ij

ij p T

W
T

E

 
    

, 

,ij

pore

E T

W

p


 
   

，
, pore

ij

s

E p

W

T

     
 (42) 

If equation (42) is differentiated with respect to time, the fundamental constitutive 

equations for the evolution of stress, pore volume fraction and temperature can be 

expressed as 

 
pore

ij ijkl kl ij ijT L E M p S T    (43) 

 
pore

ij ijM E Qp BT     (44) 

 s pore

ij ijS E B p Z T     (45) 

where the parameters ijkl
L , ij

M , ijS , Z , B and Q  are material-dependent constants 

defined by the following group of equations 

 

, ,
pore pore

ij kl
ijkl

kl ijp T p T

T T
L

E E

   
          

， 
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, ,pore
ij

ij

ij pore

ijE T p T

T
M

p E

   
           

， 

 

, ,
pore pore

ij

s
ij

ij

ijE p p T

T
S

T E

   
           

 (46)  

 

,
pore

ij

s

E p

Z
T

 
   

, 

,, pore ijij p

s

pore

E E T

B
T p

            
 ,

,ij

pore

E T

Q
p

 
   

  

Note: one example is provided for the derivation from equations (42) to (43):  
 

Since 

,pore

ij

ij p T

W
T

E

 
    

, using the differentiation chain rule leads to 

 

, , ,

( ) ( )
pore pore pore

ij

ij ij ijp T p T p T

T W W
W

t t E E t E

          
                      

 (47) 

Substituting equation (40) into equation (47) leads to 

 

, , , ,

( )
pore pore pore pore

kl

s
ij ij pore

kl

ij ij ij ijp T p T p T p E

T T
W E p T

t E E E E

          
                            

 (48) 

Comparing equation (48) with equation (43), the coefficients in equation (46) can be 

obtained as  

,pore

ij

ijkl

kl p T

T
L

E

 
   

, 

,pore

ij

ij p T

M
E

 
    

 and 

,pore

s

ij

ij p T

S
E

 
    

. 
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5 Final equations of motion for mixture coupling theory 

5.1 Solids  

The non-linearity of the equations is of a geometrical nature and associated with large 

deformations. For isotropic materials, the tensors 
ij

M  and ijS  are diagonal; that is, they 

can be written in the form of scalars  and 
T

 , as follows: 

 
ij ij

M  , ij T ijS    (49) 

and the elastic stiffness 
ijkl

L can be formed as a fourth-order isotropic tensor 

 
2

( ) ( )
3

ijkl ik jl il jk ij kl

G
L G K          (50) 

where G is the rock shear modulus and K  the bulk modulus. 

 

With the assumption of small strains, the governing stress (equation (43)) and pore 

fraction (equation (44)) equations can be changed to the form 

 
2

( ) 2
3

pore

ij kk ij ij T

G
K G p T           (51) 

 pore

ii Qp BT     (52) 

where i
ij

j

d

x
 




 and 
i

d  is the displacement (i=1,2,3 or the vector 
1 2 3[ , , ]d d dd  ); the 

void compressibility Q  relates to the scalar  according to (1/ )( ) /l

s lQ K K     , 

in which
s

K  is the bulk modulus of the solid matrix and 
lK is the bulk modulus of liquid 

mass; the quantity   is related to the bulk moduli, K  and 
s

K , in a poroelastic manner, 

that is, 1 ( / )sK K   ; 
T s

K   with 
s

  being the thermal expansion coefficient of 

the solids, ( )
s

B      . 
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If the mechanical equilibrium condition ( 0
ij

jx





) is introduced into equation (51), and 

by using the evolution of the pore pressure 
pore

p  as [19] 

   ( )
p

pore l l l s l
l

C p
p S p S p

t


  


 (53) 

where 
l

p

s

l

S
C

p
.  

 the final equation becomes 

 

22 2
2

( ) ( ) 0
3

p
j lk i s

l l T

k i j j i j i

dd d CG T
K G S p p

x x x x x x x
 



     
                   

 (54) 

5.2 Chemical potential and transport 

5.2.1 Chemical potential 

This section considers the case in which there are only two chemical components 

present: the solute (chemical) and diluent (water). The solute chemical potential is given 

by the expression[35]  

 ( , ) ( )(ln )c c c

c

RT
g p T a

M
    (55) 

where c
g  is a function that depends on pressure and temperature, and the term 

( )(ln )c

c

RT
a

M
is the chemical activity-dependent term of 

c . R , 
c

M and 
c

a are the gas 

constant, the molar mass and activity of the solute, respectively. Chemical activity is a 

measure of the ‘effective concentration’ of the solute in the mixture. 

 

The relationship between 
c

a and 
c

x is  

  c c

c
a r x  (56) 
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where 
cr  is the activity coefficient. If the solution is assumed to be ideal, then 1

c
r  , so 

that the solute activity 
c

a  becomes equal to the solute mole fraction 
c

x . Note that the 

mole fraction 
c

x  is related to the solute mass fraction 
c

c  through 

 / ( (1 ) )c c c c c c w
c x M x M x M    (57) 

5.2.2 Chemical transport  

From the balance equation (12) and the mass density relationship(4), using the Euler 

identity, for the constituent ( , w c  ) in the liquid, there is 

 ( ) ( ) 0l

l
S J J

       u J  (58) 

By introducing the mass fraction / l

l l
c
   , equation (58)

 
can be rearranged as 

 ( ) ( ) 0l l l

l l
S c c J

      u J  (59) 

Because 1c



  and 0


 J , summing over all the fluid components leads to 

the relationship 

 ( ) ( ) 0l l l

l l
S J    u  (60) 

By invoking equation(60), equation (58) can be transformed to 

 0l l l

l lS c J c J
        u J  (61) 

By substituting equation (27) into equation (61) and using the chemical potential 

relationship (55) and the relevant derivation in reference  [1], the chemical transport 

equation can be derived as 

 

1

0

l

q ll l c l l l c crl
l l l l w c c

l
l l cl

ll

rk RT
S c J k p r c T c

v c c M T

L
J p D c T

p


   

 

 
        

 
 

        
 

  (62) 

In this equation, the chemical and thermal osmosis influence, as well as the pressure 

and temperature influence on diffusion, have been embedded. Without considering such 

thermal coupled influence, the equation will become the same equation as chemical 

osmosis [2]. 
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5.3 Hydraulic 

From equations (4) and (13), and using the Euler identity, the following equation is 

derived  

 ( ) ( ) 0l l l

l l
S J    u  (63) 

Expand the first term in equation (63), it leads to 

 ( ) 0l l l l l l l

l l l lS S S J         u  (64) 

With equations (52) and (27), the control equation for the liquid transport can be written 

as 

 1
0

l l l l pore l l l l l l

l l l l l

l

q ll l crl rl
l l l l w c c

S S Qp S BT S S

rk k RT
J k k p r c T

v v c c M T

      


 

    

  
              

d

 (65) 

Considering the average pressure definition in equation (53), alongside the rate of 

saturation as a function of pressure ( )l l l
S S p  and the water density as a function of 

pressure and density  ,l l l

l l p T   [19, 45, 46] as 

 

( )

1
( , )

pl l l
l l s

l

l l l l

l l l

l

CS p p
S p

p t t

T p p T
K



  

  
 
  

 
  

 

 (66) 

where lK is the bulk modulus of the liquid with 
1 1

l

l

l l

l l T
K p




 
   

, l
 is the thermo 

expansion coefficient of the liquid with 
1

l

l

l
l l

l p
T




 
    

. 

With equation (66) and relationship (53), and neglecting the space variation of liquid 

density, e.g. =0l

l
 , equation (65) can then be rewritten as 
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 

1
0

p l l
l l l p ls

s l

l

l

q ll l crl
l l w c c

C S p
S S Q S C S B T

K t

rk RT
J k p r c T

v c c M T

 





    
              

 
         

 

d

 (67) 

Note:  The mass density of water in the “liquid” volume also changes, even if the volume 

change is negligible.  

 

5.4 Thermo transport 

From equation(15), by using Euler identity, equation (17) can be rewritten as 

 ( ) 0s s s l l l l l

s l q
C T S q C T J J h        I I  (68) 

Where 1s s
J     is the solid mass fraction in the reference configuration. 

From the flux equation (9), density relationship (4)and Darcy velocity (25), the heat fluid 

carried by the liquid can be written as 

 l l l l

l
h C TI u   (69) 

in which the expression l l l l

l
h C TI u  is adopted. 

Since the attention of this paper is to focus on the coupled chemical and thermal osmosis, 

by neglecting the temperature and pressure dependence of fluid and solid densities and 

neglecting the thermal coupling term due to pressure or chemical, equation (68) can be 

rearranged as  

  (1 ) 0s s l l l T l l

s l l
C S C T J T J C T

t
               

u  (70) 

which is the same function as that derived based on the mechanics approach [19]. 

 

 

 

5.5 Validation and innovation of the constitutive equations 
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The mechanical deformation equation (54) has a similar formulation to the deformation 

equation presented in [11], however, the liquid pressure variation 
l

p accounts for the 

combined influence of chemical and thermal osmosis in the equation in section 5.3, 

which therefore is a further extension from the current state-of-the-art understanding. 

The fluid transport equation (67) has extended previous published equations [1, 2] by 

considering the chemical osmosis influence, by incorporating the thermal influence term 

l

q l
r

T
T


 . The same heat transport equation (70) [16] has been obtained purely through 

the mathematical derivations after simplification of equation (70). 
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6 Numerical results for coupled thermal and chemical osmosis 

This section focuses on the influence of coupled chemical osmosis and thermal osmosis 

induced flow, and their consequent influence on THMC processes.  The governing 

equations (54) ,  (62),  (67), (70) are solved by using the classic finite element method 

[19] for variables of the displacement vector d , liquid pressure l
p  , chemical 

concentration c
c , and temperature T .     

 

A simple numerical model has been established to simulate the mechanical behaviour 

of an unsaturated very-low permeability rock formation (Fig 1). 

 

6.1 Geometry and boundary conditions 

Fig 1 shows the geometry and boundary conditions of model domain. Boundary A is free 

and permeable and boundary B is fixed and impermeable. The upper and lower 

boundary are on rollers allowing only horizontal displacement. 

 

 

Fig 1. Geometry and boundary conditions. 

 

As this numerical simulation focuses on chemical and thermal osmosis, no pressure 

gradient is applied. At boundary A, the pressure is set at -4 MPa and remains constant 

during the modelling process. The domain is assumed to contain water at a pressure of 
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-4 MPa with the saturation of 0.9951 by adopting the Van Genuchten relationship [47], 

which is used to define the relative permeability and saturation as  

    
   

2
0.5 1/

1/ 1

1 1

/ 1

m
m

l l

rl

m
m

l l

k S S

S p M


     

     

 

The initial mass fraction of the chemical in the domain is set to be zero. At boundary A, 

the mass fraction (chemical) rises from 0 to 0.35 to simulate the chemical gradient. The 

initial mass fraction at boundary B is 0, but not fixed. The initial temperature is set to be 

300 K across the domain, and rises to 380 K on boundary A (t>0).  

 

Parameters adopted in this numerical simulation are listed in Table 1. 

 

Table 1. Material parameters [48]. 

Parameters Physical meaning  Values and units 

l

l  
Density of fluid  1113 kg/m3 

  Porosity 0.1 

k  permeability  1 mD 

  Dynamic viscosity 3e-4 Pa*s 

m  van Genuchten parameter 0.43 

M  van Genuchten parameter 51 MPa 

E  Young’s modulus  24.14 GPa 

  Poisson’s ratio 0.3 

 Biot’s coefficient 1 

Cw Specific heat of fluid 4181 J/Kg/K 

Cs Specific heat of solid 768 J/Kg/K 

rq Thermal reflection coefficient 1 (assumed) 

rl Chemical reflection 0.003 [49] 

D Diffusion coefficient 5e-9 m2/s 
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6.2 Numerical results 

6.2.1 THMC coupling 

The classic finite element method [19, 50] has been used to solve the governing 

equations. Fig 2 shows the chemical mass fraction change with time. As the chemical 

mass fraction rises from 0 to 0.35 at boundary A, the chemical species transports from 

high mass fraction to low mass fraction. As a result, mass fraction in the domain 

increases with time. At t = 7.2e5 s (200 h), the mass fraction reaches a stable state. After 

that, the chemical mass fraction remains constant. 

  
Fig 2. Evolution of chemical mass fraction distribution with time. 

 

Fig 3 shows the temperature change with time. The trend of temperature change is very 

similar to the trend of chemical mass fraction change. The difference is that temperature 

changes at a much faster rate than chemical mass fraction change [51]. At t = 1.8e5 s 

(50 h), the temperature has reached a stable state whereas the chemical mass fraction 

is still changing.  
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Fig 3. Evolution of Temperature distribution with time. 

 

Figs 4-6 show the evolution of pressure, saturation and displacement with time under 

the influence of chemical osmosis and thermal osmosis. Pressure in the domain is 

significantly changed by chemical and thermal osmosis. As saturation and pressure are 

linked by the van Genuchten relationship, the trend of saturation distribution is very 

similar to the trend of pressure. 

  
Fig 4. Pressure change induced by chemical osmosis and thermal osmosis. 
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Fig 5. Saturation change induced by chemical osmosis and thermal osmosis. 

  
Fig 6. Horizontal displacement induced by chemical osmosis and thermal osmosis. 

 

6.2.1 chemical or thermal osmosis 

By setting the thermal reflection coefficient rq = 1 with the chemical reflection coefficient 

set to rl = 0, or by setting the thermal reflection coefficient rq = 0 with the chemical 

reflection coefficient set to rl =0.003, the pressure change with time under the influence 

of chemical osmosis only or thermal osmosis only can be obtained (Fig 7 and Fig 8 ), 

respectively. 
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Fig 7 shows the chemical osmosis influence on water pressure. Due to a chemical 

gradient between boundary A and the domain, water will flow out from the domain via 

boundary A, leading to the reduction of saturation (Fig 9) and a corresponding reduction 

of the pore water pressure (Fig 7). At the early stage of this simulation (e.g. 60 s, 300 s), 

as the chemical gradient near boundary A is larger, the water loss near boundary A is 

quicker than that near boundary B. As a result, the pressure and saturation change near 

boundary A is more significant (note: pressure at boundary A is constant). As the 

chemical gradient dissipates along with time, water flows back into boundary A and 

gradually covers the whole domain, and the water pressure at boundary B recovers from 

the lowest (e.g. at t=3600s) to the original -4MPa.     

 

Figure 8 shows the pressure change caused by thermal osmosis only.  Compared with 

the chemical osmosis process (Figs 7 and 9), one of the major differences is that the 

thermal osmosis flow direction is opposite to the chemical osmosis flow direction, hence, 

the water pressure does not decrease but increases. 

  
Fig 7. Pressure change induced by chemical osmosis. 
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Fig 8. Pressure change induced by thermal osmosis. 

  
Fig 9. Saturation change induced by chemical osmosis. 

 

Comparing Fig 7 and Fig 8, the pressure change caused by chemical osmosis is 

significantly bigger than that caused by thermal osmosis under the simulation conditions 

considered (rq =1, rl =0;  rl =0.003, rq=0). As water pressure change section 6.2.1 (THMC) 

is the combined influence of chemical osmosis and thermal osmosis, Fig 4 is very similar 

to Fig 7. For the same reason, Fig 9 and Fig 5 are very similar. 

 

Since the flow direction of thermo osmosis can be either from high temperature to low 

temperature, or vice versa [8], the thermal reflection coefficient is set to be rq = -1 (rl =0) 
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to compare with rq = 1 (rl =0). The resulting pressure changes are presented in Fig 11: if 

rq = 1, the pressure increases. Whereas, if rq = -1, the pressure decreases.  

 

Similarly, by setting the chemical reflection coefficient rl = 0.003 or rl = -0.003 (rq=0), the 

pressure changes caused by chemical osmosis (positive and negative) are obtained, as 

shown in Fig 11: Pressure changes are observed with opposing trends under the 

opposite (e.g. + or -) chemical reflection coefficients. 

  
Fig 10. Pressure change induced by thermal osmosis (rq=1& rq=-1). 

  
Fig 11. Pressure change induced by chemical osmosis (r=0.003& rq=-0.003). 
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7 Conclusion 

In this paper, a new THMC model has been presented incorporating coupled chemical 

osmosis and thermal osmosis based on mixture coupling theory. Classic Darcy’s law has 

been extended considering the respective osmotic flux components. The numerical 

model has illustrated the influence of chemical osmosis and thermal osmosis on the 

mechanical behaviour of unsaturated rock. Chemical osmosis and thermal osmosis have 

both been found to induce fluid flux movement and alter the pressure distribution in the 

domain under the conditions considered in this work. Further experiments might be 

required to identify the parameters in greater detail. As the result is a combined influence 

of chemical osmosis and thermal osmosis, it points out a potential to change one process 

to reduce/enlarge the influence of the other. 
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