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Abstract

Let X ⊂ Cn be an affine variety and f : X → Cm be the restriction to X of a

polynomial map Cn → Cm . We construct an affine Whitney stratification of X . The

set K ( f ) of stratified generalized critical values of f can also be computed. We show

that K ( f ) is a nowhere dense subset of Cm which contains the set B( f ) of bifurcation

values of f by proving a version of the Thom isotopy lemma for nonproper polynomial

maps on singular varieties.

Keywords Isotopy lemma · Affine varieties · Nonproper polynomial mapping ·
Local trivial fibration
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1 Introduction

Ehresmann’s fibration theorem [3] states that a proper smooth surjective submersion

f : X → N between smooth manifolds is a locally trivial fibration. With some extra

assumptions, this result has been considered in different contexts.

Firstly, if we remove the assumption of properness or submersiveness, in general,

Ehresmann’s fibration theorem does not hold, since f might have “local singularities”

or “singularities at infinity.” The set of points in N where f fails to be trivial, denoted by
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B( f ), is called the bifurcation set of f , which is the union of the set K0( f ) of critical

values and the set B∞( f ) of bifurcation values at infinity of f . To date, characterizing

B∞( f ) remains an open problem. In general, a larger (but easier to describe) set is

used, viz. the set of asymptotic critical values of f (see Definition 3.1), denoted by

K∞( f ), to control B∞( f ). The set K∞( f ) is always a nowhere dense subset of Cm

and is a good approximation of the set B∞( f ). For a dominant map f : X → Cm on

a smooth complex affine variety X , the computation of K∞( f ), and hence of the set

of generalized critical values, K ( f ) := K0( f ) ∪ K∞( f ), is given in [8–10].

Now, if X is singular, one must partition it into disjoint smooth manifolds and

then apply Ehresmann’s fibration theorem on each part. However, if we do not require

any extra assumptions, then the trivialization on the parts may not match. This obsta-

cle can be overcome by introducing the Whitney conditions [21,22]. Indeed, if f is

proper and X admits a Whitney stratification, then f is locally trivial if it is a sub-

mersion on strata [13,18,20]. Moreover, if f is nonproper and nonsubmersive, we

can also define the bifurcation set of f such that f is locally trivial outside B( f ).

However, to date, to the best of the authors’ knowledge, no connection between B( f )

and the set of stratified generalized critical values of f , defined by K ( f ,S) :=⋃
Xα∈S K ( f , Xα), for a Whitney stratification S of X , has been established. Here

K ( f , Xα) = K0( f , Xα) ∪ K∞( f , Xα), where K0( f , Xα) is the closure of the set

of critical values of f|Xα and K∞( f , Xα) = {y ∈ Cm : there is a sequence xk →
∞, xk ∈ Xα such that ‖xk‖ ν(dxk ( f |Xα )) → 0 and f (xk) → y} (ν denotes the

Rabier function, see Sect. 5).

Let X ⊂ Cn be a singular algebraic set of dimension n − r with I (X) =
(g1, . . . , gω), and let f := ( f1, . . . , fm) : X → Cm be a polynomial dominant map,

i.e., f (X) = Cm . Now, restricting ourselves to the cases of dominant polynomial

maps on singular affine varieties, the main goals of this paper are the following:

• Construct an affine Whitney stratification S of X .

• Establish some version of the Thom isotopy lemma for f which yields the inclusion

B( f ) ⊂ K ( f ,S).

• Calculate the set K ( f ,S) of stratified generalized critical values of f .

The remainder of this manuscript is organized as follows: In Sect. 2, we recall the

definitions of Whitney regularity and Whitney stratification, then construct an affine

stratification from a filtration of X by means of some hypersurfaces, and refine it to

obtain an affine Whitney stratification. Some versions of the Thom isotopy lemma for

nonproper polynomial maps (Theorem 3.4 and Corollary 3.11) are given in Sect. 3.

We then compute the set of stratified generalized critical values of f , which contains

the bifurcation values of f , where f := ( f1, . . . , fm) : X → Cm is a polynomial

dominant map, in the final Sects. 4 and 5.

For the remainder of the paper, the differential of f at a point x is identified with

its (row) matrix, so we write dx f =
( ∂ f

∂x1
(x), . . . ,

∂ f
∂xn

(x)
)
. Let

∇ f (x) :=

⎡
⎢⎢⎣

∂ f
∂x1

(x)

...
∂ f
∂xn

(x)

⎤
⎥⎥⎦ ,
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the Hermitian transpose of dx f . For v,w ∈ Cn , denote by 〈v,w〉 =
∑n

i=1 viwi the

Hermitian product, and let v ·w =
∑n

i=1 viwi . For a set A ⊂ Cn , let A and AZ denote

respectively the topological closure and the Zariski closure of A. For an algebraic

variety X , the singular part and the regular part of X are denoted respectively by

sing(X) and reg(X).

2 AffineWhitney Stratifications

2.1 Preliminaries

For any two different points x, y ∈ Cn , define the secant xy to be the line passing

through the origin which is parallel to the line through x and y.

A stratification S of X is a decomposition of X into a locally finite disjoint union

X =
⊔

α∈I Xα of nonempty, nonsingular, connected, locally closed subvarieties,

called strata, such that the boundary ∂ Xα := Xα\Xα of any stratum Xα is a union

of strata. If, in addition, for each α, the closure Xα and the boundary ∂ Xα are affine

varieties, then we call S an affine stratification. It is obvious that any affine stratification

is finite.

For linear subspaces F, G ⊆ Cn , let

δ(F, G) := sup
x∈F

‖x‖=1

dist(x, G),

where dist(x, G) is the Hermitian distance.

Let (Xα, Xβ) be a pair of strata of S such that Xβ ⊂ Xα and let x ∈ Xβ . We recall

some regularity conditions:

(a) The pair (Xα, Xβ) is said to be Whitney (a) regular at x ∈ Xβ if it satisfies

the following Whitney condition (a) at x : if xk ∈ Xα is any sequence such that

xk → x and Txk Xα → T , then T ⊃ Tx Xβ .

(w) The pair (Xα, Xβ) is said to be (w) regular at x ∈ Xβ (or strictly Whitney (a)

regular at x with exponent 1) if it satisfies the following condition (w) at x :

there exist a neighborhood U of x in Cn and a constant c > 0 such that, for any

y ∈ Xα ∩ U and x ′ ∈ Xβ ∩ U , we have δ(Tx ′ Xβ , Ty Xα) � c‖y − x ′‖.

(b) The pair (Xα, Xβ) is said to be Whitney regular at x ∈ Xβ if it satisfies the

following Whitney condition (b) at x : for any sequences xk ∈ Xα and yk ∈ Xβ ,

yk �= xk , such that xk → x , yk → x , Txk Xα → T , and xk yk converges to a line

ℓ in the projective space Pn−1, we have ℓ ⊂ T .

We say that the pair (Xα, Xβ) is Whitney (a) regular (resp. Whitney regular) if

it is Whitney (a) regular (resp. Whitney regular) at every point of Xβ . We say that

S is a Whitney (a) stratification (resp. a Whitney stratification) if any pair of strata

(Xα, Xβ) of S with Xβ ⊂ Xα is Whitney (a) regular (resp. Whitney regular). It is

well known that Whitney regularity implies Whitney (a) regularity [21,22]. Moreover,

in light of [17, V.1.2], the Whitney condition (b) is equivalent to the condition (w) for
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the category of complex analytic sets, so to check Whitney regularity, we can verify

either condition (w) or condition (b).

For the purpose of this paper, we also need the following notion of Whitney (resp.

Whitney (a)) regularity along a stratum: Let Xβ be a stratum of S and let x ∈ Xβ .

We say that Xβ is Whitney regular (resp. Whitney (a) regular) at x if, for any stratum

Xα such that Xβ ⊂ Xα , the pair (Xα, Xβ) is Whitney (resp. Whitney (a)) regular

at x . The stratum Xβ is Whitney regular (resp. Whitney (a) regular) if it is Whitney

(resp. Whitney (a)) regular at every point of Xβ . It is clear that S is a Whitney (resp. a

Whitney (a)) stratification if and only if each stratum of S is Whitney (resp. Whitney

(a)) regular.

2.2 Construction of Affine Stratifications

Let us, first of all, fix an affine stratification of X whose construction is based on the

following proposition:

Proposition 2.1 Let X ⊂ Cn be an affine subvariety of pure codimension r. Assume

that I (X) = (g1, . . . , gω), where deg gi ≤ D. Let W be an affine subvariety of

positive codimension in X with I (W ) = (g1, . . . , gω, u1, . . . , uτ ), where ui /∈ I (X)

and deg ui � D′. Then there exists a polynomial pX ,W on Cn of degree less than or

equal to r(D − 1) + D′ such that W ⊆ V (pX ,W ) := {x ∈ Cn : pX ,W (x) = 0} and

X\V (pX ,W ) is a smooth, dense subset of X. Moreover, the polynomial pX ,W can be

constructed effectively.

Proof Let X =
⋃m

i=1 Yi , where Yi are irreducible (hence r -codimensional) compo-

nents of X . Take sufficiently generic (random) rational numbers αi j ∈ Q, i = 1, . . . , r ,

j = 1, . . . , ω, and set

Gi =
ω∑

j=1

αi j g j , i = 1, . . . , r .

Here and in the following, to obtain a generic number, it is sufficient to take a random

rational number and verify the genericity condition; the procedure is repeated until

the genericity condition is satisfied. Note that the set Z := V (G1, . . . , Gr ) has pure

codimension r and X ⊂ Z . Let γ1, . . . , γτ be some (random) generic rational numbers

and set

H :=
{

1 if W = ∅,∑τ
i=1 γi ui otherwise.

Clearly dim
(
X ∩ V (H)

)
< dim X . Moreover, for a sufficiently general linear r -

dimensional subspace Lr ⊂ Cn , the intersection Lr ∩ Z has only isolated smooth

points and Lr ∩ Yi �= ∅ for every i = 1, . . . , m. We can assume that Lr is determined

by the linear forms li =
∑n

j=1 βi j x j , i = 1, . . . , n − r , where βi j are sufficiently
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generic (random) rational numbers. Now take

pX ,W = |Jac(G1, . . . , Gr , l1, . . . , ln−r )| · H ,

where Jac( · )denotes the Jacobian matrix. Then pX ,W is a polynomial with the required

properties. ⊓⊔

Remark 2.2 Theoretically, a random rational number is a generic rational number, but

practically by random numbers we mean rational numbers produced by special random

algorithms.

The polynomial pX ,W can be found by using a probabilistic algorithm. First recall

the following:

Definition 2.3 Let I be an ideal in C[x1, . . . , xn]. We define the homogenization of

I to be the ideal I h generated by { f h : f ∈ I } ⊂ C[x0, . . . , xn], where f h is the

homogenization of f .

Theorem 2.4 ([2, Thm. 4, §4, Chap. 8, p. 388]) Let I be an ideal in k[x1, . . . , xn]
and let G = {g1, . . . , gs} be a Gröbner basis for I with respect to a graded lexico-

graphic order in k[x1, . . . , xn] (i.e., the lexicographic order that first compares the

total degree: xα > xβ whenever |α| > |β|). Then Gh = {gh
1 , . . . , gh

s } is a basis for

I h ⊂ k[x0, x1, . . . , xn].

This theorem allows us to compute the set of points at infinity of an affine variety

given by the ideal I ; to this aim, it is enough to compute the Gröbner basis {g1, . . . , gs}
of the ideal I and then to consider the ideal I∞ = (x0, gh

1 , . . . , gh
s ). In particular, we can

check effectively whether Lr ∩ X ∩{x0 = 0} = ∅, which implies that Lr ∩ Yi �= ∅ for

i = 1, . . . , m (see the proof of Proposition 2.1). This is crucial for our computations.

Now we sketch the algorithm to compute the polynomial pX ,W . Note that, for a

given ideal I , we can compute dim V (I ) by [19].

INPUT: The ideal I = I (X) = (g1, . . . , gω) and the ideal J = I (W ) =
(g1, . . . , gω, u1, . . . , uτ )

1) repeat

choose random rational numbers αi1, . . . , αiω, i = 1, . . . , r ;

put Gi :=
∑ω

k=1 αik gk , i = 1, . . . , r ;

put I = (G1, . . . , Gr );

until dim V (I ) = n − r .

2) repeat

choose random rational numbers βi1, . . . , βin , i = 1, . . . , n − r ;

put li :=
∑n

k=1 βik xk , i = 1, . . . , n − r ;

put I = (G1, . . . , Gr , l1, . . . , ln−r );

compute the ideal I∞ = (H1, . . . , Hm) ⊂ k[x0, . . . , xn];
if dim V (I∞) = 0 then

begin

compute V (G1, . . . , Gr , l1, . . . , lr ) := {a1, . . . , ap}
end

123



284 Discrete & Computational Geometry (2021) 65:279–304

until dim V (I∞) = 0 and |Jac(G1, . . . , Gr , l1, . . . , ln−r )(ai )| �= 0 for i =
1, . . . p.

3) repeat

choose random rational numbers γ1, . . . , γτ ;

put H :=
∑τ

k=1 γi uk ;

put J = (G1, . . . , Gr , H);

until dim V (J ) < n − r .

OUTPUT: pX ,W = |Jac(G1, . . . , Gr , l1, . . . , ln−r )| · H

Remark 2.5 Let us assume that I (X) and I (W ) are generated by polynomials from

the ring F[x1, . . . , xn], where F is a subfield of C. Then we can choose a polynomial

pX ,W such that pX ,W ∈ F[x1, . . . , xn].

From the proof of Proposition 2.1, with no loss of generality, we can assume that

rank Jac(g1, . . . , gr ) = r on some nonempty regular open subset X0 of X and that

X = X0. It is clear that V (pX ,W ) contains sing(X) ∪ W and the singular points of

the projection (l1, . . . , ln−r ) : X → Cn−r . Now, to construct an affine stratification

of X , it is enough to construct an affine filtration X = X0 ⊃ X1 ⊃ · · · ⊃ Xn−r ⊃
Xn−r+1 = ∅ by induction with X i+1 := X i ∩V (pXi ,∅), i = 0, . . . , n −r . The degree

of each X i can be calculated and depends only on D.

2.3 Construction of AffineWhitney Stratifications

In this section, we construct an affine Whitney stratification of a given affine variety X ,

with I (X) = (g1, . . . , gr ) and deg gi ≤ D, by refining the affine stratification given

in Sect. 2.2 so that the resulting stratification is still affine and moreover satisfies the

Whitney condition.

First of all, inspired by the construction in [5,17], let us describe the Whitney

condition (b) algebraically. Assume that Y ⊂ X is an affine subvariety of X with

dim Y < dim X defined by

Y := X ∩ {g̃r+1 = · · · = g̃p = 0}.

Set

Ŵ1 :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, y, w, v, γ, λ) ∈ Cn × Cn × Cn × Cn × C × Cr :
g1(x) = · · · = gr (x) = 0

g1(y) = · · · = gr (y) = g̃r+1(y) = · · · = g̃p(y) = 0

w = γ (x − y)

v =
∑r

i=1 λi dx gi

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and let

π1 : Cn × Cn × Cn × Cn × C × Cr → Cn × Cn × Cn × Cn

be the projection on the first 4n coordinates. Let C(X , Y ) = π1(Ŵ1)
Z ⊂ (X × Y ×

Cn ×Cn), where the closure is taken in the Zariski topology (which coincides with the
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topological closure; see, e.g., [16, Prop. 7]). Of course, C(X , Y ) is an affine variety.

We have the following:

Lemma 2.6 For each (x, x, w, v) ∈ C(X , Y ), there are sequences xk ∈ X0, yk ∈ Y ,

γ k ∈ C, and λk ∈ Cr such that:

• xk → x,

• yk → x,

• wk := γ k(xk − yk) → w,

• vk :=
∑r

i=1 λk
i dxk gi → v.

Proof By construction, there are sequences x̄k ∈ X , yk ∈ Y , γ̄ k ∈ C, and λk ∈ Cr

such that x̄k, yk → x , w̄k := γ̄ k(x̄k − yk) → w, and
∑r

i=1 λk
i dx̄k gi → v. It is clear

that, by taking subsequences if necessary, we may suppose that:

• either x̄k = yk for every k or x̄k �= yk for every k,

• for each i , either λk
i �= 0 for every k or λk

i = 0 for every k.

Set

γ k =
{

0 if x̄k = yk for every k,

γ̄ k if x̄k �= yk for every k.

Suppose that λk
i �= 0 for i = 1, . . . , r ′ � r , k ∈ N and λk

i = 0 for i = r ′ +
1, . . . , r , k ∈ N. Since x̄k ∈ X0, there exists a sequence xk ∈ X0 such that

‖xk − x̄k‖ �

{
1
k

if x̄k = yk for every k,

‖x̄k−yk‖
k

if x̄k �= yk for every k,

so xk → x . By continuity, we can also choose xk so that ‖dxk gi − dx̄k gi‖ < 1

kλk
i

if

λk
i �= 0. Set vk :=

∑r
i=1 λk

i dxk gi . Then

∥∥∥∥v
k −

r∑

i=1

λk
i dx̄k gi

∥∥∥∥ =
∥∥∥∥

r ′∑

i=1

λk
i

(
dxk gi − dx̄k gi

)∥∥∥∥

�

r ′∑

i=1

|λk
i |
∥∥dxk gi − dx̄k gi

∥∥ <
r ′

k
→ 0,

i.e., vk → v. Set wk := γ k(xk − yk). Now, if x̄k = yk for every k, then γ k = 0 and

w = w̄k = 0, so we have wk = 0 = w. If x̄k �= yk for every k, then

‖wk − w̄k‖ = |γ k | · ‖(xk − x̄k)‖ � |γ k | ·
‖x̄k − yk‖

k
=

‖w̄k‖
k

→ 0.

Hence wk → w. ⊓⊔
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The following algebraic criterion permits us to check Whitney regularity on Y 0 =
Y\V (pY ,W ), where the notation V (pY ,W ) is from Proposition 2.1 and the affine set

W will be determined later.

Lemma 2.7 Let x ∈ Y 0. Then the pair (X0, Y 0) satisfies the Whitney condition (b) at

x if and only if, for any (x, x, w, v) ∈ C(X , Y ), we have v · w = 0.

Proof Suppose that (X0, Y 0) is Whitney regular at x and assume for contradiction

that there is (x, x, w, v) ∈ C(X , Y ) such that v · w �= 0. In view of Lemma 2.6, there

are sequences xk ∈ X0, yk ∈ Y , γ k ∈ C, and λk ∈ Cr such that

• xk → x , yk → x ,

• wk := γ k(xk − yk) → w,

• vk :=
∑r

i=1 λk
i dxk gi → v.

Note that w �= 0, so w determines the limit of the sequence of secants xk yk and it

follows that xk �= yk for k large enough. By taking a subsequence if necessary, we

may assume that Txk X0 → T . By assumption, w ∈ T . For each k, let {bk
1, . . . , bk

r }
be an orthonormal basis of Nxk X0; recall that Nxk X0 := span{dxk g1, . . . , dxk gr }
is the normal space of X0 at xk . Obviously 〈bk

1, . . . , bk
r 〉⊥ = Txk X0. By compact-

ness, each sequence bk
i has an accumulation point bi . Without loss of generality,

suppose that bk
i → bi . It is clear that the system {b1, . . . , br } is also orthonormal

and 〈b1, . . . , br 〉⊥ = T . Let λ̃k = (̃λk
1, . . . , λ̃

k
r ) be such that vk :=

∑r
i=1 λ̃k

i bk
i . Then

λ̃k is convergent to a limit λ̃ and it is clear that v =
∑r

i=1 λ̃i bi . Finally, we have

w ∈ T = 〈b1, . . . , br 〉⊥ ⊂ 〈v〉⊥, i.e., v · w = 0, which is a contradiction.

Now suppose that v · w = 0 for any (x, x, w, v) ∈ C(X , Y ) and assume that

(X0, Y 0) is not Whitney regular at x . So, there are sequences xk ∈ X0 and yk ∈ Y 0

with the following properties:

• xk �= yk , xk → x , yk → y;

• Txk X0 → T ;

• the sequence of secants xk yk tends to a line ℓ �⊂ T .

For each k, let {bk
1, . . . , bk

r } be an orthonormal basis of Nxk X0 so 〈bk
1, . . . , bk

r 〉⊥ =
Txk X0. As above, we may assume that bk

i → bi . Then the system {b1, . . . , br } is also

orthonormal and 〈b1, . . . , br 〉⊥ = T . Let wk := xk−yk

‖xk−yk‖ ; we can assume that the

limit w := lim wk exists, and clearly w is a direction vector of ℓ. By assumption,

w /∈ T = 〈b1, . . . , br 〉⊥; i.e., there exists an index j such that b j · w �= 0. To obtain a

contradiction, it is enough to show that there is a sequence vk :=
∑r

i=1 λk
i dxk gi such

that vk → b j , but this is clear since bk
j ∈ span{dxk g1, . . . , dxk gr }, so such a sequence

always exists. ⊓⊔

Now, according to [11, Algorithm 3.3], [7, Algorithm 4.5.3] (see also [4,6]), it

is possible to calculate a basis for the ideal I (Ŵ1) by calculating the radical of the
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following ideal in C[x, y, w, v, γ, λ]:
⎛
⎜⎜⎝

g1(x), . . . , gr (x),

g1(y), . . . , gr (y), g̃r+1(y), . . . , g̃p(y),

w − γ (x − y),

v −
∑r

i=1 λi dx gi

⎞
⎟⎟⎠ .

Then, by Buchberger’s algorithm, we can calculate a Gröbner basis of I (Ŵ1). So, in

view of [10, Thm. 5.1], [14], we can compute a Gröbner basis of the ideal I (C(X , Y )).

Now we give another criterion for Whitney regularity.

Lemma 2.8 Let {h1(x, y, w, v), . . . , hq(x, y, w, v)}be a Gröbner basis of I (C(X , Y ))

and set

Ŵ2 :=

⎧
⎪⎪⎨
⎪⎪⎩

(x, x, w, v, γ, λ) ∈ Cn × Cn × Cn × Cn × C × C :
h1(x, x, w, v) = · · · = hq(x, x, w, v) = 0

γ
∑n

j=1 v jw j = 1

λpY ,∅(x) = 1

⎫
⎪⎪⎬
⎪⎪⎭

,

where pY ,∅(x) is the polynomial determined in Proposition 2.1. Let Y 0 := Y\V (pY ,∅).
Then the pair (X0, Y 0) is not Whitney regular at x if and only if there exists

(w, v, γ, λ) ∈ Cn × Cn × C × C such that (x, x, w, v, γ, λ) ∈ Ŵ2.

Proof Note that x ∈ Y 0 if and only if pY ,∅(x) �= 0, i.e., there exists λ ∈ C such that

λpY ,∅(x) = 1. In view of Lemma 2.7, the pair (X0, Y 0) is not Whitney regular at x

if and only if there exist w, v with v · w �= 0 such that (x, x, w, v) ∈ C(X , Y ). The

lemma follows easily. ⊓⊔

Now we determine an algebraic set W = W (X , Y ) in Y with dim W < dim Y and

V (pY ,∅) ⊂ W such that the pair (X0, Y\W ) is Whitney regular. Let

π2 : Cn × Cn × Cn × Cn × C × C → Cn

be the projection on the first n coordinates. By Lemma 2.8, π2(Ŵ2) is the set of points

where the Whitney condition (b) fails to be satisfied. Let π2(Ŵ2)
Z be the Zariski

closure of π2(Ŵ2), then π2(Ŵ2)
Z is affine. It follows from [21, Thm. 8.5], [22, Lem.

19.3] that dim π2(Ŵ2) < dim Y , so dim π2(Ŵ2)
Z < dim Y . Set

W = W (X , Y ) := π2(Ŵ2)
Z ;

then obviously dim W < dim Y . Again, applying [11, Algorithm 3.3] or [7, Algorithm

4.5.3] (see also [4,6]) to find a system of generators of I (W ), then applying [10, Thm.

5.1], [14], we can compute a Gröbner basis of the ideal I (W ). Finally, let

• X0 := X ,

• X1 := X0 ∩ V (pX0,∅),
• X2 := X1 ∩ V (pX1,W (X0,X1)),
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• X3 := X2 ∩ V (pX2,W (X0,X2)∪W (X1,X2)), . . .,

• X i := X i−1 ∩ V
(

p
Xi−1,

⋃i−2
j=0 W (X j ,Xi−1)

)
, . . .

By induction, we can construct a finite filtration of algebraic sets X = X0 ⊃ X1

⊃ · · · ⊃ Xn−r ⊃ Xn−r+1 = ∅ with dim X i > dim X i+1. Let Bi := X i\X i+1. Then

S := {Bi }i=1,...,q is a Whitney stratification of X . Note that the degree of X i can be

determined explicitly and depends only on D.

3 Thom Isotopy Lemma for Nonproper Maps

We start this section with:

Definition 3.1 Let f : X → Cm be a polynomial dominant map, where X is an alge-

braic set. Let S = {Xα}α∈I be a stratification of X . By K∞( f , Xα) we mean the set

{y ∈ Cm : there is a sequence xk → ∞, xk ∈ Xα such that ‖xk‖ ν(dxk ( f |Xα )) →
0 and f (xk) → y} (here ν denotes the Rabier function; for details, see [10, Sect.

5]). Now, let C( f , Xα) denote the set of points where f |Xα is not a submersion. By

sing( f ,S) we denote the set of stratified singular values of f , i.e.,

sing( f ,S) =
⋃

α∈I

K0( f , Xα), (1)

where K0( f , Xα) = f (C( f , Xα)).

By [10, Thm. 3.3], we have that, for every α, the set K∞( f |Xα ) is closed and has

measure 0 in Cm . In particular the set K ( f ) defined below is also closed and has

measure 0.

Definition 3.2 Let K ( f ,S) be the set of stratified generalized critical values of f

given by

K ( f ,S) :=
⋃

α∈I

(
K0( f , Xα) ∪ K∞( f , Xα)

)
. (2)

Remark 3.3 The set K ( f ,S) is closed. Indeed, it is enough to see that K∞( f , Xα)

is closed for every α. Assume that yk ∈ K∞( f , Xα) and yk → y. So, for every k,

there are suitable sequences xk j ∈ Xα , j = 1, 2, . . . such that lim j→∞ f (xk j ) = yk .

Hence, for any k, we can choose xk jk such that:

• ‖ f (xk jk ) − yk‖ < 1/k,

• ‖xk jk ‖ > k,

• ‖xk jk ‖ ν(dxk jk f ) < 1/k.

Set zk := xk jk . Thus zk ∈ Xα , zk → ∞, ‖zk‖ ν(dzk ( f |Xα )) → 0, and f (zk) → y.

Consequently y ∈ K∞( f , Xα).

Assuming that S is an affine Whitney stratification of X , we prove that K ( f ,S)

contains the set of bifurcation values of f .
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Theorem 3.4 (First isotopy lemma for nonproper maps) Let X ⊂ Cn be an affine

variety with an affine Whitney stratification S, and let f = ( f1, . . . , fm) : X → Cm

be a polynomial dominant map. Let K ( f ,S) be the set of stratified generalized critical

values of f given by (2). Then f is locally trivial outside K ( f ,S).

Before proving Theorem 3.4, recall that the Whitney condition (b) is equivalent

to the condition (w) (see [17, V.1.2]), so it is more convenient to use the condition

(w), since we will need to construct rugose vector fields in the sense of [20]. In what

follows, it is more convenient to work with the underlying real algebraic set of X in R2n ,

also denoted by X ; the affine Whitney stratification S of X induces a semialgebraic

Whitney stratification of the underlying set with the corresponding strata denoted by

the same notation Xβ . We also identify the polynomial map f with the real polynomial

map (Re f1, . . . , Re fm, Im f1, . . . , Im fm) : X → R2m . Let us recall the definitions

pertaining to rugosity. Let ψ : X → R be a real function. We say that ψ is a rugose

function if the following conditions are fulfilled:

• The restriction ψ |Xβ
to any stratum Xβ is a smooth function.

• For any stratum Xβ and for any x ∈ Xβ , there exist a neighborhood U of x in R2n

and a constant c > 0 such that, for any y ∈ X ∩ U and x ′ ∈ Xβ ∩ U , we have

|ψ(y) − ψ(x ′)| � c‖y − x ′‖.

A rugose map is a map whose components are rugose functions. A vector field v on

X is called a rugose vector field if v is a rugose map and v(x) is tangent to the stratum

containing x for any x ∈ X .

Proof of Theorem 3.4 Let z ∈ Cm\K ( f ,S), where we identify Cm with R2m , and let

B be an open box centered at z such that B ∩ K ( f ,S) = ∅. To prove the theorem, it

is enough to prove that f is trivial on B. Without loss of generality, we may suppose

that z = 0 and B = (−1, 1)2m . Let ∂1, . . . , ∂2m be the restrictions of the coordinate

vector fields (on R2m) to B. Set U := f −1(B), Uβ := U ∩ Xβ , and

I ′ := {β ∈ I : Uβ �= ∅}.

Clearly U = f −1(B) and I ′ = {β ∈ I : U ∩ Xβ �= ∅}. First of all, let us give a

sufficient condition for trivializing a rugose vector field.

Lemma 3.5 For i = 1, . . . , 2m, let vi be vector fields on X which are rugose in U.

Assume that d f (vi ) = ∂i and there is a positive constant c > 0 such that ‖vi (x)‖ �
‖x‖+1

c
for any x ∈ U. Then f is a topologically trivial fibration over B.

Proof It is enough to prove that there is a homeomorphism φ : f −1(B) → f −1(0)×B

such that the following diagram commutes:

f −1(B)
φ

f

f −1(0) × B

π

B

where π denotes the projection on the second factor. We note the following facts:
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(i) The flow of vi preserves the stratification. This is a consequence of the rugosity.

For more detail, see [20, Prop. 4.8].

(ii) For each i and any x ∈ U , there is a unique integral curve of vi passing through

x . This follows from the uniqueness of integral curves of smooth vector fields

and the fact that vi preserves the stratification.

Set Y i
t := (y1, . . . , yi−1, t, yi+1, . . . , yn) and Y i = {Y i

t : t ∈ (−1, 1)}. First of

all, we will prove that the flow of vi induces a homeomorphism φi : f −1(Y i ) →
f −1(Y i

0) × (−1, 1) such that the following diagram commutes:

f −1(Y i )
φi

pi ◦ f

f −1(Y i
0) × (−1, 1)

πi

(−1, 1)

where πi denotes the projection on the second factor and pi denotes the projection on

the i th coordinate. This follows from the following claim which states that there is no

trajectory of vi going to infinity:

Claim 3.6 For each x ∈ f −1(Y i
0), let γ be the integral curve of vi such that γ (0) = x.

Then γ reaches any level f −1(Y i
t ) at time t for t ∈ (−1, 1).

Proof By assumption, ‖γ̇ (t)‖ �
‖γ (t)‖+1

c
. Without loss of generality, suppose that

t > 0. In light of the Gronwall lemma, by repeating the calculation of [1, Thm. 3.5],

we obtain

‖γ (t)‖ � ‖γ (0)‖ +
∫ t

0

‖γ (s)‖ + 1

c
ds

= ‖x‖ +
t

c
+
∫ t

0

‖γ (s)‖
c

ds

�

(
‖x‖ +

t

c

)
exp

∫ t

0

ds

c
=
(

‖x‖ +
t

c

)
et/c < +∞,

which implies that the trajectory γ does not go to infinity at time t . Now we have

f (γ (t)) − f (x) =
∫ t

0

d
[

f (γ (t))
]

=
∫ t

0

dγ (t) f (γ̇ (t)) dt =
∫ t

0

∂i dt = (0, . . . 0, t, 0, . . . , 0).

Since f (x) ∈ Y i
0 , clearly f (γ (t)) ∈ Y i

t , and the claim follows. ⊓⊔

For any x ∈ f −1(Y i
0), let hi (x, t) = x +

∫ t

0 γ̇ (s) ds. Then hi defines a homeo-

morphism f −1(Y i
0) × (−1, 1) → f −1(Y i ). Then φi = h−1

i is the required homeo-

morphism. Now, for x ∈ f −1(0), let h : f −1(0) × B → f −1(B) be defined by

h(x, t1, . . . , t2m) = h2m(. . . (h2(h1(x, t1), t2), . . . , t2m).

123



Discrete & Computational Geometry (2021) 65:279–304 291

Then φ := h−1 is a homeomorphism, as required. The lemma is proved. ⊓⊔
Now let us prove the following:

Lemma 3.7 There is a constant c > 0 such that, for any β ∈ I ′ and any x ∈ U ∩ Xβ ,

we have

(‖x‖ + 1) ν(dx ( f |Xβ
)) � c.

Proof Assume for contradiction that there exist an index β ∈ I ′ and a sequence

xk ∈ U ∩ Xβ such that (‖xk‖ + 1) ν(dxk ( f |Xβ
)) → 0. Taking a subsequence if

necessary, we can suppose that xk → x , Txk Xβ → T and f (xk) → y ∈ B with

x ∈ Cn or x = ∞. If x = ∞, then by definition, y ∈ K∞( f |Xβ
) ⊂ K ( f ,S). This is

a contradiction since B ∩ K ( f ,S) = ∅. Thus x ∈ Cn , and we get ν(dxk ( f |Xβ
)) → 0.

In the case x ∈ Xβ , in view of [15, Lem. 2.2], we have ν(dx ( f |Xβ
)) = 0, i.e.,

y ∈ K0( f , Xβ), which is also a contradiction. Therefore x ∈ Xβ\Xβ . Denote by

Xα the stratum containing x . Let F = ( f1, . . . , fm) : Cn → Cm be the polynomial

extending f on Cn . Obviously ν(dxk F |T
xk Xβ

) = ν(dxk (F |Xβ
)) = ν(dxk ( f |Xβ

)) →
0. Moreover, since f |Xα is a submersion at x , so F is a submersion at x . Hence

ν(dx (F |Xα )) �= 0. Since the stratification is Whitney, it implies that T ⊃ Tx Xα .

Consequently ν(dx F |T ) � ν(dx (F |Xα )) �= 0. To get a contradiction, we will need the

following claim:

Claim 3.8 Let Ak : Rq → Rp be a sequence of linear maps such that Ak → A as k →
+∞ (i.e., the terms of the matrix of Ak tend to the corresponding terms of the matrix

of A). Let Hk ⊂ Rq be a sequence of linear subspaces of same dimension such that

Hk → H (i.e., δ(Hk, H) → 0, where δ(Hk, H) := supy∈Hk ,‖y‖=1 dist(y, H) is the

distance between Hk and H; dist(·, · ) is the Euclidean distance). Then ν(Ak |Hk
) →

ν(A|H ).

Proof It is clear that

‖ν(Ak |Hk
) − ν(A|H )‖ � ‖ν(Ak |Hk

) − ν(A|Hk
)‖ + ‖ν(A|Hk

) − ν(A|H )‖.

In light of [15, Lem. 2.1 (iv)], we have

‖ν(Ak |Hk
)−ν(A|Hk

)‖ � ‖Ak |Hk
− A|Hk

‖ = ‖(Ak − A)|Hk
‖ � ‖Ak − A‖ → 0. (3)

Note that ν(A) is the length of a minimal semiaxis of A(B), where B is the unit ball.

Since Hk → H , we have Vk := B ∩ Hk → B ∩ H := V and A(Vk) → A(V ) by

continuity of A. Hence also ν(A|Hk
) → ν(A|H ). ⊓⊔

Applying Claim 3.8 with Ak = dxk F and Hk = Txk Xβ , we get

0 = lim
k→∞

ν
(
dxk F |T

xk Xβ

)
= ν(dx F |T ),

which is a contradiction. The lemma follows. ⊓⊔
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For each β ∈ I ′, it is clear that f |Xβ
is a submersion on ( f |Xβ

)−1(B), so for

x ∈ U ∩ Xβ , the differential dx ( f |Xβ
) : Tx Xβ → R2m is surjective, which induces an

isomorphism of vector spaces

d̃x ( f |Xβ
) : Tx Xβ/ker dx ( f |Xβ

) ∼= R2m .

Thus, for each i = 1, . . . , 2m, the vector field ∂i can be lifted uniquely and smoothly

on each stratum Xβ with β ∈ I ′ to the vector field called the horizontal lift of ∂i

and denoted by v
β

i . Clearly, v
β

i (x) is the unique vector in Tx Xβ which lifts ∂i and is

orthogonal to ker dx ( f |Xβ
). Each v

β

i has the following important properties:

Lemma 3.9 Let c > 0 be the constant in Lemma 3.7. Then, for each x ∈ U ∩ Xβ with

β ∈ I ′, we have

‖vβ

i (x)‖ �
‖x‖ + 1

c
.

Proof Let Bβ be the closed unit ball centered at the origin in Tx Xβ . Then

dx ( f |Xβ
)(Bβ) is an ellipsoid in R2m with ν(dx ( f |Xβ

)) as the length of the short-

est semiaxis. Let B2m be the closed unit ball centered at the origin in R2m . Then

(̃dx ( f |Xβ
))−1

(
ν(dx ( f |Xβ

))B2m
)

is an ellipsoid in Tx Xβ with 1 as the length of the

longest semiaxis. Therefore the longest semiaxis of the ellipsoid (̃dx ( f |Xβ
))−1(B2m)

is 1/ν(dx ( f |Xβ
)). Consequently,

‖vβ

i (x)‖ �
1

ν(dx ( f |Xβ
))

�
‖x‖ + 1

c
,

which yields the lemma. ⊓⊔

Note that, for fixed i , the vector field on U which coincides with v
β

i on each Uβ is

not necessarily a rugose vector field. In what follows, we will try to deform these vector

fields to produce a rugose vector field which satisfies the assumption of Lemma 3.5.

The process is carried out by induction on dimension.

For 2m � d � 2 dimC X , let I ′
d := {β ∈ I ′ : 2m � dim Xβ � d} and Ud :=⋃

β∈I ′
d

Xβ ∩ U . By induction on d, we construct a rugose vector field on U2 dimC X

with the property of Lemma 3.5. For d = 2m, let v2m
i be the restriction to U2m of the

smooth vector field on
⋃

β∈I ′
2m

Xβ which coincides with each v
β

i on Xβ for β ∈ I ′
2m .

Then v2m
i is clearly rugose, d f (v2m

i ) = ∂i and by Lemma 3.9, ‖v2m
i (x)‖ �

‖x‖+1
c

for

any x ∈ U2m .

For each i , assume that we have constructed a rugose vector field, denoted by vd
i ,

on Ud such that dx f (vd
i (x)) = ∂i and ‖vd

i (x)‖ �
‖x‖+1

cd
for every x ∈ Ud , where

cd is a positive constant. We need to extend each vd
i to a rugose vector field vd+2

i on

Ud+2 such that ‖vd+2
i (x)‖ �

‖x‖+1
cd+2

for every x ∈ Ud+2, where cd+2 is also a positive

constant (recall that the strata of S have even dimension). Note that, to construct vd+2
i ,
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it is enough to construct vd+2
i separately on each stratum Xα with α ∈ I ′

d+2\I ′
d .

Without loss of generality, suppose that I ′
d+2\I ′

d = {α}. By [20, Lem. 4.4], for each

i = 1, . . . , 2m, there is a rugose vector field on Ud+2, denoted by w̃d+2
i , which extends

vd
i , so the restriction w̃d+2

i |Ud+2∩Xα is a smooth vector field. We need to adjust w̃d+2
i

to get a new rugose vector field wd+2
i on Ud+2 such that, for any y ∈ Xα ∩ Ud+2, we

have dy f (wd+2
i (y)) = ∂i .

Lemma 3.10 For y ∈ Ud+2 ∩ Xα , write

w̃d+2
i (y) =

2m∑

j=1

a j (y) vα
j (y) + P(y),

where P(y) ∈ ker dy f . Define

wd+2
i (x) :=

{
vα

i (x) + P(x) if x ∈ Xα ∩ Ud+2,

vd
i (x) if x ∈ Ud .

Then wd+2
i is a rugose vector field on Ud+2 and dx f (wd+2

i (x)) = ∂i for x ∈ Ud+2.

Proof For x ′ ∈ Ud , let

vd
i (x ′) =

2m∑

j=1

b j (x ′, y) vα
j (y) + Q(x ′, y) + S(x ′, y),

where Q(x ′, y) ∈ ker dy f and S(x ′, y) ∈ (Ty Xα)⊥. Since w̃d+2
i is rugose, for each

x ∈ Ud , there is a neighborhood Wx of x such that, for any y ∈ Wx ∩ Xα and any

x ′ ∈ Wx ∩ Xβ , we have:

• ‖P(y) − Q(x ′, y)‖ < C‖y − x ′‖,

• ‖S(x ′, y)‖ < C‖y − x ′‖

for some C > 0, where Xβ is the stratum containing x . Shrinking Wx and increasing

C if necessary, we can suppose that dF : x �→ dx F is Lipschitz on Wx , where F is a

polynomial extension of f to Cn . Hence ‖dy F − dx ′ F‖ < C‖y − x ′‖. In particular,

∥∥dy F(vd
i (x ′)) − dx ′ F(vd

i (x ′))
∥∥ < C‖y − x ′‖ · ‖vd

i (x ′)‖,

i.e.,

∥∥∥∥
2m∑

j=1

b j (x ′, y)∂ j − ∂i

∥∥∥∥− ‖dy F(S(x ′, y))‖ < C‖y − x ′‖ · ‖vd
i (x ′)‖.
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Shrink Wx , if necessary, so that W x ∩ Xγ ⊂ Ud+2 for any γ ∈ I ′
d+2. Let M :=

supz∈Ud
‖vd

i ‖ and N := supz∈Wx
‖dz F‖. Then we have

∑

j �=i

|b j (x ′, y)| + |bi (x ′, y) − 1| < C(M + N )‖y − x ′‖

and

‖wd+2
i (y) − vd

i (x ′)‖ <

(∑

j �=i

|b j (x ′, y)| + |bi (x ′, y) − 1|
)

D

+ ‖P(y) − Q(x ′, y)‖ + ‖S(x ′, y)‖,

where D := supz∈Wx ∩Xα
‖vα

i ‖. Thus

‖wd+2
i (y) − vd

i (x ′)‖ < (2C + C D(M + N ))‖y − x ′‖.

Hence wd+2
i is rugose and of course dx f (wd+2

i (x)) = ∂i for x ∈ Ud+2. ⊓⊔

Since wd+2
i is rugose (in view of Lemma 3.10), it is continuous. Then, by shrinking

Wx , where Wx is determined in the proof of Lemma 3.10, if necessary, we may assume

that Wx ⊂ {z ∈ Cn : ‖z − x‖ � 1} and

‖wd+2
i (y)‖ < 2‖vd

i (x)‖ (4)

for any y ∈ Wx ∩ Xα . Let Wd :=
⋃

x∈Ud
Wx , then Wd is an open neighborhood of

radius no larger than 1 of Ud . Let F = ( f1, . . . , fm) : Cn → Cm be the polynomial

extending f on Cn . Let K := F−1(B), which is considered as a subset of R2n under the

identification of Cn with R2m . Then Ud is a closed set in K for the induced topology

from the Euclidean topology. By a smooth version of Urysohn’s lemma, there is a

smooth function ϕ : K → [0, 1] such that ϕ−1(0) = K\Wd and ϕ−1(1) = Ud . (Note

that there may not exist such a function ϕ defined on the whole of R2n since Ud is not

closed in R2n ; namely, there may be no smooth extensions of ϕ on R2n .) For x ∈ Ud+2,

set

vd+2
i (x) := (1 − ϕ(x)) vα

i (x) + ϕ(x) wd+2
i (x).

Clearly, the restriction of vd+2
i on each stratum is a smooth vector field. Moreover, we

have

dx f
(
vd+2

i (x)
)

= dx f
(
(1 − ϕ(x)) vα

i (x) + ϕ(x) wd+2
i (x)

)

= (1 − ϕ(x)) dx f (vα
i (x)) + ϕ(x) dx f

(
wd+2

i (x)
)

= (1 − ϕ(x)) ∂i + ϕ(x) ∂i = ∂i .
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Let us prove that vd+2
i is a rugose vector field. For any x ∈ Ud , let Xβ be the stratum

containing x . For x ′ ∈ Wx ∩ Xβ and y ∈ Wx ∩ Xα , we have

∥∥vd+2
i (y) − vd+2

i (x ′)
∥∥

=
∥∥(1 − ϕ(y)) vα

i (y) + ϕ(y) wd+2
i (y) − vd

i (x ′)
∥∥

=
∥∥(1 − ϕ(y)) vα

i (y) − (1 − ϕ(y)) wd+2
i (y) + wd+2

i (y) − vd
i (x ′)

∥∥

� (1 − ϕ(y))
∥∥vα

i (y) − wd+2
i (y)

∥∥+
∥∥wd+2

i (y) − vd
i (x ′)

∥∥

� (1 − ϕ(y))
(∥∥vα

i (y)
∥∥+

∥∥wd+2
i (y)

∥∥)+
∥∥wd+2

i (y) − wd+2
i (x ′)

∥∥.

We note the following facts:

• Since 1−ϕ(y) is a smooth function, it is locally Lipschitz; with no loss of generality,

assume that 1 − ϕ(y) is Lipschitz on Wx with constant c1. Then

1 − ϕ(y) = (1 − ϕ(y)) − (1 − ϕ(x ′)) � c1‖y − x ′‖.

• By Lemma 3.9 and by the continuity of wd+2
i , there is a positive constant c2

depending only on x such that ‖vα
i (y)‖ + ‖wd+2

i (y)‖ � c2 (we can take c2 :=
supz∈W x ∩Xα

‖z‖+1
c

+ supz∈W x ∩Xα
‖wd+2

i (z)‖; note that W x ∩ Xα ⊂ Ud+2).

• Since wd+2
i is rugose, it follows that there is a positive constant c3 depending only

on x such that ‖wd+2
i (y) − wd+2

i (x ′)‖ � c3‖y − x ′‖.

Hence

∥∥vd+2
i (y) − vd+2

i (x ′)
∥∥ � (c1c2 + c3)‖y − x ′‖,

i.e., vd+2
i is rugose. Now it remains to show that there is a positive constant cd+2

such that ‖vd+2
i (y)‖ �

‖y‖+1
cd+2

for every y ∈ Ud+2. Obviously, the statement holds for

y ∈ Ud by the induction assumption and for y ∈ Ud+2\Wd by Lemma 3.9, so we can

suppose that y ∈ W\Ud , which clearly implies that y ∈ Xα . In light of Lemma 3.9,

we get
∥∥vα

i (y)
∥∥ �

‖y‖ + 1

c
, (5)

where c is the constant in the same lemma. In view of (4) and the induction assumption,

we have

∥∥wd+2
i (y)

∥∥ < 2
∥∥vd

i (x)
∥∥

� 2
‖x‖+1

cd

� 2
‖y‖+‖x−y‖+1

cd

� 2
‖y‖ + 2

cd

� 4
‖y‖ + 1

cd

. (6)
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Thus (5) and (6) yield

∥∥vd+2
i (y)

∥∥ =
∥∥(1 − ϕ(y)) vα

i (y) + ϕ(y) wd+2
i (y)

∥∥

� (1 − ϕ(y))‖vα
i (y)‖ + ϕ(y)‖wd+2

i (y)‖

� (1 − ϕ(y))
‖y‖ + 1

c
+ ϕ(y) 4

‖y‖ + 1

cd

<

(
1

c
+

4

cd

)
(‖y‖ + 1).

Set cd+2 = min
{

1
1/c+4/cd

, c, cd

}
, then ‖vd+2

i (y)‖ �
‖y‖+1
cd+2

for every y ∈ Ud+2.

By induction, there exists a rugose vector field on U2 dimC X with the property of

Lemma 3.5. Then the theorem follows by applying Lemma 3.5. ⊓⊔
The following corollary follows immediately from Theorem 3.4:

Corollary 3.11 Let X ⊂ Cn be an affine variety with an affine Whitney stratification

S, and let f : X → Cm be a polynomial dominant map. Assume that, for any stratum

Xβ ∈ S, the restriction f |Xβ
is a submersion and K∞( f , Xβ) = ∅. Then f is a

locally trivial fibration.

4 Computation of the Sets of Stratified Generalized Critical Values

In this section, we compute the set K ( f ,S) of stratified generalized critical values

of f , for which we need to construct an affine Whitney stratification of X and then

apply [10] for each stratum of this stratification. The process is slightly different from

the construction in Sect. 2.3, since we only need to construct such an affine Whitney

stratification “partially,” by noting the following facts:

• As the construction of Whitney stratifications is by induction on dimension, we

only need to proceed until the dimension shrinks below m, since the restriction of

f to any stratum of dimension < m is always singular.

• For any algebraic set Z ⊆ X , let

rZ := max
x∈Z\V (pZ ,∅)

rank Jacx ( f |Z )

and H(Z) := {x ∈ Z\V (pZ ,∅) : rank Jacx ( f |Z ) < rZ }Z .

Then, at any step of the induction process, the construction in Sect. 2.3 can be

omitted if rY < m.

Let us now construct such a stratification. With the same notations as in Lemma 2.8,

let
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Ŵ3 :=
t⋃

k=1

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, x, w, v, γ, λ, μ) ∈ Cn × Cn × Cn × Cn × C × C × Ct :
h1(x, x, w, v) = · · · = hq(x, x, w, v) = 0

γ
∑n

j=1 v jw j = 1

λpY ,∅(x) = 1

μk M
(m,p)

k (x) = 1

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

where each M
(m,p)

k (x) is a minor of the matrix

A(x) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx f1

...

dx fm

dx g1

...

dx gr

dx g̃r+1

...

dx g̃p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

obtained by deleting n −m − p columns. So Ŵ3 differs from Ŵ2 in the last t equations,

since we are only interested in finding the points where the Whitney condition (b) is

not satisfied, outside P(Y ,∅). Let

π3 : Cn × Cn × Cn × Cn × C × C × Ct → Cn

be the projection on the first n coordinates. By Lemma 2.8, π3(Ŵ3) is the set of

points where the Whitney condition (b) fails. Obviously π3(Ŵ3) ⊂ reg( f |Y\P(Y )) and

dim π3(Ŵ3) < dim Y . Set W̃ := π3(Ŵ3)
Z . Then obviously dim W̃ < dim Y . Again,

we can compute a Gröbner basis of the ideal I (W̃ ). Finally, set

• X0 := X ,

• X1 := X0 ∩ V (pX0,∅), S1 = K0( f , X0\X1), . . .,

• X i := X i−1 ∩ V (p
Xi−1,

⋃i−2
j=0 W̃ (X j ,Xi−1)

), Si = K0( f , X i−1\X i ), . . .

By induction, we can construct a finite filtration of algebraic sets X = X0 ⊃ X1 ⊃
· · · ⊃ Xq ⊃ Xq+1 ⊇ ∅ with dim X i > dim X i+1 and rXq+1 < m. It is clear that this

filtration does not induce an affine Whitney stratification S of X . However, it shows

that there is an affine Whitney stratification S such that

K0( f ,S) =
q⋃

i=1

Si ∪ f (Xq+1).

Let Zi := X i\X i+1. Then {Zi }i=0,...,q is an affine Whitney stratification of X\Xq+1.

Every variety Zi can be realized as a closed affine variety Z̃i in Cn+1, by the embedding

Zi ∋ x �→
(
x, 1/P

Xi ,
⋃i−1

j=0 W̃ (X j ,Xi )
(x)
)

∈ Cn+1 for i > 0 or the embedding Z0 ∋
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x �→ (x, 1/PX0,∅(x)) ∈ Cn+1. Let K∞( f , Zi ) be the set of asymptotic critical values

of f |Zi
, which now can be computed analogously as in [8,10]—this will be done in the

next section. Then, from the construction, it is clear that the set of stratified generalized

critical values of f is given by

K ( f ,S) :=
q⋃

i=1

(K∞( f , Zi ) ∪ K0( f , Zi )) ∪ f (Xq+1)

and K ( f ,S) can be computed effectively. Note that Remark 2.5 and elementary

properties of Gröbner bases imply:

Corollary 4.1 Let X ⊂ Cn be an affine variety of pure dimension and let f =
( f1, . . . , fm) : X → Cm be a polynomial mapping. Let F ⊂ C be a subfield

generated by coefficients of generators of I (X) and all coefficients of polynomials

fi , i = 1, . . . , m. Then there is a nowhere dense affine variety K ( f ,S) ⊂ Cm , which

is described by polynomials from F[x1, . . . , xm] such that all bifurcation values B( f )

of f are contained in K ( f ,S). In particular, for m = 1, if X and f are described

by polynomials from Q[x1, . . . , xn], then all bifurcation values of f are algebraic

numbers.

5 Computation of K0(f , Zi) ∪ K∞(f , Zi)

Let k = R or k = C. Let X ∼= kn , Y ∼= km be finite-dimensional vector spaces

(over k). We consider those spaces equipped with the canonical scalar (hermitian)

products. Let us denote by L(X , Y ) the set of linear mappings from X to Y and by

� = �(X , Y ) ⊂ L(X , Y ) the set of nonsurjective mappings. In this section, we give

several different expressions for a distance of an A ∈ L(X , Y ) to the space � of

singular operators. Let us first recall the following [15]:

Definition 5.1 Let A ∈ L(X , Y ). Set

ν(A) = inf‖φ‖=1‖A∗(φ)‖,

where A∗ ∈ L(Y ∗, X∗) is the adjoint operator and φ ∈ Y ∗.

Let α, β : L(X , Y ) → R+ be two nonnegative functions. We shall say that α and

β are equivalent (we write α ∼ β) if there are constants c, d > 0 such that

cα(A) ≤ β(A) ≤ dα(A)

for any A ∈ L(X , Y ). We give below several functions equivalent to ν. Let A =
(A1, . . . , Am) ∈ L(X , Y ), and let Ai = grad Ai . Denote by 〈(A j ) j �=i 〉 the linear

space generated by vectors (A j ), j �= i . Let
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κ(A) = min1≤i≤m dist(Ai , 〈(A j ) j �=i 〉)

be the Kuo number of A.

Proposition 5.2 ([12]) The Kuo function κ is equivalent to the ν of Rabier. More

precisely,

ν(A) ≤ κ(A) ≤
√

m ν(A).

Definition 5.3 Let A ∈ L(X , Y ), and let H ⊂ X be a linear subspace. We set

ν(A, H) = ν(A|H ), κ(A, H) = κ(A|H ),

where A|H denotes the restriction of A to H .

From Proposition 5.2 we immediately get the following corollary:

Corollary 5.4 We have ν(A, H) ∼ κ(A, H).

In fact we also have the following explicit expression for κ(A, H) (see [9,10]):

Proposition 5.5 Let A = (A1, . . . , Am) ∈ L(X , Y ), and let H ⊂ X be a linear

subspace. Assume that H is given by a system of linear equations B j = 0, j =
1, . . . , r . Then

κ(A, H) = min1≤i≤m dist
(

Ai , 〈(A j ) j �=i ; (B j ) j=1,...,r 〉
)
,

where Ai = grad Ai and B j = grad B j .

Finally, we introduce a function g′ which will be useful in the explicit description

of the set of generalized critical values.

Definition 5.6 Let A ∈ L(kn, km), where n ≥ m + r , and let H ⊂ kn be a linear

subspace given by a system of independent linear equations Bl =
∑

blk xk , l =
1, . . . , r . By abuse of notation, we denote by A the matrix (in the canonical bases

in kn and km) of the mapping A. Let C be an (m + r) × n matrix given by rows

A1, . . . , Am; B1, . . . , Br (we identify Ai =
∑

aik xk with the vector (a j1, . . . , a jn),

similarly for Bl ). Let MI , where I = (i1, . . . , im+r ), denote an (m+r)×(m+r) minor

of C given by columns indexed by I . Let MJ ( j) denote an (m + r − 1)× (m + r − 1)

minor given by columns indexed by J and by deleting the j th row, where 1 ≤ j ≤ m.

Note that we delete only A j rows. We set

g′(A, H) = max
I

{
min

{J⊂I , 1≤ j≤m}

|MI |
|MJ ( j)|

}

(where we consider only numbers with MJ ( j) �= 0; if all numbers MJ ( j) are zero,

we put g′(A) = 0).

123



300 Discrete & Computational Geometry (2021) 65:279–304

In particular, we have the following (see [9,10]):

Proposition 5.7 We have g′(A, H) ∼ ν(A, H).

Now we can prove the following theorem:

Theorem 5.8 Let Zi be a stratum of X as in Sect. 4. Then the set K ( f , Zi ) =
K0( f , Zi ) ∪ K∞( f , Zi ) is a nowhere dense algebraic subset of Cm .

Proof It is a standard fact that K0( f , Zi ) is algebraic and nowhere dense (for details

see the end of Sect. 5.1). Hence, it is enough to focus on K∞( f , Zi ).

By construction, the set X := Zi ⊂ Cn is a subset of complete intersection,

X ⊂ {b1 = 0, . . . , bs = 0}, and rank{∇bk : k = 1, . . . , s} = s (X has codimension

s). Let us recall notation of Definition 5.6. For x ∈ C, let A = dx f and Bl = dx bl ,

l = 1, . . . , s. Let A ∈ L(kn, km), where n ≥ m + s, and let Tx X = H ⊂ kn be a

linear subspace given by a system of independent linear equations Bl =
∑

blk xk, l =
1, . . . , s. By abuse of notation, we denote by A the matrix (in the canonical bases

in kn and km) of the mapping A. Let C be an (m + s) × n matrix given by rows

A1, . . . , Am; B1, . . . , Bs (we identify Ai =
∑

aik xk with the vector (a j1, . . . , a jn),

similarly for Bl ).

For an index I = (i1, . . . , im+r ) ⊂ {1, . . . , n} let MI (x) denote the (m+s)×(m+s)

minor of C given by columns indexed by I . For integers j ∈ I , 1 ≤ k ≤ m we denote

by MI (k, j)(x) the (m +s −1)×(m +s −1) minor obtained by deleting the j th column

and the kth row. Note that we delete only Ak , 1 ≤ k ≤ m rows.

Hence, MI and MI (k, j) are regular (restriction of polynomials) functions on X . We

now define a family of rational functions on X :

WI (k, j)(x) = MI (x)/MI (k, j)(x),

where, for MI (k, j) ≡ 0, we put WI (k, j) ≡ 0. We write b = (b1, . . . , bs) and

( f , b) : Cn → Cm × Cs ; here, we consider f1, . . . , fm and b1, . . . , bs as polyno-

mials on Cn .

Let w =
(

n
m+s

)
and let MI1 , . . . , MIw be all possible main minors of a matrix of

dx ( f , b). For every index Il , take a pair (kl , jl) which determines an (m + s − 1) ×
(m + s − 1) minor of MIl

(we consider here only minors which are not identically

zero). We denote a sequence (k1, j1), . . . , (kw, jw) by (k, j) ∈ Nw × Nw, and we

consider a rational function

�(k, j) = �((k1, j1), . . . , (kw, jw)) : X → Cm × CN ,

where the first component of �(k, j) is f and the next components are WIp(kp, jp),

p = 1, . . . , w, and all products xl WIp(kp, jp), p = 1, . . . , w; l = 1, . . . , n.

We can assume that, for some choice of l, we have WIl (kl , jl ) �≡ 0, and consequently

dim cl(�(k, j)(X)) = dim X = n − s. Here cl(Y ) stands for the closure of Y in the

strong (or which is the same, in the Zariski) topology. Let Ŵ(k, j) = cl(�(k, j)(X))

(by �(k, j)(X) we mean the set �(k, j)(X\P), where P is a set of poles of �(k, j)).
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Now, for a given r ∈ {1, . . . , n}, consider the set Xr := X\{xr = 0}. Finally, let

�(k, j),r (x) := (�(k, j)(x), 1/xr ) and Ŵ((k, j), r) := cl(�(k, j),r (Xr )). Let us recall

that y ∈ K∞( f , Zi ) if there exists a sequence x → ∞; x ∈ Zi such that

f (x) → y and ‖x‖ g′(x) → 0,

where g′(x) = g′(dx f , Tx Zi ). We have

Lemma 5.9

K∞( f , X) = Cm ∩
⋃

(k, j),r

Ŵ((k, j), r),

where we identify Cm with Cm × (0, . . . , 0).

Proof We identify X with Z̃i ⊂ Cn+1, hence we can assume that X is closed in Cn+1.

Let y ∈ K∞( f , X). Hence, there is a sequence x l → ∞ such that x l ∈ X and

f (x l) → y and ‖x l‖ g′(xl) → 0. Moreover, if x = (x1, . . . , xn), then there is at least

one r , 1 ≤ r ≤ n, such that x l
r → ∞. If {x l : l = 1, 2, . . .} ⊂ C( f , X) (C( f , X)

denotes the set of critical points of f|X ), then it is easy to see that y ∈ Cm ∩Ŵ((k, j), r)

for every (k, j) (we can choose a close sequence x ′l such that f (x ′l) → y and

‖x ′l‖ g′(x ′l) → 0 and functions WI (k, j) are defined). Consequently, we can assume

that {x l : l = 1, 2, . . .}∩C( f , X) = ∅. Thus, there is a sequence x l → ∞ such that, for

every Ii , there are integers (ki , ji ) such that ‖x l‖ MIi
/MIi (ki , ji )(xl) → 0 and f (x l) →

y. This also gives y ∈ Ŵ((k, j), r)∩Cm with ((k, j), r) = ((k1, j1), . . . , (kw, jw), r).

Conversely, if y ∈ Ŵ((k, j), r) ∩ Cm , then we can choose a sequence x l → ∞,

x l ∈ Xr such that f (x l) → y and ‖x l‖ MIi
/MIi (ki , ji )(x l) → 0. It is easy to observe

that this implies ‖x l‖ g′(x l) → 0 and f (x l) → y, i.e. y ∈ K∞( f , X). ⊓⊔

Now, in light of [10, Thm. 3.3], we have that K∞( f , X) �= Cm hence Cm ∩⋃
((k, j),r) Ŵ((k, j), r) �= Cm . By Lemma 5.9, K∞( f , X) is an algebraic set. The

theorem follows. ⊓⊔

5.1 A Sketch of an Algorithm

Let X := Zi ⊂ Cn be a smooth affine variety of dimension n − s. Let f =
( f1, . . . , fm) : X → Cm be a polynomial dominant mapping. Then the set K∞( f , X)

can be computed as follows:

By construction, X is a subset of complete intersection, hence we can choose

polynomials b1, . . . , bs ∈ I (X) such that rank{grad b1, . . . , grad bs} = s on X . Let

us consider the rational mapping

�((k1, j1), . . . , (kw, jw), r) : X ∋ x

�→
(

f (x), WI1(k1, j1)(x), x1WI1(k1, j1)(x), . . . , xn WI1(k1, j1)(x),

. . . , WIs (kw, jw)(x), x1WIw(kw, jw)(x), . . . , xn WIw(kw, jw)(x), 1/xr

)
∈ Cm × CN ,
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which is constructed exactly as in the proof of Theorem 5.8. Recall that

Ŵ((k1, j1), . . . , (kw, jw), r) = cl
(
�((k1, j1), . . . , (kw, jw), r)(X)

)
.

We know also that

K∞( f , X) = L ∩

⎛
⎝ ⋃

((k1, j1),...,(kw, jw)),r

Ŵ((k1, j1), . . . , (kw, jw), r)

⎞
⎠ ,

where L = Cm × (0, . . . , 0). First we compute the ideal of the set Ŵ((k1, j1), . . . ,

(kw, jw), r). Now we can consider a variety X as a closed affine variety in Cn+1 (see

the end of Sect. 4). Let I (X) = (b1, . . . , bq). To this end, we restrict the mapping

�((k, j), r) to an open dense subset U ⊂ X on which this mapping is regular. In

particular, we can choose the set U = X\
(⋃w

l=1{MIl (kl , jl ) = 0} ∪ {xr = 0}
)
. The set

U can be identified with the set

V ((k1, j1), . . . , (kw, jw), r)

:=
{
(x, t, z1, . . . , zw) ∈ X × C × Cw : j = 1, . . . , w; xr t = 1;

MIp(kp, jp)z p = 1; p = 1, . . . , w
}
.

Now we can consider a morphism

�((k1, j1), . . . , (kw, jw)) : V ((k1, j1), . . . , (kp, jp), r) → Cm × CN

defined by

(x, t, z) →
(

f (x), z1 MI1(x), x1z1 MI1(x), . . . , xnz1 MI1(x),

. . . , z p MIw (x), x1zw MIw (x), . . . , xnzw MIw (x), t
)
.

Denote �((k1, j1), . . . , (kw, jw), r) := (ψ1(x, z), . . . , ψm+N (x, z)). It is easy to see

that

Ŵ((k1, j1), . . . , (kw, jw), r)

is the closure of

�((k1, j1), . . . , (kw, jw), q)(V ((k1, j1), . . . , (kw, jw)), r).

Let G((k1, j1), . . . , (kw, jw), r) = graph(�((k1, j1), . . . , (kw, jw), r)). A basis of

the ideal I of the set G((k1, j1), . . . , (kw, jw), r) in the ring C[x1, . . . , xn, xn+1, t,

z1, . . . , zw; y1, . . . , ym+N ] is given by the polynomials

{b j : j = 1, . . . , w} ∪ {zr MIr (kr , jr )(x) − 1 : r = 1, . . . , s} ∪ {t xr − 1}
∪ {yi − ψi (x, z) : i = 1, . . . , m + N }.
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To compute a basisB((k1, j1), . . . , (kw, jw), r)of the ideal of the set cl(Ŵ((k1, j1), . . . ,

(kw, jw), r), it is enough to compute a Gröbner basis A((k1, j1), . . . , (kw, jw), r) of

the ideal I in C[x, t, z, y] with respect to the lexicographic order in which y < x, t, z

(see, e.g., [14]) and then to take

B((k1, j1), . . . , (kw, jw), r) = A((k1, j1), . . . , (kw, jw), r) ∩ C[y1, . . . , ym+N ].

Consequently,

K∞( f , X) =
⋃

((k1, j1),...,(kw, jw)),r

{
y ∈ Cm : h(y, 0, . . . , 0) = 0

for every h ∈ B((k1, j1), . . . , (kw, jw), r)
}
.

The computation of the set K0( f , X) is standard. Let I (X) = (b1, . . . , bq). Consider

the set

U :=
{

x ∈ Cn+1 : b j = 0, j = 1, . . . , w; MIr = 0; r = 1, . . . , s
}
.

Now we can consider a morphism f : U → Cm . We have K0( f , X) = f (U ). Let Ŵ

be a graph of f |U and I = I (Ŵ). A basis of the ideal I is given by the polynomials

{b j : j = 1, . . . , w; } ∪ {MIr (x) : r = 1, . . . , p} ∪ {yi − fi : i = 1, . . . , m}.

To compute a basis B of the ideal I it is enough to compute a Gröbner basis A of the

ideal I in C[x1, . . . , xn+1; y1, . . . , ym] and then to take

B = A ∩ C[y1, . . . , ym].

Consequently, K0( f , X) =
⋃

{y ∈ Cm : h(y, 0, . . . , 0) = 0 for every h ∈ B}.

Acknowledgements We would like to thank Nguyen Xuan Viet Nhan and Nguyen Hong Duc for helpful

discussion during the preparation of this paper. We would also like to thank the referees for their careful

reading, valuable comments, and suggestions. S. T. Ðinh is partially supported by the Vietnam National

Foundation for Science and Technology Development (NAFOSTED) grant 101.04-2017.12. Z. Jelonek is

partially supported by Narodowe Centrum Nauki grant no. 2015/17/B/ST1/02637.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. D’Acunto, D., Grandjean, V.: On gradient at infinity of semialgebraic functions. Ann. Pol. Math. 87,

39–49 (2005)

2. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics,

3rd edn. Springer, New York (2007)

123

http://creativecommons.org/licenses/by/4.0/


304 Discrete & Computational Geometry (2021) 65:279–304

3. Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable. In: Colloque de

Topologie (Espaces Fibrés), pp. 29–55. Masson, Paris (1950)

4. Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decomposition. Invent. Math.

110(2), 207–235 (1992)

5. Flores, A.G., Teissier, B.: Local polar varieties in the geometric study of singularities. Ann. Fac. Sci.

Toulouse Math. 27(4), 679–775 (2018)

6. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomial ideals.

J. Symb. Comput. 6, 149–167 (1988)

7. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. With contribu-

tions by Olaf Bachmann, Christoph Lossen, and Hans Schönemann. Springer, Berlin (2008)

8. Jelonek, Z.: On the generalized critical values of polynomial mappings. Manuscr. Math. 110(2), 145–

157 (2003)

9. Jelonek, Z.: On asymptotic critical values and the Rabier theorem. In: Hironaka, H., Janeczko, S.,

Łojasiewicz, S. (eds.) Geometric Singularity Theory. Banach Center Publication, vol. 65, pp. 125–

133. Polish Academy of Science, Warsaw (2004)

10. Jelonek, Z., Kurdyka, K.: Quantitative generalized Bertini–Sard theorem for smooth affine varieties.

Discrete Comput. Geom. 34(4), 659–678 (2005)

11. Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in the ring of poly-

nomials. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in

Computer Science, vol. 539, pp. 195–205. Springer, Berlin (1991)

12. Kurdyka, K., Orro, P., Simon, S.: Semialgebraic Sard theorem for generalized critical values. J. Differ.

Geom. 56(1), 67–92 (2000)

13. Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. (N.S.) 49(4), 475–506 (2012)

14. Pauer, F., Pfeifhofer, M.: The theory of Gröbner bases. Enseign. Math. 34, 215–232 (1988)

15. Rabier, P.J.: Ehresmann fibrations and Palais–Smale conditions for morphisms of Finsler manifolds.

Ann. Math. 146(3), 647–691 (1997)

16. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1–42 (1956)

17. Teissier, B.: Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney.

In: Algebraic Geometry (La Rábida, 1981). Lecture Notes in Mathematics, vol. 961, pp. 314–491.

Springer, Berlin (1982)

18. Thom, R.: Ensembles et morphismes stratifiés. Bull. Am. Math. Soc. 75, 240–284 (1969)

19. Uddin, M.S.: Computing dimension of affine varieties using Gröbner basis approach. IOSR J. Math.

8(3), 36–39 (2013)

20. Verdier, J.-L.: Stratifications de Whitney et théorème de Bertini–Sard. Invent. Math. 36, 295–312

(1976)

21. Whitney, H.: Local properties of analytic varieties. In: Cairns, S.S. (ed.) Differential and Combinatorial

Topology, pp. 205–244. Princeton University Press, Princeton (1965)

22. Whitney, H.: Tangents to an analytic variety. Ann. Math. 81, 496–549 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123


	Thom Isotopy Theorem for Nonproper Maps and Computation of Sets of Stratified Generalized Critical Values
	Abstract
	1 Introduction
	2 Affine Whitney Stratifications
	2.1 Preliminaries
	2.2 Construction of Affine Stratifications
	2.3 Construction of Affine Whitney Stratifications

	3 Thom Isotopy Lemma for Nonproper Maps
	4 Computation of the Sets of Stratified Generalized Critical Values
	5 Computation of K0(f, Zi)Kinfty(f, Zi)
	5.1 A Sketch of an Algorithm

	Acknowledgements
	References


