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Along the general scheme of Sondheimer and Wilson, the kinetic energy density of an
electron gas under constant magnetic fleld is expressed as a functional of the electron density
at absolute zero of temperature. On this basis, the statistical theory for atoms in a magnetic
field is formulated, which includes the theory developed by Banerjee et al. as an extreme of
high magnetic field. Some numerical results on the atomic radius, the total energy etc. are
also shown for free neutral Ne atom.

§ 1. Introduction

Since it became a widely accepted hypothesis that magnetic fields of the order
10®~10"G exist on the surface of pulsars, the properties of atoms under high
magnetic field attract a great attention of many physicists. While the problem
is rather clear, that is, the Hamiltonian is clearly given, solving the Schrodinger
equation seems to be a fairly difficult task. Even for the Hydrogen atom under
magnetic field we do not yet know its exact solution.

For many electron atoms, only some preliminary calculations™?

were reported
on the basis of the statistical atom model. Recently, Banerjee, Constantinescu
and Rehdk” have developed a statistical theory of the atom in a fairly complete
form. However, their expression of the kinetic energy as a functional of electron
density is still based on the adiabatic hypothesis. In other words it is assumed that
the electrons move in Landau orbitals in the direction perpendicular to the magnetic
field and the Coulomb field due to nucleus has an effect only on the motion parallel
to the magnetic field. Although the Thomas-Fermi equation they obtained is very
simple and shows many elegant characters, we cannot help wondering how exact
the adiabatic hypothesis holds.

On the other hand, Sondheimer and Wilson,” in their elegant article concern-
ing the diamagnetism of free electrons, developed a general and exact scheme of
the calculation of the density matrix, the partition function, the free energy, etc.
Although they retained only the leading terms for their purpose, if one performs
the calculation without any neglection of small terms, one could get an exact
relation between the kinetic energy density and the electron density, on which
the statistical theory of atoms is constructed.

Along the line stated above, we will here show an alternative form of the
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684 Y. Tomishima and K. Yonei

statistical theory of atoms. The theory should include the one developed by
Banerjee et al. and the usual non-magnetic Thomas-Fermi theory as an extreme of
high magnetic field and that of zero magnetic field, respectively.

In § 2, we will calculate the kinetic energy density as a functional of the
electron density on the general scheme of Sondheimer and Wilson. The Thomas-
Fermi theory is developed in § 3, where it is also proved that the equation derived
by Banerjee et al. is the limiting case of high magnetic field. The numerical

calculation is carried out for free neutral Ne atom. These results are discussed

in § 4.
§ 2. The density functional formula of the kinetic energy

In order to construct the statistical theory of an atom under magnetic field,
we should first of all have an expression of the kinetic energy density as a fune-
tional of the electron density. We can follow the procedure given by Sondheimer
and Wilson.” They retained only the leading terms in calculating the susceptibility
of free electron gas, but now we should obtain the energy density and the electron
density without any neglection. The reason for this will become clear by later
discussion.

The Hamiltonian of a free electron in a uniform magnetic field H directed
to the z-axis is given by

» 2
Y= P gy (2-1)

2m ime 2mct

where A= (—Hy/2, Hx/2,0) is the vector potential, —e the electronic charge,
m the electron mass. Throughout this paper, we use the atomic unit e=m=#—=1,
and the most commonly used unit for F; uH/Ry=7(#,=Bohr magneton,
H=2.3478 X10° Gauss for y=1). Then Eq. (2-1) becomes simply

1 7 1 5
H=—P - LL 4+ (2P + yD). 2.2
5 B 8/(76Ty) (2-2)

Using this Hamiltonian, Sondheimer and Wilson calculated the free energy per

unit volume of a free electron gas, which is expressed as follows:
™ 0 F
F—nC:j (B2 g 2.3
e @3

where 7 is the electron density, £ Fermi energy, f; Fermi-Dirac distribution function

fo= ! |
*exp (E—~O/FT]+1’

(2-4)

and z([K) is the inverse Laplace transform of the partition function

2(E) = <_1_> 3/2% 8 ‘,ES/Z_fl; <L) g
27 15/7 3/ \2
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1

_2<l>5/2% (=1)F COS<2k7rE B n)}

2/ &= (k) T4

+_<I_>5/2J‘w<_1——~ l L 1 .>e‘2yE/rdy
T \2 o y7/2 6313/2 ys/z sinh v

2-5)

It should be noted that the spin degeneracy is not taken into account in Eq. (2-3).

Now, at absolute zero of temperature, 0f,/0E=—0(E—{), then Eq. (2-3)

@7

(2-8)

becomes
252 5., 15 ._ 15 2 50
Font = 5/2{1_____/'——~+ ,,776 5/2F 7~ _____._E 5/~G é }, 2:6
R T 57 Teym DOt Te@n @6
where
Ao ([ 1 1 Nemtrg
(8 = J; [y7/2 6% %% sinh y}e v
A\ o (Ml)k T 1 T
G.(5) '“k; B - cos| 7 E_Z/L
and

(2-9)

Differentiating Eq. (2-6) with respect to £, and using the condition 0F /0 =0, we

obtain the electron density expression:

n=—L g
67

where
1 3 2
§=1-—Lgr_ 3 g ()4 3 (o))
F®=1-257- 2 eonne Do)
. oo1w7717__71 | —ey
F1(§>_£ [yS/z 6y"*  y**sinh y]e @
and

Gi(&) =33 0" sin (ks — L),

Y

(2-10)

(2-11)

(2-12)

(2-13)

Since F in Eq. (2-6) gives just the kinetic energy density e, at T=0, we have

from Egs. (2:6) and (2-10)

1 5/255/2 &
Ep=——=7"E"g (),
k 2O7TZT g(&)

5 5 5
=142 gonp gy -SF,
9( +24S 4\/7'5S ) 4./ : )

T

+ 287906, (8) -2 eng, (2.
2n 27t

(2-14)

(2-15)
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F(&) Equations (2-10) and (2-14) are
1.5 the required relation which con-
nects the kinetic energy density ¢;
and the electron density 7, through
the parameter &.

Since the minimum eigenvalue
of the Hamiltonian (2-2) is /2, &
varies from 1 to oo, The behavior
of f(&) is shown in Fig. 1. It is
clear from Eq. (2-11) that f(§)
tends to 1 as &—»o00. Also we see

Fig.1. The behavior of f(¢). in Appendix A that f{£) approaches

zero as 3vV&—1 for &—>1. The

wavy character of the variation of f(§), which is also found in ¢ (&), is the origin
of the de Haas-van Alphen effect.

For y—0, & becomes infinity, so that f(§) and ¢(§) tend to 1. Eliminating
¢ from Eqgs. (2-10) and (2-14), g, is rewritten as

1.0 3.0 50 7.0 5.0 11.0 §

- 1%(37:2) LU (2-16)

‘We have the well-known relation for a degenerate electron gas, on which the
usual Thomas-Fermi theory is based. The factor 2*® originates from the fact
that here the spin degeneracy is not taken into account.

On the other hand, for y—oo, & tends to 1. Using the relations

des_ dek,/,d? =Tz (2-17)
dn dn/dt 2
and
57/ e\ 32
;l_>,\/72, <é_> (-1 for §—1 (see Appendix A), (2-18)
A
we have
Y _ T 2z' s )
ok——2—£§diz—57z-}—§r—2n . (2-19)

The first term is the zero point energy of n electrons and the second is just the

same expression given by Banerjee et al.

§ 3. The Thomas-Fermi equation

Let us take an atom with the atomic number Z and the electron number N,
and let it be in a uniform magnetic field of strength 7 directed to the gz-axis.

All electron spins are assumed to be antiparallel to the magnetic field, and the
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Thomas-Fermi Theory for Atoms in a Strong Magnetic Field 637

energy due to spin magnetic moments is omitted in the following calculation as
a constant. In accordance with Banerjee et al., we define the energy of the atom
E as E=FE,—yN/2, E, being the total energy of the system and yN/2 the zero
point energy. In other words, E is defined as the energy of all the electrons
bound together by the nucleus minus their energy when they are free but still
in the magnetic field. In the realm of the Thomas-Fermi approximation it is given

by
E=E.+E,+E,, (3-1

Eo= Hek—%n(r)}dr, (3-1a)

- j @d , (3-1b)
_1 j‘j e T?—nr(rI ) dr’dr, (3-1¢)

where [, is the total kinetic energy of the electrons subtracted by the zero point
energy, K, the potential energy due to the nucleus, E, the electron-electron inter-
action energy. & and 72 are the kinetic energy density and the number density
of electrons given by Egs. (2-14) and (2-10), where &€ or ¢ should be dependent
on position r. The present form of £, is adopted simply because of the convenience
for comparison with the results of Banerjee et al.

E should be minimum with respect to the variation of z(r), subject to the
subsidiary condition

N= fn () dr = constant, (3-2)
The variational condition
S(EA+V,N) =0, (3-3)
V, being the Lagrange multiplier, gives
Jen (@) v v
U - +V,=0, 3-4
on(r) 2 2 ’ 3-4)
where )
NTi
V<r>:§—f T gy (3-5)
r [r—r'|

is the total electrostatic potential at position r.
By the use of Eq. (2-17), Eq. (3-4) can be written as

V-V,
7/2

Equation (3-6) and the Poisson equation

§=1+ (3-6)
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PRV (r) = dzn = 3373/253/2 £(2) (3.7
A

are the basic equations for determining V(r).

In the following, we assume that the solution V(r) of Eqs. (3-6) and (3-7),
then 7 (r) too, is spherically symmetric® because there are no quantities explicitly
dependent on the direction of the magnetic field. If we put

V() - V= %am, (3-8)

Egs. (3:7) and (3:6) are transformed as follows:

&o 9
RO, (3-9)
where
$:1+%@(7~). (3-10)

Equation (3-9) is the Thomas-Fermi equation for an atom in a magnetic field.

Determination of V,

Although V; might be determined by the mnormalization condition (3-2), it
can be given by the following physical considerations. We assume that the electron
distribution is confined in a sphere of radius 7, then

E= (") = Tao} awrtar— V.9 () arrar
0 0

_% L V()0 () drridr (3-11)
where
Vi) =2 (3-11a)
and
V() =~ %rr/?}dr,' (3-11b)

After a slight manipulation,” we have

* As will be shown later, by assuming the spherical symmetry of V and n, we can set up the
boundary condition consistent to the atom in free state. This means that in the Thomas-Fermi model
the minimum energy of a free atom is realized by the spherically symmetric electron distribution
as was pointed out by Mueller et al,” while the other model gives the electron distribution
elongated in the direction of external magnetic field.
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aE _ 4drry <ak - ggn)

dro r=rg
= __f T E R (E) )y, (3-12)
W
1.1 1 . 1. -
h(& :—__+_F‘2~, = 5/2F 2 4 'E‘E/ZG &y, 3.13
O =TTyl eye O TS0 (3-13)

If the atom is in free state, the surface pressure or dE/dr, should be zero and
this is realized by putting §=1 in Eq. (3-13) (see Appendix A). That is, from
Eq. (3-6)

V= V() =22

Ty

(3-14)

Boundary conditions
At »=0, from Eq. (3-8) we have as usual
@ (0)=1. | (3-15)
For r—0, ¢ (r) =1, then §>2Z/yr->c0, f(§)—1. Therefore Eq. (3-9) can be
transformed into the usual Thomas-Fermi equation
dzgg 1 <03/2
dz* 2 27’

(3-16)

where the unit of length is taken as = pux, #= (1/4) (97?2/22) Y8 The factor 1/2

on the right-hand side of Eq. (3-16) is due to the neglection of the spin degeneracy.

As is apparent from Eq. (2-16), Eqg. (3:-16) gives also the limiting case 7—0.
At r=ry, on the other hand, (dV/dr),_,,=— (Z—N)/r% from which we

have

¢ (ry) —r@’ (o) :*Z"M N .

3.17
, (317
In free state of the atom, owing to Egs. (3-8) and (3-14),
@ (ro) =0 (3-18)
and
, Z—
¢ (ry) =— " N (3-19)
27,

For r—ry, ¢(r)—0, then £>1 and f(&) »3vE—1. Therefore Eq. ‘(3-9) takes the
form
dzw 28/2T

B 2 /2 .
i S GOR (3-20)

This equation allows ¢ being expanded in a power series of (r,—#) near the
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outer boundary. For neutral atoms,

2

T 4
= - g (rg—r) e 3-21
@ 18727 o(ro—7) ( )

and the conditions (3-18) and (3-19) will be satisfied for finite 7,. The fact
that the atomic radius is finite even for neutral free atom makes a sharp contrast
with the usual Thomas-Fermi atom.

For positive ions, ¢ can be expanded as

¢="0by(ry—r) + by (ro—r)"" 4 -,
_Z—N po— 27T
rZ O 15gZv

b,

R A (3-22)

We should notice that Eq. (3:20) is also the limiting equation for y—>oo.
This may be somewhat apparent from Eq. (2-19). Changing the unit of length as
r=p'x, n'=(7Z/8")"°, we have the equation derived by Banerjee et al.

d*y

dz?

= (zp)'”. (3:23)

Therefore it becomes clear that Eq. (3-23) is only valid for extremely large values
of 7.

§4. Numerical results and discussions

We have solved the Thomas-Fermi equation and calculated the total electronic
energy of neutral Ne atom (Z=10) for several values of 7. The results will be
summarized here.

The equation to be solved and the boundary conditions are written as

dip 27 27 >3/2 < 27 )

—L = - 1‘{'—‘“" ’ 1+_h s 4'1

drt 371'Z7< "{rgy 4 7’7~¢ @

0(0) =1, (4-2)
ar2

¢(r)— 18("2"Zv~o(ro—r)“ for r—r,. (4-3)
7T

Equation (3-23) derived by Banerjee et al. does not include Z and 7 explicitly.
This means that one solution can express the solution for arbitrary Z and 7 just
by changing the unit of length. Furthermore Eq. (3-23) allows the application
of the scaling method (see Appendix B), so that from an arbitrary solution which
is obtained by starting from an arbitrary 7, and integrating inward, we can get
the required solution just by scaling.

Equations (4-1), (4-2) and (4:3), however, could not be transformed into
the form independent of Z and 7, and do not allow the application of the scaling

method. Therefore we must solve the equation independently for each Z and 7.
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Table I. Atomic radius 7o in au. (Z=10).
vl (@ —
T Present Banerjee et al.
1OR~- 7 =0.1 0.0 ! o oo
g 0.05 11.936 16.913
S~ Bonerjes etal. 0.1 . 9.6314 1 12.818
05 T _ 0.5 | 5738 67334
o Thomas-Fermi (707 e LO 45375 5.1029
Present Model—"%=eseae .~ 5.0 i 2.5541 ; 2. 6806
0.0 70 20 i 30 20 50 10.0 1.9686  2.0315
50.0 1.0549 | 1.0672
¢ 100.0 0.80181 |  0.80876
(b) 500.0 | 0.42216  0.42485
7210 1000.0  0.320038 0.32197

Starting from arbitrary 7, we inte-

grate Eq. (4-1) inward. If ¢(0) is

not equal to 1, we adjust 7, and

N . Thomas-Fermi (7=0) solve Eq. (4-1) again until ¢(0) =1
S e e is satisfied.

0.5

0.0 10 20, 30 40 50 Figures 2 (a), (b), (¢) show
the solution ¢ compared with those

2 ©) of Banerjee et al. and simple non-
magnetic Thomas-Fermi, and in Table

7 =10.0 I, the values of 7, for various y are

tabulated. As was mentioned before,

\Ere/sg;tdel it is one of the most remarkable
N4

05 effects due to the magnetic field that

the atomic radius becomes finite even

for a neutral free atom. Although

0.0 1.0 20 30 L0 50

Fig. 2. The Thomas-Fermi function ¢() for Ne
atom. For comparison, the result of Banerjee
et al. as well as the non-magnetic Thomas-Fermi
function is also plotted.

(@ y=01 (O y=1.0 (c) r=100

the atomic radius for the present
model is a little bit smaller than
that of Banerjee’s model (r,=3.2197
-(Z/7)"", see Appendix B), the
former approaches the latter as 7

increases as is expected.

Using the value of ¢, Eqs. (3-10) and (2-10), we can calculate the electron
density z#. The behavior of 7 against r is shown in Figs. 3(a), (b), (c). For
comparison, we have solved Eq. (3-23) derived by Banerjee et al. and calculated 7
anew. The present results show quite a big difference from those by Banerjee et
al., and also from simple Thomas-Fermi results. What is very remarkable in the
present model is the wavy variation of the electron density distribution which is
a reflection of that of f(&). It is not so significant for smaller values of 7 but is
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8.0

6.0 7=0.1

40

2.0 Banerjee et al.

—

e :f’:__
- Thomas Fermi(y=0)"""=""-==

00 1.0 200 , 30 4.0 5.0
8.0

NC

g (D)

~ 7=10
6.0

Present Model

™. Barerjee et al.
N

70 \\
20 7 N -

7 Thomas-Fermi (=037 =~ N
06 0 50, 30 40 B0

N\
80 o~
(c)

6.0 7=10.0

\Banerjee et al.

\

I~
(@]

20

00 10 20 . 30 L0 50

Fig.38. The values of 47’z for Ne atom.

For comparison, the results of Banerjee et al.
as well as the non-magnetic Thomas-Fermi results
are also plotted.

(@ r=01 (b) y=10 () r=100

amplified more and more with in-
creasing 7.  Also the following
two features should be noticed.
(a) The electron density dis-
tribution becomes more and more
similar to that of the model of
Banerjee et al. as 7 increases, while
it becomes similar to that of the

simple Thomas-Fermi model as 7
decreases.

(b) For a given value of 7,
the electron density distribution is
similar to that of the simple Tho-
mas-Fermi model near the origin,
while it is similar to that of
Banerjee’s near the outer boundary.
This can be understood from the
limiting forms of the basic equation,
that is, Eqs. (3-16) and (3-23).

In both usual Thomas-Fermi
atom and the atom model by
Banerjee et al., there exists a
simple relation between the energy
E and the values of ¢’(0). In
the present model of the atom,
however, we could not find any
such relations, so that we have to
calculate E directly by using Eq.
(3-1) and the values of ¢ and
7 obtained above. Those values
are listed in Table II.

Referring to Table II, one can
recognize that the energy F of
the present model and its compo-
nents L, and F, are very large
in their absolute values compared
to those of Banerjee et al., while
the former approaches the latter
as the value of 7 increases. This

originates from the big difference of the electron density near the nucleus in both

models. As far as the ionization energy is concerned, however, we could expect

that the present model would give similar results as those of Banerjee et al.
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Thomas-Fermi Theory for Atoms in a Strong DMagnetic Field 693

Table II. Energy values [Eq. 3-1)] (Z=10).

E E; | E, | E,

\
’ ‘ Present ‘ Birtleﬂ?e Present ‘ Bz:zrtle;_ll.ee Present ! Bzértle;iee ! Present Bi?earf‘ee
0.0 } —104.33 | 0 | 104.33 0 | —243.45 o | 3478 0
0.05  —104.57 — 9.52| 104.11 1.90 1—243.70} ~17.14 . 35.02 | 571
0.1  —104.78 -—12.56 | 103.91 2.51 | —243.92 —22.62| 35.23 7.54
0.5 | —106.43 —23.92 10261 | 4.78 | —245.78  —43.05 | 36.74 14.35
1.0 —108.24| —81.56 101.29 6.31  —247.83| —56.81  38.35 18.94
5.0 —119.46  —60.08  95.60 12.02 ‘ —262.82° —108.14 | 47.76 36.05
10.0 ' —130.12° —79.27 - 91.97 15.86 | —278.35 —142.69 | 56.26 47.56
50.0 ' —182.67 ‘ —-150.91  83.90 30.18  —360.35 | —271.64 | 93.78 90. 55
100.0 —~223.61 | —199.13  83.28 39.83 —428.36‘ —358.43 © 121.47 = 119.48
500.0 —392.13 —379.07 | 99.25  75.81 | —719.27 | —682.33 | 227.89 227,44
1000.0 | —509.72  —500. 19% 116.60 | 100.04 —926. 64 ‘ —900.34  300.32  300.11

because the electron distribution near the Table 11l The total energy E. (Z=10):

outer boundary is similar to each other. E,=E+7N/2.

In both models the energy FE and its =

components F, and K, vary monotonically 7 Present  Banerjee et al,'
with increasing 7. In particular, it is inter- 0.0 —104.33 0
esting to notice that the atomic binding 0.05 -~ —l0432 '+ - 9.27
energy, — [, Iincreases with increasing 0.1 i —104.28 —12.06
magnetic field strength. The non-mono- 0.5 j —103.93 —21.42
tonic behavior of [, disappears if we add 1.0 ! 108,24 —26.96
: : 5.0 —94.46 ~35.08
the zero point energy to it. 0.0 | _80.12 _99.97
Finally in Table III, we tabulate the 50.0 67.33 99.09
total energy of the atom E,, which exhibits 100. 0 276. 39 300. 87
a sharp contrast between both models. 500.0 2107.87 2120. 93
For Banerjee’s model it can be proved 1000.0 . 4490.28 : 4499. 81

that E, has a minimum at y=4.6814, while
for our model E, increases monotonically with increasing magnetic field strength.
Because we can expect from the quantum mechanical perturbation theory that the
energy of the atom increases with increasing y when 7 is small, the behavior
of E, in the present model is more reasonable.

The relation between the energy variation against y and the magnetic property
of the atom is still an open problem, because in this model the magnetic effect
is taken into account only through the local kinetic energy density. Furthermore,
it is assumed at the outset that the spin orientation is fixed antiparallel to the
direction of the magnetic field. Since this assumption would not be valid for small
values of 7, the model should be improved in order to include the spin degeneracy
effect. These physically interesting problems will be discussed in succeeding pa-
pers.
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Appendix A

To evaluate f(1) [Eq. (2-11)], ¢(1) [Eq. (2-15)] and 2 (1) [Eq. (3-13)],
we need to caleulate F, (1), IF,(1), G, (1) and G,(1). Take the contour integral,

L reras =L (yyreay e [ T2 Yoy, @y
¢ 6 Jo c e¥—1

y-plane

T
N

Fig.4. Contour C in Eq. (A-1).

where contour C being shown in Fig. 4. By definition of /- and &-functions,
(A-1) can be written as

2r 1 _71 - 3 zgi(_@ .
7[r<5/2) 6F(1/2)+2/ I'(3/2) ] -2

Since the contribution to the integral (A-1) from an infinitesimal circle around
the origin cancells out, (A-1) can be expressed by the integral on positive real

axis,
~2i [T e e (A-3)
o Ly¥ 6yY* y¥iginh y

Equating (A-2) and (A-3), we have

7 = 2./3
F () :E“‘J?C@' (A-4)
Similarly
5 [~
Fz(l):ﬁi\/E+lN/~2—C<i>. (A-5)
5 ¥ T \2
And from the definition of Z-function, we have
1 3
G (1) = — jf<_>, A6
(D) Y (A-6)
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G:(D) =4 (2 )- (A7)

¢7
By using (A-4)~ (A7), we can show
SA)=g@) =11 =0. (A-8)
Behavior f(Z) near £=1.
We put
rasey=(L) o+, (A-9)
(%95:0:13? 26(‘?%@)6 - (A-10)

The non-vanishing term in (A-10) is only from the derivative of Gj, so that

(df> =3 lims.¢r 1407
dl/e=0 w60

{

E‘»

i ]L (cos km0? 4 sin kno®)

E=)

0—

<L

f ~1,—(cos 7z +sin nx)dx
0 JJx

J_?
=3. (A-11)
Therefore
F(E) =3VE-1+.-- for &1, (A-12)
Appendix B
Scaling method is given for Eq. (3-23):
Lo (zp). ®-1)
If we put
¢(x) =1g(x), z=1"%, B-2)
then
AP _ i
e &gy, B-3)
The outer boundary condition
@) =0 and ¢ (a)=-2 2N (B-4)
Xy Z

becomes

220z 1snBny 9| uo Jasn sonsnr Jo Juewnedaq “S'N Aq 209€581/€89/€/6G/2l01e/d)d/woo dno-owepeoe/:sdny wolj papeojumoq



696 Y. Tomishima and K. Yonei

P@E)=0 and @)=L F=N (B-5)
\Z, Z
For neutral atoms, (B-4) and (B-5) have the same form.

Here we mnotice that ¢ and ¢ satisfy the same type of differential equation
and also the same outer boundary conditions. Therefore once we have a solution
of (B-3) under the boundary condition (&) =0 and @' (F,) =0, we can get a
desired solution ¢ which satisfies ¢(0) =1 besides the condition (B-4), by taking
A=[g )]

We have calculated Eq. (B-1) anew, and obtained

2,=3.08730 . (B-6)
By changing the unit of length as stated above (3-23), we have
To= 1 x,=3.2197 7y~ %5 (B-7)
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