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Abstract

We consider stochastic multi-armed bandit prob-

lems with complex actions over a set of basic

arms, where the decision maker plays a complex

action rather than a basic arm in each round. The

reward of the complex action is some function

of the basic arms’ rewards, and the feedback ob-

served may not necessarily be the reward per-

arm. For instance, when the complex actions are

subsets of the arms, we may only observe the

maximum reward over the chosen subset. Thus,

feedback across complex actions may be cou-

pled due to the nature of the reward function.

We prove a frequentist regret bound for Thomp-

son sampling in a very general setting involving

parameter, action and observation spaces and a

likelihood function over them. The bound holds

for discretely-supported priors over the parame-

ter space without additional structural properties

such as closed-form posteriors, conjugate prior

structure or independence across arms. The re-

gret bound scales logarithmically with time but,

more importantly, with an improved constant

that non-trivially captures the coupling across

complex actions due to the structure of the re-

wards. As applications, we derive improved re-

gret bounds for classes of complex bandit prob-

lems involving selecting subsets of arms, includ-

ing the first nontrivial regret bounds for nonlin-

ear MAX reward feedback from subsets. Us-

ing particle filters for computing posterior distri-

butions which lack an explicit closed-form, we

present numerical results for the performance of

Thompson sampling for subset-selection and job
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scheduling problems.

1. Introduction

The stochastic Multi-Armed Bandit (MAB) is a classical

framework in machine learning and optimization. In the

basic MAB setting, there is a finite set of actions, each

of which has a reward derived from some stochastic pro-

cess, and a learner selects actions to optimize long-term

performance. The MAB model gives a crystallized ab-

straction of a fundamental decision problem – whether

to explore or exploit in the face of uncertainty. Bandit

problems have been extensively studied and several well-

performing methods are known for optimizing the reward

(Gittins et al., 2011; Auer et al., 2002; Audibert & Bubeck,

2009; Garivier & Cappé, 2011). However, the requirement

that the actions’ rewards be independent is often a severe

limitation, as seen in these examples:

Web Advertising: Consider a website publisher selecting

at each time a subset of ads to be displayed to the user. As

the publisher is paid per click, it would like to maximize

its revenue, but dependencies between different ads could

mean that the problem does not “decompose nicely”. For

instance, showing two car ads might not significantly in-

crease the click probability over a single car ad.

Job Scheduling: Assume we have a small number of re-

sources or machines, and in each time step we receive a

set of jobs (the “basic arms”), where the duration of each

job follows some fixed but unknown distribution. The la-

tency of a machine is the sum of the latencies of the jobs

(basic arms) assigned to it, and the makespan of the system

is the maximum latency across machines. Here, the deci-

sion maker’s complex action is to partition the jobs (basic

arms) between the machines, to achieve the least makespan

on average.
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Routing: Consider a multi-commodity flow problem,

where for each source-destination pair, we need to select

a route (a complex action). In this setting the capacities of

the edges (the basic arms) are random variables, and the re-

ward is the total flow in the system at each time. In this ex-

ample, the rewards of different paths are inter-dependent,

since the flow on one path depends on which other paths

where selected.

These examples motivate settings where a model more

complex than the simple MAB is required. Our high-level

goal is to describe a methodology that can tackle bandit

problems with complex action/reward structure, and also

guarantee high performance. A crucial complication in the

problems above is that it is unlikely that we will get to ob-

serve the reward of each basic action chosen. Rather, we

can hope to receive only an aggregate reward for the com-

plex action taken. Our approach to complex bandit prob-

lems stems from the idea that when faced with uncertainty,

pretending to be Bayesian can be advantageous. A purely

Bayesian view of the MAB assumes that the model param-

eters (i.e., the arms’ distributions) are drawn from a prior

distribution. We argue that even in a frequentist setup, in

which the stochastic model is unknown but fixed, working

with a fictitious prior over the model (i.e., being pseudo-

Bayesian) helps solve very general bandit problems with

complex actions and observations.

Our algorithmic prescription for complex bandits is

Thompson sampling (Thompson, 1933; Scott, 2010;

Agrawal & Goyal, 2012): Start with a fictitious prior distri-

bution over the parameters of the basic arms of the model,

whose posterior gets updated as actions are played. A pa-

rameter is randomly drawn according to the posterior and

the (complex) action optimal for the parameter is played.

The rationale behind this is twofold: (1) Updating the pos-

terior adds useful information about the true unknown pa-

rameter. (2) Correlations among complex bandit actions

(due to their dependence on the basic parameters) are im-

plicitly captured by posterior updates on the space of basic

parameters.

The main advantage of a pseudo-Bayesian approach like

Thompson sampling, compared to other MAB methodolo-

gies such as UCB, is that it can handle a wide range of

information models that go beyond observing the individ-

ual rewards alone. For example, suppose we observe only

the final makespan in the multi-processor job scheduling

problem above. In Thompson sampling, we merely need

to compute a posterior given this observation and its like-

lihood. In contrast, it seems difficult to adapt an algorithm

such as UCB for this case without a naive exponential de-

pendence on the number of basic arms1. Besides, the de-

1The work of Dani et al. (Dani et al., 2008) first extended the
UCB framework to the case of linear cost functions. However, for

terministic approach of optimizing over regions of the pa-

rameter space that UCB-like algorithms follow (Dani et al.,

2008; Abbasi-Yadkori et al., 2011) is arguably harder to

apply in practice, as opposed to optimizing over the action

space given a sampled parameter in Thompson sampling –

often an efficient polynomial-time routine like a sort. The

Bayesian view that motivates Thompson sampling also al-

lows us to use efficient numerical algorithms such as parti-

cle filtering (Ristic et al., 2004; Doucet et al., 2001) to ap-

proximate complicated posterior distributions in practice.

Our main analytical result is a general regret bound for

Thompson sampling in complex bandit settings. No spe-

cific structure is imposed on the initial (fictitious) prior, ex-

cept that it be discretely supported and put nonzero mass

on the true model. The bound for this general setting scales

logarithmically with time2, as is well-known. But more

interestingly, the preconstant for this logarithmic scaling

can be explicitly characterized in terms of the bandit’s KL

divergence geometry and represents the information com-

plexity of the bandit problem. The standard MAB imposes

no structure among the actions, thus its information com-

plexity simply becomes a sum of terms, one for each sepa-

rate action. However, in a complex bandit setting, rewards

are often more informative about other parameters of the

model, in which case the bound reflects the resulting cou-

pling across complex actions.

Recent work has shown the regret-optimality of Thomp-

son sampling for the basic MAB (Agrawal & Goyal, 2012;

Kaufmann et al., 2012), and has even provided regret

bounds for a specific complex bandit setting – the linear

bandit case where the reward is a linear function of the

actions (Agrawal & Goyal, 2011). However, the analysis

of complex bandits in general poses challenges that can-

not be overcome using the specialized techniques in these

works. Indeed, these existing analyses rely crucially on

the conjugacy of the prior and posterior distributions – ei-

ther independent Beta or exponential family distributions

for basic MAB or standard normal distributions for linear

bandits. These methods break down when analyzing the

more complex, nonlinear rewards (e.g., multi-commodity flows or
makespans), it is unclear how UCB-like algorithms can be applied
other than to treat all complex actions independently.

2More precisely, we obtain a bound of the form B + C log T ,
in which C is a non-trivial preconstant that captures precisely the
structure of correlations among actions and thus is often better
than the decoupled sum-of-inverse-KL-divergences bounds seen
in literature (Lai & Robbins, 1985). The additive constant (wrt
time) B, though potentially large and depending on the total num-
ber of complex actions, appears to be merely an artifact of our
proof technique tailored towards extracting the time scaling C.
This is borne out, for instance, from numerical experiments on
complex bandit problems in Section 5. We remark that such ad-
ditive constants, in fact, often appear in regret analyses of basic
Thompson sampling (Kaufmann et al., 2012; Agrawal & Goyal,
2012).
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evolution of complicated posterior distributions which of-

ten lack even a closed form expression.

In contrast to existing regret analyses, we develop a novel

proof technique based on looking at the form of the Bayes

posterior. This allows us to track the posterior distributions

that result from general action and feedback sets, and to

express the concentration of the posterior as a constrained

optimization problem in path space. It is rather surprising

that, with almost no specific structural assumptions on the

prior, our technique yields a regret bound that reduces to

Lai and Robbins’ classic lower bound for standard MAB,

and also gives non-trivial and improved regret scalings for

complex bandits. In this vein, our results represent a gen-

eralization of existing performance results for Thompson

sampling.

We complement our theoretical findings with numerical

studies of Thompson sampling. The algorithm is imple-

mented using a simple particle filter (Ristic et al., 2004)

to maintain and sample from posterior distributions. We

evaluate the performance of the algorithm on two complex

bandit scenarios – subset selection from a bandit and job

scheduling.

Related Work: Bayesian ideas for the multi-armed ban-

dit date back nearly 80 years ago to the work of W.

R. Thompson (Thompson, 1933), who introduced an el-

egant algorithm based on posterior sampling. However,

there has been relatively meager work on using Thomp-

son sampling in the control setup. A notable exception

is (Ortega & Braun, 2010) that develops general Bayesian

control rules and demonstrates them for classic bandits and

Markov decision processes (i.e., reinforcement learning).

On the empirical side, a few recent works have demon-

strated the success of Thompson sampling (Scott, 2010;

Chapelle & Li, 2011). Recent work has shown frequentist-

style regret bounds for Thompson sampling in the standard

bandit model (Agrawal & Goyal, 2012; Kaufmann et al.,

2012; Korda et al., 2013), and Bayes risk bounds in the

purely Bayesian setting (Osband et al., 2013). Our work

differs from this literature in that we go beyond simple,

decoupled actions/observations – we focus on the perfor-

mance of Thompson setting in a general action/feedback

model, and show novel frequentist regret bounds that ac-

count for the structure of complex actions.

Regarding bandit problems with actions/rewards more

complex than the basic MAB, a line of work that de-

serves particular mention is that of linear bandit optimiza-

tion (Auer, 2003; Dani et al., 2008; Abbasi-Yadkori et al.,

2011). In this setting, actions are identified with deci-

sion vectors in a Euclidean space, and the obtained rewards

are random linear functions of actions, drawn from an un-

known distribution. Here, we typically see regret bounds

for generalizations of the UCB algorithm that show poly-

logarithmic regret for this setting. However, the methods

and bounds are highly tailored to the specific linear feed-

back structure and do not carry over to other kinds of feed-

back.

2. Setup and Notation

We consider a general stochastic model X1, X2, ... of in-

dependent and identically distributed random variables liv-

ing in a space X (e.g., X = R
N if there is an underlying

N-armed basic bandit – we will revisit this in detail in Sec-

tion 4.1). The distribution of each Xt is parametrized by

θ∗ ∈ Θ, where Θ denotes the parameter space. At each

time t, an action At is played from an action set A, fol-

lowing which the decision maker obtains a stochastic ob-

servation Yt = f(Xt, At) ∈ Y , the observation space, and

a scalar reward g(f(Xt, At)). Here, f and g are general

fixed functions, and we will often denote g ◦ f by the func-

tion3 h. We denote by l(y; a, θ) the likelihood of observing

y upon playing action a when the distribution parameter is

θ, i.e.,4 l(y; a, θ) := Pθ[f(X1, a) = y].

For θ ∈ Θ, let a∗(θ) be an action that yields the high-

est expected reward for a model with parameter θ, i.e.,

a∗(θ) := argmaxa∈A Eθ[h(X1, a)].
5. We use e(j) to de-

note the j-th unit vector in finite-dimensional Euclidean

space.

The goal is to play an action at each time t to min-

imize the (expected) regret over T rounds: RT :=
∑T

t=1 h(Xt, a
∗(θ∗)) − h(Xt, At), or alternatively, the

number of plays of suboptimal actions6:
∑T

t=1 1{At 6=
a∗}.

Remark: Our main result also holds in a more general

stochastic bandit model (Θ,Y,A, l, ĥ) without the need for

the underlying “basic arms” {Xi}i and the basic ambient

space X . In this case we require l(y; a, θ) := Pθ[Y1 =

y|A1 = a], ĥ : Y → R (the reward function), a∗(θ) :=

argmaxa∈A Eθ[ĥ(Y1)|A1 = a], and the regret RT :=

T ĥ(Y0)−
∑T

t=1 ĥ(Yt) where P[Y0 = ·] = l(·; a∗(θ∗), θ∗).

For each action a ∈ A, define Sa := {θ ∈ Θ : a∗(θ) = a}
to be the decision region of a, i.e., the set of models in Θ
whose optimal action is a. We use θa to denote the marginal

probability distribution, under model θ, of the output upon

3e.g., when At is a subset of basic arms, h(Xt, At) could de-
note the maximum reward from the subset of coordinates of Xt

corresponding to At.
4Finiteness of Y is implicitly assumed for the sake of clarity.

In general, when Y is a Borel subset of RN, l(·; a, θ) will be the
corresponding N-dimensional density, etc.

5The absence of a subscript is to be understood as working
with the parameter θ∗.

6We refer to the latter objective as regret since, under bounded
rewards, both the objectives scale similarly with the problem size.
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Algorithm 1 Thompson Sampling

Input: Parameter space Θ, action space A, output space

Y , likelihood l(y; a, θ).
Parameter: Distribution π over Θ.

Initialization: Set π0 = π.

for each t = 1, 2, . . .

1. Draw θt ∈ Θ according to the distribution πt−1.

2. Play At = a∗(θt) := argmaxa∈A Eθt [h(X1, a)].

3. Observe Yt = f(Xt, At).

4. (Posterior Update) Set the distribution πt over Θ to

∀S ⊆ Θ : πt(S) =

∫

S
l(Yt;At, θ)πt−1(dθ)

∫

Θ
l(Yt;At, θ)πt−1(dθ)

.

end for

playing action a, i.e., {l(y; a, θ) : y ∈ Y}. Moreover, set

Dθ := (D(θ∗a||θa))a∈A. Within Sa, let S′
a be the models

that exactly match θ∗ in the sense of the marginal distribu-

tion of action a∗, i.e., S′
a := {θ ∈ Sa : D(θ∗a∗ ||θa∗) =

0}, where D(φ||ζ) is the standard Kullback-Leibler di-

vergence between probability distributions φ and ζ. Let

S′′
a := Sa \ S

′
a be the remaining models in Sa.

3. Regret Performance: Overview

We propose using Thompson sampling (Algorithm 1) to

play actions in the general bandit model. Before formally

stating the regret bound, we present an intuitive explanation

of how Thompson sampling learns to play good actions in

a general setup where observations, parameters and actions

are related via a general likelihood. To this end, let us as-

sume that there are finitely many actions A. Let us also

index the actions in A as {1, 2, . . . , |A|}, with the index

|A| denoting the optimal action a∗ (we will require this

indexing later when we associate each coordinate of |A|-
dimensional space with its respective action).

When action At is played at time t, the prior den-

sity gets updated to the posterior as πt(dθ) ∝

exp
(

− log l(Yt;At,θ
∗)

l(Yt;At,θ)

)

πt−1(dθ). Observe that the condi-

tional expectation of the “instantaneous” log-likelihood ra-

tio log l(Yt;At,θ
∗)

l(Yt;At,θ)
, is simply the appropriate marginal KL

divergence, i.e., E
[

log l(Yt;At,θ
∗)

l(Yt;At,θ)

∣

∣ At

]

=
∑

a∈A 1{At =

a}D(θ∗a||θa). Hence, up to a coarse approximation,

log
l(Yt;At, θ

∗)

l(Yt;At, θ)
≈
∑

a∈A

1{At = a}D(θ∗a||θa),

with which we can write

πt(dθ) ∝∼ exp

(

−
∑

a∈A

Nt(a)D(θ∗a||θa)

)

π0(dθ), (1)

with Nt(a) :=
∑t

i=1 1{Ai = a} denoting the play count

of a. The quantity in the exponent can be interpreted as

a “loss” suffered by the model θ up to time t, and each

time an action a is played, θ incurs an additional loss of

essentially the marginal KL divergence D(θ∗a||θa).

Upon closer inspection, the posterior approxi-

mation (1) yields detailed insights into the dy-

namics of posterior-based sampling. First, since

exp
(

−
∑

a∈A Nt(a)D(θ∗a||θa)
)

≤ 1, the true model

θ∗ always retains a significant share of posterior mass:

πt(dθ
∗) &

exp(0) π0(dθ
∗)∫

Θ
1 π0(dθ)

= π0(dθ
∗). This means that

Thompson sampling samples θ∗, and hence plays a∗,

with at least a constant probability each time, so that

Nt(a
∗) = Ω(t).

Suppose we can show that each model in any S′′
a , a 6= a∗,

is such that D(θ∗a∗ ||θa∗) is bounded strictly away from

0 with a gap of ξ > 0. Then, our preceding calcula-

tion immediately tells us that any such model is sampled

at time t with a probability exponentially decaying in t:

πt(dθ) .
e−ξΩ(t)π0(dθ)

π0(dθ∗) ; the regret from such S′′
a -sampling

is negligible. On the other hand, how much does the algo-

rithm have to work to make models in S′
a, a 6= a∗ suffer

large (≈ log T ) losses and thus rid them of significant pos-

terior probability?7

A model θ ∈ S′
a suffers loss whenever the algorithm plays

an action a for which D(θ∗a||θa) > 0. Hence, several ac-

tions can help in making a bad model (or set of models) suf-

fer large enough loss. Imagine that we track the play count

vector Nt := (Nt(a))a∈A in the integer lattice from t = 0
through t = T , from its initial value N0 = (0, . . . , 0).
There comes a first time τ1 when some action a1 6= a∗ is

eliminated (i.e., when all its models’ losses exceed log T ).

The argument of the preceding paragraph indicates that the

play count of a1 will stay fixed at Nτ1(a1) for the remain-

der of the horizon up to T . Moving on, there arrives a time

τ2 ≥ τ1 when another action a2 /∈ {a∗, a1} is eliminated,

at which point its play count ceases to increase beyond

Nτ2(a2), and so on.

To sum up: Continuing until all actions a 6= a∗ (i.e., the re-

gions S′
a) are eliminated, we have a path-based bound for

the total number of times suboptimal actions can be played.

If we let zk = Nτk , i.e., the play counts of all actions at

time τk, then for all i ≥ k we must have the constraint

zi(ak) = zk(ak) as plays of ak do not occur after time τk.

7Note: Plays of a∗ do not help increase the losses of these
models.
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Moreover, minθ∈S′

ak
〈zk, Dθ〉 ≈ log T : action ak is elimi-

nated precisely at time τk. A bound on the total number of

bad plays thus becomes

max ||zk||1

s.t. ∃ play count sequence {zk},

∃ suboptimal action sequence {ak},

zi(ak) = zk(ak), i ≥ k,

min
θ∈S′

ak

〈zk, Dθ〉 ≈ log T, ∀k.

(2)

The final constraint above ensures that an action ak is elim-

inated at time τk, and the penultimate constraint encodes

the fact that the eliminated action ak is not played after time

τk. The bound not only depends on log T but also on the

KL-divergence geometry of the bandit, i.e., the marginal

divergences D(θ∗a||θa). Notice that no specific form for the

prior or posterior was assumed to derive the bound, save

the fact that π0(dθ
∗) & 0, i.e., that the prior puts “enough”

mass on the truth.

In fact, all our approximate calculations leading up to the

bound (2) hold rigorously – Theorem 1, to follow, states

that under reasonable conditions on the prior, the number

of suboptimal plays/regret scales as (2) with high probabil-

ity. We will also see that the general bound (2) is non-trivial

in that (a) for the standard multi-armed bandit, it gives es-

sentially the optimum known regret scaling, and (b) for a

family of complex bandit problems, it can be significantly

less than the one obtained by treating all actions separately.

4. Regret Performance: Formal Results

Our main result is a high-probability large-horizon regret

bound8 for Thompson sampling. The bound holds under

the following mild assumptions about the parameter space

Θ, action space |A|, observation space |Y|, and the ficti-

tious prior π.

Assumption 1 (Finitely many actions, observations).

|A|, |Y| < ∞.

Assumption 2 (Finitely supported, “Grain of truth” prior).

(a) The prior distribution π is supported over a finite set:

|Θ| < ∞, (b) θ∗ ∈ Θ and π(θ∗) > 0. Furthermore, (c)

there exists Γ ∈ (0, 1/2) such that Γ ≤ l(y; a, θ) ≤ 1 − Γ
∀θ ∈ Θ, a ∈ A, y ∈ Y .

Remark: We emphasize that the finiteness assumption on

the prior is made primarily for technical tractability, with-

8More precisely, we bound the number of plays of subopti-
mal actions. A bound on the standard regret can also be obtained
easily from this, via a self-normalizing concentration inequality
we use in this paper (see Appendices). However, we avoid stat-
ing this in the interest of minimizing clutter in the presentation,
since there will be additional O(

√
log T ) terms in the bound on

standard regret.

out compromising the key learning dynamics of Thompson

sampling perform well. In a sense, a continuous prior can

be approximated by a fine enough discrete prior without

affecting the geometric structure of the parameter space.

The core ideas driving our analysis explain why Thompson

sampling provably performs well in very general action-

observation settings, and, we believe, can be made general

enough to handle even continuous priors/posteriors. How-

ever, the issues here are primarily measure-theoretic: much

finer control will be required to bound and track posterior

probabilities in the latter case, perhaps requiring the design

of adaptive neighbourhoods of θ∗ with sufficiently large

posterior probability that depend on the evolving history of

the algorithm. It is not clear to us how such regions may

be constructed for obtaining regret guarantees in the case

of continuous priors. We thus defer this highly nontrivial

task to future work.

Assumption 3 (Unique best action). The optimal ac-

tion in the sense of expected reward is unique9, i.e.,

E[h(X1, a
∗)] > maxa∈A,a 6=a∗ E[h(X1, a)].

We now state the regret bound for Thompson sampling for

general stochastic bandits. The bound is a rigorous version

of the path-based bound presented earlier, in Section 3.

Theorem 1 (General Regret Bound for Thompson Sam-

pling). Under Assumptions 1-3, the following holds for the

Thompson Sampling algorithm. For δ, ǫ ∈ (0, 1), there

exists T ⋆ ≥ 0 such that for all T ≥ T ⋆, with probabil-

ity at least 1 − δ,
∑

a 6=a∗ NT (a) ≤ B + C(log T ), where

B ≡ B(δ, ǫ,A,Y,Θ, π) is a problem-dependent constant

that does not depend on T , and 10:

C(log T ) :=

max

|A|−1
∑

k=1

zk(ak)

s.t. zk ∈ Z
|A|−1
+ × {0}, ak ∈ A \ {a∗}, k < |A|,

zi � zk, zi(ak) = zk(ak), i ≥ k,

∀1 ≤ j, k ≤ |A| − 1 :

min
θ∈S′

ak

〈zk, Dθ〉 ≥
1 + ǫ

1− ǫ
log T,

min
θ∈S′

ak

〈zk − e(j), Dθ〉 <
1 + ǫ

1− ǫ
log T.

(3)

The proof is in the Appendix of the supplementary mate-

rial, and uses a recently developed self-normalized con-

centration inequality (Abbasi-Yadkori et al., 2011) to help

9This assumption is made only for the sake of notational ease,
and does not affect the paper’s results in any significant manner.

10
C(log T ) ≡ C(T, δ, ǫ,A,Y,Θ, π) in general, but we sup-

press the dependence on the problem parameters δ, ǫ,A,Y,Θ, π
as we are chiefly concerned with the time scaling.
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track the sample path evolution of the posterior distribu-

tion in its general form. The power of Theorem 1 lies in

the fact that it accounts for coupling of information across

complex actions and give improved structural constants for

the regret scaling than the standard decoupled case, as we

show11 in Corollaries 1 and 2. We also prove Proposition 2,

which explicitly quantifies the improvement over the naive

regret scaling for general complex bandit problems as a

function of marginal KL-divergence separation in the pa-

rameter space Θ.

4.1. Playing Subsets of Bandit Arms and Observing

“Full Information”

Let us take a standard N -armed Bernoulli bandit with arm

parameters µ1 ≤ µ2 ≤ · · · ≤ µN . Suppose the (com-

plex) actions are all size M subsets of the N arms. Fol-

lowing the choice of a subset, we get to observe the re-

wards of all M chosen arms (also known as the “semi-

bandit” setting (Audibert et al., 2011)) and receive some

bounded reward of the chosen arms (thus, Y = {0, 1}M ,

A = {S ⊂ [N ] : |S| = M}, f(·, A) is simply the projec-

tion onto coordinates of A ∈ A, and g : RM → [0, 1], e.g.,

average or sum).

A natural finite prior for this problem can be ob-

tained by discretizing each of the N basic dimen-

sions and putting uniform mass over all points: Θ =
{

β, 2β, . . .
(

⌊ 1
β
⌋ − 1

)

β
}N

, β ∈ (0, 1), and π(θ) = 1
|Θ|

∀θ ∈ Θ. We can then show, using Theorem 1, that

Corollary 1 (Regret for playing subsets of basic arms,

Full feedback). Suppose µ ≡ (µ1, µ2, . . . , µN ) ∈
Θ and µN−M < µN−M+1. Then, the follow-

ing holds for the Thompson sampling algorithm for Y ,

A, f , g, Θ and π as above. For δ, ǫ ∈ (0, 1),
there exists T ⋆ ≥ 0 such that for all T ≥ T ⋆,

with probability at least 1 − δ,
∑

a 6=a∗ NT (a) ≤

B2 +
(

1+ǫ
1−ǫ

)

∑N−M
i=1

1
D(µi||µN−M+1)

log T , where B2 ≡

B2(δ, ǫ,A,Y,Θ, π) is a problem-dependent constant that

does not depend on T .

This result, proved in the Appendix of the supplemen-

tary material, illustrates the power of additional informa-

tion from observing several arms of a bandit at once.

Even though the total number of actions
(

N
M

)

is at

worst exponential in M , the regret bound scales only as

O((N − M) log T ). Note also that for M = 1 (the

standard MAB setting), the regret scaling is essentially
∑N−M

i=1
1

D(µi||µN−M+1)
log T , which is interestingly the

11We remark that though the non-scaling (with T ) additive con-
stant B might appear large, we believe it is an artifact of our proof
technique tailored to extract the time scaling of the regret. Indeed,
numerical results in Section 5 show practically no additive factor
behaviour.

optimal regret scaling for standard Bernoulli bandits ob-

tained by specialized algorithms for decoupled bandit arms

such as KL-UCB (Garivier & Cappé, 2011) and, more re-

cently, Thompson Sampling with the independent Beta

prior (Kaufmann et al., 2012).

4.2. A General Regret Improvement Result &

Application to MAX Subset Regret

Using the same setting and size-M subset actions as be-

fore but not being able to observe all the individual arms’

rewards results in much more challenging bandit settings.

Here, we consider the case where we get to observe as

the reward only the maximum value of M chosen arms

of a standard N -armed Bernoulli bandit (i.e., f(x,A) :=
maxi∈A xi and g : R → R, g(x) = x). The feedback

is still aggregated across basic arms, but at the same time

very different from the full information case, e.g., observ-

ing a reward of 0 is very uninformative whereas a value of

1 is highly informative about the constituent arms.

We can again apply the general machinery provided by

Theorem 1 to obtain a non-trivial regret bound for observ-

ing the highly nonlinear MAX reward. Along the way, we

derive the following consequence of Theorem 1, useful in

its own right, that explicitly guarantees an improvement in

regret directly based on the Kullback-Leibler resolvability

of parameters in the parameter space – a measure of cou-

pling across complex actions.

Proposition 2 (Explicit Regret Improvement Based on

Marginal KL-divergences). Let T be large enough such

that maxθ∈Θ,a∈A D(θ∗a||θa) ≤ 1+ǫ
1−ǫ

log T . Suppose ∆ ≤
mina 6=a∗,θ∈S′

a
D(θ∗a||θa), and that the integer L is such

that for every a 6= a∗ and θ ∈ S′
a, |{â ∈ A : â 6=

a∗, D(θ∗â||θâ) ≥ ∆}| ≥ L, i.e., at least L coordinates

of Dθ (excluding the |A|-th coordinate a∗) are at least ∆.

Then, C(log T ) ≤
(

|A|−L

∆

)

2(1+ǫ)
1−ǫ

log T .

Note that the result assures a non-trivial additive reduction

of Ω
(

L
∆ log T

)

from the naive decoupled regret, when-

ever any suboptimal model in Θ can be resolved apart

from θ∗ by at least L actions in the sense of marginal KL-

divergences of their observations. Its proof is contained in

the Appendix in the supplementary material.

Turning to the MAX reward bandit, let β ∈ (0, 1), and

suppose that Θ = {1 − βR, 1 − βR−1, . . . , 1 − β2, 1 −
β}N , for positive integers R and N . As before, let µ ∈
Θ denote the basic arms’ parameters, and let µmin :=
mina∈A

∏

i∈a(1 − µi), and π(θ) = 1
|Θ| ∀θ ∈ Θ. The

action and observation spaces A and Y are the same as

those in Section 4.1, but the feedback function here is

f(x, a) := maxi∈a xi, and g is the identity on R. An ap-

plication of our general regret improvement result (Propo-

sition 2) now gives, for the highly nonlinear MAX reward
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function,

Corollary 2 (Regret for playing subsets of basic arms,

MAX feedback). The following holds for the Thomp-

son sampling algorithm for Y , A, f , g, Θ and π as

above. For 0 ≤ M ≤ N , M 6= N
2 , δ, ǫ ∈ (0, 1),

there exists T ⋆ ≥ 0 such that for all T ≥ T ⋆, with

probability at least 1 − δ,
∑

a 6=a∗ NT (a) ≤ B3 +

(log 2)
(

1+ǫ
1−ǫ

) [

1 +
(

N−1
M

)

]

log T

µ2
min(1−β)

.

Observe that this regret bound is of the order of
(

N−1
M

)

log T

µ2
min

, which is significantly less than the standard

decoupled bound of |A| log T

µ2
min

=
(

N
M

)

log T

µ2
min

by a multiplica-

tive factor of
(N−1

M )
(N

M)
= N−M

N
, or by an additive factor of

(

N−1
M−1

)

log T

µ2
min

. In fact, though this is a provable reduction in

the regret scaling, the actual reduction is likely to be much

better in practice – the experimental results in Section 5

attest to this. The proof of this result uses sharp combina-

torial estimates relating to vertices on the N -dimensional

hypercube (Ahlswede et al., 2003), and can be found in the

Appendix in the supplementary material.
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Figure 1. Top Left and Top Right: Cumulative regret with ob-

serving the maximum of a pair out of 10 arms (left), and that of a

triple out of 100 arms (center), for (a) Thompson sampling using

a particle filter, and (b) UCB treating each subset as a separate

actions. The arm means are chosen to be equally spaced in [0, 1].
The regret is averaged across 150 runs, and the confidence in-

tervals shown are ±1 standard deviation. Bottom: Cumulative

regret with respect to the best makespan with particle-filter-based

Thompson sampling, for scheduling 10 jobs on 2 machines. The

job means are chosen to be equally spaced in [0, 10]. The best

job assignment gives an expected makespan of 31. The regret is

averaged across 150 runs, and the confidence intervals shown are

±1 standard deviation.

5. Numerical Experiments

We evaluate the performance of Thompson sampling (Al-

gorithm 1) on two complex bandit settings – (a) Play-

ing subsets of arms with the MAX reward function, and

(b) Job scheduling over machines to minimize makespan.

Where the posterior distribution is not closed-form, we

approximate it using a particle filter (Ristic et al., 2004;

Doucet et al., 2001), allowing efficient updates after each

play.

1. Subset Plays, MAX Reward: We assume the setup

of Section 4.2 where one plays a size-M subset in each

round and observes the maximum value. The individ-

ual arms’ reward parameters are taken to be equi-spaced

in (0, 1). It is observed that Thompson sampling outper-

forms standard “decoupled” UCB by a wide margin in the

cases we consider (Figure 1, left and center). The differ-

ences are especially pronounced for the larger problem size

N = 1000,M = 3, where UCB, that sees
(

N
M

)

separate ac-

tions, appears be in the exploratory phase throughout.

Figure 2 affords a closer look at the regret for the above

problem, and presents the results of using a flat prior over a

uniformly discretized grid of models in [0, 1]10 – the setting

of Theorem 1.

2. Subset Plays, Average Reward: We apply Thompson

sampling again to the problem of choosing the best M out

of N basic arms of a Bernoulli bandit, but this time re-

ceiving a reward that is the average value of the chosen

subset. This specific form of the feedback makes it possi-

ble to use a continuous, Gaussian prior density over the

space of basic parameters that is updated to a Gaussian

posterior assuming a fictitious Gaussian likelihood model

(Agrawal & Goyal, 2011). This is a fast, practical alterna-

tive to UCB-style deterministic methods (Dani et al., 2008;

Abbasi-Yadkori et al., 2011) which require performing a

convex optimization every instant. Figure 3 shows the re-

gret of Thompson sampling with a Gaussian prior/posterior

for choosing various size M subsets (5, 10, 20, 50) out of

N = 100 arms. It is practically impossible to naively ap-

ply a decoupled bandit algorithm over such a problem due

to the very large number of complex actions (e.g., there are

≈ 1013 actions even for M = 10)12. However, Thompson

sampling merely samples from a N = 100 dimensional

Gaussian and picks the best M coordinates of the sample,

which yields a dramatic reduction in running time. The

constant factors in the regret curves are seen to be modest

when compared to the total number of complex actions.

3. Job Scheduling: We consider a stochastic job-

scheduling problem in order to illustrate the versatility of

Thompson sampling for bandit settings more complicated

than subset actions. There are N = 10 types of jobs and 2

12Both the ConfidenceBall algorithm of Dani et al. (Dani et al.,
2008) and the OFUL algorithm (Abbasi-Yadkori et al., 2011) are
designed for linear feedback from coupled actions via the use of
tight confidence sets. However, as stated, they require searching
over the space of all actions/subsets. Thus, we remain unclear
about how one might efficiently apply them here.
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machines. Every job type has a different, unknown mean

duration, with the job means taken to be equally spaced

in [0, N ], i.e., iN
N+1 , i = 1, . . . , N . At each round, one

job of each type arrives to the scheduler, with a random

duration that follows the exponential distribution with the

corresponding mean. All jobs must be scheduled on one of

two possible machines. The loss suffered upon scheduling

is the makespan, i.e., the maximum of the two job dura-

tions on the machines. Once the jobs in a round are as-

signed to the machines, only the total durations on the ma-

chines machines can be observed, instead of the individual

job durations. Figure 1 (right) shows the results of applying

Thompson sampling with an exponential prior for the jobs’

means along with a particle filter.
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(b) N = 10,M = 4
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(c) N = 10,M = 5
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(d) N = 10,M = 6

Figure 2. Cumulative regret with observing the maximum value

of M out of N = 10 arms for Thompson sampling. The prior is

uniform over the discrete domain {0.1, 0.3, 0.5, 0.7, 0.9}N , with

the arms’ means lying in the same domain (setting of Theorem 1).

The regret is averaged across 10 runs, and the confidence intervals

shown are ±1 standard deviation.

6. Discussion & Future Work

We applied Thompson sampling to balance exploration

and exploitation in bandit problems where the ac-

tion/observation space is complex. Using a novel tech-

nique of viewing posterior evolution as a path-based opti-

mization problem, we developed a generic regret bound for

Thompson sampling with improved constants that capture

the structure of the problem. In practice, the algorithm is

easy to implement using sequential Monte-Carlo methods

such as particle filters.

Moving forward, the technique of converting posterior con-

centration to an optimization involving exponentiated KL

divergences could be useful in showing adversarial regret

bounds for Bayesian-inspired algorithms. It is reasonable
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(c) (100, 20)
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Figure 3. Cumulative regret for (N,M): Observing the average

value of M out of N = 10 arms for Thompson sampling. The

prior is a standard normal independent density over N dimen-

sions, and the posterior is also normal under a Gaussian likeli-

hood model. The regret is averaged across 10 runs. Confidence

intervals are ±1 standard deviation.

to posit that Thompson sampling would work well in a

range of complex learning settings where a suitable point

estimate is available. As an example, optimal bidding for

online repeated auctions depending on continuous bid re-

ward functions can be potentially learnt by constructing an

estimate of the bid curve.

Another unexplored direction is handling large scale

reinforcement learning problems with complex, state-

dependent Markovian dynamics. It would be promising if

computationally demanding large-state space MDPs could

be solved using a form of Thompson sampling by policy

iteration after sampling from a parameterized set of MDPs;

this has previously been shown to work well in practice

(Poupart, 2010; Ortega & Braun, 2010). We can also at-

tempt to develop a theoretical understanding of pseudo-

Bayesian learning for complex spaces like the X-armed

bandit problem (Srinivas et al., 2010; Bubeck et al., 2011)

with a continuous state space. At a fundamental level,

this could result in a rigorous characterization of Thomp-

son sampling/pseudo-Bayesian procedures in terms of the

value of information per learning step.

Acknowledgements: The research leading to these results has

received funding from the European Research Council under the

European Union’s Seventh Framework Program (FP7/2007-2013)

/ ERC Grant Agreement No 306638. It has also been supported

in part by The Israeli Centers of Research Excellence (I-CORE)

program (Center No. 4/11), by a grant from the Israel Science

Foundation, and by a grant from the United States-Israel Bina-

tional Science Foundation (BSF).



Thompson Sampling for Complex Online Problems

References

Abbasi-Yadkori, Yasin, Pal, David, and Szepesvari, Csaba.

Improved algorithms for linear stochastic bandits. In Ad-

vances in Neural Information Processing Systems 24, pp.

2312–2320, 2011.

Agrawal, Shipra and Goyal, Navin. Thompson sampling

for contextual bandits with linear payoffs. In Advances

in Neural Information Processing Systems 24, pp. 2312–

2320, 2011.

Agrawal, Shipra and Goyal, Navin. Analysis of Thompson

sampling for the multi-armed bandit problem. Journal

of Machine Learning Research - Proceedings Track, 23:

39.1–39.26, 2012.

Ahlswede, R., Aydinian, H., and Khachatrian, L. Maxi-

mum number of constant weight vertices of the unit n-

cube contained in a k-dimensional subspace. Combina-

torica, 23(1):5–22, 2003. ISSN 0209-9683.

Audibert, Jean-Yves and Bubeck, Sébastien. Minimax
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Gábor. Minimax policies for combinatorial prediction

games. In Conference on Learning Theory (COLT), pp.

107–132, 2011.

Auer, Peter. Using confidence bounds for exploitation-

exploration trade-offs. J. Mach. Learn. Res., 3:397–422,

2003.

Auer, Peter, Cesa-Bianchi, Nicolò, and Fischer, Paul.
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