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Abstract

We propose a collective Thomson scattering experiment at the VUV free electron
laser facility at DESY (FLASH) which aims to diagnose warm dense matter at
near–solid density. The plasma region of interest marks the transition from an ideal
plasma to a correlated and degenerate many–particle system and is of current inter-
est, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such
plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is
revealed in a pump–probe scattering experiment using the high–brilliant radiation
to probe the plasma. The distinctive scattering features allow to infer basic plasma
properties. For plasmas in thermal equilibrium the electron density and temperature
is determined from scattering off the plasmon mode.
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1 Introduction

Accurate measurements of plasma temperatures and densities are important
for understanding and modeling contemporary plasma experiments in the
warm dense matter (WDM) regime [1]. WDM is characterized by a free elec-
tron density of ne = 1021 − 1026 cm−3 and temperatures of several eV. In this
regime bound and free electrons become strongly correlated and medium and
long–range order are built up. Of special interest is WDM at near–solid den-
sity (ne = 1021 − 1022cm−3, Te = 1 − 20 eV) where the transition from an
ideal plasma to a degenerate, strongly coupled plasma occurs. In particular,
transient plasma behavior at these conditions is observed in dynamical exper-
iments, like laser shock–wave or Z–pinch experiments and are of particular
importance for inertial confinement fusion (ICF) experiments. In such appli-
cations the plasma evolution follows its path through the largely unknown
domain of WDM. Further applications of this plasma domain are found, e.g.,
in high–energy density physics, astrophysics and material sciences.

A rigorous understanding of highly correlated plasmas is a long–standing and
presently unresolved problem. Only recently, with the availability of high–
brilliant and coherent VUV and x-ray radiation at a frequency larger than
the density dependent electronic plasma frequency ωpe, it became feasible to
penetrate through dense plasmas and study basic plasma properties from scat-
tered spectra [2,3,4,5,6]. The recent effort to develop diagnostic methods using
Thomson scattering is an important first step towards a systematic under-
standing of WDM. Available radiation sources to probe such plasmas are
backlighter systems in the x-ray regime as well as free electron laser (FEL)
radiation currently available in the VUV. Backlighters have been developed
in ICF related research [7] and have been applied to solid density plasmas.
The first experiment to measure the spectrally resolved x-ray Thomson scat-
tering spectrum in solid density Be plasma has been reported in [8]. Using the
4.75 keV titanium He-α backlighter, the non–collective Thomson scattering
spectrum from the thermally distributed electrons allowed the measurement
of the Compton–shifted electron distribution function, which was used to de-
termine the plasma density, temperature and ionization degree. A pioneering
scattering experiment from the collective electron plasma mode (plasmon) at
solid density using a Cl Ly-α backlighter at 2.96 keV has been performed re-
cently [9]. A new type of radiation sources for WDM studies became available
with the advances of FELs. For instance, the FLASH facility at DESY, has
successfully started user experiments in the VUV range 13 − 50 nm [10,11,12]
using the SASE 1 principle [13,14]. A proof–of–principle collective Thomson
scattering experiment at FLASH (25 nm) will be performed in March 2007.

Email address: arne.hoell@uni-rostock.de (A. Höll).
1 SASE: self amplification of stimulated emission
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This experiment aims to demonstrate Thomson scattering with FEL radia-
tion at near–solid density plasmas as a diagnostic method which is described
in this paper in detail. With further advance in FEL technology with respect
to bandwidth, photon energy and brilliance, the method presented here can
be developed to a standard diagnostic tool for WDM research.

Scattering from ideal plasmas has much been studied [15,16,17] and can be
described theoretically within the random phase approximation (RPA). It has
been shown [5,6] that in the region of near–solid density collisions significantly
modify the scattering spectrum and a theory beyond the RPA is needed. The
elaboration of such theories of non–ideal plasmas [18] is more complicated and
different ways have been followed in the past. Local field corrections [19], in-
corporated by Ichimaru [20,21] using a general density–response formalism,
consistently improve the RPA. Alternatively, a theory based on the dielec-
tric function which can be expressed in terms of correlation functions has
been studied. For their calculation perturbative methods have been devel-
oped [22,23]. Applications for optical and transport properties in WDM are
studied [24,25,26].

The paper is organized as follows. In section 2 we outline the theoretical basis
for Thomson scattering in WDM, introduce the dynamical structure factor
as a central quantity and describe its calculation. Results of the calculations
and estimations are used to discuss the applicability of collective Thomson
scattering for plasma diagnostics in section 3. In section 4 we describe the
planned experiment at FLASH. Based on the results of section 3, we specify
out requirements and restrictions relevant for the experiment. In section 5 we
give a summary and address future extensions of the method.

2 Theory

2.1 Scattering Geometry

In this section we will outline the theory needed to describe the scattering
of coherent radiation from an equilibrium plasma at near–solid density. The
scattering geometry is shown in Fig. 1. The plasma is irradiated by the linearly
polarized FEL probe–beam in z–direction with the polarization pointing into
the x–direction. The detector is located in the direction of the scattered wave
vector kf at the distance R much larger than the plasma extension. The
direction of kf is characterized by the scattering angle θ and the azimuthal
angle ϕ as shown in Fig. 1. The momentum transfer of the scattered photon
is given by k = kf − ki and its energy transfer by ω = ωf − ωi. The modulus
of the initial and final wave vector is given by
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Fig. 1. Scattering geometry

ki = |ki| =
ωi

c
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The square root terms in Eq. (1) and (2) account for the dispersion of incoming
and scattered wave. In the density region of 1021 − 1022 cm−3 the electron

plasma frequency is of the order of ωpe =
√

nee2/ǫ0me ≈ 1 − 4 eV and the
probe radiation in the VUV–region is of the order of ωi ≈ ωf = 50 − 100 eV.
Therefore, we have |ω| . ωpe ≪ ωi ≈ ωf , and the approximation in Eq. (2)
is well justified. From the scattering geometry given in Fig. 1 one finds for

the modulus of the momentum transfer k =
√

k2
i + k2

f − 2kikf cos θ and using

Eqs. (1) and (2)

k =
4π

λ0

sin(θ/2)

√√√√1 +
ω

ωi

+
ω2

ω2
i

1

4 sin2(θ/2)

√√√√1 − ω2
pe

ω2
i

, ωi =
2πc

λ0

. (3)

As pointed out, |ω|/ωi and ωpe/ωi are small quantities, and it is easily ob-
served from Eq. (3) that the momentum transfer k is well approximated by
the relation k = 4π

λ0

sin(θ/2) for elastic scattering. This, however, is only valid
for θ > |ω|/ωi, a condition fulfilled in most scattering experiment.

The scattered power Ps from the electrons into a frequency interval dω and
solid angle dΩ is given by [16]

Ps(R, ω)dΩdω =
Pir

2
0dΩ

2πA

∣∣∣k̂f × (k̂f × Ê0i)
∣∣∣
2
NS(k, ω)dω . (4)

In Eq. (4) Pi denotes the incident FEL power, r0 = e2/mec
2 = 2.8 × 10−15 m

the classical electron radius, A the plasma area irradiated by the FEL, N the
number of nuclei and S(k, ω) the total electron dynamical structure factor. The
polarization term |k̂f × (k̂f × Ê0i)|2 reflects the dependence of the scattered
power on the incident laser polarization with the hat denoting unit vectors. For
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linear polarization and for unpolarized light, respectively, this term is given
by

∣∣∣k̂f ×
(
k̂f × Ê0i

)∣∣∣
2

=





(1 − sin2 θ cos2 ϕ) lin. polarized

(1 − 1
2
sin2 θ) = 1

2
(1 + cos2 θ) unpolarized

(5)

In the case of linear polarization the dependence on the scattering angle θ is
shown in Fig. 2. The strongest dependence on θ is observed for ϕ = 0◦, whereas
at ϕ = 90◦ the polarization term is independent of the scattering angle θ. As

∣∣∣k̂f ×
(
k̂f × Ê0i

)∣∣∣
2

Fig. 2. Dependence of the scattered light on laser polarization, scattering angle θ
and azimuthal angle ϕ.

seen from Eq. (4), the scattered power depends on the setup of the scattering
experiment (initial probe power, scattering angle, probe wavelength, probe po-
larization), the density and plasma length, and on the total electron dynamical
structure factor S(k, ω). The dynamical structure factor is the Fourier trans-
form of the electron–electron density fluctuations. It is a central quantity since
it contains the details of the correlated many–particle system [21,27]. The def-
inition and calculation of S(k, ω) are given in section 2.2.

2.2 Thomson Scattering in WDM

A characterization of plasmas in equilibrium at different densities and temper-
atures can be performed by simple estimations of dimensionless parameters.
The coupling parameter Γ is defined as the ratio of the Coulomb energy be-
tween two charged particles at a mean particle distance d̄ and the thermal
energy. Using the Wigner–Seitz radius for d̄, we find an expression for the
electron coupling parameter
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Γ =
e2

4πε0d̄kBTe

, d̄ =
(

4πne

3

)−1/3

. (6)

If Γ < 1 the plasma is weakly coupled, and Γ ≪ 1 denotes the ideal plasma
regime. Correlations become more important in the coupled plasma regime,
where Γ & 1. The degeneracy parameter Θ estimates the role of quantum
statistical effects in the system and is given by the ratio of the thermal energy
and the Fermi energy EF

Θ =
kBTe

EF

, EF =
~

2

2me

(
3π2ne

)2/3
. (7)

In a degenerate plasma, the Fermi energy is larger than the thermal energy,
i.e. Θ < 1, and most electrons populate states inside the Fermi sea where
quantum effects are of importance. Contrary to that, for Θ > 1 the role of
quantum effects decreases.

The dimensionless scattering parameter α compares the length scale of elec-
tron density fluctuations ℓ ≈ 2π/k measured in the scattering experiment to
the screening length λsc in the plasma. The scattering parameter is defined as

α =
1

kλsc

, λ−2
sc → λ−2

sc,e = κ2
sc,e =

e2m3/2
e√

2π2ǫ0~
3

∞∫

0

dE E−1/2f e(E) , (8)

where we used the electron screening length λsc,e which is written in terms of
the Fermi–Dirac distribution function f e(E) of the electrons and accounts for
quantum effects [25]. In the case of a classical Maxwell–Boltzmann electron
distribution function, the screening length in Eq. (8) reduces to the Debye
screening length κ2

sc,e → κ2
D,e = nee

2/(ǫ0kBTe). For α > 1, i.e. in the collective
scattering regime, only density fluctuations larger than the screening length
are observed, while at α < 1, i.e. in the non-collective scattering regime, the
density fluctuations of individual electrons are resolved. As seen from Eq. (3),
ℓ = 2π/k is mainly determined by the probe wavelength and the scattering an-
gle (i.e. by the setup of the scattering experiment) while λsc,e is determined by
the plasma properties like density and temperature (see Eq. (8)). The density–
temperature plot in Fig. 3 shows different plasma regions. In particular, the
region of moderate temperature and near–solid density (gray region), overlaps
with the ideal plasma, coupled plasma and degenerate plasma region. Depend-
ing on the scattering geometry conditions and probing wavelength, this plasma
region is accessible applying both, collective and non–collective scattering. At
a wavelength λ0 = 25 nm, however, there is only collective scattering (α > 0)
for arbitrary scattering angle observable from this plasma region.

As outlined in conjunction with Eq. (4), the scattering from the plasma is
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Fig. 3. Plasma parameters in the density–temperature plane. The region of moder-
ate temperature, near–solid density plasmas is shown. Also, the electron coupling
parameter Γ, degeneracy parameter Θ as well as the scattering parameter α is shown
as defined in Eqs. (6), (7) and (8). Assumed are the scattering angle θ = 90◦ and
probe laser wavelength λ0 = 25nm.

determined by the mean electron–electron density fluctuations per nucleus
which is expressed by the dynamical structure factor S(k, ω). The structure
factor is defined in terms of the electron density response function χtot

ee via a
fluctuation–dissipation theorem (FDT) [28]

S(k, ω) =
~

n

1

1 − e−β~ω
Im χtot

ee (k, ω) , (9)

with n the number density of the nuclei (atoms and ions). The density response
function χtot

ee is given as [29]

χtot
ee (k, ω) = Ω0

i

~

+∞∫

0

dt ei(ω+iη)t
〈[

δntot
e (k, t), δntot

e (−k, 0)
]〉

, (10)

with δntot
e = ntot

e − 〈ntot
e 〉 being the density fluctuations of all electrons from

the average density and the brackets denoting the ensemble average. The nor-
malization volume is denoted by Ω0. The limit η → 0 has to be taken after the
thermodynamic limit. The solution of Eq. (10) accounting for bound states is
a nontrivial problem. Here we follow the idea of Chihara [30,31] who applied a
chemical picture and decomposed the electrons into free and bound electrons
of density ne and nb

e respectively. With Zf free and Zb bound electrons per
nucleus, ne and nb

e are related to the ion density ni according to ne = Zfni and
nb

e = Zbni. Writing the total electron density ntot
e = ne +nb

e, we can decompose
the total density response function in Eq. (10) according to
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χtot
ee = χff + χbb + χbf + χfb = χff + χbb + 2χbf , (11)

with the electron density response functions of the free–free, bound–bound,
bound–free and free-bound system χff , χbb, χbf and χfb, respectively. The
response function are defined as in Eq. (10) with the corresponding electron
densities. We also used χbf = χfb. Chihara showed that for a classical system
the total electron dynamical structure factor can be written in the following
decomposed form

S(k, ω)=ZfS
0
ee(k, ω) + |fI(k) + q(k)|2 Sii(k, ω)

+Zb

∫
dω′S̃ce(k, ω − ω′)SS(k, ω′) . (12)

The first term is due to the free electron fluctuations with Zf the number of
free electrons per atom. The second term describes number fluctuations of the
weakly and tightly bound electrons, with fI(k) the ion form factor, q(k) the
electron screening cloud and Sii the ion–ion structure factor. The last term in
Eq. (12) is attributed to inelastic Raman transitions of core electrons into the
continuum S̃ce, modulated with the ion self–motion SS.

Under the condition Eb ≫ ~
2k2/(2m) [4], where Eb is the ionization potential

of the bound states, the first two terms in Eq. (12) are most important. For
the experimental conditions, specified in section 4, the ionization potential
for hydrogen and helium is Eb = 13.6 eV and 24 eV, respectively. The energy
transferred by the x–ray photons to the bound electrons is only ∼ 0.02 eV.
Therefore, bound–free transitions can be neglected.

2.3 Density Response Function

To shortly review the calculation of the electron density response function
we follow [29]. We consider a plasma consisting of free electrons and ions.
The electron and the ion response functions in a collision–free one–component
plasma (OCP) model are given by the well–known Lindhard expressions

χ0
cc′(k, ω) = δcc′

1

Ω0

∑

p

f c
p+k/2 − f c

p−k/2

∆Ec
p,k − ~(ω + iη)

= χ0
c(k, ω)δcc′ , (13)

with ∆Ec
p,k = Ec

p+k/2 − Ec
p−k/2 = ~

2k · p/mc, and the Fermi function f c
p =

[exp(βEc
p − βµc) + 1]−1 with β = 1/(kBT ). The pole appearing in Eq. (13) is

shifted by η off the real axis and the limit η → 0+ has to be taken after the
thermodynamic limit. Eq. (13) is written in matrix form for the plasma species
denoted by the indices c and c′. The matrix is diagonal, i.e. by definition, there
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are no density fluctuations between different plasma species within the OCP
description.

In RPA the plasma interacts via a screened interaction V sc
cc′ obtained self–

consistently from the “ring summation” according to

V sc
cc′(k, ω) = Vcc′(k) +

∑

d

Vcd(k)χ0
d(k, ω)Ω0V

sc
dc′(k, ω) , (14)

which is solved by

V sc
cc′(k, ω) =

Vcc′(k)

1 − χ0
eΩ0Vee − χ0

i Ω0Vii

(15)

in the case of a Coulomb bare potential 2 , Vcc′(k) = ecec′/(ǫ0Ω0k
2), considered

in this paper only. The screened interaction contains mutual screening con-
tribution from both plasma species (electrons and ions). The RPA response
tensor is given by solving

χRPA
cc′ (k, ω) = χ0

c(k, ω)δcc′ + χ0
c(k, ω)Ω0V

sc
cc′(k, ω)χ0

c′(k, ω) (16)

with the matrix elements written as

χRPA
ee (k, ω)=

χ0
e − χ0

eΩ0Viiχ
0
i

1 − χ0
eΩ0Vee − χ0

i Ω0Vii
, (17)

χRPA
ei (k, ω)=

χ0
eΩ0Veiχ

0
i

1 − χ0
eΩ0Vee − χ0

i Ω0Vii

. (18)

The remaining two matrix elements are obtained by interchanging e ↔ i.

To take into account the density fluctuations from the bound electrons, not
present in Eqs. (17) and (18), one has to solve the dielectric plasma response
including bound states [32]. This goes beyond the scope of this paper, and
we follow the idea of Chihara [31] by considering the plasma in a chemical
picture and decompose the electrons as free, weakly bound and tightly bound
electrons. From Eq. (3) we find a maximal momentum transfer at ω ≈ ωpe

for θ = 180◦. Therefore, the smallest length scale ℓ = 2π/k at which density
fluctuations can be resolved in the scattering process is ℓ ≥ 12 nm for a probe
wavelength λ0 = 25 nm. The electron and ion size is much smaller than ℓ and,
consequently, details of the atomic structure of the ion enter only in integrated
form. This allows to treat the bound electrons in a frozen core approximation.

2 Note, in [29] arbitrary potentials are considered. The simplified expressions here
are obtained by using VeeVii − VeiVie = 0 valid for Coulomb interactions.
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This implies that χff , χbb and χbf for the free–free, bound–bound and bound–
free electron density response function respectively can be written as

χRPA
ff (k, ω)=χRPA

ee (k, ω) , (19)

χRPA
bb (k, ω)=Z2

b χRPA
ii (k, ω) , (20)

χRPA
bf (k, ω)=Zbχ

RPA
ie (k, ω) , (21)

where all density fluctuations are referred to the total number of nuclei. From
Eq. (11) and (19)–(21) the total electron density response function is written
as

χtot
ee (k, ω) = χRPA

ee + Z2
b χ

RPA
ii + 2Zbχ

RPA
ie . (22)

Upon introduction of the partial dynamical structure factors following Eq. (9)

See =
C
ne

Imχ̃RPA
ee , Sii =

C
ni

ImχRPA
ii , Sei =

C√
neni

ImχRPA
ei (23)

with C−1 = (1 − exp[−β~ω])/~, we find

S = ZfSee + Z2
b Sii + 2Zb

√
ZfSei . (24)

We made the assumption that the number of nuclei n equals the number of
ions ni, i.e., there are no neutral atoms in the plasma. Eq. (24) corresponds
to the first two terms in Eq. (12). In (12), however, the contribution from the
electrons screening the ion charge is separated from See. This can be done
rewriting

χRPA
ee = χ̃RPA

ee + ∆χ̃RPA
ee

=
χ0

e

1 − χ0
eΩ0Vee

+
Ω2

0VeeVii(χ
0
e)

2χ0
i

(1 − χ0
eΩ0Vee − χ0

i Ω0Vii) (1 − χ0
eΩ0Vee)

=
χ0

e

1 − χ0
eΩ0Vee

+
(χRPA

ei )2

χRPA
ii

. (25)

In Eq. (25) χ̃RPA
ee contains the contributions from the free electrons, whereas

∆χ̃RPA
ee describes the quasi–free electrons which screen the ions. From the

Eqs. (20)–(25) we find for the total response function

χtot
ee (k, ω) = χ̃RPA

ee +

(
Zb +

χRPA
ei

χRPA
ii

)2

χRPA
ii . (26)
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Eq. (26) is a simple model for the total electron response function with tightly
and weakly bound electrons “frozen” to the ions. Since we are interested in
collective Thomson scattering, i.e. the scattering off electron fluctuations over
a distance much larger than the ion size, all atomic details are integrated
out. In RPA, Eq. (26) is equivalent to the first two terms in Eq. (12) with
Zb = limk→0 fI(k) the integrated charge of the tightly bound electrons.

Beyond the RPA, collisions are considered in the response functions χ by
utilizing the Mermin ansatz [33] which makes use of a relaxation time τ . As
outlined in [29,34] the inclusion of local particle number conservation leads to
a generalization of the Mermin ansatz in terms of a complex valued dynam-
ical collision frequency τ → 1/ν(ω). The collisional response function χν,0

c of
plasma species c is then given by

χν,0
c (k, ω) =

(
1 − iω

ν(ω)

)

 χ0
c(k, z)χ0

c(k, 0)

χ0
c(k, z) − iω

ν(ω)
χ0

c(k, 0)



 (27)

and z = ω− Im ν(ω)+ iRe ν(ω). Eq. (27) is exact in the long wavelength limit
and serves as a good approximation for finite k. The details of the microscopic
calculation of the dynamical collision frequency are reviewed in section 2.4.
Having introduced electron–ion collisions for the OCP plasma according to
Eq. (27), the equations (17) – (26) can be generalized accordingly and we
obtain the total collisional response function χν,tot

cc′ by simply replacing χ0
c →

χν,0
c in these equations.

2.4 Collision Frequency

As outlined, e.g. in [29,34], the original Ansatz for the dielectric plasma re-
sponse made by Mermin [33], can be generalized by calculating the dynamic
collisions frequency. In the long–wavelength limit, the dynamical collision fre-
quency can be expressed in terms of the inverse response function via a gener-
alized Drude expression. This inverse response function can be obtained by a
perturbative evaluation of the corresponding force–force correlation function
with respect to the plasma interaction. The result for the collision frequency
in Born approximation can be written as (see [29,34] for further details)

νBorn(ω) = −iK ni

neω

∞∫

0

dq q6V 2
D(q)Sii(q)[ǫRPA(q, ω) − ǫRPA(q, 0)] (28)

with K = (ǫ0Ω
2
0)/(6π2e2me), and Sii(q) the static ion–ion structure factor and

VD(q) = −Ze2/(ǫ0Ω0(q
2 + κ2

sc,e)) the statically screened Debye potential. The
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electronic screening length κsc,e is defined in Eq. (8). The electron RPA dielec-
tric function ǫRPA in Eq. (28) is related to the Lindhard response function,
Eq. (13), according to ǫ−1

RPA = 1 + χ0
ee

2/(ǫ0k
2). It should be pointed out that

the electron screening is accounted for in the Debye potential, whereas ion
screening is treated in the ion–ion structure factor according to

Sii(q) =
q2

q2 + κ2
D,i

, (29)

with the ion Debye screening length κ2
D,i = Z2

fnie
2/(ǫ0kBTi). Improvements of

Sii which account for ion–ion correlations and screening effects are given, e.g.,
using pseudo–potentials in hypernetted chain calculations (HNC) [35,36,37,38].
These improvements go beyond the scope of this paper, where we are inter-
ested in the electron plasma component only, which is determined by the
high–frequency electron collective mode (plasmons). For an improved plasma
diagnostics which measures the electron and ion component of the plasma
separately from the scattering spectrum, an advanced theory to describe the
ion–ion correlations, like HNC, is needed. This is an ultimate requirement if
probing nonequilibrium plasma states, e.g., in a two–temperature plasma with
Te 6= Ti.

2.5 Dynamical Structure Factor and Plasma Properties

The dynamical structure factor shows distinct features, which are fingerprints
of the plasma properties. Therefore, collective Thomson scattering can be ap-
plied as a diagnostic tool as described. The relation of the scattering spectrum
(or dynamical structure factor) to the plasma properties is explained in the
following.

In Fig. 4 we show a schematic picture of the dynamical structure factor in
the collective scattering regime with its characteristic features, the ion feature
and the plasmon resonance. The asymmetry in the height of the dynamical
structure factor at ±ω can be explained as follows. The scattering of a photon
with initial momentum ki and frequency ωi into final momentum kf and
frequency ωf must be proportional to the probability of the final photon state.
Assuming that the system is in thermal equilibrium at a temperature T , not
disturbed by the laser irradiation, the dynamical structure factor has to be
proportional to the Boltzmann factor according to

S(ki → kf , ωi → ωf) ∝ exp

{
− ~ωf

kBT

}
. (30)

Similar, for the reverse scattering we have
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Fig. 4. Schematic view of the dynamical structure factor S(k, ω) as a function of the
frequency shift ω in the collective scattering regime (color online). The high reso-
nance collective mode (plasmons) is shown as a red hatched region. At low frequency
shifts, the ion feature due to weakly and tightly bound electrons is shown as the
blue dotted region. The plasmon and ion acoustic resonance frequency, ωres and ωac,
respectively, are shown. The insets on the upper left and right show magnifications
of the plasmon resonance and the ion feature respectively.

S(kf → ki, ωf → ωi) ∝ exp

{
− ~ωi

kBT

}
. (31)

For a homogeneous and stationary system, the scattering process is described
by k ≡ kf−ki and ω ≡ ωf−ωi, the momentum and energy transfer, only. From
the general property [39] χ(k, ω) = χ∗(−k,−ω) 3 , we find via the equilibrium
FDT (9) and the relations (30), (31)

S(−k,−ω)

S(k, ω)
= exp

(
− ~ω

kBT

)
. (32)

Eq. (32) is known as detailed balance relation, and it is a general property
following from first principles. As seen, the ratio defined in (32) at any par-
ticular energy transfer ~ω depends only on the equilibrium temperature of
the system. This makes the detailed balance relation a highly suitable tool to
measure the temperature of the plasma, independent of any model assump-
tions other than thermodynamic equilibrium. In Fig. 4 the asymmetry in the
dynamical structure factor, denoted as temperature asymmetry, is due to the
detailed balance relation.

3 This is a general requirement due to the reality of the induced current j and the
vector potential A acting as the external perturbation.
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Scattering from electrons which are weakly or tightly bound to the ions, see
discussion in connection with Eq. (12), leads to the low frequency resonance,
the ion feature. As shown in Fig. 4, due to the large ion mass, the ion fea-
ture shows a very narrow spectral width. Currently, there is no x–ray or VUV
radiation available that would allow to spectrally resolve the ion feature. In
the future this could be possible with FEL seeding [40] and in recently pro-
posed FELs based on a energy recovery linac scheme with very narrow XUV
bandwidth [41].

The high–frequency mode, known as plasmon, is due to the collective scat-
tering from free electrons. In Fig. 4, a red (ω < 0) and blue (ω > 0) shifted
plasmon feature appear due to the creation and annihilation of a plasmon, re-
spectively. Neglecting the plasmon collisional and Landau damping, the plas-
mon resonance ωres is approximately given by the plasmon dispersion relation.
For a classical collisionless plasma an expression for the plasmon dispersion
has been given by Gross and Bohm [42], valid in the long wavelength limit
~k2/(2meω) ≪ 1

ω2
res ≈ ω2

pe +
3kBTe

me
k2 , (33)

with the density dependent plasma frequency ωpe. The dispersion relation is
calculated from the condition Re ǫ(k, ω) = 0. Eq. (33) follows for a classical
Maxwell Boltzmann plasma and the dielectric function ǫ expanded to order
O(k2). An inspection of Eq. (33) reveals immediately that the plasmon reso-
nance position is mainly determined by the plasma frequency and, therefore,
by the electron density. The second term in the dispersion relation contains a
temperature dependence. Having determined the temperature via the detailed
balance relation as explained, the measurement of the plasmon position ωres

provides the free electron density in the plasma.

An improvement of the classical dispersion relation (33) including quantum
diffraction is obtained if the electron Lindhard expression for the dielectric
function is solved for Re ǫ(k, ω) = 0. The second moments of the Fermi func-
tion are given by Fermi integrals, which can be expressed using an approxi-
mate solution [43] to the lowest order in y = neΛ

3
e/ge. Here we have defined

the electron thermal wavelength Λe = h/
√

2πmekBTe and ge the electron spin
degeneracy factor. With these approximations an improved dispersion relation
(IDR) can be obtained

ω2
res(k

2) ≈ ω2
pe +

3kBTe

me
k2
(
1 + 0.088neΛ

3
e + . . .

)
+

(
~k2

2me

)2

, (34)

and the ellipsis denoting higher order terms in y. This expansion is valid for
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y < 5.5 [43]. At the order O(k4) only the leading term is kept. Other terms
of the order O(k4) [44] are suppressed by higher moments of the distribution
function. It is a simple observation from Eq. (34) that in the limit ~ → 0 and
neΛ

3
e → 0 the Gross–Bohm dispersion relation, Eq. (33) is recovered. Further,

it must be pointed out that both dispersion relations assume Im ǫ(k, ω) = 0
and, consequently, neglect the effect of collisional damping.

2.6 Continuum Radiation

Independent information on the plasma density and temperature can be ob-
tained from the continuum (bremsstrahlung) emission of the plasma. For
demonstration, the emission for an optically thin hydrogen plasma (Zf = 1) in
thermal equilibrium at different temperatures is given by the classical Kramers
formula [45,46]

dj(λ)

dV dΩ
=

dPb(λ)

dV dλdΩ
= Cb

Zgffn
2
ee

6

3mec2λ2

(
2π

3kBTme

)1/2

exp

(
− 2π~c

λkBT

)
, (35)

with Cb = 25π/(4πǫ0)
3 and gff , the Gaunt factor [47], accounting for quantum

and medium corrections. A quantum mechanical calculation of the Gaunt fac-
tor [48] showed that gff = 1 serves as a good approximation for the spectrum.

3 Results

3.1 Collision Frequency

Using the results of the previous section we can calculate the dynamical struc-
ture factor S(k, ω) via the FDT, Eq. (9), for a collisional hydrogen plasma.
The result for the collision frequency calculated in Born approximation ac-
cording to Eq. (28) is shown in Fig. 5. It is seen that collsions become more
important at higher densities in this domain. This is due to an increasing cou-
pling parameter. At frequencies larger than the plasma frequencies ωpe, the
collisions become less effective and the real and imaginary part of the collision
frequency goes to zero.
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Fig. 5. Real and imaginary part of the electron ion dynamical collision frequency in
hydrogen as a function of the energy transfer (upper and lower panel respectively).
The collision frequency is calculated in Born approximation, Eq. (28), with respect
to a statically screened Debye potential. The electron and ion temperature is 12 eV
and the free electron density ne is given in units of 1021 cm−3.

3.2 Dynamical Structure Factor

From the collision frequencies we have calculated the dynamical structure fac-
tor using Eqs. (26) with the replacement χ0

c → χν,0
c for an equilibrium plasma

at Te = Ti = 12 eV. The results are plotted in Fig. 6 as a function of the
frequency shift ω. Three different FEL probe wavelengths 15 nm, 25 nm and
35 nm are shown in the upper, middle and lower panel, respectively. The cor-
responding momentum transfer k is calculated from Eq. (3) for a scattering
angle of 90◦. The structure factor is calculated for the same electron densities
as in Fig. 5. In order to account for the FEL bandwidth and the final spec-
trometer resolution, we convoluted the structure factor with a Gaussian profile
of δω/ω = 0.01 full width half maximum (FWHM). In Fig. 6 elastic scattering
of the bound electrons at ω = 0 contributes to the ion feature. Its spectral
width is given by the bandwidth and spectrometer resolution. Therefore, the
ion feature serves as a measure of the FEL bandwidth. Beside the ion fea-
ture we observe the blue and red shifted plasmon resonance. Both resonances
are different in height, attributed to the detailed balance relation, Eq. (32).
This asymmetry increases with decreasing temperature. In accordance with
the Gross–Bohm and the improved dispersion relation, Eqs. (33) and (34),
one can observe that the plasmon resonance is shifted to larger resonance fre-
quencies with increasing densities due to an increase of the plasma frequency.

16



0.00

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

-5 -4 -3 -2 -1 0 1 2 3 4 5
ω  [eV]

0.00

0.02

0.04

0.06

ne=1.0

ne=2.5
ne=5.0

ne=7.5 ne=10

ne=1.0

ne=2.5

ne=7.5ne=5.0
ne=10

ne=1.0

ne=2.5
ne=5.0ne=7.5 ne=10

δω=0.83eV

λ0=25nm

λ0=35nm

λ0=15nm

δω=0.50eV

δω=0.35eV

Fig. 6. Hydrogen dynamical structure factor S(k, ω) in units of 1/eV calculated from
Eqs. (24), (27) and (28) including collisions in Born approximation. Each panel
shows S for different electron densities ne in units of 1021 cm−3, at equilibrium
conditions Te = Ti = 12 eV, ionization degree Zf = 1 and a scattering angle of
θ = 90◦. For comparison three VUV probe wavelength (15, 25 and 35 nm) are shown.
The finite VUV–bandwidth as well as the spectrometer resolution is accounted for
by applying Gaussian convolution with δω/ω0 = 0.01 FWHM.

Further, in agreement with the plasmon dispersion relation, a larger probe
wavelength, leading to a smaller momentum transfer, Eq. (3), yields a smaller
plasmon resonance frequency. A calculation of the dynamical structure factor
in the density range 1021 cm−3 < ne < 1022 cm−3 and a subsequent calcula-
tion of the electron density nGB

e from the plasmon resonance position via the
Gross–Bohm dispersion relation yields a deviation of (nBG

e − ne)/ne < 0.15.
This deviation is attributed to collisional and quantum effects as well as details
of the electron distribution functions, not accounted for in the Gross–Bohm
dispersion relation. It should be pointed out that this deviation increases sig-
nificantly to more than 0.4 if x–ray scattering is considered at solid densities
as, for instance, scattering conditions in [9].

3.3 Continuum Radiation

In order to estimate the sensitivity of the bremsstrahlung emission with re-
spect to the temperature we plot Eq. (35) and its derivative in Fig. 7 for a
range of different temperatures. Both panels are normalized at λ = 1000 nm
and are given in arbitrary units. Since we assume no absolute calibration of the
spectrum, only the derivative of the spectrum can provide information (lower
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panel in Fig. 7). The derivative of the spectrum for different temperatures
shows deviations at small wavelengths and, consequently, there is a tempera-
ture sensitivity of the spectrum present. At small wavelengths the plasma is
optically thin and Eq. (35) is applicable. Therefore, measuring the continuum
spectrum and fitting the spectrum for a given electron density (measured by
collective Thomson scattering) yields an independent estimate of the plasma
temperature.

4 Thomson Scattering Experiment at FLASH

To demonstrate the scattering from the collective electron mode of an equi-
librium, near–solid density plasma at moderate temperatures T = 1 − 15 eV,
we propose a proof–of–principle experiment at the VUV free–electron laser
FLASH at DESY, Hamburg. The aim of the experiment consists of (i) creat-
ing a plasma from a low Z target at near–solid density by an optical heating
laser. After a relaxation time in a second step (ii) the plasma is probed by
the VUV–FEL and the scattered spectrum is measured by a high resolution
transmission grating spectrometer. This novel pump–probe experiment allows
to determine basic plasma properties from the distinct features of the scatter-
ing spectrum as outlined in the previous sections.

18



4.1 Experimental Requirements

Based on our results described in section 3, we have analyzed the realization
of such an experiment and list some of its most important features:

(1) In order to obtain a strong plasmon scattering signal resulting from free
electrons and a preferably weak signal from the bound electrons, a low Z
target material is used.

(2) As the target we employ a cryogenic hydrogen beam which, upon full
ionization, provides a free electron density of ne = (2.2−2.4)×1022 cm−3.
After a relaxation time of about 1 ps we expect a plasma density of about
ne = 1021 − 1022 cm−3.

(3) Making use of a scattering geometry ϕ = 90◦, θ = 90◦ as shown in Fig. 1
and 8, the linear polarization of the FEL pulse does not decrease the
scattering spectrum (see Fig. 2). In a temperature range Te = 1−15 eV a
collective scattering spectrum is expected, as exemplarily shown in Fig. 6
for a temperature of Te = 12 eV and various electron densities.

(4) Given that the electron density is in the range ne = 1021 − 1022 cm−3,
FEL radiation at a wavelength of λ0 = 25 nm (≈ 50 eV) is chosen in
order to fully separate the plasmons from the ion feature. Due to the
bandwidth characteristics of the FEL, this cannot be achieved at a smaller
wavelength at, e.g. λ0 = 15 nm (see Fig. 6).

(5) The application of the detailed balance relation, Eq. (32), for the temper-
ature measurement restricts the plasma temperature to Te . 15 eV. At
larger temperatures the asymmetry in the scattering spectrum becomes
less than 10% and cannot be resolved experimentally.

(6) The number of photons scattered from the plasmons has to be sufficiently
high. For a FLASH pulse of energy EFLASH and wavelength λ0 focused
onto the target, one obtains the total number of photons N tot

ph by

N tot
ph = 5.03 × 109 EFLASH[µJ]λ0[nm] . (36)

The scattered fraction for a plasma length L and the scattering cross
section σ = σT /(1+α2) ≈ σT /α2 (note: α > 3) with σT = 6.65×10−25 cm2

the total Thomson cross section, is given by σneL. Neglecting the density
correction in the momentum transfer, Eq. (3), we find with Eq. (8) for
the scattering parameter α

α2 = 0.1146
λ2

0[nm2]ne[1021cm−3]

Te[eV] sin2 θ/2
. (37)

Therefore, the number of scattered photons N sc
ph into the acceptance solid

angle of the detector ∆Ω = 6 × 10−4 sr is given by
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N sc
ph ≈ 1.753

EFLASH [µJ]L[µm]Te[eV]

λ0[nm] sin2 θ/2
. (38)

For a plasma length L = 40 µm, a wavelength λ0 = 25 nm, a pulse energy
EFLASH = 30 µJ, and a scattering angle of θ = 90◦ we find the number
of photons collected with the spectrometer N sc

ph ≈ 170 Te[eV].

4.2 Experimental Setup

The vacuum chamber with its main connections being used for the Thom-
son scattering experiment at DESY and the alignment of the laser beams are
shown in Fig. 8 and Fig. 9, respectively. The plasma is generated by 100 fs

Fig. 8. Vacuum chamber with the main connections.

Fig. 9. Adjustment of the space and time overlap of the FEL and optical laser.

pulses with up to 10 mJ energy at 800 nm which are focused to a spot size of
50 µm in the interaction region where the cryogenic hydrogen beam crosses
perpendicularly to the laser beams. For probing the plasma, the FEL beam
enters the interaction region through a hole in the parabola mirror, having a
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beam waist diameter of 20 µm in the interaction region. Important for the suc-
cess of the experiment is a good control of the pump–probe–delay between the
optical pump laser and the FEL. A parallel alignment of the beams, as shown
in Fig. 9, is chosen in order to simplify the coarse adjustment of the temporal
overlap using a fast photodiode. For the fine adjustment, the photoelectron
(PE) sideband generation technique is applied, which has been successfully
demonstrated at FLASH [49] at a helium gas jet. We will use the same laser
beam alignment (note: Fig. 9 is taken from [49]) and a similar PE sideband
generation setup. In contrast to [49] we apply the technique to the hydrogen
gas jet at 100 K and record the PE spectrum by a field free electron time–
of–flight (TOF) spectrometer. Once the temporal overlap between the optical
laser and the FEL has been determined, the the pump–probe delay can be
adjusted up to several nanoseconds by a motorized translation stage. The sta-
bility of the laser pulse timing is monitored by a streak camera and can be
measured on a shot to shot basis by electro–optical sampling [50] with an ac-
curacy of 200 fs. The repetition rate of the experiment is 5 Hz, determined by
the repetition rate of the FEL.

The hydrogen beam runs perpendicular to the optical laser and the FEL
through their joint focus. A cryogenic source similar to the one used here has
been characterized for helium at beam diameters of 30−100 µm[51]. Prepara-
tory tests aiming at a continuous hydrogen beam have been performed at the
University of Rostock. Depending on the pressure and temperature conditions,
the source provides: a spray of hydrogen droplets, a well collimated beam of
droplets or a slow moving filament of solid hydrogen. For the experiment we
will make use of the collimated beam consisting of droplets 40 µm in diameter.
It operates stable at a temperature of T ≈ 15 K and a pressure of p ≈ 15 bar
for a nozzle diameter of dnozzle = 20 µm. Similar studies on cryogenic argon
beams [52] and piezo-driven hydrogen droplets [53] have been reported.

As shown in Fig. 8, the scattered photons are measured by a high resolution
transmission grating EUV spectrometer, mounted perpendicular on top of the
interaction region at a scattering angle of θ = 90◦. The spectrometer layout
is schematically shown in Fig. 10, details are reported in [54]. A large area

Fig. 10. Schematic view of the EUV spectrometer.

transmission grating with a line density of 1000 lines/mm will be used. The
spectral range is λ = 0.5 − 50 nm and the expected spectrum is optimally
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distributed on the CCD surface (size: 27× 13.5 mm2). The spectral resolution
of the spectrometer is mainly limited by the dimension of the plasma and
the pixel size of the soft x–ray CCD (13.5 × 13.5 µm2). At the wavelength
λ = 25 nm we expect a resolution of ∆λ/λ ≈ 8 × 10−3. The acceptance solid
angle is ∆Ω = 6 × 10−4 sr.

As additional diagnostics an optical spectrometer for the detection of con-
tinuum radiation and a CCD–based microscope pointing to the focus will be
employed. The microscope is used for characterization of the hydrogen beam
in terms of droplet number, size and speed and for initial alignment.

5 Summary

We have shown that x–ray Thomson scattering can be applied as a diagnostic
tool to elaborate correlated plasmas in the WDM regime. In particular, we pro-
pose a proof–of–principle experiment at the VUV FLASH facility at DESY
to measure equilibrium properties of a near–solid density hydrogen plasma.
High–brilliant coherent VUV FEL radiation at a wavelength of λ0 = 25 nm
will be used to scatter off the dense plasma. The collective Thomson scatter-
ing spectrum will be measured using a high resolution, high sensitivity trans-
mission grating EUV-spectrometer. As our theoretical calculations show, the
distinctive plasmon features expected in the spectrum, will allow to measure
the electron density and temperature. The plasma regime considered in this
paper lies in the range of ne = 1021 − 1022 cm−3 for the free electron density
and Te = 1 − 15 eV for the temperature. A plasma under these conditions is
generated by laser irradiation of a cryogenic hydrogen droplet beam. A time
delay between the pump and probe laser of the order of the relaxation time
(≈ 1 ps) will allow to probe the plasma at equilibrium condition.

The electron temperature will be determined by the asymmetry between the
red and blue shifted part of the spectrum. This property is directly related
to the detailed balance relation which is based on first principles. Therefore,
the method provides a reliable measure of the equilibrium temperature. The
position of the plasmon resonance is determined by the density. A calculation
of the dynamical structure factor for different electron densities allows to iden-
tify the plasmon resonance position by the maximum of the plasmon feature.
This method provides a reliable electron density measurement if collisional and
Landau damping as well as quantum statistical effects are accounted for in the
calculations. Estimations for the density can be obtained based on the plasmon
dispersion relation with a systematic error of less than 15% in the considered
plasma regime. Limiting factors of the proposed measurement have been esti-
mated. The spectral resolution, resulting from the finite FEL bandwidth and
EUV–spectrometer resolution, is sufficiently large to spectrally separate the
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plasmon from the Rayleigh peak. The number of scattered photons off the
plasmons has been estimated. More information will be obtained from addi-
tional diagnostics. For instance, the measurement of the continuum radiation
provides independent information on the plasma density and temperature.

The proposed plasma diagnostic method can be developed into a standard
tool for WDM research. Due to the unique features of x-ray and VUV FEL
radiation concerning brilliance and coherence, they are favorable sources for
Thomson scattering diagnostics which has the potential to be extended to
nonequilibrium plasmas in the future. This will need a time–resolved scatter-
ing experiment which will reveal the plasma dynamics in WDM and experi-
ments are currently proposed, e.g. at FLASH [55]. The experiment proposed
in this paper serves as a precursor to a systematic elaboration of the widely
unexplored regime of WDM.
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