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Efficient Loop-Free Minimum-Hop Routing
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Abstract—We introduce THORP (Totally Hop-Ordered Rout-
ing Procedure), a simple distributed algorithm for minimum-hop
routing that works in much the same way as traditional distance-
vector routing algorithms do. THORP eliminates routing-table
loops by having routers choose as their next hops to destinations
those neighbor routers that are totally ordered based on their
current distances, without requiring their next-hop routers to
correspond necessarily to minimum-hop paths. THORP is shown
to be loop-free, to converge to minimum-hop distances within a
finite time, and to be faster than the Diffusing Update Algorithm
(DUAL), which is the only loop-free shortest-path algorithm that
has been used successfully in practice and is part of Cisco’s
EIGRP.

Index Terms—loop-free routing, minimum-hop routing, multi-
path routing

I. INTRODUCTION

Most of the routing algorithms and protocols that run in
Internet, wireless networks, and the IoT today are based on
different approaches to shortest-path routing, which is the
subject of this paper. The Distributed Bellman-Ford (DBF)
algorithm is arguably the simplest example of these protocols,
and has been used in many routing protocols in the past,
including the original ARPANET routing protocol [15], the
Routing Information Protocol (RIP) [9], and RIPv2 [11].

As Section II summarizes, many approaches have been
proposed to eliminate the well-known looping problems as-
sociated with DBF. These approaches are based on either
destination sequence numbers that identify which distance
data are more recent, or inter-nodal coordination carried out
while routing tables are updated. As the examples in Section
III show, current approaches to loop-free routing based on
distance information are not well-suited for networks in which
minimum-hop routing is used, because they tend to over-react
to topology changes in their attempt to seek shortest paths at
the same time that loop freedom is maintained.

This paper introduces a different approach to distributed
minimum-hop loop-free routing in computer networks. Rather
than having routers search for minimum-hop paths while
attempting to prevent routing-table loops, each router selects
as its next hops to a destination those neighbor routers that
report shorter distances than the distance currently maintained

by the router itself, even if the choices do not correspond to
perceived minimum-hop paths.

Sections IV and V present the Totally Hop-Ordered Routing
Procedure (THORP), which provides one or multiple loop-
free minimum-hop routes to destinations at each router if they
exist, without incurring long delays converging to such routes.
In a nutshell, a router can change its next hop to a destination
only if it has neighbor routers with reported distances that are
strictly smaller than its own distance. Otherwise, the router
sends a query stating its current distance and a reference
distance equal to the value of its own distance prior to the
input event that prompted the query. A router that receives a
query and knows of a neighbor with distance shorter than the
reference distance stated in the query sends a reply stating
its own distance and the reference distance in the query;
otherwise, the router propagates the query specifying its own
distance and the requested distance in the query it received.
A router that forwards a reply states its own distance and the
reference distance in the response it receives.

Section VI shows that THORP is loop-free and converges
to minimum-hop routes within a finite time.

Section VII shows that THORP converges to valid routes
faster than DUAL [7], which has been used successfully for
many years as part of Cisco’s EIGRP [14].

Section VIII provides our conclusions.

II. RELATED WORK

DBF suffers from the non-convergence problem usually
called the counting-to-infinity problem. As a result, routing
protocols based on DBF are forced to declare a destination to
be unreachable when a predefined maximum-distance value is
reached, which limits the type of routing metric that can be
used, induces long convergence delays, and need not result in
convergence to shortest paths.

Over the years, many routing algorithms have been devel-
oped to eliminate the convergence problems of DBF, and in
some cases also prevent temporary loops. The first example of
alternatives to DBF was the broadcasting of complete topology
information together with the local use of Dijkstra’s shortest-
path first (SPF) at each router [15]. Many routing protocols and
algorithms (e.g., [8], [12]) are based on this approach and are
known to provide fast convergence on average, even though
they do not prevent temporary routing loops. Other approaches978-1-6654-8353-7/22/$31.00 (c)2022 IEEE



use partial topology information in the form of link states (e.g.,
[2], [16]), distances and second-to-last hops to destinations
(e.g., [3]), or complete path information in updates (e.g., DSR
[10]) and use different shortest-path algorithms locally.

A number of shortest-path routing protocols (e.g., DSDV
[13]) use destination sequence numbers to attain loop free-
dom, and RPL (Routing Protocol for Low Power and Lossy
Networks) [5], [20] is the most recent example. Even though
using sequence numbers to provide acyclic operation is ap-
pealing, the basic approach has been shown to incur temporary
routing-table loops when router failures, volatile memory, and
recycling of sequence numbers are involved (e.g., see [17]).

Several shortest-path routing approaches have been devel-
oped that provide loop-free routing by requiring nodes to
coordinate the updating of routing tables on a multi-hop
basis. However, the most popular of these schemes is the
Diffusing Update Algorithm (DUAL) [7] and is the basis
of Cisco’s EIGRP [1], [14]. Subsequent protocols apply this
approach to attain acyclic multi-path routing based on link-
state information [18] or distance vectors [6], [19], [21]. Babel
[4] is a recent proposal for acyclic routing based on combining
the diffusing computations introduced in DUAL with sequence
numbering.

Many other routing protocols have been proposed, but due
to space limitations we do not discuss them. DUAL is the only
loop-free routing algorithm that has been used successfully for
many years as part of a routing protocol, specifically EIGRP,
and hence we use it for comparison purposes.

III. MOTIVATION FOR THORP

Figure 1 shows a seven-node network in which DBF is exe-
cuted and link (c, d) fails. Nodes are routers and destinations,
and the distance from each router to destination d is stated
next to each router and arrowheads indicate the next hop to d.
Updates are indicated by U(h), where h is the hop count to
destination d.

For convenience, it is assumed that the network operates
synchronously in steps. Each router processes all messages
it received in the previous step and sends an update with
the result in the current step. As the figure illustrates, DBF
converges in just three steps in this scenario, and only a short-
lived routing-table loop is formed between routers b and c.

Fig. 1. Quick convergence with looping in DBF

Interestingly, the same short-lived routing loop would occur
using the topology-broadcast method, and the dissemination
of link-state information would take more steps than the
steps needed for DBF to converge. Unfortunately, even though
DBF can be very efficient in many cases, it does not always
perform well and cannot converge to correct routes after des-
tination failures or network partitions. For example, counting-

to-infinity would occur if both links (c, d) and (w, d) were to
fail. Furthermore, more complex routing loops could occur in
different topologies.

DUAL has been used successfully in EIGRP for quite some
time to eliminate routing loops. However, DUAL may result
in multiple routers being blocked from having next hops to
destinations while routers recompute shortest paths. Figure 2
illustrates this problem using the scenario of Figure 1.

DUAL requires a router to trust a distance reported from a
neighbor only if it renders a shortest distance and is strictly
smaller than its own feasible distance for a destination. The
feasible distance for a destination is the smallest value of the
local distance before a router sends a query. Let had and fad be
the distance and feasible distance at router a for destination d,
respectively, and Na be the set of neighbors of router a. The
“source node condition” (SNC) [7] imposed on a router a to
select a successor q for destination d is:

SNC : (hqd < fad ) ∧ (hqd = Min{hnd + l(a, n) | n ∈ Na})

Fig. 2. Delayed convergence and blocking in DUAL

As long as router a has a neighbor that satisfies SNC, it
updates its distance and next hop as in DBF and accordingly
sets fad = Min{fad , had} when it changes had.

If SNC is not satisfied and minimum-hop routing is used,
router a sets had = h∞ and fkd = h∞, and sends a query
stating had = h∞ to all its neighbors (denoted by Q(h∞) in
Figure 2). Router a then must wait for replies (denoted by
R(h) in Figure 2) from all its neighbors before it is allowed
to change its next hop for destination d.

A router sends a reply to a query when: (a) it has already
sent a query, (b) its own distance is not affected by the query,
or (c) it receives all the replies to a query that it forwarded
or originated. Because of this type of signaling, DUAL may
incur long delays to converge and may cause many routers
to be blocked while queries and replies propagate along the
directed acyclic graphs (DAG) defined by the next-hop entries
in routing tables.

In the example of Figure 2, it takes seven steps for routers a,
b, and c to attain valid paths while the multi-hop coordination
is taking place, even though physical paths to destination d
do exist. This motivates the need to explore a more efficient
approach to avoid routing loops in the context of minimum-
hop routing. The intended result is a distributed routing
algorithm that is loop-free, is as fast as DBF in the absence
of network partitions or destination failures, and converges
quickly when network partitions or destination failures occur.



IV. THORP

A. Overview

THORP uses routing messages that contain updates, queries,
and replies. An update states the current minimum-hop dis-
tance at the router sending the update. A query specifies the
current distance to a destination and a reference distance that
must be met for a response to be sent. A reply states the
distance of the router sending the reply and the reference
distance stated in the query that prompted the reply.

The reference distance used in THORP is similar in some
sense to the feasible distance used in DUAL. As long as a
router can choose as its next hop to a destination a neighbor
that reported a distance that is shorter than its own reference
distance, the router updates its routing table and sends updates
in much the same way as in DBF, and its distance and
reference distance are the same. However, if a router cannot
find a neighbor with a reported distance strictly smaller than
its reference distance, then the router remembers the value of
its reference distance, updates the value of its own distance
as needed, and sends a query to all its neighbors stating its
distance and reference distance. The query is intended to find a
router with a distance that is shorter than the reference distance
it states.

The signaling of both THORP and DUAL include queries
and replies; however, they use them differently. A router in
DUAL resets its feasible distance to equal infinity before it
sends a query, and a query only states the current distance
of a router. This allows a router to trust a new minimum
distance when all neighbors send their replies, but prevents the
router from being able to trust the first valid reply. By contrast,
THORP allows a router to trust the first reply to its query by
making routers remember their reference-distance values and
by including those values in queries and replies. Furthermore,
storing reference distances enables routers to forward queries
to their next hops to destinations if they have valid routes and
are simply helping to resolve a query.

A query from a router p propagates until it reaches a router
r that has a neighbor n with a distance smaller than the
reference distance stated in the query. Router r originates a
reply stating its current distance plus the reference distance in
the query. This causes replies to be sent back towards router
p that state the same reference distance reported by router r
and the current distances at the relaying routers.

A router that initializes or restarts cannot send or process
new routing messages until an initialization delay elapses that
is longer than the time needed by all its prior neighbors to
determine that the router stopped being their neighbor. This is
done simply to tolerate the loss of routing state due to router
failures and he lack of non-volatile memory.

B. Information Exchanged and Maintained

The set of network nodes (routers and destinations) is
denoted by N , and E denotes the set of links in a network.
A node in N is denoted by a lower-case letter, and a link
between nodes n and m in N is denoted by (n,m). The set

of nodes that are immediate neighbor routers of router k is
denoted by Nk.

Routers may maintain multiple routes to destinations. The
path corresponding to the nth route at router k to destination
d is denoted by P k

d (n), and the next hop along that path is
denoted by skd(n), with skd(n) ∈ Nk. Path P k

d (n) consists of
the concatenation of the link (k, skd(n)) with a path P skd(n)

d (m),
i.e., P k

d (n) = (k, skd(n))P
skd(n)
d (m).

Routers exchange routing messages reliably to update their
routing information. A routing message from router k is
denoted by Mk and contains its identifier k and a list of one
or more entries, each with an update, query, or reply.

An update for destination d is denoted by U(d, hkd), where
hkd is the local minimum-hop distance to destination d.

Update U(k, 0) from router k indicates that the update is a
“hello” to refresh the presence of k.

A query is denoted by Q(d, hkd, ρ
k
d), where ρkd is a requested

distance equal to the smallest requested distance received or
computed at the router propagating the query.

A reply is denoted by R(d, hkd, ρ
k
d), where ρkd is copied from

the query being answered.
Each router k knows its own identifier (k) and maintains a

Neighbor Table (NT k), a Distance Table (DT k), a Routing
Table (RT k), and its initialization status (σk).
NT k lists an entry for each known neighbor router n ∈ Nk.

The entry for neighbor n states a lifetime LT k
n for the neighbor

entry of router n. The maximum lifetime of a neighbor entry
is a constant LT defined for the network.
DT k lists the information reported by each neighbor. The

entry in DT k for destination d at router k is denoted by
DT k(d) and specifies for each neighbor p ∈ Nk the distance
hkdp to destination d. If a neighbor q has not reported any
distance for d, then router k sets hkdq ← h∞ and okdp ← 0.
RT k lists an entry for each destination d. The entry in

RT k for destination d is denoted by RT k(d) and states: The
minimum-hop distance (hkd), the preferred next hop (skd), the
set of next hops (Sk

d ), and a local reference distance (rkd ).
Setting skd = 0 when Sk

d = ∅ denotes the fact that there is no
next hop to d.

The value of the reference distance rkd equals the value of
hkd when the router has one or more valid next hops, or the
smallest value of a requested distance stated in a query created
or forwarded by the router when it becomes active.

C. Signaling

For simplicity, it is assumed that routing messages are sent
reliably, such that a router receives an acknowledgment to
its routing message from a neighbor before it sends the next
message to the same neighbor. Messages are sent periodically
after routers wait for short or long time intervals.

Initialization: A router k is initialized after an initialization
delay elapses. At that point, the router has a neighbor set Nk,
σk = T , and sets hkk = rkk = 0, and skk = k. For each q ∈ Nk,
the router also sets hkkq = rkkq = h∞, hkqq = rkqq = h∞. Router
k then sends a routing message with U(k, 0).



Periodic Messaging: Router k maintains a timer UT k to
ensure that it sends a routing message soon after it updates its
routing table or decides to forward or respond to a query, and
sends routing messages often enough to inform its neighbors
of its presence. If a router k needs to send a routing message
with updates, it does so after a minimum amount of time tmin

has elapsed from the time it sent its prior routing message.
In the absence of updates to its routing table, a router sends

a message with a “hello” update U(k, 0) to update the lifetime
entries maintained for itself by its neighbors no later than tmax

seconds from the time it sent its last message. The timer tmax

is shorter than a maximum lifetime LT . Router k sets UT k

equal to tmax after sending a routing message, and sets UT k

equal to tmin after preparing updates or queries to be sent in
response to an input event.

D. Updating NT k and DT k

Router k updates NT k when an adjacent link (k, q) changes
status, and updates DT k when any type of input event occurs,
such as when an adjacent outgoing link changes its weight,
an immediate neighbor router fails to send updates before the
lifetime for its entry in NT k expires, or a routing message is
received from a neighbor.

A router k detects that a new neighbor q is present when
it receives a “hello” update from q (U(q, 0)) and its local
state for q has hkqq = hkkq = h∞, which indicates that no
messages were being received over link (k, q). In this case,
router k immediately sends a routing message with an update
U(d, hkd) for each destination d for which hkd < h∞. If router
k receives an update, a query, or a reply from neighbor q
reporting a distance hqd, then it updates hkdq ← hqd.

E. Updating RT k

After router k updates NT k and DT k, it updates RT k as
part of the processing of an input event as shown in Algorithm
1. The way in which router k updates RT k depends on its
routing state, which is determined by the following condition
T :

T :
(
∃ q ∈ Nk

[
rkd > hk

dq

])
∨
(
∀q ∈ Nk

[
hk
dq = h∞

])
(1)

Condition T states that router k either has neighbors with
reported distances smaller than its own reference distance, or
all its neighbors have declared the destination to be unreach-
able. A router is said to be passive if T is true and is active
otherwise.

We observe from Algorithm 1 that rkd = hkd as long as
router k is passive. Accordingly, router k can determine that
it is passive if rkd = hkd and that it is active otherwise. Router
k sends an update, a query, or a reply depending on the the
input event and whether it is passive or active.

Processing Updates: Router k takes the following steps when
it receives update U(d, hqd) or detects a link-status change:

(a) If router k remains or becomes passive, then it sends an
update U(d, hkd).

(b) If router k becomes active, then router k originates a
query Q(d, hkd, ρ

k
d = rkd).

(c) If router k remains active after the input event and
at least one neighbor v has reported a finite distance, then
router k sends a query Q(d, hkd, ρ

k
d = rkd) if hkd was updated;

otherwise, router k stays silent.

Processing Replies: Router k takes the following steps when
it receives reply R(d, hqd, ρ

q
d) from neighbor q:

(a) Router k sends a reply R(d, hkd, ρ
k
d = ρqd) if it either

becomes passive and ρqd ≤ rkd , or it remains passive and either
ρqd < rkd or the value of hkd was updated. These actions help
propagate a reply towards the origin of a pending query or
provide a necessary update to its neighbors.

(b) Router k originates a query Q(d, hkd, ρ
k
d = rkd) if it

becomes active as a result of the reply from neighbor q.
However, if q was in Sk

d before the reply made router k become
active, the path from q to d cannot include k because T is
true at q. Accordingly, router k updates skd ← q, Sk

d ← {q},
hkd ← hqd.

(c) Router k stays silent if it was active before it processes
the reply from q and remains active after it processes the reply.

Processing Queries: If router kreceives query Q(d, hqd, ρ
q
d)

from neighbor q, the router takes the following steps based on
its own state and the content in the query:

(a) Router k sends reply R(d, hkd, ρ
k
d = ρqd) if it is passive

and has a neighbor v such that hkdv ≤ ρ
q
d.

(b) Router k sends query Q(d, hkd, ρ
k
d = ρqd) if it remains

passive but it has no neighbor v such that hkdv ≤ ρ
q
d.

(c) Router k sends query Q(d, hkd, ρ
k
d = ρqd) if it either

becomes active or remains active and ρqd < rkd . It also updates
rkd ←Min{rkd , ρ

q
d}.

(d) Router k stays silent if it is active before the query from
q is received and all its neighbors have reported h∞.

Algorithm 1 Routing Table Update (RT k(d))
INPUT: NTk , DTk(d) , RTk(d)

ROUTER IS PASSIVE:
if
(
∀q ∈ NTk(hk

dq = h∞)
)

then
Destination is unreachable:
Sk
d ← ∅; s

k
d ← 0; hk

d ← h∞
end if
if
(
∃q ∈ NTk

(
[hk

dq < rkd ]
))

then
Router k is ordered with respect to d:
hk
d ←Min{hk

dn + 1 | n ∈ NTk}; rkd ← hk
d ;

Sk
d ← {n ∈ NTk | hk

dn = hk
d − 1};

skd ←Min{q ∈ Sk
d}

end if
ROUTER IS ACTIVE:
if
(
∀q ∈ NTk

(
hk
dq ≥ rkd

))
then

hk
d ← h∞; rkd ← rkd (reference distance is not updated);

Sk
d ← ∅; s

k
d ← 0

end if

V. EXAMPLES OF THORP OPERATION

Figure 3 illustrates why THORP provides loop-free paths
faster than DUAL using the same example of Figures 1 and
2. The distance and reference distance for destination d are
indicated next to each router. Next hops to destinations are



indicated by arrowheads. An update, query, and response sent
by router k for destination d is denoted by U [hkd], Q[hkd, ρ

k
d],

and R[hkd, ρ
k
d], respectively.

Routers a, b, and c are blocked as in DUAL; however,
blocking lasts for only five steps rather than seven, because
an active router can become passive with the first reply to its
query. Router c becomes active and sends a query Q(d, h∞, 1)
when link (c, d) fails, and routers b and c become active and
send queries when they receive queries with a distance of h∞
from the only neighbors that had reported shorter distances
to d than heir own distances. Router v replies to the query
from b with R(d, 2, 1), because hvdw = 1 = ρbd. Router b
becomes passive after processing the reply from router v,
router c becomes passive after processing the reply from b,
and router c becomes passive after receiving the reply from b.

Fig. 3. Fast loop-free convergence in THORP

Figure 4 illustrates the loop-free and fast convergence
of THORP after a network partition or destination failure.
Routers take only four steps to converge to h∞ without
creating a loop.

DBF would count to infinity in this example. DUAL can be
shown to require seven steps to converge, because the query
started by router c must traverse the path c→ b→ a→ u for
replies to be sent to router c, and the query started by router
w must traverse the path w → v → u → a for replies to be
sent to router w.

The reader can also verify that four steps would be needed to
attain consistent link-state information, but temporary routing
loops would occur.

Fig. 4. Loop-freedom in THORP after a network partition or destination
failure

VI. THORP CORRECTNESS

Theorems 1 to 6 prove that THORP is loop-free and
converges to optimal paths within a finite time. The next hop,
distance, and reference distance from router n to destination
d at a given time t are denoted by snd (t), hnd (t) and rnd (t),
respectively.

Theorem 1: A path in which T is satisfied at every router
along the path cannot be a loop.

Proof: Assume that T is true at every router along a path
L. For the sake of contradiction, assume that L is a routing-
table loop that excludes destination d at time t and let L =
{v1 → v2 → ... → vh → vh+1}, where vh+1 = v1. Each
router vi ∈ L informs its neighbors of its distance to d at
a time denoted by ti, where ti < t, and its neighbors in L
use that value at a subsequent time to determine whether T is
satisfied. The time when router vi ∈ L makes router vi+1 ∈ L
a next hop to d is denoted by t+i and t+i ≤ t, which implies
that svid (t) = svid (t+i ), hvid (t) = hvid (t+i ), and rvid (t) = rvi

d (t+i )
for all vi ∈ L.

The following results are a consequence of the fact that T
must be satisfied at each router vi ∈ L:

(a) rvid (t+i ) = rvid (t) > hvidvi+1
(t);

(b) hvidvi+1
(t) = hvidvi+1

(t+i ) = h
vi+1

d (ti+1);
(c) hvi+1

d (ti+1) = r
vi+1

d (ti+1) = r
vi+1

d (t).
It follows from (a), (b) and (c) that

∀vi ∈ L
(
rvid (t) > r

vi+1

d (t)
)
.

However, this constitutes a contradiction, because it implies
that rvid (t) > rvid (t) for all vi ∈ L and this is impossible;
therefore, the theorem is true.

Theorem 2: No routing-table loop can be created in THORP
when routers transition from passive to active state.

Proof: The proof follows from Algorithm 1, because a
router that transitions to the active state either has no next
hop or must keep its current next hop. The first case negates
the existence of a routing-table loop. In the second case, the
current next hop was part of a path established by routers in
passive state, which negates the existence of a routing-table
loop because of Theorem 1.

Theorem 3: THORP is loop-free for any destination d.
Proof: If T is always satisfied at every router, then it

follows from Theorem 1 that no routing-table loops can form.
Therefore, if follows from Theorems 2 that the proof needs to
show that no routing-table loop can be created when a router
transitions from active to passive state.

For a router k to become passive once it is active, it must
receive an update or a response such that T is satisfied, and
a router n ∈ Nk can send an update or a response to router
k only if it is passive itself.

The path from n to d either consists of routers that are
passive, or consists of both active and passive routers. In the
first case, it follows from Theorem 1 that router k cannot
create a loop by setting n = skd because then the path from
n to d is loop-free and extending that path with link (k, n)



cannot create a loop. In the second case, the path from n to
d is the concatenation of subpaths, each consisting of one or
more routers that are all passive or are all active, and it follows
from Theorems 1 and 2 that such subpaths are loop-free and
hence extending the path from n to d with link (k, n) cannot
create a loop. Therefore, the theorem is true.

Theorem 4: THORP converges to minimum-hop routes for
all reachable destinations within a finite time after network
changes stop occurring in a finite network.

Proof: Assume that routers execute THORP correctly but
router k converges incorrectly with hkd > hkd[o], where hkd[o]
is the minimum-hop distance from router k to destination d
according to the sum of link weights in any path from k to d.

Given that the network is connected and finite, all loop-
free paths in the network are finite and it takes a finite time
for updates and responses starting from destination d or any
other router to propagate over any loop-free path. Furthermore,
because THORP is executed correctly, the optimum distance
hkd[o] must correspond to a loop-free path from k to d through
some neighbor router s ∈ Nk.

Updates, queries and replies must propagate over loop-free
paths because THORP is loop-free (Theorem 3). This implies
that router k must receive an update or a reply from router
s reporting hsd, which makes hkds = hsd. However, this is
a contradiction to the assumption that THORP is executed
correctly, because then Algorithm 1 would require router k to
make hkd[o] = 1 + hkds its distance to destination d.

Theorem 5: THORP converges to h∞ for all unreachable
destinations within a finite time after network changes stop
occurring in a finite network.

Proof: Assume that a router nk belongs to a connected
component from which destination d is unreachable starting at
time t0, and that no network changes occur after time tn ≥ t0.
For the sake of contradiction, assume that router nk converges
to a finite distance for d at time tk ≥ tn.

If router nk that has a distance hnk

d < h∞ at time tk then
it must have a next-hop neighbor nk−1 ∈ Nnk such that
hnk

dnk−1
< rnk

d . Because THORP is loop-free (Theorem 3),
there must be an originating router no that sent an update or a
response with a distance hno

d < h∞ that is the smallest along
the path from nk to d and allowed updates or responses with
finite distances to THORP back to nk before time tk, such
that no router along the path from k to d changes its distance
or preferred next hop to d after some time tk; furthermore, no
must be a neighbor of destination d. This is a contradiction,
because d is not in the connected component of nk starting at
time t0 < tk, and no router in the connected component can
consider itself being a neighbor of d a finite time after t0.

Theorem 6: Reference distances converge to minimum-hop
distances at every router within a finite time after network
changes stop occurring in a network.

Proof: Assume that all routers in a connected component
of a network have converged to their minimum-hop distances
for a destination d that can be reached by those routers at time
to. This implies that T is satisfied at every router and each

router updates its routing state according to Algorithm 1. This
implies that hkd = rkd for every router k.

Assume that all routers in a connected component of a
network have converged to a distance of h∞ to destination
d at time to. This implies that d is not reachable from those
routers. For the sake of contradiction, assume that router k has
converged to rkd < hkd = h∞ at time tk ≥ to and maintains
that value of rkd indefinitely. Each router q ∈ Nk must report
a distance equal to h∞ by time to, which is a contradiction to
rkd < hkd = h∞, given that the updates received by k from all
its neighbors satisfy T and hence router k must set rkd = hkd
within a finite time after to according to Algorithm 1.

VII. COMPARING THORP AND DUAL AGAINST AN
OPTIMUM MINIMUM-HOP ROUTING METHOD

Performance comparisons of routing protocols are typically
done by simulations. Unfortunately, such comparisons render
results applicable only to the scenarios used in the simulations,
and can be biased depending on such implementation details as
the length of timers and topology characteristics. On the other
hand, using worst-case performance metrics alone does not
provide enough insight on the efficiency of signaling compared
to an optimum solution.

To compare DUAL and THORP in a way that is inde-
pendent of implementation parameters and network topology
characteristics, we consider an Ideal Loop-Free Routing algo-
rithm (ILR) that somehow updates routing information in the
optimum amount of time and incurs the optimum signaling
overhead. We define the time optimality (TO) and signaling
optimality (SO) of a routing algorithm to be the worst-case
additional time in number of steps and worst-case additional
signaling in number of messages that the routing algorithm
takes to converge compared to ILR.

In the following, w denotes the network diameter in number
of hops, A denotes the average degree of a router, and N
and E are the number of routers and number of links in
the network, respectively. Figure 5 shows a network topology
used to discuss worst-case performance of routing algorithms.
The numbers next to nodes in the figure denote minimum-hop
distances to destination d, solid links with arrowheads are part
of shortest paths to d, and links in dashed lines are assumed
to exist only when stated.

Fig. 5. Example topology for algorithm comparison

The reader should not view the topology of Figure 5 simply
as a specific network topology. It is meant as an instrument
that takes advantage of the fact that d is the destination to
illustrate all cases in which signaling messages must either
traverse the diameter of the network or a much shorter path,



depending on the presence of certain links. More complex
topologies could be drawn; however, they would all have the
same diameter and would include the necessary dashed links
that would allow signaling messages not to traverse the entire
network diameter.

ILR: We assume that routers executing ILR somehow can
differentiate between a neighbor not responding because it
failed or because the link to it failed. This ability is not
available in a practical distributed routing algorithm, but serves
to derive a performance target.

If ILR is executed, it takes only w steps and N × A
messages for all routers to converge to h∞ as their distances
to destination d after the failure of that destination. This is the
case independently of the existence of dashed links,

The number of steps and messages needed in ILR after
the failure of link (n1, d) depend on the existence of dashed
links. If none exists, it takes 2w steps and 2w × A messages
for routers nw to n1 to correct their routes to d. On the other
hand, if link (n1, nN−1) exists, router n1 may just select nN−1
as next hop and send an update that causes routers to take w
steps and w×A messages for routers n1 to nw to correct their
routes to d.

DUAL: After the failure of destination d, the diffusing
computations started by routers n1 and nN−1 after d fails
involve routers along paths of length w; therefore, DUAL takes
Θ(2w) steps and Θ(2NA) messages to converge in this case.

If link (n1, d) fails and link (n1, nN−1) exists and no dashed
link (ni, nN−i−1) exists (1 ≤ i ≤ w), then the diffusing
computation by router n1 involves routers along paths of
length w; therefore, given that n1 can send an update only after
receiving all the replies to its query, DUAL takes O(3w) steps
and O(3NA) messages to converge in this case. Accordingly,
DUAL has TO = O(2w) and SO = O(2NA).

THORP: If destination d fails, routers take Θ(w) steps and
O(NA) messages to set their distances to d equal to h∞. This
is the case because all routers must receive queries from their
next hops stating a distance of h∞ and a requested distance
of 1, the routers must forward those queries, and routers that
only have neighbors reporting distances of h∞ become passive
silently.

If link (n1, d) fails and no link in dashed lines exists, routers
take Θ(2w) steps to correct their routing entries, w − 1 steps
to block routers n1 to nw and w steps to provide them with
the new minimum-hop distances based on the distance from
nw+1 to d, and this incurs O(2wA) messages.

If link (n1, d) fails and link (n1, nN−1) exists, router n1
sends query Q(d, h∞, 1). This makes router nN−1 send a reply
because d reports hdd = 0 and router n2 propagates the query,
and router n1 sends update U(d, 2) after processing the reply
from nN−1. A query and an update traverse the path from n1
to nw with a query stating h∞ or a finite distance depending on
whether a dashed link (ni, nN−i−1) exists, where 1 ≤ i ≤ w.
All routers along the path n1 → n2 → ... → nw propagate a
query followed immediately by an update, which takes w+ 1
steps and O((w + 1)A) messages.

Hence, THORP has TO = Θ(1) and SO = Θ(1). This
means that THORP converges faster than DUAL in most cases.
This also indicates that the convergence time of THORP is
comparable to or shorter than the convergence time of other
minimum-hop distributed routing algorithms.

VIII. CONCLUSIONS

THORP is a simple minimum-hop distributed routing al-
gorithm that attains loop-free multi-path routing using only
distance information. THORP uses updates, queries and replies
like DUAL does. However, it is far more efficient because a
query can be resolved with the first response that satisfies the
requested distance stated in the query, rather than requiring
all neighbors to send their responses. THORP was proven to
be correct, and THORP was also shown to be near optimal in
terms of its convergence speed.

Our future work focuses on extending the approach in-
troduced in THORP beyond minimum-hop routing, and im-
plementing and testing THORP in specific scenarios (e.g.,
networks with wired links and wireless networks).
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