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Abstract—In conventional speech synthesis, large amounts of
phonetically-balanced speech data recorded in highly-controlled
recording studio environments are typically required to build a
voice. Although using such data is a straightforward solution
for high quality synthesis, the number of voices available will
always be limited, because recording costs are high. On the other
hand, our recent experiments with HMM-based speech synthesis
systems have demonstrated that speaker-adaptive HMM-based
speech synthesis (which uses an ‘average voice model’ plus model
adaptation) is robust to non-ideal speech data that are recorded
under various conditions and with varying microphones, that
are not perfectly clean, and/or that lack phonetic balance. This
enables us to consider building high-quality voices on ‘non-TTS’
corpora such as ASR corpora. Since ASR corpora generally
include a large number of speakers, this leads to the possibility
of producing an enormous number of voices automatically.

In this paper we demonstrate the thousands of voices for
HMM-based speech synthesis that we have made from several
popular ASR corpora such as the Wall Street Journal (WSJ0,
WSJ1, and WSJCAM0), Resource Management, Globalphone
and SPEECON databases. We also present the results of as-
sociated analysis based on perceptual evaluation, and discuss
remaining issues.

J. Yamagishi*, S. King, and O. Watts are with the Centre for Speech
Technology Research (CSTR), University of Edinburgh, Edinburgh, EH8 9AB,
United Kingdom. TEL: +44-131-650-4434 FAX: +44-131-650-6626 E-mail:
jyamagis@inf.ed.ac.uk, simon.king@ed.ac.uk, and o.s.watts@sms.ed.ac.uk.
*Corresponding author.
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I. INTRODUCTION

Statistical parametric speech synthesis based on hidden

Markov models (HMMs) [?] is now well-established and can

generate natural-sounding synthetic speech. In this framework,

we have pioneered the development of the HMM Speech

Synthesis System, HTS (H Triple S) [?], [?].

In the conventional speech synthesis framework including

HTS, large amounts of phonetically-balanced speech data

recorded in highly-controlled recording studio environments

are typically required to build a voice. Although using such

data is a straightforward solution for high quality synthesis,

the number of voices available will always be limited, because

the costs associated with recording and manually annotating

speech data are high.

Another practical, but equally important, reason is foot-

print available for text-to-speech (TTS) synthesis systems. In

general, disk space available for TTS systems in commercial

products is limited and thus it is infeasible for the systems to

have a large variety of voices since the number of voices is a

factor of footprint.

On the other hand, our recent experiments with HMM-based

speech synthesis systems have demonstrated that speaker-

adaptive HMM-based speech synthesis (which uses an ‘aver-

age voice model’ plus model adaptation) is robust to non-ideal

speech data that are recorded under various conditions and

with varying microphones, that are not perfectly clean, and/or

that lack phonetic balance [?], [?]. In [?] a high-quality voice

was built from “found” audio, freely available on the web.

These data were not recorded in a studio and had a small

amount of background noise. The recording condition of the

data was not consistent: the environment and microphone also

varied. This enables us to consider building high-quality voices

on other ‘non-TTS’ corpora such as ASR corpora. Since ASR

corpora generally include a large number of speakers, this

leads to the possibility of producing an enormous number of

voices automatically.

In addition, speaker-adaptive HMM-based speech synthesis

is efficient in the sense of footprint. Compared with so-

called unit-selection synthesis, the footprint of HMM-based

speech synthesis systems is usually smaller because we store

v1anico3
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statistics of acoustic subword models rather than templates

of the subword units [?]. Furthermore the statistics of the

subword models in the speaker-adaptive HMM-based speech

synthesis (i.e. average voice models) is speaker-independent

and thus can be shared among an arbitrary group of speakers.

The speaker-dependent footprint is only a set of transforms

used for speaker adaptation, which is usually much smaller

than the statistics of the subword models since the transforms

are further shared among the subword models.

In this paper, we explain the thousands of voices for

HMM-based speech synthesis that we have made from several

popular ASR corpora such as the Wall Street Journal databases

(WSJ0, WSJ1 [?], and a Cambridge version of WSJ0 called

WSJCAM0 [?]), Resource Management (RM) [?], Global-

Phone [?] and Finnish and Mandarin SPEECON [?]. We

believe these voices form solid benchmarks and provide good

connections to ASR fields. This paper also reports a series of

analysis results for investigating the effect of such non-ideal

data from a TTS perspective, suggests useful applications for

the thousands of voices, and addresses outstanding issues1.

This paper is organized as follows. Section ?? gives an

overview and analysis of the ASR corpora used for building

TTS systems. A brief overview of speaker-adaptive HMM-

based speech synthesis, details of voices built, and applications

which make use of thousands of TTS voices are also given.

Section ?? introduces evaluation methodologies used. Sections

?? and ?? describe analysis of the use of ASR corpora for TTS.

Then section ?? concludes the paper by briefly summarizing

our findings.

II. TTS VOICES TRAINED ON ASR CORPORA

A. TTS and ASR speech databases

In conventional speech synthesis research, phonetically-

balanced speech databases are typically used. A phonetically-

balanced dataset (e.g., complete diphone coverage) is required

for each individual speaker, since conventional systems are

speaker-dependent. In multi-speaker sets of speech synthesis

data (e.g., CMU-ARCTIC2), it is common for the same set of

phonetically-balanced sentences to be re-used for each speaker.

Therefore, pooling the data from multiple speakers does not

always significantly increase phonetic coverage.

Compared to this, the sentences chosen for ASR corpora

tend to be designed to achieve phonetic balance across multiple

speakers, or are simply chosen randomly. Therefore, phonetic

coverage increases with the number of speakers. However,

each individual speaker typically records a very limited num-

ber of utterances (e.g., fewer than 100 utterances).

However, we hypothesised that it would be feasible to

build speaker-adaptive HTS systems using ASR corpora, since

adaptive training techniques (e.g., SAT [?]) can normalize

speaker differences, and since the total phonetic coverage of

ASR corpora may be better than that of TTS (see Section

??). Therefore we used a number of recognized, publicly

1In this paper we do not explore multilingual or cross-lingual approaches to
acoustic modeling. We simply use language-dependent acoustic models and
TTS systems.

2A free database for speech synthesis: http://festvox.org/cmu arctic/

TABLE I
DETAILS OF ENGLISH ASR CORPORA USED FOR BUILDING HMM-BASED

TTS SYSTEMS.

Corpus (subset) Speakers Sentences/speaker Sentences

RM (ind train) 80 40 3200

RM (ind dev) 40 40 1600

RM (ind eavl) 40 40 1600

RM (ind total) 160 40 6400

RM (dep dev) 12 100 1200

RM (dep eval) 12 (dep dev) 100 1200

RM (dep total) 12 200 2400

WSJ0 (short) 84 86.1 7236

WSJ0 (long) 12 600 7201

WSJ0 (very long) 3 (long) 2400 7199

WSJ0 (dev) 10 194.8 1948

WSJ0 (eval) 8 163.4 1307

WSJCAM0 (train) 92 85.4 7861

WSJCAM0 (dev) 20 73.5 1471

WSJCAM0 (eval) 28 74.1 2076

WSJCAM0 (total) 140 81.5 11408

WSJ1 (short) 200 191.3 38278

WSJ1 (long) 25 1241.6 31029

available ASR corpora – the Wall Street Journal databases

(WSJ0, WSJ1, and WSJCAM0), Resource Management (RM),

GlobalPhone, Finnish and Mandarin SPEECON, and Japanese

JNAS [?]. The subsections which follow overview the ASR

databases in each language.

B. English ASR speech databases

Table ?? gives detailed information on the number of

speakers and sentences included in pre-defined subsets of the

English ASR corpora. No speakers (except a very limited

number of speakers included in the subsets called “very long”

in WSJ0 or “long” in WSJ1) have a sufficient number of

sentences to train HMMs that can be used for TTS systems.

For the training of speaker-dependent HMMs, we usually

require over five hundreds sentences. Therefore building TTS

voices from these ASR corpora is, in itself, a new challenge.

Since the English corpora provide varying quantities of

transcribed read speech data of mostly good quality (though

not in the same category as purpose-built speech synthesis

databases), they were used for 1) comparison of speaker-

dependent and speaker-adaptive HMM-based TTS systems,

2) analysis of the effect of the quantity of data used for the

average voice models, and also 3) comparison of footprints of

acoustic models built. These topics are mentioned in Sect. ??,

Sect. ??, and Sect. ??, respectively.

The WSJ0 was particularly well-suited for the comparison

of speaker-dependent and speaker-adaptive HMM-based TTS

systems. The speaker-dependent systems were built from the

subset called “very long term” which includes about 2,400

sentences per speaker for a small number of speakers. Average
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(a) Clean data recorded in office space

(b) Noisy data recorded in public space

Fig. 1. Spectrograms of clean and noisy data included in the Mandarin
SPEECON database.

voice models were built using other subsets: short term,

long term (excluding the speakers from very long term),

development, and evaluation. In total, 110 speakers utter from

80 to 600 sentences each. We compared speaker-dependent

models trained with a reasonably large amount of data (2,400

sentences – twice the size of a single-speaker CMU-ARCTIC

dataset) with various speaker-adaptive systems.

For the analysis of the effect of the quantity of speech data

used for training the average voice models, and comparison

of footprints of the acoustic models built, we used speaker-

independent subsets (short, train, or ind train in Table ??) of

the RM, WSJ0, WSJCAM0, and WSJ1 databases and built

average voice models on each database. The total amounts

of speech data of the subsets for RM, WSJ0, WSJCAM0,

and WSJ1 are 5 hours, 15 hours, 22 hours, and 66 hours,

respectively in terms of duration including silences and pause.

C. Finnish and Mandarin SPEECON databases

For the Finnish and Mandarin average voice models, we

have used the SPEECON ‘Speech Databases for Consumer

Devices’ [?]. The SPEECON databases include speech data

recorded in various conditions with various amounts of back-

ground noise, detailed below. We directly cite definitions of

the noise categories from [?]:

Office

mostly quiet; if background noise is present, it is

usually more or less stationary.

Entertainment

a home environment but noisier than office; the noise

is more coloured and non-stationary; it may contain

music and other voices.

Public place

may be indoor or outdoor; noise levels are hard to

predict.

Car

a medium to high noise level is expected of both sta-

tionary (engine) and instantaneous nature (wipers).

Sample spectrograms for Mandarin speech recorded in office

and public space environments are shown in Figure ??. Noise

levels in dB [A] for each environment included in Mandarin

SPEECON are shown in Table ??. We can see that the

TABLE II
NOISE LEVEL IN DB [A] FOR EACH ENVIRONMENT INCLUDED IN THE

MANDARIN SPEECON DATABASE.

Noise dB [A]

Environment Mean Variance Min Max

Office 44.7 25.5 34 54

Public space 56.7 45.3 41 73

Entertainment 46.9 24.2 37 61

Car 57.0 130.0 34 71

TABLE III
DETAILS OF THE MANDARIN SPEECON CORPUS USED FOR BUILDING

AVERAGE VOICE MODELS. THE FINNISH SPEECON CORPUS ALSO HAS

THE SAME STRUCTURE.

Environment Speakers Sentences/speaker Sentences

Office 200 29.6 5916

Public space 180 29.9 5378

Entertainment 75 29.9 2240

Car 75 30.0 2247

Total 530 29.8 15781

public space and car environments have larger means and

variances. Details of each environment are shown in Table

??. The lengths of speech data recorded in office, public

space, entertainment, and car are 12.3 hours, 11.3 hours, 4.9

hours, and 5.2 hours, respectively. The structure of the Finnish

SPEECON database is identical to that of the Mandarin one.

Since the SPEECON corpora provide speech data recorded

in various conditions, they were used for 1) comparison with

purpose-built perfectly clean high-quality speech synthesis

databases and 2) analysis of the effect of inconsistent recording

conditions. These topics are mentioned in Sect. ?? together.

For the analysis of the effect of the inconsistent recording

conditions, we chose a set of speech data recorded in the

relatively quiet “office” environments (although this is not

still perfectly clean: see Max value!) for training the baseline

system and compared it with a system using all data regardless

of the environment. Note that the system has about three times

as much speech data as the baseline system. If the amount of

noisy data is equal to that of clean speech data, then clearly

the TTS voices adapted from the model trained on the noisy

data will be worse than those from the model trained on clean

data. We therefore analyze the advantages (and disadvantages)

of the more likely situation, where much more noisy data is

available than clean data.

For the comparison with purpose-built perfectly clean

speech synthesis databases, we utilized the systems above

and a normal TTS system trained on phonetically-balanced

speech data recorded in highly-controlled recording studio

environments.

The databases also include isolated word or spelling pronun-

ciation utterances and phonetically balanced sentences. Since

we are unsure of the effects of using large quantities of isolated

word or spelling pronunciation utterances on synthesis, we

used only phonetically balanced sentences as training sen-

tences for the average voice model in this experiment.
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D. Japanese JNAS and Spanish Globalphone databases

The Japanese Newspaper Article Sentences database

(JNAS) contains speech recordings and their orthographic

transcriptions of 306 speakers (153 males and 153 females)

reading excerpts from the Mainichi Newspaper and the ATR

503 phonetically balanced sentences [?]. From the database,

we randomly chose 50 female and 50 male speakers, who

have a total of 14134 utterances, as training speakers for

the Japanese average voice models. The length of the chosen

speech data is 19.5 hours.

The GlobalPhone database is a multilingual speech and text

database that covers 15 languages [?]. From the database, we

utilised all of the one hundred Spanish speakers, who have a

total of 6620 utterances, as training speakers for the Spanish

average voice models. The length of the chosen speech data

is 22 hours.

The Japanese and Spanish models were utilised for demon-

strating an application using many TTS voices mentioned in

Sect. ??.

E. Phonesets, Lexica and Front-end processing

Contrary to normal TTS databases where professional or

semi-professional narrators utilize standard accents and speak-

ing styles, the speakers included in the ASR databases have

a variety of accents. For instance, the Mandarin SPEECON

database is made up equally of 4 major dialectal accents

(Beijing, Chongqing, Shanghai, and Provinces).

Using speech recordings that comprised a variety of accents

for training could prove either advantageous or disadvanta-

geous. If the target speaker has an accent for which training

data is not available, models trained on the various accents

would be more appropriate since they have larger variance

and can capture the variation in the unseen accent. On the

other hand when the target accent is limited to, for example

the British received pronunciation (RP) accent, as it is in the

Blizzard Challenge, a more appropriate average voice model

would be one trained only on RP speakers, rather than one

trained on various accents.

Since the Unilex pronunciation lexicon [?] from CSTR

supports multiple accents of English in a unified way –

by deriving surface-form pronunciations from an underlying

meta-lexicon defined in terms of key symbols – it is possible,

in theory, to prepare different phonesets for each accent. The

same framework may be used for accents in other languages.

In practice, however, time constraints meant we were unable to

do this, and we simply used an identical phoneme set for all

speakers available in each language. However, we separated

speakers of American and British English based on speaker

nationality.

The English phoneme labels, including the initial segmen-

tation for the data, were automatically generated from the

word transcriptions and speech data using the Unisyn lexicon

[?] and Festival’s Multisyn Build modules [?]. In the Unisyn

lexicon, general American (GAM) and RP phonesets were

used for American and British speakers, respectively. The

Multisyn Build modules identified utterance-medial pauses,

vowel reductions, or reduced vowel forms and they were added

to the labels. For the out-of-vocabulary words, letter-to-sound

rules of the Festival’s Multisyn were used.

The Finnish and Mandarin labels were also automatically

generated from the word transcriptions and speech data using

an extended LC-STAR lexica [?] and Nokia’s in-house TTS

modules. The modules also identified utterance-medial pauses

and they were added to the labels. We used phonemes instead

of typical Mandarin units, initial/final [?] since we found that

the phoneme-based systems perform better when the amount

of adaptation data available is limited because of the smaller

number of units they specify [?], [?].

The Japanese phoneme labels were also automatically gen-

erated from the word transcriptions and speech data using

ATR’s XIMERA TTS modules [?], [?], [?]. The modules also

identified utterance-medial pauses and they were added to the

labels.

The Spanish labels were automatically generated using new

front-end modules [?] that considers the word transcriptions

and several handwritten rules available in Festival modules

originally developed for a Castilian Spanish diphone synthe-

sizer called “el diphone.”

English, Spanish, and Japanese phonesets are based on IPA

and Finnish and Mandarin phonesets are based on SAMPA-

C. The numbers of phonemes (including the utterance-medial

pauses and silences) for each language are 57, 53, 31, 26,

51, and 42 for U.S. English, U.K. English, Spanish, Finnish,

Mandarin, and Japanese respectively.

F. Phonetic, prosodic, and linguistic contexts

Compared to the phonetic contexts used for ASR (e.g.

preceding and succeeding phonemes), the contexts used for

TTS are very rich and include various prosodic and linguistic

information as well as phonetic information. The contexts we

employ can be summarized in Table ??. English, Spanish, and

Finnish contexts that we employ have the same structure and

they contain phonetic, segment-level, syllable-level, word-level

and utterance-level features. Specifically, this includes lexical

stress, neighbouring phones, part-of-speech, position in sylla-

ble etc (see [?] for more details). In addition to these features,

Mandarin contexts that we employ have tonal information. The

structure of Japanese contexts are borrowed from the XIMERA

TTS system and thus they are different from those for other

languages: it contains phonetic, mora-level [?], morpheme,

accentual, breath-group-level and utterance-level features.

Questions used for clustering of the acoustic HMMs [?],

mentioned in Sect. ??, were also automatically generated.

For instance the phonetic questions are automatically defined

based on combinations of vowel phonetic categories such as

vowel height or frontness and consonant categories such as

place or manner of articulation.

G. Framework of speaker-adaptive HMM-based speech syn-

thesis systems

All TTS voices are built using the framework from the

“HTS-2007 / 2008” system [?], [?], which was a speaker-

adaptive system entered for the Blizzard Challenge 2007
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TABLE IV
NUMBER OF CONTEXTS USED IN EACH LANGUAGE. ENGLISH, SPANISH, AND FINNISH CONTEXTS THAT WE EMPLOY HAVE THE SAME STRUCTURE.

MANDARIN CONTEXTS THAT WE EMPLOY HAVE TONAL INFORMATION ADDITIONALLY. THE STRUCTURE OF JAPANESE CONTEXTS ARE BORROWED FROM

THE XIMERA TTS SYSTEM.

Contexts English Spanish Finnish Mandarin Japanese

Phonetic 5 (quinphone) 5 5 5 5

Segmental 2 2 2 2 0

Mora [?] 0 0 0 0 3

Morpheme 0 0 0 0 12

Syllable (inc. stress and pitch accent) 22 22 22 22 12

Word 12 12 12 12 0

Tone 0 0 0 3 0

Phrase/Breath group 9 9 9 9 12

Utterance 3 3 3 3 3

Total 53 53 53 56 47

Training of MSD-HSMM

Context-dependent 

multi-stream MSD-HSMMs

Training part

Synthesis part

Labels

Spectral

parameters

Excitation

parameters

Parameter generation

from MSD-HSMM

TEXT

Labels

Text analysis

SYNTHESIZED

SPEECH

Excitation

generation

Synthesis

filter

Spectral

parameters

Excitation

parameters
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Spectral

parameter

extraction

Excitation

parameter

extraction

MULTI-SPEAKER

SPEECH-

DATABASE

TARGET-SPEAKER

SPEECH-

DATABASE

Adaptation of MSD-HSMM

Spectral &

excitation

parameters

Labels

Adaptation part

Context-dependent 

multi-stream MSD-HSMMs

Adaptation part

Fig. 2. Overview of the HTS-2007/2008 speech synthesis system, which
consists of four main components: speech analysis, average voice training,
speaker adaptation, and speech generation.

[?] and 2008 [?]. The HMM-based speech synthesis sys-

tem, outlined in Fig. ??, consists of four main components:

speech analysis, average voice training, speaker adaptation,

and speech generation.

In the speech analysis part, three kinds of parameters for

the STRAIGHT (Speech Transformation and Representation

by Adaptive Interpolation of weiGHTed spectrogram [?]) mel-

cepstral vocoder with mixed excitation (i.e., the mel-cepstrum,

logF0 and a set of band-limited aperiodicity measures) are

extracted as feature vectors for HMMs. These are the same

features as mentioned in [?]. In the average voice training

part, context-dependent multi-stream left-to-right multi-space

distribution (MSD) hidden semi-Markov models (HSMMs) [?]

Monophone HSMM Segmental K-means & EM

Speaker Adaptive Training

Speaker Adaptive Training

Context-dependent HSMM

Tied-state
context-dependent HSMM

Speaker Adaptive Training

Decision-Tree-based Context Clustering 
(MDL criterion) & State Tying

Initial Segmentation

Fig. 3. Overview of the training stages for average voice models.

are trained on multi-speaker databases in order to simultane-

ously model the acoustic features and duration. A set of model

parameters (mean vectors and diagonal covariance matrices of

Gaussian pdfs) for the speaker-independent MSD-HSMMs is

estimated using the EM algorithm [?].

An overview of the training stages for the average voice

models is shown in Figure ??. First, speaker-independent

monophone MSD-HSMMs are trained from an initial seg-

mentation, converted into context-dependent MSD-HSMMs,

and re-estimated. Then, decision-tree-based context clustering

with the MDL criterion [?] is applied to the HSMMs and

the model parameters of the HSMMs are tied at leaf nodes.

The clustered HSMMs are re-estimated again. The clustering

processes are repeated twice and the whole process is further

repeated three times using segmentation labels refined with the

trained models in a bootstrap manner [?]3. All re-estimation

and re-segmentation processes utilize speaker-adaptive training

(SAT) [?] based on constrained maximum likelihood linear

regression (CMLLR) [?].

In the speaker adaptation part the speaker-independent

MSD-HSMMs are transformed by using CMLLR or con-

strained structural maximum a posteriori linear regression

3Although we could utilise the HSMMs themselves for re-segmentation by
using weighted finite-state transducers, in this case for efficiency we simply
reduced the HSMMs to normal HMMs and used these to perform the Viterbi
alignment.
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TABLE V
PHONETIC COVERAGE OF ENGLISH MULTI-SPEAKER TTS AND ASR CORPORA

Corpus Subset Size [h] Speakers Triphones/speaker Triphones/corpus Contexts/corpus

TTS corpora

CMU-ARCTIC (total) 6 6 10041 10708 91247

CSTR n/a 41 15 11462 42860 1157755

ASR corpora

RM (ind total) 5 160 1091 7162 114945

WSJ0 (short/SI-84) 15 84 3287 18577 421476

WSJCAM0 (total) 22 140 3036 23534 675266

WSJ0+WSJ1 (short/SI-284) 81 284 4220 23776 1246728

(CSMAPLR) [?]. In the speech generation part acoustic feature

parameters are generated from the adapted MSD-HSMMs

using a parameter generation algorithm that considers both the

global variance of a trajectory to be generated and trajectory

likelihood [?]. Finally an excitation signal is generated using

mixed excitation (pulse plus band-filtered noise components)

and pitch-synchronous overlap and add (PSOLA) [?]. This

signal is used to excite a mel-logarithmic spectrum approx-

imation (MLSA) filter [?] corresponding to the STRAIGHT

mel-cepstral coefficients to generate the speech waveform.

H. Analysis of ASR corpora – phonetic coverage

One clear advantage of the ASR corpora is phonetic cover-

age. Triphone and context coverage is a simple way to measure

the phonetic coverage of a corpus. Table ?? shows the total

number of different triphone and context types in the English

corpora. Since the pre-defined official training data set (known

as SI-284) for WSJ1 includes WSJ0 as a part of training data,

we followed instructions for the November 93 CSR evaluations

and calculated them together. The pre-defined official training

data set for WSJ0 is known as SI-84. A larger number of

types implies that the phonetic coverage is better, which in turn

implies that the corpus is more suitable for speech synthesis.

For comparison, the coverage of the CMU-ARCTIC speech

database which includes four male and two female speakers

is also shown. Details of the CSTR database are given in the

next subsection.

We can see that the coverage of the complete WSJ0, WSJ1

and WSJCAM corpora is much higher than CMU-ARCTIC.

This is because all speakers in CMU-ARCTIC read the same

set of sentences and thus the total coverage across all speakers

in the database is about the same as that of an individual

speaker. This leads us to believe that these ASR corpora should

be better for building speaker-independent/adaptive HMM-

based TTS systems as well as speaker-independent ASR

systems. The RM corpus, because of its very limited domain

and small word vocabulary, has relatively poor coverage and

would be unsuitable for use as a TTS corpus unless combined

with other data or used in limited domain as we do for ASR4.

Table ?? shows the total number of different triphone

and context types in the Mandarin SPEECON database. The

4Although the context coverage including prosody contexts of the RM
corpus is slightly better than CMU-ARCTIC, its triphone coverage is critically
worse than CMU-ARCTIC.

TABLE VI
PHONETIC COVERAGE OF THE MANDARIN SPEECON CORPUS.

Environment Size [h] Triphones/corpus Contexts/corpus

Office 12 4999 71863

All environments 34 5865 181338

TABLE VII
DETAILS OF ENGLISH AND MANDARIN TTS CORPORA USED FOR

BUILDING HMM-BASED TTS SYSTEMS.

Corpus Language Speakers Sentences

CMU-ARCTIC (BDL) English 1 1130

CMU-ARCTIC (total) English 6 6780

BL2009 (arctic) English 1 1130

BL2009 (total) English 1 9509

BL2009 Mandarin 1 6000

CSTR English 15 29552

total numbers for the office environment and the mixed en-

vironments are shown. We see the data set for the mixed

environments has a much larger coverage than that of the

office environment. There is a trade-off between consistency

of recording conditions and phonetic coverage.

I. TTS speech databases to be compared

To enable comparison of TTS databases with the ASR

corpora mentioned above, we used CMU-ARCTIC, the 2009

British English and Mandarin databases (which we refer to as

“BL2009” database), and a CSTR’s in-house database (which

we refer to as “CSTR” database). All of these are standard

purpose-built high-quality TTS databases and have very clean

speech data. Details are given in Table ??.

The CMU-ARCTIC database has six speakers, each of

whom reads the same set of 1130 phonetically balanced

sentences, corresponding to about 1 hour of speech data per

speaker. In Sect. ??, an American male speaker from the

database, “BDL”, was chosen as one of out target speakers

and his speech data was utilised for speaker adaptation of the

average voice models and for training of speaker-dependent

models.

The British and Mandarin BL 2009 corpora were released

for the 2009 Blizzard Challenge [?] and they have a male
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TABLE VIII
THE NUMBER OF LEAF NODES AND FOOTPRINTS FOR SPEAKER-DEPENDENT (SD) AND SPEAKER-ADAPTIVE SYSTEMS. NOTE THAT SYSTEMS THAT WERE

NOT EVALUATED IN THE LISTENING TESTS MENTIONED LATER ARE ALSO INCLUDED.

(a) English systems

Footprint [Mega-Bytes]

Number of leaves in decision tree Acoustic models Linear transforms

Corpus Subset Size [h] Mel-cepstrum logF0 Aperiodicity Duration HTK hts engine HTK

SD models

CMU-ARCTIC (BDL) 1 871 2118 705 658 50 1.5 n/a

BL2009 (total) 15 5833 27137 6790 4045 517 13.0 n/a

Average voice models

CMU-ARCTIC (total) 6 2311 11613 1504 3194 118 3.1 0.5

CSTR n/a 41 9380 49269 5138 8539 1592 31.5 0.7

RM (ind total) 5 2122 12417 2839 3733 334 5.8 0.1

WSJ0 (short/SI-84) 15 2945 26952 2624 13165 669 11.0 0.5

WSJCAM0 (total) 22 3599 40326 3237 23641 981 13.0 0.2

WSJ0+WSJ1 (short/SI-284) 88 10861 105940 9202 51567 1697 34.0 0.9

(b) Mandarin systems

Footprint [Mega-Bytes]

Number of leaves in decision tree Acoustic models Linear transforms

Corpus Environment Size [h] Mel-cepstrum logF0 Aperiodicity Duration HTK hts engine HTK

SD models

BL2009 n/a 11 4837 14175 4654 3335 400 9.5 n/a

Average voice models

SPEECON Office 12 2373 15320 3238 3474 442 7.0 0.1

SPEECON All environments 34 6272 33905 6378 7695 681 17.0 0.3

(b) Other systems

Footprint [Mega-Bytes]

Number of leaves in decision tree Acoustic models Linear transforms

Corpus Language Size [h] Mel-cepstrum logF0 Aperiodicity Duration HTK hts engine HTK

Average voice models

SPEECON (Office) Finnish 12 1383 16682 2325 6950 279 5.3 0.1

JNAS Japanese 20 2388 34642 2705 9995 527 9.2 0.3

GlobalPhone Spanish 22 2925 52088 2308 27193 1377 17.0 0.5

English RP speaker and a female Mandarin speaker. They

include 9509 and 6780 sentences corresponding to 15 hours

and 10.5 of speech, respectively. The English BL 2009 corpus

has the ARCTIC sentences above as one of subsets. In Sect. ??

and Sect. ??, they were also chosen as target speakers for

speaker adaptation.

The above TTS corpora were mainly used only for speaker

adaptation or for training speaker-dependent models. For the

training of the average voice models which provide the starting

point for speaker adaptation, we used the CSTR database

having 41 hours of very clean speech data uttered by 15

speakers and compared it with several English ASR corpora in

Sect. ??. In total the CSTR database includes 29552 sentences.

The original HTS-2008 system that used the CSTR database

for the training of the average voice models was evaluated in

the 2008 challenge [?]. Since in the CSTR database speakers

utilise different sets of texts, its context coverage is as high as

that of the ASR corpora. As shown in Table ??, it has about

four times as many triphones as the CMU-ARCTIC database

and 1.4 times as many as the SI-284 sets. In fact the system

had the equal best naturalness and the equal best intelligibility

on the Arctic data in the 2008 challenge [?]. The system was

also found to be as intelligible as human speech [?]. Thus, we

considered the very clean and also contextually rich database

as an ideal case for other ASR corpora.

J. Number of leaves in decision trees

Table ?? shows the number of leaves of each of the

decision trees for each system built on the speaker-independent

subset of each multi-speaker corpus. For comparison, the table

shows the number of leaves for speaker-dependent HMMs

trained on the BDL subset of the CMU-ARCTIC, the British

English and the Mandarin BL 2009 corpora. Systems that were
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not evaluated in the listening tests mentioned later are also

included in this table for reference.

From the tables, we see that the the trees for mel-cepstral

and aperiodicity elements of voices built on WSJ0 and WSJ-

CAM0 have fewer leaves than those of English speaker-

dependent (SD) HMMs trained on the English BL2009 corpus,

although the WSJ0 and WSJCAM0 databases are similar in

size to those for the SD-HMMs. On the other hand, they have

almost the same number or more leaves for logF0 and duration

parts. Trees for the voice built on the office subset of the

Mandarin SPEECON database have similar sizes to those for

Mandarin SD-HMMs and we can see the same tendency also

for the Mandarin systems. The fact that they include various

dialectal accents may partially explain the greater number

of logF0 leaves. However, further investigation is required,

especially in the case of the much greater number of duration

leaves of the English systems trained on the WSJ databases.

It can be seen that the Mandarin system using data from all

environments has more leaves than the SD-HMM system or

the one using data from office environments only.

K. Footprint of each system built

Table ?? also shows the footprints of speaker-independent

HMMs and linear transforms for each system built. For

reference the footprints of speaker-dependent HMMs are also

shown. Since we used a single Gaussian for each leaf node, the

number of leaves is a dominant factor for the footprint of the

acoustic models. It shows the footprints in both the standard

HTK format and the hts engine format that maintains only

statistics required for use by synthesis modules.

We can also see that the speaker-adaptive HMM-based

speech synthesis is efficient in terms of footprint. For example,

the footprint of the average voice model (which is speaker

independent and thus can be shared among many speakers)

trained on WSJ0 and WSJCAM0 is as compact as that of

the SD-HMMs trained on the English BL2009 corpus in

the hts engine format. Furthermore the speaker-dependent

footprint, a set of linear transforms for each speaker, is less

than one mega byte and thus we can increase the number of

voices efficiently. The average voice model trained on the SI-

284 set has larger footprint than that of the SD-HMMs in the

hts engine format. However sharing the large average voice

models among hundreds of speakers leads to more efficient

footprint overall than maintaining hundreds of separate SD-

HMMs.

L. Demonstration of the TTS voices

Since we aim to give a fair impression of the quality

of synthetic speech built from each corpus and to discuss

the usefulness of the ASR corpora, we followed pre-defined

training recipes for each corpus, built speaker-adaptive gender-

independent HMM-based TTS systems from major subsets of

each corpus separately, and adapted them to all speakers avail-

able. A summary of the number of TTS voices built from each

ASR corpus is given in Table ??. Audio samples are avail-

able from http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/

ASRcorpora.html

TABLE IX
NUMBER OF THE TTS VOICES BUILT ON ASR CORPORA

Language Corpus Subset TTS voices

English Total 651

WSJ0 short 84

WSJ0 long 12

WSJ0 very long 3

WSJ0 dev, eval 18

WSJ1 short 200

WSJ1 long 25

WSJCAM0 total 140

RM ind total 160

RM dev total 12

Finnish SPEECON office 200

Mandarin SPEECON office, all 500

Japanese JNAS (random) 100

Spanish GlobalPhone all 100

Total 1554

Careful listening reveals 1) that the quality of synthetic

speech varies according to which corpus is used to train the

average voice models, or by the amount of adaptation data

used and 2) that there are a few speakers whose synthetic

speech sounds worse than that of other speakers who have the

same amount of adaptation data from within the same corpus.

For the first case, our previous analysis has already shown

that the amount of adaptation data required for reproducing

speaker similarity above a certain level varies by target speak-

ers (and acoustic features) and ranges from three minutes to

six minutes in terms of speech duration [?] and also that the

naturalness of the synthetic speech generated from the adapted

models is closely correlated with the amount of data used for

training the average voice models [?]5.

This directly explains the relatively low quality of voices

built on the RM corpus since the small corpus does not satisfy

the two conditions above: the total duration of training data

for the average voice model is just five hours and the duration

of adaptation data in the RM corpus averages 3.8 minutes.

Evaluation results reported in Sect. ?? also highlighted this

issue. The first condition also explains unstable adaptation

performance of voices built on the SPEECON databases, since

the duration of adaptation data in the SPEECON databases

averages 3.8 minutes and that is not always enough for all the

speakers.

The interesting phenomenon observed in the second case is

5We also know that gender-dependent average voice models provide bet-
ter speaker adaptation performance than gender-independent average voice
models for TTS [?]. Please bear in mind, however, that the purpose of this
demonstration is to give benchmarks that can be easily related to the field of
ASR. For example, the predefined training sets such as SI-84 or SI-284 are
the de facto standard for training clean acoustic models for ASR, and HTK
provides benchmark scores on the speaker independent set of the RM corpus.
Obviously we may use HMMs built for TTS purposes on ASR corpora as
acoustic models for ASR [?], [?] and thus we can easily compare ASR scores
of TTS HMMs with scores reported in ASR literature. On the other hand, if
we explore the best quality of synthetic speech in the ASR corpora, we should
combine these ASR corpora and train larger and gender-dependent average
voice models as we can guess from the previous analysis results.
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Fig. 4. Geographical representation of TTS voices trained on ASR corpora used for EMIME projects. Blue markers show male speakers and red markers
show female speakers. Available online via http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/map.html

new and analogous to the familiar situation in ASR, where

WER varies widely across some speakers and is especially

high for a small number of speakers [?]. This is investigated

in Sect. ??.

M. Geographical representation and online demo

One of important advantages of using the ASR corpora

is the large number of speakers as we can see in Table ??.

Building TTS voices on such data allows the creation of many

more voices than has previously been possible for TTS.

In fact, we believe this is the largest known collection of

synthetic voices in existence. We built so many voices (1500+

voices built on ASR corpora plus several voices built on TTS

corpora using the same techniques) that it became impossible

to represent them in list or table form. Instead, we devised an

interactive geographical representation, shown in Figure ??.

Each marker corresponds to an individual speaker. Blue

markers show male speakers and red markers show female

speakers. Some markers are in arbitrary locations (in the

correct country) because precise location information is not

available for all speakers. Then right box shows list of speakers

that user can choose with speakers’ gender and nationality.

This is based on Google Maps and AJAX Language (Trans-

lation) APIs6 as well as our Festival TTS system running on

a University of Edinburgh server.

This geographical representation, which includes an inter-

active TTS demonstration of many of the voices, is available

from http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/map.

6http://code.google.com/intl/ja/apis/ajaxlanguage/

Fig. 5. All English and some of the Spanish HTS voices can be used as
online TTS on the geographical map. For other languages only pre-synthesised
examples are available.

html. Clicking on a marker will play synthetic speech from

that speaker, as shown in Figure ??. Currently the interactive

mode supports all English and some of the Spanish voices. For

other languages only pre-synthesised examples are available,

but we plan to add an interactive text-to-speech feature in the

very near future.

As well as being a convenient interface to compare the

many voices, the interactive map is an attractive and easy-to-

understand demonstration of the technology being developed
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in the EMIME project7, whose goal is personalised cross-

lingual speech-to-speech translation systems. For example, if

a user’s mobile device for the speech-to-speech translation

systems has GPS functions, we would be able to automatically

choose and utilise appropriate voices based on that user’s

location, obtained from GPS. Furthermore if desired we may

perform cross-lingual speaker adaptation on the chosen models

[?], [?].

III. EVALUATION METHODOLOGIES

For the evaluation of synthetic speech, both objective mea-

sures and formal listening tests have been used. This section

explains the details of the evaluation methodologies.

A. Objective measures

Voices for a large number of speakers can be built during

the training of the speaker adaptive HMM-based synthesiser.

However in some cases, there were too many speakers to

evaluate by formal listening tests. The listening tests were

therefore principally used for only a few target speakers.

Objective measures, on the other hand, could be used for many

or all speakers. Here it is important to recognise that these

objective measures do not perfectly measure the quality of

synthetic speech. They generally only weakly correlate with

perceptual scores obtained from listening tests [?], [?].

For the calculation of all the objective measures, the syn-

thetic speech and natural speech must be aligned frame-by-

frame. In order to do this, the synthesis model for the test

sentence is force-aligned with the natural speech. From this

alignment, the phoneme durations of the natural speech are

obtained. The model is then used to generate synthetic speech

with exactly those phoneme durations (within phonemes, the

usual duration model is used to obtain the state durations [?])

so that the synthetic and natural utterances have exactly the

same durations and thus a one-to-one correspondence between

their frames can be used to calculate the objective measures.

B. Mel-cepstral distance

To measure the accuracy of the spectral envelope of the

synthetic speech, we use “average mel-cepstral distance”

(MCD) which is a popular objective measure used in speech

coding or parametric speech synthesis (e.g., [?], [?]). When

the analysis order of mel-cepstral analysis is high enough,

Parseval’s theorem means that the mel-cepstral distance can

be viewed as an approximate log spectral distance between

the synthetic speech and natural speech.

After silence and pause regions are ignored, the Euclidean

distance between the mel-cepstral parameters of the natural

and synthetic examples is computed.

C. Root-mean-square-error of logF0

To measure the accuracy of the F0 contour generated by the

model, the second objective measure we calculate is the root-

mean-square-error (RMSE) of logF0. Since F0 is not observed

7The FP7 Effective Multilingual Interaction in Mobile Environments
(EMIME) project http://www.emime.org

in unvoiced regions, the RMSE of logF0 is calculated only

using regions where both the generated and the actual speech

are voiced.

The RMSE values of logF0 are shown in “cent”. The cent

is a logarithmic unit of measure used for musical intervals

and musical scales. 1200 cents are equal to one octave (a

frequency ratio of 2:1). An equally tempered semitone (the

interval between two adjacent piano keys) is 100 cents.

D. Reference materials

Natural speech utterances are required for all these objective

measures, since the objective measures are computed between

acoustic parameters generated from HMMs and ones extracted

from the natural speech utterances. Test sentences included in

neither the training nor the adaptation data were used for the

objective evaluation.

E. Listening test design

The key properties of the synthetic speech that must be eval-

uated are: naturalness, intelligibility and similarity to the orig-

inal speaker. Therefore, and because the web-based listening

test infrastructure was already in place, we adopted a design

based on that of the Blizzard Challenge 2008 [?], [?]. We used

the software developed for that Challenge which comprises: a

web-based listening test that runs in any standard browser;

Perl CGI scripts running on a University of Edinburgh server;

results stored in a MySQL database; R scripts to compute

statistics and produce graphical output.

To evaluate naturalness and similarity to the target speaker,

5-point mean opinion score (MOS) and comparison category

rating (CCR) tests are used. The scale for the MOS test

runs from 5 for “completely natural” to 1 for “completely

unnatural”. The scale for the CCR test runs from 5 for “sounds

like exactly the same person” to 1 for “sounds like a totally

different person” and a few example natural sentences from

the target speaker are provided as a reference.

To evaluate intelligibility, the subjects are asked to tran-

scribe semantically unpredictable sentences by typing in the

sentence they heard; the average word error rate (WER)

is calculated from these transcripts (an automatic procedure

is used, which corrects spelling mistakes and typographical

errors). The evaluations are conducted via a standard web

browser.

F. Format used to report results

We used the same conventions as the Blizzard Challenge

for reporting results [?]: “Standard boxplots are presented for

the ordinal data where the median is represented by a solid

bar across a box showing the quartiles; whiskers extend to

1.5 times the inter-quartile range and outliers beyond this are

represented as circles. Bar charts are presented for the word

error rate interval data.” In addition average scores are marked

as ’×’ within the boxplots.

The differences in the results for all three sections are

measured by the same test used in the Blizzard Challenge:

a Wilcoxon signed rank test with α = 0.01 and Bonferroni

correction.
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G. Listeners

Different sets of listeners were collected for individual

listening tests. They are natives or non-natives with sufficient

understanding of the target languages. Furthermore one of the

listening tests was performed via the 2009 Blizzard Challenge.

Thus, we cannot directly compare results across each listening

test.

H. Scenarios

There are three scenarios depending on whether the ASR

corpora are used for either (or both) training of the average

voice models or speaker adaptation. We have evaluated the use

of the ‘found’ audio [?], in a context very similar to one of the

present scenarios, where the average voice models are trained

on the TTS corpora and adaptation data is chosen from the

ASR corpora.

Hence this paper focuses on the other two scenarios: the

case where the ASR corpora are used for training the average

voice models and the adaptation data is chosen from the

purpose-built TTS corpora, and the most difficult case where

the ASR corpora are used both for training the average voice

models and for speaker adaptation. The former case is reported

in Sect. ?? and the latter in the section which now follows.

IV. EVALUATION FOR HMM-BASED TTS SYSTEMS

CONSTRUCTED FROM ASR CORPORA

In this section, we analyze the performance of speaker-

dependent (SD) and speaker-adaptive (SA) HMM-based TTS

systems constructed from the ASR corpora only and assess

how different their tendencies are from our previous analysis

[?], [?] where performance analysis of the systems constructed

from TTS corpora have been reported. We also analyze speaker

distributions and their correlations to the quality of synthetic

speech generated from adapted HMMs.

A. Average voice model training data

Since we had used the equal amount of data for each training

speaker of the average voice models in the past analysis and

since the amount of data available for each speaker in the

ASR corpora may vary by subsets and even recording sites,

we built two kinds of gender-dependent average voice model

from short term, long term (excluding the speakers from very

long term), development, and evaluation subsets of the WSJ0

corpus using different training data sets. The first was built

using 50 utterances per training speaker (“condition 1”). If a

speaker has more than 50 utterances, a subset of 50 was chosen

randomly. The second average voice model was built using

all available utterances from all training speakers (“condition

2”). The numbers of training sentences are 2950 and 10847

sentences for male average voice models in conditions 1 and

2 respectively, and for female average voice models there are

3000 and 12151 sentences respectively. They have 5.7 hours,

21.1 hours, 5.9 hours, and 24.6 hours of speech respectively.

By providing a part of training data for speaker-dependent

models to the average voice models, we compared the speaker-

adaptive systems with speaker-dependent systems.

TABLE X
THE OBJECTIVE MEASURES OF EACH SPEAKER-DEPENDENT (SD) AND

SPEAKER-ADAPTIVE (SA) SYSTEMS BUILT USING VARIOUS AMOUNTS OF

SPEECH DATA FROM THE TARGET SPEAKER. UNDERLINED FIGURES

INDICATE THE BEST PERFORMING SYSTEM UNDER EACH OBJECTIVE

MEASURE FOR EACH TARGET SPEAKER (I.E., IN EACH COLUMN). MCD
AND logF0 SHOW MEL-CEPSTRAL DISTANCE AND RMSE OF logF0 ,

RESPECTIVELY.

(a) 6 minutes of target speaker data

Speaker 001 Speaker 002

MCD logF0 MCD logF0

System (dB) (cent) (dB) (cent)

SD 9.05 407 7.18 195

SA (condition 1) 5.46 393 4.97 168

SA (condition 2) 5.38 369 5.09 186

(b) 1 hour of target speaker data

Speaker 001 Speaker 002

MCD logF0 MCD logF0

System (dB) (cent) (dB) (cent)

SD 5.27 354 4.86 174

SA (condition 1) 5.36 398 4.99 176

SA (condition 2) 5.25 352 4.98 174

(c) 2 hours of target speaker data

Speaker 001 Speaker 002

MCD logF0 MCD logF0

System (dB) (cent) (dB) (cent)

SD 5.18 348 4.83 190

SA (condition 1) 5.32 386 4.97 180

SA (condition 2) 5.25 351 4.97 182

B. Speaker-dependent model training data

In general, training of speaker-dependent models requires

O(103) utterances and only the very long subset of the WSJ0

corpus is available for the models. Since this subset has only

two males and a female, we simply chose a male speaker 001

and a female speaker 002 as target speakers for listening tests

in this section.

In order to examine the effect of corpus size, three speaker-

dependent systems were built, using 100 randomly chosen

sentences (about 6 minutes in duration), 1000 randomly chosen

sentences (about 1 hour in duration) and 2000 randomly

chosen sentences (about 2 hours in duration) respectively from

the two target speakers included in very long subset. These

sentences are also used as the adaptation data for the two

average voice models mentioned in previous section.

C. Objective evaluation of SD and SA systems

Table ?? shows the objective measures for each system.

From the results for speaker 001, we can confirm that the

speaker-adaptive systems using all available average voice

model training data (“condition 2”) outperform the speaker-

adaptive systems using an equal amount of speech data per

training speaker (“condition 1”). In addition, we can see that
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Fig. 6. Subjective evaluation results for speaker-dependent and speaker-adaptive HMM-based TTS systems built on ASR corpora. The target speaker used
is a male speaker “001” included in very long subset of the WSJ0 corpus.

when the amount of target speaker speech data is less than

about 1 hour, speaker-adaptive systems outperform speaker-

dependent systems. Once the amount of speech data is more

than about 1 hour, speaker-dependent systems start to become

better than speaker-adaptive systems. This result is relatively

consistent with previous results except the SD and SA systems

using 2 hours of speech data were still comparable to TTS

databases.

On the other hand, the RMSE of logF0 for the speaker

002 shows different tendencies. All the systems using 2 hours

of target speaker speech data have worse RMSE than those

using 1 hour of data although the absolute values are better

than those for the speaker 001.

One of possible explanations for this is that the speaker’s

speaking style was not consistent over the long-term recording

sessions (e.g., the average value and range of F0 varied session

by session). This is a natural consequence of using ASR data

since the speakers are not trained voice talents. Although

usually speaker adaptation is used for less target speaker data,

more sophisticated strategies are required to cope with such

changeable characteristics. For example, if the adaptation data

includes acoustic fluctuation that should not be explained by

linguistic contexts such as speaker’s mood or fatigue, pre-

selection or pre-clustering of adaptation data should be added

to the adaptation process.

D. Subjective evaluation of SD and SA systems

We chose the male speaker 001 as the target speaker for the

subjective (listening test) evaluation. English synthetic speech

was generated for a set of 600 test sentences, including 400

sentences from conversational, news and novel genres (used

to evaluate naturalness and similarity) and 200 semantically

unpredictable sentences (used to evaluate intelligibility). A

subset of these sentences were then chosen randomly for use

in the listening test (the exact number required depends on the

number of systems being compared — see [?] for details of

the Latin Square experimental design.) The number of listeners

for this experiment was 26.

Figure ?? shows the results. The perceptual evaluation

reveals the same tendencies as the objective evaluations. The



J. YAMAGISHI et al.: THOUSANDS OF VOICES FOR HMM-BASED SPEECH SYNTHESIS 13

Male HTS voices and male average voice

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

22h40b

405

40a

22g

408

40c
406

423422

40k

59male_average_voice

431 40i

40f 40j

40340n

051
015

01i

012

01g

029

026

024

01e

01z

02b

00c01r

01t

013

020

01w

01s
021

01l
01y

052
00b

00d
025

average voiceMIT SRI TI

Recording site

Female HTS voices and average female voice

-3

-2

-1

0

1

2

-2

-1

0

1

2

-2

-1

0

1

2

01u

01b

02d

01c

018
01d

01v
02800a

022

019

023
053

014
027

60female_average_voice

401
02e

40h
011

420

430
40p

407409

203

404
40o

40l

40e
421

40g40m

432

40d

01m017

02a

01p
00f

01n

01a

02c 01o
01x

05001k
01f

016
01q

01j

Fig. 7. Multidimensional scaling of 120 HTS voices trained on the WSJ0 corpus. The three characters at each point correspond to the name of each speaker
in the database. Left part shows the the male speakers and male average voice and right parts shows the female speakers and female average voice. A
demonstration movie for two-dimensional MDS representation is available via http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/mov/HundredsHTS.mov

speaker-adaptive systems using all the data (“condition 2”)

were found by listeners to be better in terms of naturalness

and similarity than the speaker-adaptive systems using an

equal amount of speech data. We can again see that when

the amount of speech data is less than about 1 hour, speaker-

adaptive systems outperform speaker-dependent systems in

every way (p < 0.01). Once the amount of speech data is about

1 hour, the speaker-dependent system and speaker-adaptive

system in condition 2 have almost the same scores. When the

amount of speech data is about 2 hours, the speaker-dependent

system starts to have better naturalness than the speaker-

adaptive system. In the intelligibility test, only the speaker-

dependent system using six minutes of speech data was found

to be significantly worse the other systems (p < 0.01). Other

differences between WERs were not statistically significant.

We note that previous work on TTS databases has indicated

that 100 utterances (approximately 6 minutes) of adaptation

data are enough to adapt an average voice to the characteristics

of a target speaker [?]. On the other hand, this figure shows

that 15 minutes of data achieve a median opinion score of

only 2.5 for naturalness. The previous work also indicated that

the SD and SA systems using 2 hours of speech data were

comparable whereas the SD systems start to become better

than SA systems on this ASR database. We attribute this low

score to the noisiness of the adaptation data and conclude that

more target speaker data were needed to obtain a reasonable

naturalness rating.

E. Multidimensional scaling of 120 HTS voices adapted and

average voices

Rather than visualising speakers by placing them in a

geographical space, we can place them in a space derived

from the properties of the speech and can analyze speaker

distributions. There are several conventional approaches to

visualize speakers or speaking style based on acoustic models

or acoustic features [?], [?].

A similar visualization can be straightforwardly achieved

using the HTS voices built and multidimensional scaling

(MDS) [?]. Using all test sentences from the Blizzard Chal-

lenge 2008, we generated a set of speech samples from the

gender-dependent average voice models and all the HTS voices

that equally had a hundred of adaptation sentences. For the

average voice models, we used “condition 2” of the previ-

ous evaluation. We then calculated the average mel-cepstral

distance between the speech for all pairs of voices, placing

the values in mel-cepstral distance tables. For simplicity,

the unadapted duration models of the average voice model

were used so that the number of frames of synthetic speech

for each speaker is the same. Then we applied a classic

multidimensional scaling technique [?] to the mel-cepstral

distance table and examined the resulting three-dimensional

space, which is shown in Figure ??. On the left-hand side of

the figure, the MDS of the male speakers and male average

voice appear and on the right, that of the female speakers and
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female average voice.

The axes of this space do not have any pre-defined meaning,

but MDS attempts to preserve the pairwise distances between

speakers given in the mel-cepstral distance table. In other

words, similar speakers will be close to one another in this

space. For example, in the MDS for male speakers, speakers

012, 01i, 01e, 026, and 029 are similar to one another (in terms

of mel-cepstral distance) and speakers 22h, 422, 423, 40k are

relatively different from other speakers. If we need to analyze

performance of “outlier” speakers it would be reasonable to

choose speakers based on this MDS representation.

Instead of the geographical GUI above, we may use the

MDS space for an alternative GUI for the HTS voices (See a

provided URL in the caption for Fig. ??). More importantly,

since we could only use very few target speakers in formal lis-

tening test, we should investigate the distribution or tendency

of many speakers in other ways, such as MDS.

On examining the figure in detail, we noticed that all three-

characters codes (corresponding to the names of speakers)

distributed in the bottom part start with 0 and the codes for

speakers distributed in top part start with 4. The first character

of the names represents recording site for these speakers (0:

MIT, 4:SRI, and 2:TI) [?]. Therefore we assigned different

colors to each recording site in the figure.

It is apparent that recording conditions were not consistent

among the recording sites although the same microphones

were utilised. Furthermore, acoustic differences due to the

inconsistent recording conditions are greater than acoustic

differences between speakers since there is an obvious border

between them. Thus, the average voice models trained on

these speakers are located at the center of recording conditions

rather than the center of the speakers. If we use additional

hierarchical transforms to normalize the recording conditions

as well as speaker transforms [?], [?], it would be possible

to make the average voice model more compact and more

efficient.

F. Subjective evaluations of speakers included in WSJ0 corpus

and average voices

Next we analyze fluctuation of the quality of synthetic

speech generated from models adapted from the same average

voice models using the same amounts of adaptation data

chosen from the same corpus. For this purpose we utilized

the 59 male voices and a male average voice used for MDS in

the previous section and evaluated their naturalness using the

MOS test in which four test sentences were randomly chosen

from all the test sentences used for MDS above. The number

of listeners was 40.

The Pearson product-moment correlation coefficient be-

tween the mean MOS scores obtained in the evaluation and

the first axis of MDS which represents the recording sites, the

second axis, and mel-cepstral distance between average voice

and each voice (which can viewed as a transformed distance of

the voice) are -0.13, -0.38, and -0.48, respectively. In a word,

the MOS scores obtained are not correlated with the recording

sites and associated recording condition differences. However

it is somewhat correlated inversely with mel-cepstral distance
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Fig. 8. The scatter plot of the mean MOS scores of 59 male voices
adapted and a male average voice model. Each dot represents either the
male speaker or male average voice. Horizontal axis shows the mel-cepstral
distance from the average voice. Vertical axis shows the mean MOS score
obtained for each voice. This also represents a linear regression function
fitted and its 95% confidence and prediction intervals. For computation of
the mel-cepstral distance for the average voice itself, random-sampling-based
parameter generation algorithm [?] was used.

from the average voice. Its 95% confidence intervals are from

-0.20 to -0.68.

Figure ?? shows the scatter plot of the mean MOS scores

for the voices and the mel-cepstral distance from the average

voice. For computation of the mel-cepstral distance for the

average voice itself, the random-sampling-based parameter

generation algorithm [?] was used. This also represents a

linear regression function fitted and its 95% confidence and

prediction intervals.

We can see that as the mel-cepstral distance from the aver-

age voice becomes larger, the MOS scores generally become

worse. Readers might also be surprised at the highest scores

of the average voice in the evaluation (the mean MOS score

is 3.9.). A similar trade-off phenomenon between transformed

distance and quality reduction of synthetic speech has been

observed in voice conversion [?].

In addition to the transformed distance, we hypothesize that

there is a psychological reason: Langlois and Roggman have

shown that averaged faces look more attractive than individuals

in their paper entitled “Attractive Faces are Only Average” [?].

In a similar way, a likely psychological explanation for the

higher score of the average voices is that attractive voices are

also average. This is a very interesting aspect which has a

deeper meaning and implies a new direction of the statistical

parametric speech synthesis approach since the statistical av-

eraging effect, which is an acknowledged weakness of current

HMM-based speech synthesisers, might have the potential to

produce voices that sound more attractive than individuals.
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V. EVALUATION FOR AVERAGE VOICE MODELS TRAINED

ON ASR CORPORA AND ADAPTED ON TTS CORPORA

Finally we analyze the situation most likely to be encoun-

tered in real life, where average voice models are trained on

ASR corpora and are adapted to target speakers chosen from

TTS corpora. In this scenario, we can use both advantages,

that is, high context coverage of the ASR databases and high-

quality speech of the purpose-built TTS databases. We also

evaluate the effect of the quantity and inconsistent recording

conditions of ASR data used for training of the average voice

models together.

A. Average voice model training data

We utilise the English and Mandarin average voice models

in this section. For the training data of the average voice

models, we have used the pre-defined speaker-independent

training data set for each corpora mentioned earlier. The

context coverages of the data set are shown in Tables ?? and

??. Model complexity and footprints for each of the systems

built on each of the datasets are shown in Table ?? (a) and

(b).

B. Target TTS database

For the target TTS databases from which adaptation data

is chosen, we used CMU-ARCTIC, British English and Man-

darin BL 2009 databases. For details see Sect. ??.

C. Subjective evaluation of the quantity of data used for

training of the average voice models

Using the Arctic subsets (ca. one hour of speech data) of the

British speaker’s corpus, we adapted the English average voice

models trained on each ASR corpus having various amounts

of data and compared synthetic speech generated from adapted

models to see the effect of the quantity of the training data8.

At the same time we also evaluated the original HTS-2008

system that used the CSTR database, which is very clean,

contextually rich ideal TTS database. Note that since the CSTR

database comprises male speakers only and since the SI-284

sets comprises both genders equally, they include almost the

same amounts of male speakers’ data. For listening tests,

we utilized all test sentences used for the 2007, 2008, and

2009 challenge. The number of listeners who completed the

listening test was 68.

The evaluation results are shown in Figure ??. In the

MOS evaluation on naturalness, the reference system using

the CSTR database was found to be significantly better than

other systems except the SI-284 system (p < 0.01). The SI-284

system was also found to be significantly better than the RM

system (p < 0.01). Other differences in the MOS evaluation

were not statistically significant. In the similarity (CCR)

evaluation, there was no statistically significant difference.

In the intelligibility evaluation (WER), the reference and SI-

284 systems were found to significantly better than the SI-84

system (p < 0.01).

Overall we can see the average voice models using larger

amounts of data provide better results in general. Compared

to the reference system using the CSTR database, there are

several negative conditions for the SI-284 systems in addition

to the ASR recording quality. For example, the SI-284 system

did not have any British speakers and was gender-independent,

8In reality both supervised and unsupervised adaptation were evaluated
together in the listening tests. However there were not significant differences
between them and thus we omitted results for the unsupervised versions. For
full results, see [?].
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TABLE XI
SUBJECTIVE EVALUATION RESULTS FOR SPEAKER-ADAPTIVE

HMM-BASED TTS SYSTEMS BUILT ON VARIOUS ASR AND A

SPEAKER-DEPENDENT HMM-BASED TTS SYSTEM BUILT ON

CMU-ARCTIC CORPUS. TARGET SPEAKER IS BDL (AMERICAN MALE).

Corpus Subset Size (h) MOS

SD models

CMU-ARCTIC (BDL) 1 2.5

Average voice models plus adaptation

RM (ind total) 5 2.3

WSJ0 (short/SI-84) 15 2.6

WSJ0+WSJ1 (short/SI-284) 81 2.8

whereas the reference system had many British speakers and

gender-dependent. However we can also see that the SI-284

system provided relatively good performance close to that of

the reference system. This is a promising result since from

publicly available ASR databases we can create average voice

models that have good performance close to ideal TTS ones.

The original HTS-2008 system has also been found signifi-

cantly better than the speaker-dependent (SD) systems in terms

of similarity and naturalness on this small Arctic subset [?].

Therefore we expect the SI-284 systems would also have better

performance than the SD systems similarly. To confirm this,

we performed additional listening tests using the American

speaker BDL included in the CMU-ARCTIC database as

a target speaker and compared the RM, SI-84, and SI-284

systems adapted to the speaker with the SD system. We used

all the Arctic sentences as adaptation sentences. In the same

way as previous tests, test sentences used for this listening

tests were randomly chosen from all test sentences for the

2007, 2008, and 2009 challenge. The number of listeners are

40. Table ?? shows the comparison results with the SD system

in which we can see the SI-284 system outperforms the SD

system.

From these positive results, we conclude that these clean

ASR corpora are useful even for the training of the average

voice models used in speaker-adaptive HMM-based speech

synthesis.

D. Subjective evaluation of mixed recording conditions

Since this is our first challenge using speech with back-

ground car noise etc. for TTS, we have not used any noise

suppression techniques such as Wiener filtering. Instead we

simply changed acoustic features from mel-cepstra to mel-

generalized cepstra [?] with cubic-root compression of am-

plitude and applied SAT which includes cepstral mean nor-

malisation (CMN) and cepstral variance normalisation (CVN)

implicitly and trained the average voice models as normal.

This was motivated by multistyle training used in the ASR field

[?]. The use of mel-generalized cepstra was also motivated by

ASR. The mel-generalized cepstra are similar to PLP features

in terms of spectral representation [?]. Thus, we expect that

they should provide similar robustness to noise as the PLP

features, which are known to give small improvements over

MFCCs, especially in noisy environments, making them the

preferred encoding for many ASR systems [?]. We have

also confirmed that mel-generalized cepstra have better ASR

performance than mel-cepstra [?], [?].

Using the Mandarin corpus (ca. ten hours of speech data) re-

leased for the 2009 Blizzard Challenge, we adapted the above

average voice models trained on the Mandarin SPEECON

corpus and compared them with SA systems trained on speech

data recorded in the office environment and SD systems.

This evaluation was done in the formal listening tests for

the 2009 Blizzard Challenge. Mandarin synthetic speech was

generated for a set of 697 test sentences, including 647

sentences from a news genre (used to evaluate naturalness and

similarity) and 50 semantically unpredictable sentences (used

to evaluate intelligibility). The evaluations were conducted

over a six week period via the internet, and a total of 334

listeners participated. For further details of these evaluations,

see [?].

Figure ?? shows evaluation results of related systems in

the 2009 Blizzard Challenge9. From the table, we can see the

systems using both noisy data and clean data have slightly

better MOS and CCR scores than systems using clean data

only. However, contrary to clean data case in the previous

section, the differences are not directly supported by the

statistical significance check regardless of three hundreds of

listeners.

In all the evaluation, natural speech was found to be

significantly better than other systems. In the MOS evaluation,

the SD system was found to be significantly better than both

the SA systems. On the other hand in the similarity and Pinyin

with tone error rate (PTER) evaluation, the SD system was

found to be significantly better than only the SA systems

trained on the office data only. Thus, we can indirectly attribute

minor improvements to the additional use of noisy data.

However, in the MOS evaluation, there is a clear gap

between the SD system and SA systems, although the amount

of noisy data and clean data obtained from the Mandarin

SPEECON corpus was 34 hours, which is 3 times more

than the amount for the SD-HMMs. This is different from

our previous analysis results [?], [?] which show that the

SA systems trained on large scale of TTS databases are

comparable to the SD systems trained even on eight to ten

hours of speech data.

From these results we conclude that the noisy data is not

useless. However, mixing speech data recorded in various

conditions for ASR is not as efficient as increasing very clean

speech data for TTS.

VI. CONCLUSIONS

In conventional speaker-dependent speech synthesis includ-

ing unit-selection and HTS, large amounts of phonetically-

balanced speech data recorded in highly-controlled recording

studio environments has typically been required to build a

voice. Although using such data is (and will be) a straight-

forward solution for the best quality synthesis, the number of

voices available is always limited, simply because recording

costs are high.

9Although the total of 12 Mandarin systems were evaluated in the listening
tests, we omitted unrelated systems from this figure and table. For full results,
see [?].
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On the other hand, in the framework of speaker-adaptive

HMM-based speech synthesis, we can consider robust voice

building on ‘non-TTS’ corpora such as ASR speech databases.

Building TTS voices on ASR speech databases allows the cre-

ation of many more voices than has previously been possible

for TTS. In fact we have created the largest collection of

synthetic voices in existence from a number of recognized,

publicly available ASR corpora – WSJ0, WSJ1, WSJCAM0,

RM GlobalPhone, SPEECON, and JNAS. These voices are

efficient in terms of total footprints of voices, compared to

speaker-dependent HMM systems.

These ASR databases are different from normal purpose-

built TTS databases in various ways. Each individual speaker

typically records a very limited number of utterances. However

they include hundreds of speakers having various regional

accents. Since they are not trained voice talents (who are

normally used in TTS database), session by session their

speaking style may undergo sufficient changes to cause issues

in TTS systems. The recording condition may not be perfectly

consistent and the environment may also vary. Therefore

building TTS voices from these ASR corpora is, in itself, a

new challenge.

However, we conclude that relatively clean ASR corpora

are very useful, especially for the training of the average

voice models used in speaker-adaptive HMM-based speech

synthesis because of their rich context coverage. For example

the SI-284 system trained on WSJ0 and WSJ1 databases

and adapted to TTS databases provided good performance

close to that of the reference system trained on ideal TTS

databases. Since a lot of clean ASR databases have already

been developed for many languages, this result would remove

barriers in constructing speaker-adaptive HTS systems for new

languages and also would enhance the potential for a unified

ASR and TTS framework. The average voice models trained

across many speakers themselves have surprisingly high MOS

scores. Interestingly, the scores are higher than scores for

voices adapted to individual speakers. We believe the average

voice models themselves have more potential usefulness than

we had initially anticipated and therefore a more complete

perceptual and psychological analysis of the average voice

models used directly as synthesis models would essential to

this approach to speech synthesis.

Contrary to this, the additional use of speech data recorded

in various environments such as car or public space resulted

in minor improvements. It was not as efficient as increasing

the amount of very clean speech data for TTS. The acoustic

differences due to the inconsistent recording conditions were

also found to be greater than acoustic differences between

speakers.

Our evaluation results also show that speaker adaptation

on speech data chosen from the ASR corpora presents some

difficulty due to the changeable speaking styles, conditions

etc. It would require both a larger amount of speech data than

that required for speaker adaptation on TTS corpora and more

sophisticated adaptation strategies such as pre-selection or pre-

clustering of adaptation data.

Meanwhile, from the analysis using many speakers adapted

and their average voice available in the ASR corpora, we

were able to make new and useful findings. For instance,

the MOS scores of the adapted voices were found to be

somewhat correlated inversely with mel-cepstral distance from

the average voice that the speaker adaptation starts from. Al-

though the correlation is not strong, this becomes an important

factor for determining how to train average voice models from

many speakers. For instance, this could explain why gender-

dependent average voice models provide better speaker adapta-
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tion performance than either gender-independent average voice

models or speaker-dependent models for TTS. Thus, further

in-depth analysis of the relation between the average voice and

adapted voices using other acoustic distances such as trans-

formed F0 and duration distances, or using stochastic measures

such as likelihood and Kullback-Leibler divergence is the most

important of the future work to have arisen from this study.

The analysis results of the distances correlated with the quality

of synthetic speech adapted would lead to appropriate speaker

clustering for average voice model training.

In the demonstrations of HTS voices built on each ASR

corpus, we utilised pre-defined training sets for each corpus

and formed solid benchmarks that have good connections to

the ASR field. However these benchmark systems do not

represent the best quality of synthetic speech as our past and

new analysis results suggest and some readers would have

strong interests in seeing the higher possible quality being

achieved.

For achieving a better quality of synthetic speech based on

our analysis results, we should combine these relatively clean

ASR corpora and train larger and gender-dependent average

voice models. If a huge amount of data is available, we may

use multiple gender-dependent average voice models and may

choose the nearest model. We note that all of them must have

a sufficient quantity of training data since the amount of data

for the average voice models is the most dominant factor for

the quality of synthetic speech. For the clustering of speakers

used for the multiple average voice models, combining the

above notions of distances correlated with the quality of

synthetic speech adapted and speaker recognition/identification

research would be useful. On the other hand, mixing different

corpora normally introduces additional differences due to the

use of different microphones. This important factor is not

well understood and thus requires analysis, which we plan

to perform as future work.

We have also shown attractive applications of the voices

using a geographical map. In addition to this application, there

are several applications which could potentially benefit from

the availability of thousands of TTS voices. In closing we give

some practical examples below:

a) Platform for medical voice banking: These voices

may be used as a platform for medical voice banking. In [?] the

HTS framework was used as personalized synthetic voices for

patients who have dysarthria and thus require TTS systems as

communication aids. The patients can choose the most similar

voice from a wide variety of voices. Such a selection is most

important for patients who start to have progressive speech loss

since the amount of speech data available from the patients is

very limited and thus adaptation performance highly depends

on the initial model from which adaptation will start.

b) Virtual games and social network services: An indi-

vidual user can choose a different voice and can avoid overlap

of voices between users on virtual games such as second life.

For social network services these voices may be attractive.

c) Forestalling imposture against speaker verification:

It is known that HMM-based speech synthesis system –

especially the speaker adaptive framework – can be used to

breach speaker verification systems [?], [?]. By using these

various kinds of voices, we can verify the robustness of

speaker verification systems against imposture using speech

synthesis for many speakers in advance [?].

d) New research field “voice selection for TTS”: Finally

a new research topic arises from these voices, that is, automatic

selection of voices. One such possible solution would be to

use GPS as mentioned earlier. Alternatively, from given texts

we may estimate an appropriate voice or required conditions

(e.g., gender, adult or child, or country etc) to be used to read

the texts.
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University of Tübingen. She was an intern researcher
on HMM-based speech synthesis at Toshiba and
CSTR in 2007 and 2008, respectively.



J. YAMAGISHI et al.: THOUSANDS OF VOICES FOR HMM-BASED SPEECH SYNTHESIS 19

Simon King (M’95, SM’08) received M.A.(Cantab)
and M.Phil. degrees in Engineering from the Uni-
versity of Cambridge in 1992 and 1993 and a Ph.D.
from the University of Edinburgh in 1998. He is
a Reader in Linguistics and English Language and
his interests include speech synthesis, recognition
and signal processing. He serves on ISCA SynSIG
committee, co-organises Blizzard Challenge, was
recently an assoc. ed. of IEEE Trans. Audio, Speech
& Lang. Proc., is on the IEEE SLTC and the editorial
board of Computer Speech and Language.

Oliver Watts received the MSc. degree in Speech
and Language Processing from the University of
Edinburgh in 2007. He is currently a Ph.D. student
at the Centre for Speech Technology Research at the
University of Edinburgh, working on speech synthe-
sis in languages where few resources are available.

John Dines John Dines (M’99) graduated with first
class honours in Electrical and Electronic Engineer-
ing from University of Southern Queensland in 1998
and received the Ph.D. degree from the Queensland
University of Technology in 2003 with the thesis:
“Model based trainable speech synthesis and its
applications”. Since 2003 he has been employed at
the Idiap Research Institute, Switzerland, where he
has been working mostly in the domain of meeting
room speech recognition. A major focus of his
current research is combining his background in

speech recognition and speech synthesis to further advance technologies in
both domains. He is a member of IEEE and a reviewer for IEEE Signal
Processing Letters and IEEE Transactions on Audio, Speech and Language
Processing.

Jilei Tian received the B.S., M.S. degrees in
Biomedical Engineering from Xi’an Jiaotong Uni-
versity, China and Ph.D. degree in Computer Science
from University of Kuopio, Finland, in 1985, 1988
and 1997, respectively. He joined the Beijing Jiao-
tong University faculty during 1988-1994. He has
been with Nokia Research Center as a senior re-
search engineer since 1997, and recently as principal
member of research staff and team leader. He has
authored or co-authored over 60 refereed publica-
tions including book chapter, journal and conference

papers, and holding 40 granted and pending patents. His research interests
include speech and natural language processing, human user interface, data
mining, context modeling and biomedical signal processing. He has served
as member of technical committee and technical review committee for
conferences and workshops, including ICSLP, Eurospeech, IEEE conferences,
etc.

Yong Guan received his Bachelor degree from
Beijing Tsinghua University in 2002 and Ph.D.
degree from the Institute of Automation, Chinese
Academy of Sciences (CASIA) in 2008. He is cur-
rently a postdoctoral researcher in Nokia Research
Center, Beijing. His research interest covers HMM
based speech synthesis, speech separation and robust
speech/speaker recognition.

Rile Hu received the Bachelor and Master de-
grees from the Department of Dynamic Engineering,
North China Electric Power University, in 1998 and
2001, respectively. He received the Ph.D. degree
from the National Laboratory of Pattern Recogni-
tion, Institute of Automation, Chinese Academy of
Sciences, in 2005. He is now a Member of Research
Staff at the Nokia (China) Research Center, Beijing.
His research interests are in natural language pro-
cessing, machine learning, and data mining.

Keiichiro Oura He receieved the B.E., in computer
science, M.E., and Ph.D. degrees in computer sci-
ence and Engineering from the Nagoya Institute of
technology, Nagoya, Japan in 2005, 2007, and 2010,
respectively. He was an intern/co-op researcher at
ATR Spoken Language Translation Research Labo-
ratories (ATR-SLT), Kyoto, Japan from September
2007 to December 2007. From April to May 2009,
he was a visiting researcher in the Centre of Speech
Technology Research, Edinburgh, UK. He is cur-
rently a postdoctral fellow of the EMIME project

at Nagoya Institute of Technology. His research interests include statistical
speech recognition and synthesis. He received the best student paper award at
ISCSLP in 2008. He is a student member of the Acoustical Society of Japan.

Yi-Jian Wu eceived the B.E., M.E. and Ph.D. degree
in electrical engineering and information science
from University of Science and Technology of China
(USTC), Hefei, Anhui, China in 2001, 2003 and
2006, respectively. From April 2003 to March 2004,
he was an intern student at ATR spoken language
translation research laboratories (ATRSLT), Kyoto,
Japan. He was an associate researcher of speech
Group, Microsoft Research Asia (MSRA) during
2006-2007, and was a postdoctoral researcher of
Nagoya Institute of Technology from 2007 to 2009.

He is currently a SDE in TTS group, Microsft Business Division, China. His
research interests include speech synthesis and speech recognition.



20 IEEE TRANSACTIONS ON AUDIO, SPEECH & LANGUAGE PROCESSING DRAFT

Keiichi Tokuda (M’89) received the B.E. degree
in electrical and electronic engineering from the
Nagoya Institute of Technology, Nagoya, Japan, the
M.E. and Dr.Eng. degrees in information processing
from the Tokyo Institute of Technology, Tokyo,
Japan, in 1984, 1986, and 1989, respectively. From
1989 to 1996 he was a Research Associate at the
Department of Electronic and Electric Engineering,
Tokyo Institute of Technology. From 1996 to 2004
he was a Associate Professor at the Department of
Computer Science, Nagoya Institute of Technology

as Associate Professor, and now he is a Professor at the same institute.
He is also an Invited Researcher at ATR Spoken Language Translation
Research Laboratories, Japan and was a Visiting Researcher at Carnegie
Mellon University from 2001 to 2002. He is a co-recipient of the Paper Award
and the Inose Award both from the IEICE in 2001, and the TELECOM System
Technology Prize from the Telecommunications Advancement Foundation
Award, Japan, in 2001. He was a member of the Speech Technical Committee
of the IEEE Signal Processing Society. His research interests include speech
coding, speech synthesis and recognition, and statistical machine learning. He
is a member of IEEE, ISCA, IPSJ, IEICE, ASJ, and JSAI.

Reima Karhila a M.Sc. student and research as-
sistant at the Helsinki University of Technology.
His thesis topic and research interests are related
to multilingual automatic speech recognition and
speaker adaptation.

Mikko Kurimo (SM’07) received the Dr.Sc. (Ph.D.)
in technology degree in computer science from
Helsinki University of Technology, Espoo, Finland,
in 1997. He is presently Chief Research Scientist and
Adjunct Professor at the Department of Information
and Computer Science, (previously Laboratory of
Computer and Information Science) of the Helsinki
University of Technology in Finland. His research
interests are in machine learning, speech recognition,
information retrieval, natural language processing,
and multimodal interfaces.


