

Thread algebra with multi-level strategies

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2005). Thread algebra with multi-level strategies. (Computer science
reports; Vol. 0508). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/a3442063-6599-4092-9b94-6ae5ecb6e01f

Thread Algebra with Multi-Level Strategies

J.A. Bergstra1,2 and C.A. Middelburg3

1 Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

janb@science.uva.nl
2 Department of Philosophy, Utrecht University,

P.O. Box 80126, 3508 TC Utrecht, the Netherlands
janb@phil.uu.nl

3 Computing Science Department, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

keesm@win.tue.nl

Abstract. In a previous paper, we developed an algebraic theory of
threads and multi-threads based on strategic interleaving. This theory
includes a number of plausible interleaving strategies on thread vectors.
The strategic interleaving of a thread vector constitutes a multi-thread.
Several multi-threads may exist concurrently on a single host in a net-
work, several host behaviors may exist concurrently in a single network
on the internet, etc. Strategic interleaving is also present at these other
levels. In the current paper, we extend the theory developed so far with
features to cover multi-level strategic interleaving. We use the resulting
theory to develop a simplified formal representation schema of systems
that consist of several multi-threaded programs on various hosts in differ-
ent networks. We also investigate the connections of the resulting theory
with the algebraic theory of processes known as ACP.

Keywords: thread, multi-thread, host, network, service, thread algebra,
strategic interleaving, thread-service composition, exception handling,
formal design prototype, process algebra.

1 Introduction

A thread is the behavior of a deterministic sequential program under execu-
tion. Multi-threading refers to the concurrent existence of several threads in a
program under execution. Multi-threading is the dominant form of concurrency
provided by recent object-oriented programming languages such as Java [3] and
C# [15]. Arbitrary interleaving, on which theories about concurrent processes
such as ACP [6] are based, is not the appropriate intuition when dealing with
multi-threading. In the case of multi-threading, some deterministic interleaving
strategy is used. In [11], we introduced a number of plausible deterministic in-
terleaving strategies for multi-threading. We also proposed to use the phrase
strategic interleaving for the more constrained form of interleaving obtained by
using such a strategy.

The strategic interleaving of a thread vector constitutes a multi-thread. In
conventional operating system jargon, a multi-thread is called a process. Several
multi-threads may exist concurrently on the same machine. Multi-processing
refers to the concurrent existence of several multi-threads on a machine. Such
machines may be hosts in a network, and several host behaviors may exist con-
currently in the same network. And so on and so forth. Strategic interleaving
is also present at these other levels. In the current paper, we extend the theory
developed so far with features to cover multi-level strategic interleaving. There
is a dependence on the interleaving strategy considered. We extend the theory
only for the simplest case: cyclic interleaving. Other plausible interleaving strate-
gies are treated in [11]. They can also be adapted to the setting of multi-level
strategic interleaving.

Threads proceed by performing steps, in the sequel called basic actions, in
a sequential fashion. Performing a basic action is taken as making a request to
a certain service provided by the execution environment to process a certain
command. The service produces a reply value which is returned to the thread
concerned. A service may be local to a single thread, local to a multi-thread,
local to a host, or local to a network. We introduce thread-service composition
in order to bind certain basic actions of a thread to certain services.

An axiomatic description of multi-level strategic interleaving and thread-
service composition, as well as a structural operational semantics, is provided.
One of our objectives is to develop a simplified, formal representation schema
of the design of systems that consist of several multi-threaded programs on
various hosts in different networks. We propose to use the term formal design
prototype for such a schema. Evidence of the correctness of the presented schema
is obtained by a simulation lemma, which states that a finite thread consisting
of basic actions that will not be processed by any available service is simulated
by any instance of the presented schema that contains the thread in one of its
thread vectors.

When a service that is local to a multi-thread receives a request from the
multi-thread, it often needs to know from which of the interleaved threads the re-
quest originates. This can be achieved by informing the service whenever threads
succeed each other by interleaving and whenever a thread drops out by termi-
nation or a deadlock. Similar remarks apply to services that are local to hosts
and networks. We show how multi-level strategic interleaving can be adapted
such that those services are properly informed. We also describe in detail a ser-
vice that needs such support of thread identity management, using a state-based
approach to describe services.

It is interesting to know the connections of threads and services with processes
as considered in theories about concurrent processes such as ACP. We show
that threads and services can be viewed as processes that are definable over
an extension of ACP with conditions introduced in [12] and that thread-service
composition on those processes can be expressed in terms of operators of that
extension of ACP.

2

Thread algebra with multi-level strategic interleaving is a design on top of
BPPA (Basic Polarized Process Algebra) [8, 5]. BPPA is far less general than
ACP-style process algebras and its design focuses on the semantics of determin-
istic sequential programs. The semantics of a deterministic sequential program
is supposed to be a polarized process. Polarization is understood along the axis
of the client-server dichotomy. Basic actions in a polarized process are either
requests expecting a reply or service offerings promising a reply. Thread algebra
may be viewed as client-side polarized process algebra because all threads are
viewed as clients generating requests for services provided by their environment.

The structure of this paper is as follows. After a review of BPPA (Section 2),
we extend it to a basic thread algebra with cyclic interleaving, but without any
feature for multi-level strategic interleaving (Section 3). Next, we extend this
basic thread algebra with thread-service composition (Section 4) and other fea-
tures for multi-level strategic interleaving (Section 5). Following this, we discuss
how two additional features can be expressed (Section 6) and give a formal repre-
sentation schema of the design of systems that consist of several multi-threaded
programs on various hosts in different networks (Section 7). Then, we enhance
multi-level strategic interleaving with support of thread identity management by
services (Section 8). Thereupon, we introduce a state-based approach to describe
services (Section 9) and use it to describe a service in which thread identity man-
agement is needed (Section 10). After that, we review an extension of ACP with
conditions introduced in [12] (Section 11) and show the connections of threads
and services with processes that are definable over this extension of ACP (Sec-
tion 12). Finally, we make some concluding remarks (Section 13).

This paper is a revision and extension of [9].

2 Basic Polarized Process Algebra

In this section, we review BPPA (Basic Polarized Process Algebra), a form of
process algebra which is tailored to the use for the description of the behavior
of deterministic sequential programs under execution.

In BPPA, it is assumed that there is a fixed but arbitrary finite set of basic
actions A with tau 6∈ A. We write Atau for A ∪ {tau}. BPPA has the following
constants and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ Atau, a binary postconditional composition operator E aD .

We use infix notation for postconditional composition. We introduce action pre-
fixing as an abbreviation: a◦p, where p is a term of BPPA, abbreviates pE aDp.

The intuition is that each basic action is taken as a command to be processed
by the execution environment. The processing of a command may involve a
change of state of the execution environment. At completion of the processing
of the command, the execution environment produces a reply value. This reply
is either T or F and is returned to the polarized process concerned. Let p and

3

Table 1. Axiom of BPPA

xE tau D y = xE tau D x T1

Table 2. Axioms for projection

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(xE aD y) = πn(x) E aD πn(y) P3

(
∧

n≥0 πn(x) = πn(y)) ⇒ x = y AIP

q be closed terms of BPPA. Then p E aD q will proceed as p if the processing
of a leads to the reply T (called a positive reply), and it will proceed as q if
the processing of a leads to the reply F (called a negative reply). If the reply is
used to indicate whether the processing was successful, a useful convention is to
indicate successful processing by the reply T and unsuccessful processing by the
reply F. The action tau plays a special role. Its execution will never change any
state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbrevi-
ation introduced above, axiom T1 can be written as follows: xE tauDy = tau◦x.

A recursive specification over BPPA is a set of equations E = {X = tX |
X ∈ V }, where V is a set of variables and each tX is a term of BPPA that
only contains variables from V . Let t be a term of BPPA containing a variable
X. Then an occurrence of X in t is guarded if t has a subterm of the form
t′ E aD t′′ containing this occurrence of X. A recursive specification over BPPA
is guarded if all occurrences of variables in the right-hand sides of its equations
are guarded or it can be rewritten to such a recursive specification using the
equations of the recursive specification. Following [5], a CPO structure can be
imposed on the domain of the projective limit model of BPPA. Then guarded
recursive specifications represent continuous operators having least fixed points.
These matters will not be repeated here, taking for granted that guarded recur-
sive specifications over BPPA have unique solutions. For each guarded recursive
specification E over BPPA and each variable X that occurs as the left-hand side
of an equation in E, we add to the constants of BPPA a constant standing for
the unique solution of E for X. This constant is denoted by 〈X|E〉.

The projective limit characterization of process equivalence on polarized pro-
cesses is based on the notion of a finite approximation of depth n. When for all
n these approximations are identical for two given polarized processes, both pro-
cesses are considered identical. This allows one to eliminate recursion in favor
of the infinitary proof rule AIP. Following [8], which in fact uses the notation
of [6], approximation of depth n is phrased in terms of a unary projection op-
erator πn(). The projection operators are defined inductively by means of the
axioms in Table 2. In this table and all subsequent tables with axioms in which

4

a occurs, a stands for an arbitrary action from Atau.
As mentioned above, the behavior of a polarized process depends upon its

execution environment. Each basic action performed by the polarized process
is taken as a command to be processed by the execution environment. At any
stage, the commands that the execution environment can accept depend only on
its history, i.e. the sequence of commands processed before and the sequence of
replies produced for those commands. When the execution environment accepts
a command, it will produce a positive reply or a negative reply. Whether the
reply is positive or negative usually depends on the execution history. However,
it may also depend on external conditions.

In the structural operational semantics, we represent an execution environ-
ment by a function ρ : (A× {T,F})∗ → P(A × {T,F}) that satisfies the fol-
lowing condition: (a, b) 6∈ ρ(α) ⇒ ρ(α y 〈(a, b)〉) = ∅ for all a ∈ A, b ∈ {T,F}
and α ∈ (A× {T,F})∗.4 We write E for the set of all those functions. Given
an execution environment ρ ∈ E and a basic action a ∈ A, the derived exe-
cution environment of ρ after processing a with a positive reply, written ∂

∂a

+
ρ,

is defined by ∂
∂a

+
ρ(α) = ρ(〈(a,T)〉 y α); and the derived execution environ-

ment of ρ after processing a with a negative reply, written ∂
∂a

−
ρ, is defined by

∂
∂a

−
ρ(α) = ρ(〈(a,F)〉 y α).
The following transition relations on closed terms are used in the structural

operational semantics of BPPA:

– a binary relation 〈 , ρ〉 a−→ 〈 , ρ′〉 for each a ∈ Atau and ρ, ρ′ ∈ E ;
– a unary relation 〈 , ρ〉↓ for each ρ ∈ E ;
– a unary relation 〈 , ρ〉↑ for each ρ ∈ E .

The three kinds of transition relations are called the action step, termination,
and deadlock relations, respectively. They can be explained as follows:

– 〈p, ρ〉 a−→ 〈p′, ρ′〉: in execution environment ρ, process p is capable of first
performing action a and then proceeding as process p′ in execution environ-
ment ρ′;

– 〈p, ρ〉↓: in execution environment ρ, process p is capable of terminating suc-
cessfully;

– 〈p, ρ〉↑: in execution environment ρ, process p is neither capable of performing
an action nor capable of terminating successfully.

The structural operational semantics of BPPA extended with projection and
recursion is described by the transition rules given in Table 3. In this table and
all subsequent tables with transition rules in which a occurs, a stands for an
arbitrary action from Atau. We write 〈t|E〉 for t with, for all X that occur on the
left-hand side of an equation in E, all occurrences of X in t replaced by 〈X|E〉.

Bisimulation equivalence is defined as follows. A bisimulation is a symmetric
binary relation B on closed terms such that for all closed terms p and q:
4 We write 〈 〉 for the empty sequence, 〈d〉 for the sequence having d as sole element,

and αyβ for the concatenation of sequences α and β. We assume that the identities
α y 〈 〉 = 〈 〉 y α = α hold.

5

Table 3. Transition rules for BPPA with projection and recursion

〈S, ρ〉↓ 〈D, ρ〉↑

〈x E a D y, ρ〉 a−→ 〈x, ∂
∂a

+
ρ〉

(a, T) ∈ ρ(〈 〉)
〈x E a D y, ρ〉 a−→ 〈y, ∂

∂a

−
ρ〉

(a, F) ∈ ρ(〈 〉)

〈x E a D y, ρ〉↑
(a, T) 6∈ ρ(〈 〉), (a, F) 6∈ ρ(〈 〉)

〈x E tau D y, ρ〉 tau−−→ 〈x, ρ〉

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈πn+1(x), ρ〉 a−→ 〈πn(x′), ρ′〉

〈x, ρ〉↓

〈πn+1(x), ρ〉↓

〈x, ρ〉↑

〈πn+1(x), ρ〉↑ 〈π0(x), ρ〉↑

〈〈t|E〉, ρ〉 a−→ 〈x′, ρ′〉

〈〈X|E〉, ρ〉 a−→ 〈x′, ρ′〉
X = t ∈ E

〈〈t|E〉, ρ〉↓

〈〈X|E〉, ρ〉↓
X = t ∈ E

〈〈t|E〉, ρ〉↑

〈〈X|E〉, ρ〉↑
X = t ∈ E

– if B(p, q) and 〈p, ρ〉 a−→ 〈p′, ρ′〉, then there is a q′ such that 〈q, ρ〉 a−→ 〈q′, ρ′〉
and B(p′, q′);

– if B(p, q) and 〈p, ρ〉↓, then 〈q, ρ〉↓;
– if B(p, q) and 〈p, ρ〉↑, then 〈q, ρ〉↑.

Two closed terms p and q are bisimulation equivalent, written p ↔ q, if there
exists a bisimulation B such that B(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional
composition operators and the projection operators. This follows immediately
from the fact that the transition rules for BPPA with projection and recursion
constitute a transition system specification in path format (see e.g. [2]).

3 Basic Thread Algebra with Foci and Methods

In this section, we introduce a thread algebra without features for multi-level
strategic interleaving. Such features will be added in subsequent sections. It is a
design on top of BPPA.

In [8], its has been outlined how and why polarized processes are a natu-
ral candidate for the specification of the semantics of deterministic sequential
programs. Assuming that a thread is a process representing a deterministic se-
quential program under execution, it is reasonable to view all polarized processes
as threads. A thread vector is a sequence of threads.

Strategic interleaving operators turn a thread vector of arbitrary length into
a single thread. This single thread obtained via a strategic interleaving operator
is also called a multi-thread. Formally, however both threads and multi-threads
are polarized processes. In this paper, we only cover the simplest interleaving
strategy, namely cyclic interleaving. Other plausible interleaving strategies are
treated in [11]. They can also be adapted to the features for multi-level strategic
interleaving that will be introduced in the current paper. The strategic interleav-

6

Table 4. Axioms for cyclic interleaving

‖(〈 〉) = S CSI1

‖(〈S〉 y α) = ‖(α) CSI2

‖(〈D〉 y α) = SD(‖(α)) CSI3

‖(〈tau ◦ x〉 y α) = tau ◦ ‖(α y 〈x〉) CSI4

‖(〈xE f.mD y〉 y α) = ‖(α y 〈x〉) E f.mD ‖(α y 〈y〉) CSI5

Table 5. Axioms for deadlock at termination

SD(S) = D S2D1

SD(D) = D S2D2

SD(tau ◦ x) = tau ◦ SD(x) S2D3

SD(xE f.mD y) = SD(x) E f.mD SD(y) S2D4

Table 6. Transition rules for cyclic interleaving and deadlock at termination

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 a−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈x′k+1〉), ρ
′〉

(k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 a−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈D〉 y 〈x′k+1〉), ρ
′〉

(k ≥ l > 0)

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓

〈‖(〈x1〉 y . . . y 〈xk〉), ρ〉↓

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑

〈‖(〈x1〉 y . . . y 〈xk〉), ρ〉↑
(k ≥ l > 0)

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈SD(x), ρ〉 a−→ 〈SD(x′), ρ′〉

〈x, ρ〉↓

〈SD(x), ρ〉↑

〈x, ρ〉↑

〈SD(x), ρ〉↑

ing operator for cyclic interleaving is denoted by ‖(). In [11], it was denoted by
‖csi() to distinguish it from other strategic interleaving operators.

It is assumed that there is a fixed but arbitrary finite set of foci F and a
fixed but arbitrary finite set of methods M. For the set of basic actions A, we
take the set {f.m | f ∈ F ,m ∈ M}. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. Performing a
basic action f.m is taken as making a request to the service named f to process
the command m.

The axioms for cyclic interleaving are given in Table 4. In this table and all
subsequent tables with axioms or transition rules in which f and m occur, f
and m stand for an arbitrary focus from F and an arbitrary method from M,
respectively. In CSI3, the auxiliary deadlock at termination operator SD() is
used. It turns termination into deadlock. Its axioms appear in Table 5.

The structural operational semantics of the basic thread algebra with foci and
methods is described by the transition rules given in Tables 3 and 6. Here 〈x, ρ〉 6−→

7

stands for the set of all negative conditions ¬ (〈x, ρ〉 a−→ 〈p′, ρ′〉) where p′ is a
closed term of BPPA, ρ′ ∈ E , a ∈ Atau. Recall that A = {f.m | f ∈ F ,m ∈M}.

Bisimulation equivalence is also a congruence with respect to the cyclic in-
terleaving operator and the deadlock at termination operator. This follows im-
mediately from the fact that the transition rules for the basic thread algebra
with foci and methods constitute a complete transition system specification in
relaxed panth format (see e.g. [17]).

4 Thread-Service Composition

In this section, we extend the basic thread algebra with foci and methods with
thread-service composition. For each f ∈ F , we introduce a thread-service com-
position operator /f . These operators have a thread as first argument and a
service as second argument. P /f H is the thread that results from issuing all
basic actions from thread P that are of the form f.m to service H.

A service is represented by a function H :M+ → {T,F,B,R} with the prop-
erty that H(α) = B ⇒ H(α y 〈m〉) = B and H(α) = R ⇒ H(α y 〈m〉) = R for
all α ∈ M+ and m ∈ M. This function is called the reply function of the ser-
vice. We write RF for the set of all reply functions and R for the set {T,F,B,R}.
Given a reply function H and a method m, the derived reply function of H after
processing m, written ∂

∂mH, is defined by ∂
∂mH(α) = H(〈m〉 y α).

The connection between a reply function H and the service represented by
it can be understood as follows:

– If H(〈m〉) = T, the request to process command m is accepted by the service,
the reply is positive and the service proceeds as ∂

∂mH.
– If H(〈m〉) = F, the request to process command m is accepted by the service,

the reply is negative and the service proceeds as ∂
∂mH.

– If H(〈m〉) = B, the request to process command m is not refused by the
service, but the processing of m is temporarily blocked. The request will
have to wait until the processing of m is not blocked any longer.

– If H(〈m〉) = R, the request to process command m is refused by the service.

Henceforth, we will identify a reply function with the service represented by it.
The axioms for thread-service composition are given in Table 7. In this table

and all subsequent tables with axioms or transition rules in which g occurs,
like f , g stands for an arbitrary focus from F . Moreover, in this table and all
subsequent tables with axioms or transition rules in which H occurs, H stands
for an arbitrary reply function from RF .

The structural operational semantics of the basic thread algebra with foci and
methods extended with thread-service composition is described by the transition
rules given in Tables 3, 6 and 8.

The action tau arises as the residue of processing commands. Therefore, tau
is not connected to a particular focus, and is always accepted.

8

Table 7. Axioms for thread-service composition

S /f H = S TSC1

D /f H = D TSC2

(tau ◦ x) /f H = tau ◦ (x /f H) TSC3

(xE g.mD y) /f H = (x /f H) E g.mD (y /f H) if ¬ f = g TSC4

(xE f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if H(〈m〉) = T TSC5

(xE f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if H(〈m〉) = F TSC6

(xE f.mD y) /f H = D if H(〈m〉) = B ∨ H(〈m〉) = R TSC7

Table 8. Transition rules for thread-service composition

〈x, ρ〉 g.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 g.m−−−→ 〈x′ /f H, ρ′〉
f 6= g

〈x, ρ〉 tau−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f
∂

∂m
H, ρ′〉

H(〈m〉) ∈ {T, F}, (f.m, H(〈m〉)) ∈ ρ(〈 〉)

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉↑
H(〈m〉) ∈ {B, R}

〈x, ρ〉↓

〈x /f H, ρ〉↓

〈x, ρ〉↑

〈x /f H, ρ〉↑

5 Guarding Tests

In this section, we extend the thread algebra developed so far with guarding
tests. Guarding tests are basic actions meant to verify whether a service will
accept the request to process a certain method now, and if not so whether it
will be accepted after some time. Guarding tests allow for dealing with delayed
processing and exception handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actions, we now take
the set {f.m, f?m, f??m | f ∈ F ,m ∈ M}. Basic actions of the forms f?m
and f??m will be called guarding tests. Performing a basic action f?m is taken
as making the request to the service named f to reply whether it will accept
the request to process method m now. The reply is positive if the service will
accept that request now, and otherwise it is negative. Performing a basic action
f??m is taken as making the request to the service named f to reply whether it
will accept the request to process method m now or after some time. The reply
is positive if the service will accept that request now or after some time, and
otherwise it is negative.

As explained below, it happens that not only thread-service composition but
also cyclic interleaving has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination
in the presence of guarding tests are given in Table 9. Axioms CSI6 and CSI7
state that:

– after a positive reply on f?m or f??m, the same thread proceeds with its
next basic action; and thus it is prevented that meanwhile other threads can

9

Table 9. Additional axioms for cyclic interleaving & deadlock at termination

‖(〈xE f?mD y〉 y α) = ‖(〈x〉 y α) E f?mD ‖(α y 〈y〉) CSI6

‖(〈xE f??mD y〉 y α) = ‖(〈x〉 y α) E f??mD ‖(α y 〈y〉) CSI7

SD(xE f?mD y) = SD(x) E f?mD SD(y) S2D5

SD(xE f??mD y) = SD(x) E f??mD SD(y) S2D6

Table 10. Additional transition rules for cyclic interleaving & deadlock at termination

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(〈x′k+1〉 y α), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(〈x′k+1〉 y α y 〈D〉), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(α y 〈x′k+1〉), ρ
′〉

(α, F) ∈ ρ(〈 〉) (k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(α y 〈D〉 y 〈x′k+1〉), ρ
′〉

(α, F) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x, ρ〉 γ−→ 〈x′, ρ′〉

〈SD(x), ρ〉 γ−→ 〈SD(x′), ρ′〉

cause a state change to a state in which the processing of m is blocked (and
f?m would not reply positively) or the processing of m is refused (and both
f?m and f??m would not reply positively);

– after a negative reply on f?m or f??m, the same thread does not proceed
with it; and thus it is prevented that other threads cannot make progress.

Without this difference, the Simulation Lemma (Section 7) would not go through.
The additional transition rules for cyclic interleaving and deadlock at termi-

nation in the presence of guarding tests are given in Table 10, where γ stands
for an arbitrary basic action from the set {f?m, f??m | f ∈ F ,m ∈M}.

A service may be local to a single thread, local to a multi-thread, local to
a host, or local to a network. A service local to a multi-thread is shared by all
threads from which the multi-thread is composed, etc. Henceforth, to simplify
matters, it is assumed that each thread, each multi-thread, each host, and each
network has a unique local service. Moreover, it is assumed that t, p, h, n ∈ F .
Below, the foci t, p, h and n play a special role:

– for each thread, t is the focus of its unique local service;
– for each multi-thread, p is the focus of its unique local service;
– for each host, h is the focus of its unique local service;
– for each network, n is the focus of its unique local service.

The additional axioms for thread-service composition in the presence of
guarding tests are given in Table 11. Axioms TSC10 and TSC11 are crucial.

10

Table 11. Additional axioms for thread-service composition

(xE g?mD y) /f H = (x /f H) E g?mD (y /f H) if ¬ f = g TSC8

(xE f?mD y) /f H = tau ◦ (x /f H) if H(〈m〉) = T ∨
H(〈m〉) = F TSC9

(xE f?mD y) /f H = tau ◦ (y /f H) if H(〈m〉) = B ∧ ¬ f = t TSC10

(xE f?mD y) /f H = D if (H(〈m〉) = B ∧ f = t) ∨
H(〈m〉) = R TSC11

(xE g??mD y) /f H = (x /f H) E g??mD (y /f H) if ¬ f = g TSC12

(xE f??mD y) /f H = tau ◦ (x /f H) if ¬ H(〈m〉) = R TSC13

(xE f??mD y) /f H = tau ◦ (y /f H) if H(〈m〉) = R TSC14

Table 12. Additional transition rules for thread-service composition

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) ∈ {T, F}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) = B, f 6= t, (f?m, F) ∈ ρ(〈 〉)

〈x, ρ〉 t?m−−−→ 〈x′, ρ′〉

〈x /t H, ρ〉↑
H(〈m〉) = B

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉↑
H(〈m〉) = R

〈x, ρ〉 f??m−−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) ∈ {T, F, B}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f??m−−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) = R, (f?m, F) ∈ ρ(〈 〉)

If f = t, then f is the focus of the local service of the thread x E f?m D y. No
other thread can raise a state of this service in which the processing of m is
blocked. Hence, if the processing of m is blocked, it is blocked forever.

The additional transition rules for thread-service composition in the presence
of guarding tests are given in Table 12.

6 Delays and Exception Handling

We go on to show how guarding tests can used to express postconditional com-
position with delay and postconditional composition with exception handling.

For postconditional composition with delay, we extend the set of basic actions
A with the set {f !m | f ∈ F ,m ∈ M}. Performing a basic action f !m is like
performing f.m, but in case processing of the command m is temporarily blocked,
it is automatically delayed until the blockade is over.

Postconditional composition with delay is defined by the equation given in
Table 13. The equation from this table guarantees that f.m is only performed if

11

Table 13. Defining equation for postconditional composition with delay

xE f !mD y = (xE f.mD y) E f?mD (xE f !mD y)

Table 14. Defining equations for postconditional composition with exception handling

xE f.m [y] D z = (xE f.mD z) E f??mD y

xE f !m [y] D z = ((xE f.mD z) E f?mD (xE f !m [y] D z)) E f??mD y

f?m yields a positive reply.
For postconditional composition with exception handling, we introduce the

following notations: x E f.m [y]D z and x E f !m [y]D z.
The intuition for x E f.m [y]D z is that x E f.m D z is tried, but y is done

instead in the exceptional case that x E f.m D z fails because the request to
process m is refused. The intuition for x E f !m [y]D z is that x E f !m D z is
tried, but y is done instead in the exceptional case that xE f !m Dz fails because
the request to process m is refused. The processing of m may first be blocked
and thereafter be refused; in that case, y is done instead as well.

The two forms of postconditional composition with exception handling are
defined by the equations given in Table 14. The equations from this table guar-
antee that f.m is only performed if f??m yields a positive reply.

An alternative to the second equation from Table 14 is

x E f !m [y]D z = ((x E f.m D z) E f?m D (x E f !m D z)) E f??m D y .

In that case, y is only done if the processing of m is refused immediately.

7 A Formal Design Prototype

In this section, we show how the thread algebra developed so far can be used
to give a simplified, formal representation schema of the design of systems that
consist of several multi-threaded programs on various hosts in different networks.
We propose to use the term formal design prototype for such a schema. The
presented schema can be useful in understanding certain aspects of the system
designed.

The set of basic thread expressions, with typical element P , is defined by

P ::= D
∣∣ S

∣∣ P E f.m D P
∣∣ P E f !m D P

∣∣
P E f.m [P]D P

∣∣ P E f !m [P]D P
∣∣ 〈X|E〉 ,

where f ∈ F , m ∈M and 〈X|E〉 is a constant standing for the unique solution
for variable X of a guarded recursive specification E in which the right-hand
sides of the equations are basic thread expressions in which variables may occur
wherever basic thread expressions are expected. Thus, the use of guarding tests,
i.e. basic actions of the forms f?m and f??m, is restricted to their intended use.

12

A thread with local service is described by an expression of the form P /tTLS ,
where P is a basic thread expression and TLS is a local service for threads. TLS
does nothing else but maintaining local data for a thread. A thread vector in
which each thread has its local service is of the form

〈P1 /t TLS 〉 y . . . y 〈Pn /t TLS 〉 ,

where P1, . . . , Pn are basic thread expressions.
A multi-thread with local service is described by an expression of the form

‖(TV) /p PLS , where TV is a thread vector in which each thread has its local
service and PLS is a local service for multi-threads. PLS maintains shared data
of the threads from which a multi-thread is composed. A typical example of such
data are Java pipes. A multi-thread vector in which each multi-thread has its
local service is of the form

〈‖(TV 1) /p PLS 〉 y . . . y 〈‖(TV m) /p PLS 〉 ,

where TV 1, . . . ,TV m are thread vectors in which each thread has its local ser-
vice.

The behavior of a host with local service is described by an expression of the
form ‖(PV) /h HLS , where PV is a multi-thread vector in which each multi-
thread has its local service and HLS is a local service for hosts. HLS maintains
shared data of the multi-threads on a host. A typical example of such data are the
files connected with Unix sockets used for data transfer between multi-threads
on the same host. A host behavior vector in which each host has its local service
is of the form

〈‖(PV 1) /h HLS 〉 y . . . y 〈‖(PV l) /h HLS 〉 ,

where PV 1, . . . ,PV l are multi-thread vectors in which each multi-thread has its
local service.

The behavior of a network with local service is described by an expression
of the form ‖(HV) /n NLS , where HV is a host behavior vector in which each
host has its local service and NLS is a local service for networks. NLS maintains
shared data of the hosts in a network. A typical example of such data are the
files connected with Unix sockets used for data transfer between different hosts
in the same network. A network behavior vector in which each network has its
local service is of the form

〈‖(HV 1) /n NLS 〉 y . . . y 〈‖(HV k) /n NLS 〉 ,

where HV 1, . . . ,HV k are host behavior vectors in which each host has its local
service.

The behavior of a system that consist of several multi-threaded programs
on various hosts in different networks is described by an expression of the form
‖(NV), where NV is a network behavior vector in which each network has its
local service.

13

Table 15. Definition of simulation relation

S sim x

D sim x

x sim y ∧ x sim z ⇒ x sim y E aD z

x sim y ∧ z sim w ⇒ xE aD z sim y E aD w

A typical example is the case where NV is an expression of the form

‖(〈‖(〈‖(〈P1 /t TLS 〉 y 〈P2 /t TLS 〉) /p PLS 〉 y

〈‖(〈P3 /t TLS 〉 y 〈P4 /t TLS 〉 y 〈P5 /t TLS 〉) /p PLS 〉) /h HLS 〉 y

〈‖(〈‖(〈P6 /t TLS 〉) /p PLS 〉) /h HLS 〉) /n NLS ,

where P1, . . . , P6 are basic thread expressions, and TLS , PLS , HLS and NLS
are local services for threads, multi-threads, hosts and networks, respectively. It
describes a system that consists of two hosts in one network, where on the first
host currently a multi-thread with two threads and a multi-thread with three
threads exist concurrently, and on the second host currently a single multi-thread
with a single thread exists.

Evidence of correctness of the schema ‖(NV) is obtained by Lemma 1 given
below. This lemma is phrased in terms of a simulation relation sim on the closed
terms of the thread algebra developed in the preceding sections. The relation sim
(is simulated by) is defined inductively by means of the rules in Table 15.

Lemma 1 (Simulation Lemma). Let P be a basic thread expression in which
all basic actions are from the set {f.m | f ∈ F \ {t, p, h, n},m ∈ M} and
constants standing for the solutions of guarded recursive specifications do not
occur. Let C[P] be a context of P of the form ‖(NV) where NV is a network
behavior vector as above. Then P sim C[P]. This implies that C[P] will perform
all steps of P in finite time.

Proof. First we prove P sim C ′[P], where C ′ is a context of P of the form
‖(TV), by induction on the depth of P , and in both the basis and the inductive
step, by induction on the position of P in thread vector TV . Using in each case
the preceding result, we prove an analogous result for each higher-level vector in
a similar way. ut

8 Thread Identity Management in Local Services

A multi-thread with local service is described by an expression of the form
‖(TV) /p PLS , where TV is a thread vector and PLS is a local service for
multi-threads. When the local service PLS receives a request from the multi-
thread ‖(TV), it often needs to know from which of the interleaved threads the
request originates. This can be achieved by informing the local service whenever
threads succeed each other by interleaving and whenever a thread drops out by

14

Table 16. Axioms for cyclic interleaving with thread identity management support

‖`(〈 〉) = S CSItim1

‖`(〈S〉 y α) = `.shift ◦ ‖`(α) CSItim2

‖`(〈D〉 y α) = `.shift ◦ SD(‖`(α)) CSItim3

‖`(〈tau ◦ x〉 y α) = tau ◦ `.rotate ◦ ‖`(α y 〈x〉) CSItim4

‖`(〈xE f.mD y〉 y α) = `.rotate ◦ ‖`(α y 〈x〉) E f.mD `.rotate ◦ ‖`(α y 〈y〉) CSItim5

‖`(〈xE f?mD y〉 y α) = ‖`(〈x〉 y α) E f?mD `.rotate ◦ ‖`(α y 〈y〉) CSItim6

‖`(〈xE f??mD y〉 y α) = ‖`(〈x〉 y α) E f??mD `.rotate ◦ ‖`(α y 〈y〉) CSItim7

termination or a deadlock. Similar remarks apply to local services of hosts and
networks.

That leads us to cyclic interleaving with thread identity management sup-
port. For this variation of cyclic interleaving, it is assumed that rotate, shift ∈M.
Three new strategic interleaving operators are introduced: ‖p(), ‖h() and ‖n().
The operator ‖p() differs from ‖() in that it generates a basic action p.rotate
whenever threads succeed each other and it generates a basic action p.shift when-
ever a thread drops out. The operators ‖h() and ‖n() differ from ‖() analo-
gously.

The axioms for cyclic interleaving with thread identity management support
are given in Table 16, where ` stands for an arbitrary focus from the set {p, h, n}.

We refrain from giving the additional transition rules for ‖p(), ‖h() and
‖n(). They are obvious variations of the transition rules for ‖().

In order to cover local services in which thread identity management is
needed, we have to adapt the formal design prototype given in Section 7. A
multi-thread with local service is now described by an expression of the form
‖p(TV) /p PLS , where TV is a thread vector in which each thread has its local
service and PLS is a local service for multi-threads. The behavior of a host with
local service is now described by an expression of the form ‖h(PV)/hHLS , where
PV is a multi-thread vector in which each multi-thread has its local service and
HLS is a local service for hosts. The behavior of a network with local service
is now described by an expression of the form ‖n(HV) /n NLS , where HV is a
host behavior vector in which each host has its local service and NLS is a local
service for networks.

Notice that the forms of the expressions that describe a thread with local
service and a system have not been adapted. In the first case, no interleaving of
threads is involved; and in the second case, no local service is involved.

In Section 10, we will describe a service in which thread identity management
is needed.

9 State-Based Description of Services

In this section, we introduce the state-based approach to describe services that
will be used in Section 10 to describe a service in which thread identity man-

15

agement is needed. This approach is similar to the approach to describe state
machines introduced in [14].

In this approach, a service is described by

– a set of states S;
– an initial state s0 ∈ S;
– an effect function eff :M× S → S;
– a yield function yld :M× S → R.

The set S contains the states in which the service may be; and the functions eff
and yld give, for each method m and state s, the state and reply, respectively,
that result from processing m in state s.

We define a cumulative effect function ceff :M∗ → S in terms of s0 and eff
as follows:

ceff (〈 〉) = s0

ceff (α y 〈m〉) = eff (m, ceff (α)) .

We define a service H :M+ → R in terms of ceff and yld as follows:

H(α y 〈m〉) = yld(m, ceff (α)) .

We consider H to be the service described by S, s0, eff and yld .
Note that H(〈m〉) = yld(m, s0) and ∂

∂mH is the service obtained by taking
eff (m, s0) instead of s0 as the initial state.

As an example, we give a state-based description of a very simple service
concerning a Boolean cell. This service can be used as a local service of threads.
It will be generalized in Section 10 to a service that can be used as a local service
of multi-threads, hosts and networks.

It is assumed that M contains the following methods:

– bc:set:T : the contents of the Boolean cell becomes T and the reply is T;
– bc:set:F : the contents of the Boolean cell becomes F and the reply is F;
– bc:get : nothing changes and the reply is the contents of the Boolean cell.

We write Mbc for the set {bc:set:T, bc:set:F, bc:get}.
The state-based description of the service is as follows:

– S = {T,F};
– s0 = F;
– eff and yld are defined as follows:

eff (bc:set:T, s) = T ,

eff (bc:set:F, s) = F ,

eff (bc:get, s) = s ,

eff (m, s) = s ,

yld(bc:set:T, s) = T ;
yld(bc:set:F, s) = F ;
yld(bc:get, s) = s ;
yld(m, s) = R , if m 6∈ Mbc .

In Section 12, we will show that services can also be viewed as processes that
are definable over an extension of ACP with conditions introduced in [12].

16

10 Localizable Boolean Cells

In this section, we describe a service in which thread identity management is
needed. It can be used as a local service of multi-threads, hosts and networks. The
service, called LBC , concerns localizable Boolean cells. It generalizes the service
described in Section 9. LBC is much simpler than a service maintaining Java
pipes or a service maintaining the files connected with Unix sockets. However,
its description suggests how to describe those more interesting services.

It is assumed that M contains all methods of LBC , to wit (for each n ∈ N):

– lbc:n:create: if a Boolean cell with name n does not exist, it is created
with status unowned and contents F, and the reply is T; otherwise, nothing
changes and the reply is F;

– lbc:n:elim: if a Boolean cell with name n exists and it is unowned, it is
eliminated and the reply is T; otherwise, nothing changes and the reply is F;

– lbc:n:claim: if a Boolean cell with name n exists and it is unowned or owned
by the requesting thread, it becomes or remains owned by the requesting
thread and the reply is T; otherwise, nothing changes and the reply is F if
it does not exist and B if it is owned by a thread other than the requesting
thread;

– lbc:n:release: if a Boolean cell with name n exists and it is owned by the
requesting thread, it becomes unowned and the reply is T; otherwise, nothing
changes and the reply is F if it does not exist and R if it is unowned or owned
by a thread other than the requesting thread;

– lbc:n:set:T: if a Boolean cell with name n exists and it is owned by the
requesting thread, its contents becomes T and the reply is T; otherwise,
nothing changes and the reply is R;

– lbc:n:set:F: if a Boolean cell with name n exists and it is owned by the
requesting thread, its contents becomes F and the reply is T; otherwise,
nothing changes and the reply is R;

– lbc:n:get: if a Boolean cell with name n exists and it is owned by the request-
ing thread, nothing changes and the reply is its contents; otherwise, nothing
changes as well and the reply is R.

We write Mlbc for the set of all methods of LBC .
Notice that, formally, multi-threads and host behaviours are threads as well.

Therefore, in the case where LBC is used as a local service of a host or a network,
we can think of multi-thread or host where thread is written in the explanation
of its methods given above.

We suppose that an instance of LBC knows, when it starts to service a multi-
thread, host or network, the number of threads, multi-threads or hosts it has to
deal with initially. We consider this number to be a parameter of the service.

Let l0 ∈ N. Then the state-based description of the service LBC with pa-
rameter l0, written LBC (l0), is as follows:

S = {(c, o, l) ∈ C ×O × N | dom(c) = dom(o),max(rng(o)) ≤ l} ,

where C = {c : N → {T,F} | N ∈ Pfin(N)}, O = {o : N → N | N ∈ Pfin(N)};
s0 = ([], [], l0); and eff and yld are defined in Tables 17 and 18, respectively.

17

Table 17. Effect function for service with localizable Boolean cells

eff (lbc:n:create, (c, o, l)) = (c⊕ [n 7→ F], o⊕ [n 7→ 0], l) if n 6∈ dom(c)

eff (lbc:n:create, (c, o, l)) = (c, o, l) if n ∈ dom(c)

eff (lbc:n:elim, (c, o, l)) =

(c � (dom(c) \ {n}), o � (dom(c) \ {n}), l) if n ∈ dom(c) ∧ o(n) = 0

eff (lbc:n:elim, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) 6= 0

eff (lbc:n:claim, (c, o, l)) = (c, o⊕ [n 7→ 1], l) if n ∈ dom(c) ∧ o(n) ≤ 1

eff (lbc:n:claim, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) > 1

eff (lbc:n:release, (c, o, l)) = (c, o⊕ [n 7→ 0], l) if n ∈ dom(c) ∧ o(n) = 1

eff (lbc:n:release, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) 6= 1

eff (lbc:n:set:b, (c, o, l)) = (c⊕ [n 7→ b], o, l) if n ∈ dom(c) ∧ o(n) = 1

eff (lbc:n:set:b, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) 6= 1

eff (lbc:n:get, (c, o, l)) = (c, o, l)

eff (rotate, (c, o, l)) = (c, rotate(o, l), l)

eff (shift, (c, o, l)) = (c, shift(o, l), l − 1)

eff (m, (c, o, l)) = (c, o, l) if m 6∈ Mlbc ∪ {rotate, shift}

Table 18. Yield function for service with localizable Boolean cells

yld(lbc:n:create, (c, o, l)) = T if n 6∈ dom(c)

yld(lbc:n:create, (c, o, l)) = F if n ∈ dom(c)

yld(lbc:n:elim, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) = 0

yld(lbc:n:elim, (c, o, l)) = F if n 6∈ dom(c) ∨ o(n) 6= 0

yld(lbc:n:claim, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) ≤ 1

yld(lbc:n:claim, (c, o, l)) = F if n 6∈ dom(c)

yld(lbc:n:claim, (c, o, l)) = B if n ∈ dom(c) ∧ o(n) > 1

yld(lbc:n:release, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) = 1

yld(lbc:n:release, (c, o, l)) = F if n 6∈ dom(c)

yld(lbc:n:release, (c, o, l)) = R if n ∈ dom(c) ∧ o(n) 6= 1

yld(lbc:n:set:b, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) = 1

yld(lbc:n:set:b, (c, o, l)) = R if n 6∈ dom(c) ∨ o(n) 6= 1

yld(lbc:n:get, (c, o, l)) = c(n) if n ∈ dom(c) ∧ o(n) = 1

yld(lbc:n:get, (c, o, l)) = R if n 6∈ dom(c) ∨ o(n) 6= 1

yld(rotate, (c, o, l)) = T

yld(shift, (c, o, l)) = T

yld(m, (c, o, l)) = R if m 6∈ Mlbc ∪ {rotate, shift}

18

The state of the service comprises the contents (c) and owner (o) of the existing
Boolean cells, and the number of threads, multi-threads or hosts it is dealing
with (l). The functions rotate, shift : O×N → O used in Table 17 are defined as
follows:

dom(rotate(o, l)) = dom(o) ,

rotate(o, l)(n) = 0 ,

rotate(o, l)(n) = l ,

rotate(o, l)(n) = o(n)− 1 ,

dom(shift(o, l)) = dom(o) ;

shift(o, l)(n) = 0 , if o(n) = 0 ;
shift(o, l)(n) = 0 , if o(n) = 1 ;
shift(o, l)(n) = o(n)− 1 , if 1 < o(n) ≤ l .

We use the following notation for functions: [] for the empty function; [d 7→ r]
for the function f with dom(f) = {d} such that f(d) = r; f ⊕ g for the function
h with dom(h) = dom(f) ∪ dom(g) such that for all d ∈ dom(h), h(d) = f(d)
if d 6∈ dom(g) and h(d) = g(d) otherwise; and f � D for the function g with
dom(g) = dom(f) \D such that for all d ∈ dom(g), g(d) = f(d).

11 ACP with Conditions

In Section 12, we will investigate the connections of threads and services with the
processes considered in ACP-style process algebras. We will focus on ACPc, an
extension of ACP with conditions introduced in [12]. In this section, we shortly
review ACPc. For a comprehensive overview, the reader is referred to [12, 13].
The axioms of ACPc are given in Appendix A.

ACPc is an extension of ACP with conditional expressions in which the
conditions are taken from a Boolean algebra. ACPc has two sorts: (i) the sort P of
processes, (ii) the sort C of conditions. In ACPc, it is assumed that the following
has been given: a fixed but arbitrary set A (of actions), with δ 6∈ A, a fixed but
arbitrary commutative and associative function | : A ∪ {δ} × A ∪ {δ} → A ∪ {δ}
such that δ |a = δ for all a ∈ A∪{δ}, and a fixed but arbitrary set Cat (of atomic
conditions). Henceforth, we write Aδ for A ∪ {δ}.

Let p and q be closed terms of sort P, ζ and ξ be closed term of sort C,
a ∈ A, H ⊆ A, and η ∈ Cat. Intuitively, the constants and operators to build
terms of sort P that will be used to define the processes to which threads and
services correspond can be explained as follows:

– δ can neither perform an action nor terminate successfully;
– a first performs action a unconditionally and then terminates successfully;
– p + q behaves either as p or as q, but not both;
– p · q first behaves as p, but when p terminates successfully it continues as q;
– ζ :→ p behaves as p under condition ζ;
– p ‖ q behaves as the process that proceeds with p and q in parallel;
– ∂H(p) behaves the same as p, except that actions from H are blocked.

Intuitively, the constants and operators to build terms of sort C that will be
used to define the processes to which threads and services correspond can be
explained as follows:

19

– η is an atomic condition;
– ⊥ is a condition that never holds;
– > is a condition that always holds;
– −ζ is the opposite of ζ;
– ζ t ξ is either ζ or ξ;
– ζ u ξ is both ζ and ξ.

The remaining operators of ACPc are of an auxiliary nature. They are needed
to axiomatize ACPc.

We write
∑

i∈I pi, where I = {i1, . . . , in} and pi1 , . . . , pin are terms of sort
P, for pi1 + . . . + pin . The convention is that

∑
i∈I pi stands for δ if I = ∅.

We use the notation pC ζ B q, where p and q are terms of sort P and ζ is a term
of sort C, for ζ :→ p +−ζ :→ q.

A process is considered definable over ACPc if there exists a guarded recursive
specification over ACPc that has that process as its solution.

A recursive specification over ACPc is a set of equations E = {X = tX |
X ∈ V }, where V is a set of variables and each tX is a term of sort P that
only contains variables from V . Let t be a term of sort P containing a variable
X. An occurrence of X in t is guarded if t has a subterm of the form a · t′

containing this occurrence of X. A recursive specification over ACPc is guarded
if all occurrences of variables in the right-hand sides of its equations are guarded
or it can be rewritten to such a recursive specification using the axioms of ACPc

and the equations of the recursive specification. We only consider models of
ACPc in which guarded recursive specifications have unique solutions.

For each guarded recursive specification E and each variable X that occurs
as the left-hand side of an equation in E, we introduce a constant of sort P
standing for the unique solution of E for X. This constant is denoted by 〈X|E〉.
The axioms for guarded recursion are also given in Appendix A.

In order to express thread-service composition on the ACPc-definable pro-
cesses corresponding to threads and services, we need an extension of ACPc with
renaming operators ρr like the ones introduced for ACP in [7]. Intuitively, the
action renaming operator ρr, where r :A → A, can be explained as follows: ρr(p)
behaves as p with each action replaced according to r. The axioms for action
renaming are also given in Appendix A.

In order to explain the connection of threads and services with ACPc fully,
we need an extension of ACPc with the condition evaluation operators CEh

introduced in [12]. Intuitively, the condition evaluation operator CEh, where h is
a function on conditions that is preserved by ⊥, >, −, t and u, can be explained
as follows: CEh(p) behaves as p with each condition replaced according to h. The
important point is that, if h(ζ) ∈ {⊥,>}, all subterms of the form ζ :→ q can be
eliminated. The axioms for condition evaluation are also given in Appendix A.

12 Connections of Threads and Services with ACPc

In this section, we show that threads and services can be viewed as processes
that are definable over ACPc, the extension of ACP with conditions reviewed

20

Table 19. Definition of translation function for threads

[[X]] = X ,

[[S]] = stop ,

[[D]] = i · δ ,
[[t1 E tau D t2]] = i · i · [[t1]] ,
[[t1 E f.mD t2]] = sf (m) · (rf (T) · [[t1]] + rf (F) · [[t2]]) ,
[[t1 E t?mD t2]] = st(?m) · (rt(T) · [[t1]] + rt(F) · [[t1]]) ,
[[t1 E f?mD t2]] =

sf (?m) · (rf (T) · [[t1]] + rf (F) · [[t1]] + rf (B) · [[t2]]) if f 6= t ,

[[t1 E f??mD t2]] =

sf (??m) · (rf (T) · [[t1]] + rf (F) · [[t1]] + rf (B) · [[t1]] + rf (R) · [[t2]]) ,
[[〈X|E〉]] = 〈X|{X = [[t]] | X= t ∈ E}〉 .

in Section 11, and that thread-service composition on those processes can be
expressed in terms of operators of ACPc with renaming.

For that purpose, A, | and Cat are taken as follows:

A = {sf (d) | f ∈ F , d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {rf (d) | f ∈ F , d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {stop, stop, stop∗, i} ;

for all a ∈ A, f ∈ F and d ∈M∪ {?m | m∈M} ∪ {??m | m∈M} ∪R:

sf (d) | rf (d) = i ,

sf (d) | a = δ if a 6= rf (d) ,

a | rf (d) = δ if a 6= sf (d) ,

i | a = δ ;

stop | stop = stop∗ ,

stop | a = δ if a 6= stop ,

a | stop = δ if a 6= stop ,

and

Cat = {H(〈m〉) = r | H ∈ RF ,m ∈M, r ∈ R} ∪ {f = g | f, g ∈ F} .

We proceed with relating threads and services to processes definable over
ACPc. First of all, we define a function [[]] that gives a translation of terms of
the thread algebra developed in Sections 3–5 to terms of ACPc. The translation
is restricted to the terms in which the operators for cyclic interleaving, deadlock
at termination, and thread-service composition do not occur. It is easy to prove
by induction that each terms of the thread algebra is derivably equal to a term
in which these operators do not occur. Hence, the restriction does not cause
any loss of generality. The function [[]] is defined inductively by the equations
given in Table 19. In Section 6, postconditional composition with delay and
postconditional composition with exception handling are defined over the thread

21

Table 20. Definition of translation function for services

[[H]]f = 〈P f
H |E〉

where E consists of an equation

P f
H′ =

∑
m∈M

(rf (m) · sf (H ′(〈m〉)) · (P f
∂

∂m
H′ CH ′(〈m〉)=T tH ′(〈m〉)=F B P f

H′)

+ (rf (?m) + rf (??m)) · sf (H ′(〈m〉)) · P f
H′) + stop

for each H ′ ∈ RF

algebra developed in Sections 3–5. Thus, the translation of a term of one of the
additional forms (t1 E f !m D t2, t1 E f.m [t2]D t3 or t1 E f !m [t2]D t3) equals the
translation of a term of the thread algebra developed in Sections 3–5:

[[t1 E f !m D t2]] = [[〈X|{X = (t1 E f.m D t2) E f?m D X}〉]] ,

[[t1 E f.m [t2]D t3]] = [[(t1 E f.m D t3) E f??m D t2]] ,

[[t1 E f !m [t2]D t3]] =
[[〈X|{X = ((t1 E f.m D t3) E f?m D X) E f??m D t2}〉]] .

Secondly, we define functions [[]]f , one for each f ∈ F , that give translations
of the services introduced in Section 4 to terms of ACPc. The translation of a
service depends upon the focus associated with it. If focus f is associated with
service H, it will only process basic actions that are of the form f.m. In that case,
[[H]]f is the correct translation. For every f ∈ F , the function [[]]f is defined in
Table 20.

Notice that ACP is sufficient for the translation of threads: no conditional
expressions occur in the translations. For the translation of services, we have
used the full power of ACPc.

Next, we relate thread-service composition to operators of ACPc with renam-
ing. That is, we extend the translation function [[]] to terms in which thread-
service composition does occur. The additional equation for this extension is
given in Table 21.

The translations given above preserve the closed substitution instances of all
axioms in which the operators for cyclic interleaving and deadlock at termination
do not occur, i.e. axioms T1 and TSC1–TSC14 (see Tables 1, 7 and 11). Roughly
speaking, this means that the translations of the closed substitution instances of
these axioms are derivable from the axioms of ACPc. Axioms TSC1–TSC14 are
for the greater part conditional equations. The conditions concerned take part
in the translation as well. The conditions are looked upon as propositions with
the conditions of the forms H(〈m〉) = r and f = g, i.e. the elements of Cat, as
propositional variables.

We define a function [[]] that gives a translation of conditional equations of
the thread algebra developed in Sections 3–5 to equations of ACPc. For conve-

22

Table 21. Extension of translation function for threads to thread-service composition

[[t /f H]] = ρr(∂Cf ([[t]] ‖ [[H]]f))

where r is such that

r(stop∗) = stop r(a) = a if a 6= stop∗

and Cf is defined by

Cf = {sf (d) | d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {rf (d) | d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {stop, stop}

nience, unconditional equations are considered to be conditional equations with
condition T. The function [[]] is defined as follows:

[[t1 = t2 if φ]] = CEhΦ∪{φ}([[p]]) = CEhΦ∪{φ}([[q]]) ,

where

Φ = {
∧

r∈R ¬ (H(〈m〉) = r ∧
∨

r′∈R\{r} H(〈m〉) = r′) | H∈RF ,m∈M}
∪ {

∧
f∈F f = f ∧

∧
f∈F

∧
f ′∈F\{f} ¬ f = f ′} .

Here hΨ is a function on conditions of ACPc that preserves ⊥, >, −, t and u
and satisfies hΨ (α) = > iff α corresponds to a proposition derivable from Ψ and
hΨ (α) = ⊥ iff −α corresponds to a proposition derivable from Ψ .5

Theorem 1 (Preservation Theorem). Let p = q if φ be a closed substitu-
tion instance of T1, TSC1, TSC2, . . . , TCS13 or TSC14. Then [[p = q if φ]] is
derivable from ACPc.

Proof. The proof is straightforward. We outline the proof for axiom TSC5. The
other axioms are proved in a similar way. In the outline of the proof for axiom
TSC5, E, r and Cf are as in Tables 20 and 21, and Φ is as above. We take an
arbitrary closed substitution instance of TSC5, say

(p E f.m D q) /f H = tau ◦ (p /f
∂

∂mH) if H(〈m〉) = T .

The following equation about the translation of the left-hand side of the closed
substitution instance of TSC5 is derivable from the axioms of ACPc and the
axioms for guarded recursive specifications over ACPc:

ρr(∂Cf
(sf (m) · (rf (T) · [[p]] + rf (F) · [[q]]) ‖ 〈P f

H |E〉))
= i · i · (H(〈m〉) = T :→ ρr(∂Cf

([[p]] ‖ 〈P f
∂

∂m H
|E〉))

+ H(〈m〉) = F :→ ρr(∂Cf
([[q]] ‖ 〈P f

∂
∂m H

|E〉))) .

5 Here we use “corresponds to” for the wordy “is isomorphic to the equivalence class
with respect to logical equivalence of” (see also [12]).

23

The following equation is derivable from this equation and the axioms for con-
dition evaluation:

CEΦ∪{H(〈m〉)=T}(ρr(∂Cf
(sf (m) · (rf (T) · [[p]] + rf (F) · [[q]]) ‖ 〈P f

H |E〉)))
= i · i · CEΦ∪{H(〈m〉)=T}(ρr(∂Cf

([[p]] ‖ 〈P f
∂

∂m H
|E〉))) .

The following equation about the translation of the right-hand side of the closed
substitution instance of TSC5 is derivable from the axioms for condition evalu-
ation:

CEΦ∪{H(〈m〉)=T}(i · i · ρr(∂Cf
([[p]] ‖ 〈P f

∂
∂m H

|E〉)))

= i · i · CEΦ∪{H(〈m〉)=T}(ρr(∂Cf
([[p]] ‖ 〈P f

∂
∂m H

|E〉))) .

Hence, the evaluated translation of the the left-hand side equals the evaluated
translation of the the right-hand side. ut

The statement that threads and services can be viewed as processes that are
definable over ACPc is justified by the fact that the translations given above
preserve the closed substitution instances of all axioms concerned.

Suppose that we could also translate terms in which the operators for cyclic
interleaving and deadlock at termination do occur such that the closed substitu-
tion instances of axioms CSI1–CSI7 and S2D1–S2D6 (see Tables 4 and 9) are pre-
served. This would give an even stronger justification. Moreover, the translation
concerned would imply that we could apply the SRM-technique described in [4]
to obtain a model of the thread algebra developed in Sections 3–5 from each min-
imal model of ACPc. The generalization of the SRM-technique described in [10],
which is not restricted to minimal models, would make a first-order extension of
ACPc necessary.

However, we are not able to extend the translation function [[]] to terms
in which the operator for cyclic interleaving occurs. The operator for cyclic
interleaving asks much more than the operator for thread-service composition.
Basically, more advanced conditions than the conditions that can be expressed
with the retrospection operator and the last action constants added to ACPc

in [12] should be added to ACPc. A sort of sequences of processes, with constants
and operators belonging to it, should be added as well.

13 Conclusions

We have presented an algebraic theory of threads and multi-threads based on
multi-level strategic interleaving for the simple strategy of cyclic interleaving.
The other interleaving strategies treated in [11] can be adapted to the setting
of multi-level strategic interleaving in a similar way. We have also presented a
reasonable though simplified formal representation schema of the design of sys-
tems that consist of several multi-threaded programs on various hosts in different
networks. By dealing with delays and exceptions, this schema is sufficiently ex-
pressive to formalize mechanisms like Java pipes (for communication between

24

threads) and Unix sockets (for communication between multi-threads, called
processes in Unix jargon, and communication between hosts). Such mechanisms
calls for services in which thread identity management is needed. In the primary
theory, multi-level strategic interleaving does not provide support of thread iden-
tity management by services. We have presented an adaptation of the primary
theory that does provide support thereof. We have shown the connections of
threads and services with processes that are definable over ACPc, an extension
of ACP with conditions introduced in [12], as well.

To the best of our knowledge, there is no other work on the theory of threads
and multi-threads that is based on strategic interleaving. Although a determin-
istic interleaving strategy is always used for thread interleaving, it is the practice
in work in which the semantics of multi-threated programs is involved to look
upon thread interleaving as arbitrary interleaving, see e.g. [1, 16].

One of the options for future work is to formalize mechanisms like Java pipes
and Unix sockets using the thread algebra developed in this paper. Another
option for future work is to adapt some interleaving strategies from [11], other
than cyclic interleaving, to the setting of multi-level strategic interleaving.

A Axioms of ACPc

The axioms of ACPc are given in Tables 22–23. The axioms for guarded recursive
specifications over ACPc are given in Table 24. The additional axioms for condi-
tion evaluation and action renaming are given in Tables 25 and 26, respectively.
In Table 24, we use the following notation. Let E be a recursive specification
over ACPc, and let t be a term of ACPc. Then we write V(E) for the set of
all variables that occur on the left-hand side of an equation in E, and we write
〈t|E〉 for t with, for all X ∈ V(E), all occurrences of X in t replaced by 〈X|E〉.

Table 22. Axioms of BPAc

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

φ t ⊥ = φ BA1

φ t −φ = > BA2

φ t ψ = ψ t φ BA3

φ t (ψ u χ) = (φ t ψ) u (φ t χ) BA4

> :→ x = x GC1

⊥ :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ u ψ) :→ x GC6

(φ t ψ) :→ x = φ :→ x+ ψ :→ x GC7

φ u > = φ BA5

φ u −φ = ⊥ BA6

φ u ψ = ψ u φ BA7

φ u (ψ t χ) = (φ u ψ) t (φ u χ) BA8

25

Table 23. Additional axioms for ACPc (a, b, c ∈ Aδ)

x ‖ y = x bb y + y bb x+ x | y CM1

a bb x = a · x CM2

a · x bb y = a · (x ‖ y) CM3

(x+ y) bb z = x bb z + y bb z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

(φ :→ x) bb y = φ :→ (x bb y) GC8

(φ :→ x) | y = φ :→ (x | y) GC9

x | (φ :→ y) = φ :→ (x | y) GC10

∂H(φ :→ x) = φ :→ ∂H(x) GC11

Table 24. Axioms for recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 25. Axioms for condition evaluation (a ∈ Aδ, η ∈ Cat, η
′ ∈ Cat ∪ {⊥,>})

CEh(a) = a CE1

CEh(a · x) = a · CEh(x) CE2

CEh(x+ y) = CEh(x) + CEh(y) CE3

CEh(φ :→ x) = CEh(φ) :→ CEh(x) CE4

CEh(CEh′(x)) = CEh◦h′(x) CE5

CEh(⊥) = ⊥ CE6

CEh(>) = > CE7

CEh(η) = η′ if h(η) = η′ CE8

CEh(−φ) = −CEh(φ) CE9

CEh(φ t ψ) = CEh(φ) t CEh(ψ) CE10

CEh(φ u ψ) = CEh(φ) u CEh(ψ) CE11

Table 26. Axioms for action renaming (a ∈ A)

ρr(δ) = δ ARN1

ρr(a) = r(a) ARN2

ρr(a · x) = r(a) · ρr(x) ARN3

ρr(x+ y) = ρr(x) + ρr(y) ARN4

ρr(φ :→ x) = φ :→ ρr(x) ARN5

26

References

1. E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. A compositional
operational semantics for JavaMT. In N. Dershowitz, editor, Verification: Theory
and Practice, volume 2772 of Lecture Notes in Computer Science, pages 290–303.
Springer-Verlag, 2003.

2. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 197–292. Elsevier, Amsterdam, 2001.

3. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
1996.

4. J. C. M. Baeten and J. A. Bergstra. On sequential composition, action prefixes
and process prefix. Formal Aspects of Computing, 6:250–268, 1994.

5. J. A. Bergstra and I. Bethke. Polarized process algebra and program equivalence.
In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Pro-
ceedings 30th ICALP, volume 2719 of Lecture Notes in Computer Science, pages
1–21. Springer-Verlag, 2003.

6. J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109–137, 1984.

7. J. A. Bergstra and J. W. Klop. Process algebra: Specification and verification
in bisimulation semantics. In M. Hazewinkel, J. K. Lenstra, and L. G. L. T.
Meertens, editors, Proceedings Mathematics and Computer Science II, volume 4 of
CWI Monograph, pages 61–94. North-Holland, 1986.

8. J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal of
Logic and Algebraic Programming, 51(2):125–156, 2002.

9. J. A. Bergstra and C. A. Middelburg. A thread algebra with multi-level strate-
gic interleaving. To appear in B. Cooper, B. Loewe and L. Torenvliet, editors,
CiE 2005, LNCS, Springer-Verlag, 2005. Preliminary version: Computing Science
Report 04-41, Department of Mathematics and Computing Science, Eindhoven
University of Technology.

10. J. A. Bergstra and C. A. Middelburg. Model theory for process algebra. Com-
puter Science Report 04-24, Department of Mathematics and Computer Science,
Eindhoven University of Technology, September 2004.

11. J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving.
Computer Science Report 04-35, Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, November 2004.

12. J. A. Bergstra and C. A. Middelburg. Splitting bisimulations and retrospective
conditions. Computer Science Report 05-03, Department of Mathematics and
Computer Science, Eindhoven University of Technology, January 2005.

13. J. A. Bergstra and C. A. Middelburg. Strong splitting bisimulation equivalence.
Computer Science Report 05-04, Department of Mathematics and Computer Sci-
ence, Eindhoven University of Technology, February 2005.

14. J. A. Bergstra and A. Ponse. Combining programs and state machines. Journal
of Logic and Algebraic Programming, 51(2):175–192, 2002.

15. J. Bishop and N. Horspool. C# Concisely. Addison-Wesley, 2004.
16. C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia. Modular verification of

multithreaded programs. To appear in Theoretical Computer Science, 2005.
17. C. A. Middelburg. An alternative formulation of operational conservativity with

binding terms. Journal of Logic and Algebraic Programming, 55(1/2):1–19, 2003.

27

	1. Introduction
	2. Basic polarized process algebra
	3. Basic thread algebra with foci and methods
	4. Thread-service composition
	5. Guarding tests
	6. Delays and exception handling
	7. A formal design prototype
	8. Thread identity management in local services
	9. State-based description of services
	10. Localizable Boolean cells
	11. ACP with conditions
	12. Connections of threads and services with ACP
	13. Conclusions
	A. Axioms of ACP
	References

