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ABSTRACT

In current microarchitectures, due to the complex memory hierarchies and different latencies on
memory accesses, thread and data mapping are important issues to improve application performance.
Software transactional memory (STM) is an abstraction used for thread synchronization, replacing
the use of locks in parallel programming. Regarding thread and data mapping, STM presents new
challenges and mapping opportunities, since (1) STM can use different conflict detection and reso-
lution strategies, making the behavior of the application less predictable and; (2) the STM runtime
has precise information about shared data and the intensity with each thread accesses them. These
unique characteristics provide many opportunities for low-overhead, but precise statistics to guide
mapping strategies for STM applications. The main objective of this paper is to survey the existing
work about thread and data mapping that uses solely information gathered from the STM runtime
to guide thread and data mapping decisions. We also discuss future research directions within this
research area.

Keywords Software Transactional Memory · Thread Mapping · Data Mapping · Communication

1 Introduction

Since year 2000, multicore processors have become the main configuration of new processor developments. This
decision was taken due to microarchitectural limitations, higher power consumption and, heat dissipation involved
in improving the performance of a single CPU core [47]. Since then, the number of cores in a single chip has been
growing every year. Besides, servers normally have multiple multicore processors, where each socket is connected
directly to a local memory module [24]. These architectures are called NUMA (Non-Uniform Memory Access)
systems and are becoming dominant in servers [5]. Accessing data that is mapped to a memory module that belongs
to a different processor, that is, in a remote node, implies a higher latency, making the access time non-uniform, that
is, depending on the location of the data.

Due to multicore processors being widely available, parallel programming is becoming even more important. A
crucial issue that arises in parallel programming is thread synchronization; locks are still the most used abstraction
for this purpose. However, locks often make the source code hard to read and debug, leading to problems such as
deadlocks [29, 3]. An alternative abstraction to replace mutual-exclusion locks in parallel programming is Transac-
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tional Memory (TM) [27], in which critical-sections are accessed using transactions similar to the ones available in
databases. The TM runtime is responsible for ensuring a consistent execution, for example, without deadlocks and
race conditions. A transaction that has executed without conflicts can commit, that is, update the memory with the
new values. If a conflict is detected, an abort is executed and a transaction is reinitialized until a commit is possible.
TMs can be implemented in hardware (HTM), software (STM), or both (hybrid). HTM has the advantage of a lower
overhead compared to STM since they do not need instrumentation to track transactional operations [17]. However,
HTM has resource limitations. For example, when the footprint of a transaction exceeds the L1 cache capacity, they
are aborted [18]. In that case, software alternatives are necessary to guarantee progress. This paper focuses on STM
implementations since all prior proposals found in the literature are based on STM.

Another important issue in multicore processors is the mapping of thread and data. Due to complex memory hier-
archies and different latencies in memory accesses on these processors, a thread and data placement that improves
the use of memory controllers and data locality is important to achieve good performance. Although thread and data
mapping is widely studied for general purpose parallel applications [19] there is a lack of research in the STM do-
main. More specifically about thread mapping, STM adds new challenges such as different kinds of conflict detection
and resolution. Hence, the best thread mapping depends on the STM configuration [9]. Also, the STM runtime has
precise information about memory areas that are shared between threads, their respective memory addresses, and the
intensity with which they are accessed by each thread, providing interesting mapping opportunities [40]. In that case,
a thread mapping based only on STM accesses will have a lower overhead than other proposals that focus on general
applications since it is not necessary to keep track of all memory access of the applications to determine the mapping.

In this paper, we describe and survey proposals that focus on using the information provided by the STM runtime to
guide thread and data mapping. Previous existing surveys focused only on general applications [19]. To the best of
our knowledge, there are no prior surveys of thread and data mapping in the context of STM. We found that the STM
runtime provides accurate information about the sharing behavior of the application being able to provide support
information for an improved thread mapping. For data mapping, our survey showed that it might be unfeasible to rely
only on the information provided by the STM runtime to perform an efficient data mapping since the STM runtime
usually has access to only a fraction of the entire memory accessed by the application, limiting the accuracy of a data
mapping algorithm.

The rest of this paper is organized as follows. The next section presents the main concepts of STM and thread and data
mapping. Section 3 surveys and discusses the related work on thread and data mapping in the context of STM. We
also shown a table comparing and classifying all discussed works. In Section 4 we propose some research directions
to fill gaps missing in the related work. Finally, Section 5 concludes the paper.

2 Background

2.1 Software Transactional Memory

Transactional memory (TM) is an abstraction to synchronize accesses to shared variables. Instead of using locks, the
programmer only needs to enclose the critical section in an atomic block, which will be executed as a transaction.
The concept of transactions was borrowed from Databases. The first TM implementation purely on software (STM)
was proposed by Shavit and Touitou [45]. The execution of a transaction needs to be atomic. Atomicity requires that
a transaction is executed as a whole or it needs to appear as it was never executed [27]. A transaction commits if
executed without conflicts, hence all operations and results are made visible to the rest of the system. If conflicts are
detected, a transaction aborts, i.e., all operations are discarded, and the transaction needs to restart until a commit is
possible. This idea is associated with another important property called isolation: all memory updates of a running
transaction can not be visible to other transactions before a commit.

Although the main purpose of STM is to provide a simple interface to manage access to shared data, its implementation
is not trivial. Many different design options are available such as transaction granularity, version management, conflict
detection, and resolution. The granularity is the dimension used for conflict detection, i.e., the level used for keeping
track of memory locations. For STM, the most used options are word or object. Version management manages the
writes of concurrent transactions to memory locations. It can be eager, where data is modified directly in memory
and an undo-log is used to restore old values in case of aborts; or lazy, where data is updated in a redo-log. During
the commit, the log is used to set new values to memory. Conflict Detection uses the same nomenclature as version
management. In eager conflict detection, conflicts are verified on each memory location accessed. To access a value,
a transaction needs to acquire its ownership. In lazy conflict detection, the ownership will be acquired during the
commit phase. In case of conflicts, choosing which transaction needs to be aborted is a responsibility of the Contention
Manager (CM). There are many CMs proposed in the literature with different purposes. The most simple action that
a CM can do is to abort the transaction that detected the conflict.

2



Thread and Data Mapping in STM A PREPRINT

Socket 2 / NUMA node 2Socket 1 / NUMA node 1

1 2 3 4

L2 L2
LLC

1 2 3 4

L2 L2
LLC

Compact

(a) Compact.

Socket 2 / NUMA node 2Socket 1 / NUMA node 1

1 2 3 4

L2 L2
LLC

1 2 3 4

L2 L2
LLC

Scatter

(b) Scatter.

Socket 2 / NUMA node 2Socket 1 / NUMA node 1

1 2 3 4

L2 L2
LLC

1 2 3 4

L2 L2
LLC

Round-Robin

(c) Round-Robin.

Figure 1: Thread mapping strategies.

Regarding STM implementation, TinySTM [23] is one of the most used STM libraries and is considered a state-of-art
STM implementation [11, 15]. TinySTM uses word granularity and has configurable version management and CMs.
With respect to benchmarks, STAMP (Stanford Transactional Applications for Multi-Processing) [36] still is the most
used STM benchmark suite [39]. This suite is composed of 8 applications with realistic characteristics, covering a
wide range of transactional behavior, representing several application domains.

2.2 Thread Mapping

In thread mapping, threads are associated to cores, improving the cache usage and machine interconnections. The
strategy utilized depends on the application and the underlying architecture. For instance, applications where a group
of threads accesses the same shared data, these threads can be mapped to cores that are close to each other in the
underlying architecture. If the application has a disjoint data access pattern, where each group of threads accesses
different groups of data, mapping them on different cores processors can improve performance, since more cache will
be available to each thread. The default scheduler used by Linux kernel, called Completely Fair Scheduler (CFS) [49]
mainly focuses on load balancing. If the behavior of an application is known in advance and it does not change during
execution, a static thread mapping can be used. For instance, Figure 1 shows different static thread mapping strategies
with distinct objectives:

• Compact places threads on sibling cores that share all cache levels, thus potentially reducing the data access
latency if neighboring threads communicate often (Figure 1(a)).

• Scatter distributes threads across different processors, avoiding cache sharing, thus, reducing memory con-
tention (Figure 1(b)).

• Round-Robin is a mix between compact and scatter, where only the last level of cache (LLC) is shared
(Figure 1(c)). It is worth noting that if the processor architecture employs lower cache levels as private to
each core, for instance, the L2, then the resulting mapping will be exactly the same as Compact.

Regarding locality of the memory access, some techniques are used to keep track of the sharing behavior of the
application in order to map threads to cores based on the memory access behavior. Thread mapping based on the

3



Thread and Data Mapping in STM A PREPRINT

memory access behavior of applications is called sharing-aware1 thread mapping [12]. There are many techniques in
literature to perform an efficient sharing-aware thread mapping [19]. One of the main challenges of this area in shared
memory architectures is to detect which threads are accessing each memory address. An affinity measure is necessary
to be able to quantify the groups of threads that have more affinity. A communication or sharing matrix is the most
common measure to determine the affinity between threads [4, 35]. Each cell in the matrix represents the amount of
communication between pairs of threads. Figure 2 shows examples of communication matrices, where axes are thread
IDs. In Figure 2(b), the matrix is represented graphically, where darker cells indicate more communication between
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Figure 2: Examples of communication matrices.

pairs of threads.

The communication matrix can be used as an input to task-mapping algorithms. These algorithms use the hierarchical
topology of the machine and the communication matrix to calculate an optimized mapping of threads to cores. Many
tools are available to calculate a thread mapping based on a communication matrix, for instance, Scotch [41],
TreeMatch [33], EagerMap [13], ChoiceMap [46], and TopoMatch [31].

2.3 Data Mapping

In data mapping, memory pages are associated to NUMA nodes, optimizing the usage of memory controllers. Similar
to thread mapping, the strategy utilized depends on the application. The most common strategies are load balance or
locality. In locality, memory pages are mapped to the same NUMA node where the core that most accesses them is
located. The Linux kernel implements data mapping strategies in the form of memory allocation policies. The default
policy is called first-touch [24] where memory is allocated in the NUMA node where the first access to the memory
page is performed. Another data mapping policy available is interleave, which focuses on balance, allocating pages in
a round-robin way on the NUMA nodes [34].

The default Linux kernel already has routines to improve memory locality of NUMA nodes. It keeps track of page
faults, moving a page automatically to the node that most accessed it. This mechanism is called NUMA balancing [48].

3 Thread and Data Mapping in STM

This section surveys the related work on thread and data mapping in the context of software transactional memory.
The works described in this section are summarized in Table 1. When describing the works in the following sections,
we opted to group the works by authors since the majority of the authors proposed more than one approach to this
subject.

3.1 Castro et al.

To the best of our knowledge, the first work to use transactional information to guide thread mapping was proposed
by Castro et al. [9]. The motivation is that STM adds new challenges to thread mapping, such as different kinds of
conflict detection and resolution. Hence, the best thread mapping depends on the STM configuration. To illustrate
this scenario, the authors showed an experiment using all applications from the STAMP [36] benchmark using three
different state-of-art STM libraries, TinySTM [23], SwissSTM [21] and TL2 [16] and the three thread mappings as

1This research field is also known as affinity-based [19] or topology-aware [32] mapping.
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Table 1: Comparison of the proposed works to deal with thread and data mapping in STM applications.

Work Year Thread
mapping

Data
mapping

Mapping
offline or
online

Needs prior
knowledge of
the application?

Data used to define
the mapping

Changes
to the
application

Castro et al. [9] 2011 X Offline Yes
Abort ratio, LLC miss ratio,
transaction time ratio and
ML algorithm

No

Castro et al. [8] 2012 X Both Yes
Abort ratio, LLC miss ratio,
transaction time ratio and
ML algorithm

No

Castro et al. [7] 2014 X Both No
Abort ratio, LLC miss ratio,
transaction time ratio and
ML algorithm

No

Góes et al. [26] 2012 X Online Yes Sharing pattern (worklist) Yes

Góes et al. [25] 2014 X X Both Yes Sharing pattern (worklist) Yes

Chan et al. [10] 2015 X Online No Sharing pattern
(based on aborts) No

Zhou et al. [51] 2016 X Online No Throughput
(between all mappings) No

Zhou et al. [52] 2018 X Online No Throughput No

Pasqualin et al. [38] 2020 X Offline Yes Sharing pattern (based on
reads and writes) No

Pasqualin et al. [37] 2020 X Online No

Sharing pattern (based on
reads and writes),
abort ratio and
number of accessed memory
addresses

No

Pasqualin et al. [40] 2021 X Online No Sharing pattern (based on
reads and writes) No

shown in Figure 1. The best mapping varies according to the STM used. This is due to the different strategies used for
each STM to deal with conflicts.

The authors proposed to feed a machine learning (ML) algorithm to discover the best thread mapping for each appli-
cation. The ML algorithm used was the Iterative Dichotomiser 3 (ID3) [42] which is based on decision trees. For
each kind of conflict resolution and contention management strategy, they decided to collect the abort ratio (aborts
divided by the total of transactions), LLC miss ratio (cache misses divided by the total accesses) and, transaction time
ratio (transaction time / total execution time). After that, a second step normalizes the data and removes duplicates.
This processed information is used as an input to ID3 for the training step. The final result is a decision tree called
predictor, that is able to predict the best thread mapping according to the input data. It is worth noting that the ma-
chine used to collect the information influences the predictor, i.e., it is machine-dependent. Analyzing the generated
predictor, they concluded that the abort ratio and LLC miss ratio are strongly related to the mapping predicted. For
instance, when the abort ratio is low, the preferred mapping is scatter, as the application accesses few shared data.

Finally, the generated predictor was implemented inside the TinySTM [23] library and, using the STAMP [36] bench-
mark, it was possible to improve the execution time of applications, even when compared to an oracle that gives the
best case.

The main drawback of the proposed approach is that thread mapping is chosen by the predictor only once during
the execution of the application. However, for applications whose behavior changes during runtime, a more dynamic
approach to adapt thread mapping for each new phase might be necessary. Hence, Castro et al. [8] extended their
previous work, creating an approach that changes the thread mapping dynamically during runtime. The basic approach
is the same as the previous work: use ID3 to generate a predictor being able to predict the best thread mapping
according to the input parameters. A profiling interval and an interval between profiles are used to collect the necessary
information for the predictor. Both intervals are based on a predefined amount of commits. The interval begins short
and doubles each time that the thread mapping is not changed. When the mapping changes, the interval is reset to
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the initial value. It is worth noting that, to avoid high overhead, only one thread is used to be the profiler thread.
Since, according to the authors, the STAMP benchmarks do not present dynamic behavior during runtime, they used
the synthetic EigenBench [30] benchmark to test the proposed mechanism. Using this benchmark, they created
56 synthetic applications, each one presenting 3 distinct execution phases. Overall the proposed dynamic mechanism
switched correctly to the best thread mapping on the majority of applications.

In [7], the authors tested a new ML algorithm, called Apriori [1]. Another contribution is a new dynamic thread
mapping technique where it is not necessary to have any prior knowledge of the applications. Different from the ML
approaches used in their previous work, the proposed technique does not need preliminary runs of applications to
collect information to guide mapping. As described in [9], the abort ratio has a strong relationship with the best thread
mapping. Hence, the idea is to use this single metric to choose an optimal thread mapping dynamically while the
application is running. The application starts with the default mapping chosen by the default Linux scheduler. After
that, a profiler collects information about the abort ratio during n committed transactions. When the profiling phase
ends, according to the abort ratio, a thread mapping is chosen between compact, scatter, and round-robin. Then, this
new thread mapping is active until the next profiling phase ends. This strategy was called Conflict. Beyond that,
another strategy called Test-and-map was proposed. In this strategy, the profiling phase is divided into three parts.
On each part one thread mapping is activated and the execution time is measured. When the profile phase ends, the
mapping that achieved the shortest execution time is selected to be active until the next profile time ends.

All proposed strategies, i.e, ID3 and Apriori that are based on ML and Conflict and Test-and-map that
are based on a single metric, were tested using the STAMP [36] and the 56 synthetic applications constructed with
EigenBench [30]. All strategies showed performance gains when compared to the default Linux scheduler. As
expected, the ML approaches showed higher gains, since they use more information to decide the mapping.

3.2 Góes et al.

Goés et al. [26] used the concept of skeleton or pattern-based programming, where a parallel program has a well-
defined communication and computation pattern during execution. More specifically they focused on a worklist
pattern, where each work unit to be processed is dynamically managed by a worklist, i.e, a collection of work unit
instances. This pattern was chosen by observing that the majority of the STAMP [36] applications have this pattern.

They proposed the OpenSkel framework in the form of a runtime system library to be used for transactional worklist
applications. This library provides an API (Application Programming Interface) to deal with transactional worklists,
applying performance optimizations and autotuning during runtime. These tunings are possible due to pattern-based
programming used, as applications present a well-defined computation pattern. Thus, it is possible to know in advance
what an application will do next. The main primitives provided by OpenSkel are to allocate, run and free a worklist.
It is worth noting that a transactional application needs to be designed or modified to use the proposed OpenSkel
framework. The worklist is represented internally by the OpenSkel using a stack data structure, allowing to improve
data locality if consecutive work units access common shared data. As the STM does not manage thread scheduling
and mapping, the OS is responsible for this task. Since the default Linux scheduler tries to perform load balancing,
and migrate threads during runtime, the authors opted for a fixed scatter thread mapping strategy statically when the
application starts. Hence, since the thread mapping was set manually, the OS will not be allowed to migrate threads
during runtime, allowing it to have more predictable performance. Besides, according to the authors, scatter is the
mapping more similar to the default Linux strategy of load balance.

The OpenSkel proposes optimizations to boost the performance. One specific technique is the use of helper threads
(HTs) that do not change the state of the application. Their main objective is to prefetch data, bringing them to the
caches. HTs can be used if there are idle cores in the system. More specifically, idle cores that share cache levels with
cores running transactions.

For the tests, they chose 5 five applications from STAMP [36] benchmark that present the worklist pattern: intruder,
kmeans, labyrinth, vacation, and yada. These applications were modified to use the OpenSkel framework. The
underlying STM system used to manage transactional operations was TinySTM [23]. Results indicate that, overall,
the proposed framework improves the performance of applications, including when compared to an oracle approach.

In [25] the OpenSkel framework was extended, adding a new module responsible to deal with memory affinity. The
main focus is to improve the performance of STM applications on NUMA architectures, by using page allocation
policies. The HTs used for prefetching data together with page allocation policies were integrated into a mechanism
called SkelAff, a submodule of OpenSkel, responsible to improve the memory affinity. Since the framework
knows the next work unit that needs to be executed, SkelAff can trigger an HT to prefetch data that will be required
soon in advance. Besides, it can allocate memory pages close to a specific thread if the mechanism knows in advance
that there are work-units in the queue to be executed that are memory-related with work-units being executed. The
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memory page policies can be bind or cyclic. The bind allocation reduces the access latency by binding data used by
a thread on a single NUMA node. On the other hand, cyclic distributes memory pages using a round-robin strategy,
focusing on load balance. By using information about the work-units, OpenSkel chooses the best memory page
allocation policy and triggers HTs when necessary.

For the experiments, the focus was to verify the efficiency of the proposed SkelAff mechanism. They chose four
applications from STAMP [36] benchmark that present the worklist pattern: intruder, kmeans, vacation, and yada
(labyrinth was not used in this new experiments) and two distinct NUMA machines. Results indicate that the proposed
framework improves the performance of applications and that a cyclic page allocations deliver more performance
gains.

3.3 Chan et al.

In Chan et al. [10] two mechanisms were proposed. The first one is a dynamic concurrency control mechanism, used
to limit the maximum number of concurrent threads executing transactions. The idea is that an excessive number of
threads can hurt performance in a high contention environment, mainly due to a higher number of aborts. Thus, it is
better to have a lower number of threads executing transactions than a high number of aborts. The second proposed
mechanism keeps track of transactional conflicts to detect which threads are accessing the same shared data. Hence,
based on this information, an affinity-aware thread migration is proposed. The main objective is to improve the cache
usage of shared data managed by the STM runtime, consequently improving the execution time through enhanced
cache locality. Also, they focus on multiprocessor systems. Since the concurrency control mechanism is out of the
scope of this paper, we will focus on the affinity-aware thread migration approach.

When a conflict is detected, before aborting, the mechanism verifies the identifier (id) of the conflicting thread. Hence,
this relationship is updated in a matrix. The value stored in each matrix position is derived from the formula of
contention intensity, proposed initially by Yoo and Lee [50]. The derived formula was called pairwise contention
intensity (PCI). The value stored in the i, j position of the matrix means how likely thread i is to be obstructed by
thread j. The matrix can be seen as a directed adjacency matrix, where nodes represent threads and edges weights are
the PCI between a pair of threads. Using a graph partitioning algorithm, the objective is to reduce the sum of edges
that span across different cores processors. To avoid overhead, only one pair of threads is migrated between processors
each time that the mechanism is triggered.

During a commit, the committing transaction, for instance, transaction i, updates its conflict intensity with all other
threads (transactions), i.e, the PCI must be computed for all other running threads and updated in the matrix. The PCI
used during the commit phase is: Cij ← Cij × 0.9. On the other hand, when a transaction aborts, the PCI against
the conflicting transaction is updated in the matrix, using the formula Cij ← Cij × 0.9 + (1 − 0.9). Periodically, a
daemon thread applies a graph partition algorithm in the matrix to choose the pair of threads that should be migrated.
It is worth noting that the algorithm to calculate the migration policy was designed to work on dual-processors systems
only.

Both mechanisms, concurrency control and affinity-aware thread migration, were implemented inside the
TinySTM [23] library. Threads were pinned to cores using the pthread_setaffinity_np function. For the
experiments, authors used the STAMP [36] benchmarks. Also, the proposed mechanism was compared against the
transactional schedulers ATS [50] and Shrink [22]. In STAMP, the affinity-aware thread migration does not improve
performance. According to the author, STAMP does not present any specific thread correlation. However, to demon-
strate the efficiency of the proposed technique, the authors created a synthetic dual Red-Black tree application, where
it was possible to control the thread correlation, being possible to improve the performance with the proposed thread
migration mechanism.

3.4 Zhou et al.

Similar to Chan et al. (Sect. 3.3), Zhou et al. [51] also proposed a concurrency control mechanism to dynamically
adjust the maximum number of threads allowed to run transactions concurrently. As the number of active threads
changes, the thread mapping is changed as well. Two key pieces of information are used by the authors in their
proposed mechanism: the commit ratio (CR) calculated by the total of commits divided by the total of commits plus
aborts and; throughput, i.e., the total of commits in a unit of time. The motivation to use both metrics are twofold: (1)
throughput is influenced by the number of threads, i.e., a low throughput can be a consequence of a low number of
threads running and;(2) CR is influenced by throughput, i.e, a low CR can present a high throughput if there is a high
number of threads running transactions.

7
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The mechanism starts with a probabilistic model calculating the predicted optimum number of threads allowed to
run concurrently. During a profiling phase, the throughput is measured and compared to the previous one collected
before changing the number of threads. If the current throughput is lower than the previous, the number of threads is
switched back to the previous value. A second step is related to thread mapping. After deciding the thread number, if
the CR changed (in a predefined range) and the thread number is less than half of the maximum core number, a second
profile phase begins to decide the thread mapping. According to the authors, thread mapping has little impact on the
performance when the number of cores is closer to the maximum cores of the machine, where all mappings perform
similarly. For this reason, thread mapping is only calculated when the number of concurrent threads running is less
than half of the cores of the machine. During the thread mapping profiling phase, four mappings are tested: Linux,
scatter, compact, and Round-robin. In the end, the thread mapping that presented the higher throughput is set. After
that, the mechanism restarts. An important aspect is that the information used by the profile is collected on all running
threads, instead of, as in other works, based on a single thread. Hence, synchronization costs are added to gather the
required profile information.

For the experiments, 6 applications from STAMP [36] (bayes and kmeans were not used) and one synthetic from
EigenBench [30] were used. According to the authors, STAMP applications present similar behavior between
transactions, i.e., overall, each transaction executes the same transactional code. Hence, they are not suitable to
evaluate online thread mapping strategies. For this specific purpose, EigenBench was used. They conclude that due
to the overhead, the proposed mechanism can benefit only applications that present dynamic behavior variation during
execution. Finally, the authors discovered that thread mapping is influenced by the CR. In most cases, when the CR
was low, compact was chosen, whereas when the CR was high, scatter was preferred.

In [52], together with the probabilistic model, the authors also proposed a simple model that searches for the near-
optimum thread number. In this model, the thread number is incremented or decremented by one, according to the
measured throughput in each profile phase. Regarding thread mapping, adjustments were made in order to reduce
overhead. In their previous work, all mappings were tested during the profile phase, measuring the throughput and
setting the mapping at the end. In the new approach, the thread mapping profile starts with Linux and then moves to the
round-robin mapping. The compact mapping is tested only if round-robin throughput was better than Linux. Finally,
scatter is tested only if the throughput of compact was worse than round-robin. When scatter is the best mapping, the
overhead will be the same as the previous approach since all mappings will be tested.

The experiments and conclusions were similar to their previous paper. Nevertheless, they also concluded that the
proposed mechanism does not scale on NUMA architectures, since the proposed mechanism does not take into con-
sideration memory location and has excessive thread migrations to test the best thread mapping.

3.5 Pasqualin et al.

Pasqualin et al. [38] used sharing-aware thread mapping (Sect. 2.2) in the context of STM, to map threads to cores
considering their memory access behavior. Contrary to previous sharing-aware mapping proposals that rely on memory
traces of the entire application, they argue that tracking only STM operations to determine the sharing behavior has
lower overhead and better accuracy because only memory accesses that are in fact shared between threads are traced.
The main intuition used is that STM has precise information about shared variables and has native access to all
information needed to characterize the sharing behavior, i.e., accessed memory addresses and the intensity with which
each thread accesses them.

One of the main challenges of sharing-aware thread mapping in shared memory architectures is to detect which threads
are accessing each memory address. However, word-based STM has native access to these pieces of information since
they need to keep track and save versions of shared reads and writes to data. The proposed mechanism is triggered on
each transactional read or write operation. An auxiliary hash table maps memory addresses to the last 2 threads that
accessed them. When at least 2 distinct threads access the same memory address, a communication event between them
is updated in a communication or shared matrix. The communication matrix generated by the proposed mechanism
is sent to EagerMap [13], a task mapping algorithm for sharing-aware mapping, to generate the optimized thread
mapping.

The proposed mechanism to collect the communication matrix was implemented inside the STM library
TinySTM [23]. It is necessary to run each application individually in order to extract the communication matrix.
After that, EagerMap generates the optimized thread to core mapping, and the application is re-executed pinning
threads to cores using the function pthread_setaffinity_np.

For the experiments, the authors chose STAMP [36] and two synthetic applications, Hashmap and Red-black tree.
The comparison of the proposed mechanism was made against compact, scatter, and round-robin mappings. Also,
applications were executed in a NUMA machine using Opteron processors. Not all tested applications were suitable
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for the proposed sharing-aware mapping, including reducing the number of aborts. Finally, it is demonstrated that the
overhead to collect the communication matrix is much lower than using other tools that trace all memory addresses,
such as numalize [20].

In [37], the proposed mechanism was modified to collect the communication matrix and perform the thread mapping
during the execution of an application. The new mechanism was called STMap. To reduce the overhead of the
mechanism, the authors sampled the accessed memory addresses to fill the communication matrix. They have made
experiments to determine the best sampling interval (SI) to have a low overhead but a high accuracy of the collected
communication matrix. Thus, a SI of 100 was selected. Besides, it was necessary to define the mapping interval (MI),
i.e, when the thread mapping should be calculated and performed. Based on experiments and observations, they chose
a MI of between 50,000 and 100,000 addresses accessed (total, not only sampled) by the main thread. Regarding
calculating the thread mapping, in STMap, EagerMap [13] was replaced by TopoMatch [31].

Since STMap works during runtime, the authors tried to create a heuristic to identify the applications that are not
suitable to sharing-aware thread mapping, thus, disabling STMap for these applications, i.e., not applying the new
thread mapping during the execution. The heuristic is based on the number of distinct memory addresses accessed
by the application and the abort and commit ratios. The new thread mapping should be calculated if; when the MI is
triggered the application accessed less than 10,000 distinct memory addresses. If more than 10,000 addresses were
accessed, the heuristic verifies if the abort ratio is greater than the commit ratio. If true, the thread mapping should be
calculated as well.

The methodology of the experiments was similar to the previous work. Nevertheless, they included a Xeon machine
in the experiments and the previous static mechanism to the comparison. The proposed heuristic to identify which ap-
plications are suitable for sharing-aware thread mapping worked correctly for the majority of applications, improving
execution time when compared to the static mechanism. Hence, taking into consideration the improved execution time
over all benchmarks, STMap was the best mapping.

Finally, in [40] STMap was extended to include sharing-aware data mapping. However, the authors conclude that,
contrary to thread mapping where only taking into consideration STM access is sufficient to have a global vision of
the sharing behavior, for data mapping this observation is not enough. For data mapping, it is necessary to have a
global vision of memory pages accessed to be able to perform an optimized data mapping, not only the memory pages
accessed by the sharing data protected by STM runtime.

3.6 Discussion

We will start by discussing data mapping. As it is possible to observe in Table 1, just two works attempted to deal
with data mapping in STM. The first one proposed by Góes et al. [25] provided a mechanism to choose if the data
allocated inside the STM runtime should be allocated in the same NUMA node as the thread that is needing it or
prioritizing a memory balance. Hence, it is based on a static (offline) mapping. However, as discussed by Pasqualin et
al. [40] it could be infeasible to perform an efficient online data mapping by only having accesses to the memory pages
accessed by the STM runtime since it represents only a fraction of the entire memory accessed by the application. As
the opposite, for thread mapping, the information provided by the STM runtime is exactly the one needed to perform
an efficient thread mapping. One of the main objectives of thread mapping is to improve cache usage by mapping
cores that access the same shared data in a way that they can share different cache levels.

Regarding thread mapping, the information about aborts, such as amount and ratio compared to commits, can be
a useful metric to define thread mapping. The intuition used is that if the aborts are high, then the application is
accessing a great quantity of share data. Hence, it can be interesting to use a mapping strategy that prioritizes locality.
In fact, many works used abort information to decide the thread mapping.

There are works that instead of relying solely on the number of aborts to identify a global shared pattern, try to
identify which specific threads are accessing the same shared data. Chan et al. [10] tried to identify the relationship
between threads when they abort. However, their mechanism has a high overhead since it is triggered on each abort
and the affinity measured should be recalculated for all threads each time. Pasqualin et al. [37] used a similar idea,
but tried to improve the accuracy of the mechanism by tracking transactional reads and writes, instead of only aborts.
The mechanism has a lower overhead since the affinity measure is a counter updated once for each access. Also,
transactional reads and writes are only sampled.

A different strategy was proposed by Zhou et al. [51, 52] to identify the best thread mapping. When the number of
concurrent threads executing transactions is changed, a new thread mapping is set to match with the new number of
threads. Their mechanism measures the throughput of each thread mapping and choses the one that presents higher
throughput at the end of the test phase. Although the proposed mechanism works correctly, it incurs on high overhead
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because of the thread migrations triggered to test all mappings. As pointed out by the authors, this mechanism does
not scale well on NUMA machines due to the excessive thread migrations.

Some mechanisms need previous knowledge of the applications. Using this knowledge it is possible to perform an
offline thread mapping at the beginning of the execution of the STM application. Although the main disadvantage
of these offline mechanisms is the need for a preliminary run to gather the needed information about the application,
during the execution of the application they present low overhead and can be more accurate and efficient when com-
pared to online mechanisms [2]. Another related disadvantage is that the offline mechanism can be inefficient if the
application changes the sharing behavior during the execution. As opposite, the online mechanism does not need a
preliminary run to gather information about applications and can adapt if the sharing behavior suddenly changes dur-
ing runtime. However, depending on the chosen strategy, the online mechanism can generate an infeasible overhead
to be used during runtime.

Finally, one important characteristic of the proposed mechanisms is the need to change the STM application to be able
to use it. Only the works proposed by Góes et al. [26, 25] have this need, i.e., the STM application needs to be created
or modified to be able to benefit from the proposed optimizations. All others proposed mechanisms only change the
STM runtime. Hence, not being necessary to change the STM applications.

4 Limitations of existing proposals and future research directions

In this section we will discuss some limitations and opportunities of research regarding thread and data mapping in
Transactional Memory.

The first observation is that no works are focusing on HTM or hybrid TM systems, only STM. Also, all works used the
TinySTM [23] library as a base TM to implement the proposed mechanisms. Hence, it is not clear how much thread
and data mapping can be helpful for other systems or STM implementations. The same observation can be made
for distributed memory systems. All works presented in this survey are focused on STM running on shared memory
systems.

Excepting the work of Pasqualin et al. [38] there are no works that verified the relationship between aborts and thread
mapping, i.e, if they influence each other. Besides, the discussion presented in [38] only pointed out that there can
be a relationship between them. However, it is necessarily an in-depth investigation, analyzing each application
individually to make strong conclusions about the topic. This leads us to another research opportunity: how thread and
data mapping behave when used with techniques that focus on reducing the number of aborts, such as transactional
schedulers [28, 14]. This relationship was also not studied in any related work. Similarly, there are no works that
measured how much energy was saved by the optimized thread and data mapping using only the information provided
by the STM runtime.

Not specific about thread and data mapping, but an issue that can influence experiments testing proposed mechanisms,
is the lack of new and updated benchmarks for TM systems. By far the most used benchmark suite for TM is the
STAMP [36]. However, as pointed out in many works, STAMP is not ideal for testing online thread and data mapping
since all threads present similar behavior, executing the same transactional code, and the sharing behavior stays the
same during execution time [39, 8, 7, 25, 51, 52]. It would be interesting changing, or adding new applications
to STAMP that present distinct sharing behaviors during execution or that have groups of threads doing different
transactional jobs.

For online thread and data mapping mechanisms, it is necessary to extract, with low overhead, information about
the application during runtime. For this purpose, as far as we know, only two works were proposed for this specific
purpose [6, 44].

Finally, regarding machine learning (ML) techniques, only Castro et al. [9, 8, 7] explored this approach. However,
their mechanism relies on offline techniques, needing a previous execution of the application to collect the data for the
training phase. Recent works on thread and data mapping for general applications used successfully ML techniques in
an online context [43]. Hence, this online ML approach could be revisited in the context of transactional memory.

5 Conclusions

Due to complex memory hierarchies and different latencies in memory accesses on multicore processors, locality of
memory accesses is an essential issue for parallel application performance. Thread and data mapping are techniques
to improve locality based on using information about the memory access behavior of a parallel application to optimize
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the location of threads and memory pages on NUMA systems. STM is an abstraction for thread synchronization that
presents new challenges and opportunities for different types of thread and data mapping.

This paper surveyed proposals that solely use the information provided by an STM runtime to guide thread and data
mapping. We found that an STM runtime can provide sufficient information to perform an efficient and effective thread
mapping. However, for data mapping, results indicate that only taking transactional information into consideration is
not enough to perform an efficient data mapping, since the STM runtime can only discover a fraction of the entire
memory accessed by an application. Finally, we presented research opportunities and directions where this research
area could be expanded. Some of research opportunities for thread and data mapping in the TM domain, for instance,
are on HTM, integration to transactional schedulers, energy efficiency, machine learning, among others.
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