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Abstract—Chip-multiprocessors (CMPs) have become the mainstream parallel architecture in recent years; for scalability reasons, designs with high
core counts tend towards tiled CMPs with physically distributed shared caches. This naturally leads to a Non-Uniform Cache Access (NUCA) design,
where on-chip access latencies depend on the physical distances between requesting cores and home cores where the data is cached. Improving
data locality is thus key to performance, and several studies have addressed this problem using data replication and data migration.
In this paper, we consider another mechanism, hardware-level thread migration. This approach, we argue, can better exploit shared data locality for
NUCA designs by effectively replacing multiple round-trip remote cache accesses with a smaller number of migrations. High migration costs, however,
make it crucial to use thread migrations judiciously; we therefore propose a novel, on-line prediction scheme which decides whether to perform a
remote access (as in traditional NUCA designs) or to perform a thread migration at the instruction level. For a set of parallel benchmarks, our thread
migration predictor improves the performance by 24% on average over the shared-NUCA design that only uses remote accesses.

Index Terms—Parallel Architecture, Distributed Caches, Cache Coherence, Data Locality
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1 BACKGROUND

IN recent years, transistor density has continued to grow and Chip

Multiprocessors (CMPs) with four or more cores on a single chip

have become common. To efficiently use the available transistors,

architects are resorting to large-scale multicores both in academia

(e.g., TRIPS [11]) and industry (e.g., Tilera [1]); pundits predict

1000+ cores in a few years [2]. For such massive multicores, a tiled

architecture where each core has its own cache slice has become a

popular design. These physically distributed cache slices can form

one logically shared cache, known as Non-Uniform Cache Access

(NUCA) architecture [7], [5]. In the “pure” form of NUCA where per-

core caches are fully shared, each cache line corresponds to a unique

core where it can be kept on chip, which maximizes effective on-

chip cache capacity and reducing off-chip access rates. Furthermore,

because only a single core can have a copy, there is no need for a

cache coherence protocol. Private caches must rely on a coherence

protocol to be coherent; these mechanisms not only incur large

area costs but may also degrade performance when repeated cache

evictions and invalidations are required for replicated shared data.

The downside of NUCA is high on-chip access latency, since

every access to an address cached on a remote core must travel

there. Various NUCA and hybrid NUCA/directory-coherence designs

have therefore attempted to improve data locality, leveraging data

migration and replication techniques previously explored in the

NUMA context (e.g., [12]). These techniques assign private data to its

owner core and replicate shared data among the sharers at OS level [6]

or with hardware aid [3]. While these schemes improve performance

on some kinds of data, they still do not take full advantage of spatio-

temporal locality and rely on two-message round trips to access

read/write shared data cached on remote cores.

To address this limitation and take advantage of available data

locality in a NUCA memory hierarchy, we turn to fine-grained
hardware-level thread migration [4], [8]. In this approach, accesses

to data cached at a remote core cause the executing thread to migrate

to that core and continue execution there. When several consecutive

accesses are made to data at the same core, migration allows those

accesses to be local to that core, potentially significantly improving

performance. Figure 1 shows the breakdown of non-local memory

accesses by the consecutive access count at the same non-local core

before accessing another core in our set of benchmarks: in some

cases (e.g., radix), memory accesses comprise long stretches at the
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same remote core, suggesting opportunities for a performance boost

via thread migration. Due to the high cost of thread migration,

however, it is crucial to migrate only when multiple remote word

round-trip accesses would be replaced to make the cost “worth it.”

In this paper, we present a novel, program counter-based migration

prediction scheme which decides at instruction granularity whether to

perform a remote access or a thread migration; through simulations,

we show that migrations can complement remote accesses to improve

performance of baseline NUCA designs with our migration predictor.

Fig. 1. Non-local memory access breakdown in the remote-access-
only NUCA baseline

2 MEMORY ACCESS FRAMEWORK

NUCA architectures divide the address space among the cores in

such a way that each address is assigned to a unique home core
where the corresponding data can be cached [7], [5]. To read and

write data cached in a remote core, the NUCA architectures proposed

so far use a remote access mechanism where a request is sent to

the home core and the resulting data (or acknowledgement) is sent

back to the requesting core. In what follows, we describe this remote

access protocol, as well as a protocol based on hardware-level thread
migration. We then compare the two mechanisms and present a

framework that combines both.

2.1 Remote Cache Access
Under the remote-access framework of standard NUCA designs [7],

[5], all non-local memory accesses cause a request to be transmitted

over the interconnect network, the access to be performed in the

remote core, and the data (for loads) or acknowledgement (for writes)

to be sent back to the requesting core. When a core C executes a

memory access for address A, it must first find the home core H for

A (e.g., by consulting a mapping table or masking some address bits).

If H = C (a core hit), the request is served locally at C. If H �= C (a

core miss), on the other hand, a remote access request needs to be

forwarded to core H, which will send a response back to C upon its

completion. Note that, unlike a private cache organization where a

coherence protocol (e.g., directory-based protocol) takes advantage
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Fig. 2. Hardware-level thread migration via the on-chip interconnect

of spatial and temporal locality by making a copy of the block

containing the data in the local cache, this protocol incurs round-

trip costs for every remote word access.

2.2 Thread Migration
Fine-grained, hardware-level thread migration has been proposed to

exploit data locality for NUCA architectures [8]. This mechanism

brings the thread to the locus of the data instead of the other way

around. When a core C running thread T executes a memory access

for address A, it must first find the home core H for A. If H = C
(a core hit), the request is served locally at C. If H �= C (a core
miss), the hardware interrupts the execution of the thread on C,

packs the thread’s execution context (microarchitectural state) to a

network packet (as shown in Figure 2), and sends it to H via the on-

chip interconnect where the packet is loaded to the context and an

execution of T is resumed. This provides faster migrations than other

approaches (such as OS-level migration or Thread Motion [10], which

leverages the existing cache coherence protocol to migrate threads)

since it migrates threads directly over the interconnect.

If a thread is already executing at the destination core, it must

be evicted and moved to a core where it can continue running. To

reduce the need for evictions, cores duplicate the architectural context

(register file, etc.) and allow a core to multiplex execution among

two (or more) concurrent threads. To prevent deadlock, one context

is marked as the native context and the other as the guest context: a

core’s native context may only hold the thread that started execution

there (called the thread’s native core), and evicted threads must return

to their native cores to ensure deadlock freedom [4].

2.3 Performance Overhead of Thread Migration
Since the thread context is directly sent across the network, the

performance overhead of thread migration is directly affected by the

context size. The relevant architectural state that must be migrated

in a 64-bit x86 processor amounts to about 3.1Kbits (sixteen 64-bit

general-purpose registers, sixteen 128-bit floating-point registers and

special purpose registers), which is what we use in this paper1. This

introduces a serialization latency since the full context needs to be

loaded (unloaded) into (from) the network: with 128-bit flit network

and 3.1Kbits context size, this becomes
⌈

pkt size
flit size

⌉
= 26 cycles2.

Another overhead is the pipeline insertion latency. Since a memory

address is computed at the end of the execute stage, if a thread ends up

migrating to another core and re-executes from the beginning of the

pipeline, it needs to refill the pipeline. In case of a five-stage pipeline

core (cf. Figure 3), this results in an overhead of three cycles.

To make fair performance comparisons, all these migration over-

heads are included as part of memory latency for architectures that

use thread migrations, and their values are specified in Table 4.1.

1. The context size will vary depending on the architecture; in the
TILEPro64 [1], for example, it amounts to about 2.2Kbits (64 32-bit registers
and a few special registers).

2. With a 64-bit register file with two read ports and two write ports, one
128-bit flit can be read/written in one cycle and thus, we assume no additional
serialization latency due to the lack of ports from/to the thread context.
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Fig. 3. Hybrid memory access architecture on a 5-stage pipeline core.
The architectural context (RegFile2 and PC2) is duplicated to support
deadlock-free thread migration (cf. Section 2.2). The shaded modules
are the components of migration predictor.

2.4 Hybrid Framework
While migrating the thread context can potentially better exploit spa-

tiotemporal locality, for “one-off” remote accesses thread migration

costs more than remote-access-only NUCA due to the large thread

context size. We therefore propose a hybrid memory access frame-

work for NUCA architectures which combines the two mechanisms

described: each core-miss memory access may either perform the

access via a remote access or migrate the current execution thread.

Figure 3 illustrates the hybrid architecture: for each access to memory

cached on a remote core, a decision algorithm determines whether the

thread should migrate to the target core or execute a remote access.

Considering the thread migration cost, when a thread is migrated to

another core, it must make several local memory accesses there to

make the migration “worth it”; our approach is to predict such long

sequences of accesses to the same core and migrate only for those.

3 THREAD MIGRATION PREDICTION

As described in Section 2, it is crucial for the hybrid memory access

architecture to make a careful decision whether to migrate the thread

or perform a remote access. To this end, we will describe a per-

core migration predictor—a PC-indexed direct-mapped data structure

where each entry simply stores a PC. The predictor is based on the

observation that sequences of consecutive memory accesses to the

same home core are highly correlated with the program flow, and

that these patterns are fairly consistent and repetitive across program

execution. Our baseline configuration uses 128 entries; with a 64-bit

PC, this amounts to about 1KB total per core. If the home core is

not the core where the thread is currently running (a core miss),

the predictor must decide between a remote access and a thread

migration: if the PC hits in the predictor, it instructs a thread to

migrate; if it misses, a remote access is performed.

In the next section, we describe how a certain instruction (or PC) is

detected as migratory and thus inserted into the migration predictor.

3.1 Detection of Migratory Instructions

At a high level, the prediction mechanism operates as follows:

1) when a program first starts execution, it runs with a standard

NUCA organization which only uses remote accesses;

2) as it continues execution, it monitors the home core information

for each memory access, and remembers the first instruction of

every multiple access sequence to the same home core;

3) depending on the length of the sequence, the instruction address

is either inserted into the predictor (migratory) or is removed

from the predictor (remote-access), if it exists;

4) the next time a thread executes the instruction, it migrates to

the home core if it is a migratory instruction (a “hit” in the

predictor), and performs a remote access if it is a remote-access

instruction (a “miss” in the predictor).
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Fig. 4. An example of how instructions (or PC’s) which are followed by consecutive accesses to the same home location, i.e., migratory instructions
are detected in the case of the depth threshold θ = 2.

The detection of migratory instructions can be easily done by

tracking how many consecutive accesses to the same remote core

have been made, and if this exceeds a threshold, inserting the PC into

the predictor to trigger migration. If it does not exceed the threshold,

the instruction is classified as a remote-access instruction, which is

the default state. Each thread tracks (1) Home, which maintains the

home core ID for the current requested memory address, (2) Depth,

which indicates how many times so far a thread has contiguously

accessed the current home location (i.e., the Home field), and (3)

Start PC, which tracks the PC of the very first instruction among

memory sequences that accessed the home location in the Home field.

We separately define the depth threshold θ, which indicates the depth

at which we determine the instruction as migratory.

The detection mechanism is as follows: when a thread T executes

a memory instruction for address A whose PC = P, it must first find

the home core H for A; then,

1) if Home = H (i.e., memory access to the same home core as

that of the previous memory access),

a) if Depth < θ,

i) increment Depth by one; then if Depth = θ, StartPC
is regarded as a migratory instruction and thus, is

inserted into the migration predictor;.

2) if Home �= H (i.e., a new sequence starts with a new home

core),

a) if Depth < θ,

i) StartPC is regarded as a remote-access instruction;

b) reset the entry (i.e., Home = H, PC = P, Depth = 1).

Figure 4 shows an example of the detection mechanism when θ =
2. Suppose a thread executes a sequence of memory instructions, I1 ∼
I7 (non-memory instructions are ignored in this example because they

do not change the entry content nor affect the mechanism). The PC of

each instruction from I1 to I7 is PC1, PC2, ... PC7, respectively, and

the home core for the memory address that each instruction accesses

is specified next to each PC. When I1 is first executed, the entry

{Home, Depth, Start PC} will hold the value of {A, 1, PC1}. Then,

when I2 is executed, since the home core of I2 (B) is different from

Home which maintains the home core of the previous instruction I1

(A), the entry is reset with the information of I2. Since the Depth
to core A has not reached the depth threshold, PC1 is regarded as a

remote-access instruction (default). The same thing happens for I3.

When I4 is executed, it accesses the same home core C and thus

the Depth field is incremented by one; since the Depth to core C
has reached the threshold θ = 2, PC3 in Start PC, which represents

the first instruction (I3) that accessed C, is classified as a migratory

instruction and thus is added to the migration predictor. For I5 and I6

which keep accessing the same home core C, we need not update the

entry because the Start PC has already been added to the predictor.

Lastly, when I7 is executed, the predictor resets the entry and starts

a new sequence starting from PC7 for the home core A.

3.2 Possible Thrashing in the Migration Predictor
Since we use a fixed size data structure for our migration predictor,

collisions between different migratory PCs can result in suboptimal

performance; the size of the predictor can be increased to mitigate

such collisions. Another subtlety is that mispredictions may occur if

memory access patterns for the same PC differ across two threads

(one native thread and one guest thread) running on the same core

simultaneously because they share the same per-core predictor and

may override each other’s decisions. This interference can be resolved

by implementing two predictors instead of one per core — one for

the native context and the other for the guest context.

In our set of benchmarks, we rarely observed performance degra-

dation due to these collisions and mispredictions with a fairly small

predictor (about 1KB per core) shared by both native and guest

context. This is because each worker thread executes very similar

instructions (although on different data) and thus, the detected migra-

tory instructions for threads are very similar. While such application

behavior may keep the predictor simple, however, our migration

predictor is not restricted to such applications and can be extended if

necessary as described above. It is important to note that even if a rare

misprediction occurs due to either predictor eviction or interference

between threads, the memory access will still be carried out correctly,

and the functional correctness of the program is still maintained.

4 EVALUATION

4.1 Simulation Framework

We use Graphite [9] to model the proposed NUCA architecture that

supports both remote-access and thread migration. The default system

parameters are summarized in Table 4.1. Our experiments use a

distributed hash table benchmark (dht) and a set of Splash-2 [13]

benchmarks. For each simulation run, we measured the core miss
rate, the number of core-miss memory accesses divided by the total

number of memory accesses. Since each core-miss memory access

must be handled either by remote access or by thread migration, the

core miss rate can further be broken down into remote access rate
and migration rate. For the baseline, remote-access-only NUCA, the

core miss rate equals to the remote access rate (i.e., no migrations);

for the hybrid NUCA, the core miss rate is the sum of the remote

access rate and the migration rate. For performance, we measured

the parallel completion time, i.e., the longest completion time in the

parallel region; this includes migration overheads (cf. Section 2.3)

for our hybrid NUCA architecture.

4.2 Performance

We first compare the core miss rates for a NUCA system without and

with thread migration: the results are shown in Figure 5. The depth
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TABLE 1
System configurations used

Parameter Settings

Cores 64 in-order, 5-stage pipeline, single-issue cores, 2-
way fine-grain multithreading

L1/L2 cache
per core

32/128KB, 2/4-way set associative, 64B cache block

Electrical
network

2D Mesh, XY routing, 3 cycles per hop, 128b flits

Migration
Overhead

3.1 Kbits full execution context size, Full context

load/unload latency:
⌈

pkt size
flit size

⌉
= 26 cycles

Pipeline insertion latency for context load = 3 cycles

Data
Placement

First-touch after initialization, 4KB page size

threshold θ is set to 3 for our hybrid NUCA, which aims to perform

remote accesses for memory sequences with one or two accesses and

migrations for those with ≥ 3 accesses to the same core. While 38%

of total memory accesses result in core misses for remote-access-only

NUCA on average, NUCA with our migration predictor results in a

core miss rate of 25%, a 35% improvement in data locality.

Figure 5 also shows the fraction of core miss accesses handled

by remote accesses and thread migrations in our hybrid NUCA

scheme. We observe that a large fraction of remote accesses are

successfully replaced with a much smaller number of migrations.

Ocean non contiguous, for example, originally showed a 86% re-

mote access rate under a remote-access-only NUCA; with a small

number of migrations, however, core miss rates drop to 45%. Across

all benchmarks, the average migration rate is only 3% resulting in

35% fewer core misses overall. This improvement of data locality

directly relates to better performance for NUCA with thread migra-

tion as shown in Figure 6. For our set of benchmarks, our hybrid

NUCA shows 24% better performance on average (geometric mean)

across all benchmarks; it performs no worse than the baseline NUCA,

except for raytrace where migrations did not reduce the core miss

rate while introducing the migration overhead.

Fig. 5. Core miss rate and its breakdown into remote access rate and
migration rate

Fig. 6. Parallel completion time under our hybrid NUCA with θ = 3

normalized to the baseline remote-access-only NUCA.

4.3 Effects of the Depth Threshold
We change the value of the depth threshold θ = 2, 3 and 5 and explore

how the fraction of core-miss accesses being handled by remote-

Fig. 7. The fraction of remote-accesses and migrations for the standard
NUCA and hybrid NUCAs with the different depth thresholds.

accesses and migrations changes. As shown in Figure 7, the ratio of

remote-accesses to migrations increases with larger θ. The average

performance improvement over the remote-access-only NUCA is

15%, 24% and 20% for the case of θ = 2, 3 and 5, respectively

(not shown in the paper). The reason why θ = 2 performs worse than

θ = 3 with almost the same core miss rate is because of its higher

migration rate; due to the large thread context size, the cost of a single

thread migration is much higher than that of a single remote access

and needs, on average, a higher depth to achieve better performance.

5 CONCLUSIONS

In this manuscript, we have presented an on-line, PC-based thread

migration predictor for memory access in distributed shared caches.

Our results show that migrating threads for sequences of multiple

accesses to the same core can improve data locality in NUCA

architectures, and with our predictor, it can result in better overall

performance compared to the baseline NUCA designs which only

rely on remote-accesses.
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