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Abstract—The widespread adoption of chip multiprocessors in recent years has increased the number of applications

simultaneously accessing DRAM memories. Therefore, memory access patterns have also changed and this has reduced row buffer

locality significantly, degrading performance and energy efficiency. Furthermore, concurrent execution of applications also has

shown the need of performance isolation among threads in the memory controller to enforce a quality of service in virtualized

environments. Existing DRAM memories, however, enforce a tradeoff between throughput and isolation. To solve these problems,

this paper proposes the addition of Thread Row Buffers (TRBs) to DRAM memories. TRBs keep an active row per thread, thereby

increasing DRAM efficiency by avoiding alternate accesses to a limited number of rows and allowing the implementation of a

memory scheduler not bound to the throughput-isolation tradeoff. Thread Row Buffers with Service Partitioning (TRB-SP) increase

the row hit-rate by 38 percent with respect to FR-FCFS and by 11 percent with respect to Cache DRAM. This, in turn, increases

overall performance by 17 and 7 percent, respectively. TRB-SP is also able to reduce the standard deviation of the memory access

time of an application by 40 percent over FR-FCFS, 31 percent over PAR-BS, and 42 percent over Cache DRAM.

Index Terms—Memory controllers, DRAM, thread row buffers

Ç

1 INTRODUCTION

DURING the last decade memories have greatly evolved in
terms of capacity and integration but still remain one

of the main limiting factors of current processor perfor-
mance. This problem has been exacerbated with the
introduction of chip multiprocessors, which require much
larger amounts of data and have different access patterns.
Such changes suggest that the memory hierarchy must be
adapted to deal with the new requirements.

Due to the large size of memory arrays, memories use
row buffers (typically of 8 kB) that store a whole page to
allow faster reads and writes. This buffer needs to be
updated every time a different row is read or written,
consuming time and energy. If the row locality is high, the
row buffer increases performance and reduces energy
consumption. However, if the row hit rate is low, significant

energy and time are lost replacing the data in the row
buffer. Therefore, it is critical that memory systems make as
much use as possible of row locality to both increase
performance and reduce energy consumption.

Traditionally for uniprocessors, a First-Ready First-
Come-First-Serve (FR-FCFS) policy [29], [43] implemented
in the memory controller reached reasonable hit rates, using
a simple reordering mechanism. The execution of several
simultaneous applications, however, leads to different
memory access patterns, which often alternate between a
limited number of rows. This behavior significantly reduces
the row hit rate for traditional configurations and, therefore,
reduces overall performance.

Another concern introduced by multicore execution is
that the usage of a shared resource like DRAM memory by
different threads makes it necessary for the system to
provide some kind of fairness or performance isolation
control. Existing solutions [14], [25], [26], [27], however, rely
on traditional DRAM memories that heavily penalize row
misses and limit the adoption of more aggressive schedul-
ing policies to avoid hurting throughput.

In this paper, we present Thread Row Buffers (TRBs), a
simple mechanism to provide performance isolation in
multiprogrammed environments while maintaining
throughput. Thread Row Buffers maintain an active row
for each thread simultaneously, avoiding the throughput-
isolation tradeoff.

TRBs have three main advantages. The first one is that
they improve the access latency in multiprogrammed
environments. TRBs avoid the row alternation of traditional
memories produced by several applications accessing
different memory regions. This behavior can penalize
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significantly performance in multiprogrammed environ-
ments and is avoided with TRBs.

The second is that they improve the performance
isolation of the applications being executed. Quality of
service and responsiveness are increasingly important in
computing systems. TRBs reduce the interference of
memory intensive applications over applications with
more bursty or limited use of the memory with dedicated
row buffers.

And finally, they allow the implementation of new
policies in memory schedulers with lower impact in
performance. Application prioritization has been tradition-
ally limited by the performance penalization of lower row
hit rates brought by different scheduling policies. TRBs
avoid this problem, by having multiple active rows, and
allow the implementation of scheduler prioritization me-
chanisms less focused on row hit rate and more on
performance isolation or fairness.

As an example of memory scheduler, we present the
addition of a service partitioning mechanism which is able
to reduce the interference between applications and in-
crease the row hit-rate by 38 percent. This results in an
increase of the overall performance of 17 percent with
respect to FR-FCFS and of 7 percent with respect to Cache
DRAM. This performance improvement is explained by the
avoidance of row alternation in TRBs that penalizes
significantly row-hit rates for applications with low
memory usage in configurations like Cache DRAM. In
terms of performance isolation, our technique is able to
reduce the standard deviation of an application latency by
40.4 percent over FR-FCFS, 31.4 percent over PAR-BS [26],
and 42.1 percent over Cache DRAM [6] and unfairness by
18.8 percent over FR-FCFS, 5.6 percent over PAR-BS, and
28.5 percent over Cache DRAM.

This paper makes the following contributions:

. We study the memory access patterns of multicore
architectures and show that they differ in important
ways from traditional uniprocessor patterns. We
show that multiprogrammed workloads reduce
memory access locality significantly and that pre-
fetchers play an important role in maintaining it but
still leave room for improvement.

. We show that the inclusion of prefetchers changes
the behavior of previous proposals due to a higher
memory locality.

. We present Thread Row Buffers, an efficient
technique to increase the row hit rate and provide
performance isolation without hurting throughput.
This technique is able to increase overall system
performance and energy efficiency with low hard-
ware overhead.

. We evaluate Thread Row Buffers with service
partitioning and compare them to alternative tech-
niques like Cache DRAM or Parallelism-Aware
Batch Scheduling (PAR-BS), showing better through-
put and performance isolation.

2 BACKGROUND

2.1 Memory Organization

Fig. 1 shows the organization of a typical DRAM memory.
These memories have several chips, each responsible for
providing a part of the block simultaneously. Inside the chip,
memory is organized in banks, each holding a part of the
address space. Since memory parts are very big, and to
reduce access latency, data are accessed inside the memory
in rows (also called pages). Therefore, every bank has a row
buffer and every time that an address is accessed the
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Fig. 1. Memory organization and mapping.



corresponding row is loaded to the row buffer. Subsequent
accesses to addresses in the same row require amuch smaller
access time because they hit in the row buffer. Therefore,
different situations can arise when accessing memory:

Row hit. In this case, the row is already in the row buffer
so we can read it directly. Access latency will be the
Column Access Strobe latency (TCL), the time between
column access and data return by the DRAM.

Row closed. There is no data in the row buffer. Access
latency is the time required to load (activate command) the
row and then read. Access latency will be the Row to
Column command Delay (TRCD), the delay between the
row access command and the data ready at the row buffer,
plus the read latency; TRCD þ TCL.

Row conflict. In this case,wehave adifferent row in the row
buffer, and therefore, we need to write this row back
(precharge command) and load the one we want to access
before reading.Access latencywill be theRowPrecharge time
(TRP ) plus the activate and read latency; TRP þ TRCD þ TCL.

Since no data from one bank can be transferred during its
row activation or row precharge, multiple banks are used.
Therefore, when a row is activated in one bank a block can
be read in another one and there is always data available to
be transferred.

Address mapping to physical memory also has signifi-
cant influence on the overall performance. In a general
configuration suited for all kind of applications, it would be
desirable to distribute memory accesses among all memory
banks and also maximize the hit rate. Fig. 1 shows the
address mapping used in this paper. In this mapping,
Column ID is mapped to the least significant bits to keep
consecutive addresses in the same row and maximize the
hit rate. The next bits after the row are mapped to DIMMs
and banks to spread requests among memory controllers.
Finally, more significant bits are devoted to Row ID to
reduce the row miss rate. This mapping is intended for
open-page configurations (row is not precharged after being
accessed). For closed-page configurations (row is always
precharged after being accessed) adjacent lines are usually
mapped to different banks to take advantage of the
available bandwidth and because spatial locality is expected
to be small between consecutive accesses [39].

2.2 Memory Controller

Memory controllers are tightly related to memories. They
arbitrate between requests to different banks, arbitrate the
data bus usage, and enforce the memory timing constraints.

Fig. 2 shows the structure of a memory controller.
Requests are separated in different queues depending on
the bank where the address is mapped. In these queues,
accesses are reordered following the desired policy, usually
a First-Ready First-Come-First-Serve policy [29], [43] that
prioritizes accesses to active rows.

The second part of the memory controller is the bank
arbiter. This part usually uses a simple round-robin arbitra-
tion policy. However, only idle banks can issue requests;
therefore, it is necessary to keep track of bank states to know
if they are performing a row activation or precharge or if a
previous request is waiting to use the data bus.

Once the desired row is activated, requests are enqueued
in the data bus queue. The data bus arbiter is a critical part of
the memory controller because the limited bandwidth is

often the bottleneck in current processors. Due to the delay
between servicing a read request and having the data
available a look-ahead queue is required to reserve the bus
at the time the data is going to be in the Read FIFO. This
arbiter also must take into account the 1 cycle delay incurred
when requests change from read to write or vice versa.

Another important function of the memory controller is
the enforcement of timing constraints. Due to noise effects
and energy and thermal limitations, memories are con-
strained by some parameters like TRAS , TRC , TRRD, and
TFAW (see Table 2). These parameters ensure that the
maximum currents and temperatures are not exceeded by
imposing a maximum amount of activity over a period of
time. It is also necessary to refresh the data to ensure no
information is lost and this must be done every TRFC cycles
for a given region of memory. Therefore, one important part
of the memory controller must include cycle and event
counters that enforce these constraints regardless of the
number of requests.

Finally, the request issue logic must select the request
that is going to use the ctrl/addr bus, priority is given first
to memory constraints, then the data bus arbiter, and finally
the bank arbiter.

2.3 Influence of Prefetching

As we have seen from the memory organization, it is very
important to maximize the hit rate to limit the number of
row activations. This results in reduced access latency and
energy consumption. In configurations running a single
application, the usage of a FR-FCFS policy achieves a
reasonably high row hit rate [29]. The chip multiprocessor
consolidation, however, has brought new execution envir-
onments, where this solution is insufficient.

Fig. 3 shows a snapshot of the requests received in Bank 0
for a multiprogrammed execution when executing Gafort
(SPEC OMP) with eight threads, four copies of 456.hmmer
and four copies of 459.GemsFDTD (SPECCPU). The first plot
shows the row numbers of requests in arrival order and the
second one the order in which these requests are finally
issued. It can be seen that although FR-FCFS reorders some of
the requests (e.g., Req 7 is issued before Req 6), we can see an
alternation in the rows being accessed; leaving room for
optimization. The request reordering mechanism is not able
to reorder more requests because, as can be seen in the last
plot, the number of requests waiting in the buffer queue is
small. This small amount of requests is explained by the
limited memory-level parallelism (MLP) of applications.
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Fig. 2. Memory controller structure.



One way to improve row hits and reduce the row
alternation is to use on-chip stream prefetchers [11] to group
requests. Stream prefetchers increase the MLP and do not
interfere with caches. Therefore, we have evaluated the
influence of stream prefetchers in the memory controller.

Fig. 41 shows how the addition of 8-entry stream
prefetchers in the memory controller can significantly
improve the row hit rate, by generating extra memory
parallelism and grouping requests. On average, row hit rate
increases from 29.2 to 54.3 percent.

3 RELATED WORK

There has been extensive work in optimizing memory
controllers for chip multiprocessors. This work has been
heavily focused on the optimization of bank and channel
arbitration. The previously described First-Ready First-
Come-First-Serve policy [29], [43] is an optimal solution
from the memory throughput point of view and it is widely
used. This technique prioritizes accesses to active rows,
minimizing the amount of row activations. Some mechan-
ism to avoid starvation must be included to ensure that
under heavy load conditions all requests are serviced. Since
only memory throughput is considered, this technique can
present fairness and isolation problems.

Many techniques have appeared lately that take into
consideration the interaction between threads. One of them

is the Adaptive History-Based memory scheduler [9] that
reorders requests making use of the command history and
the set of available commands to minimize the request
delay. This technique extends the FR-FCFS policy to also
consider change of rank and port delays. In addition
proposes a mechanism to enforce that the number of reads
and writes matches the application behavior to avoid filling
the reorder queues. The Self-Optimizing memory controller
[10], on the other hand, uses reinforcement learning
techniques to estimate the long term performance impact
of each action and reorders requests to maximize long-term
performance. And Yuan et al. [40] focus on reducing the
complexity of DRAM schedulers.

Other work studies the interaction of prefetchers and
memory controllers in multiprogrammed environments,
and proposes coordinated control between prefetchers or
memory aware prefetching. McKee and Wulf [22] show that
prefetching blocks in streams can reduce the row alterna-
tion and increase the row hit rate. Ebrahimi et al. [3] show
that prefetchers can cause a significant interference to other
cores and, therefore, need to be dynamically adjusted in a
coordinated way. Lin et al. [4] also study the influence of
prefetchers and propose a memory controller with two
priorities, high for demand requests and low for prefetch
requests. This technique schedules prefetches only during
idle cycles and do not harm the overall latency of demand
requests. Always prioritizing demand requests over pre-
fetch requests, however, can degrade performance in some
cases because if these prefetches are useful they can reduce
the number of demand misses. Srinath et al. [31] realized
of this fact and proposed a prefetcher to dynamically
adapt the aggressiveness of prefetchers but without con-
sidering the memory controller. Later, this idea was
exported to the memory controller with the Prefetch-Aware
DRAM Controller [17] Lee et al. [18], on the other hand,
propose a Bank-Level Parallelism aware prefetcher and
scheduler. Since banks can operate concurrently, the best
way of granting a continuous amount of data to the bus is to
maximize the bank parallelism of requests. The proposed
prefetcher prioritizes requests to different banks over
requests to the same bank. While prioritizing requests to
different banks, it is possible to increase the memory-level
parallelism, this prioritization also to reduce the row
locality that determines the overall row hit rate. In
uniprogrammed configurations, it may not affect signifi-
cantly because no other requests arrive to the banks and the
used rows remain active. In multiprogrammed environ-
ments, however, this configuration encourages row alter-
nation and, therefore, a reduction of the row hit rate that
greatly impacts in the overall performance and energy
consumption of DRAMs.

Other work increases performance by a memory-aware
management of the last-level on-chip cache [33] or by using
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Fig. 4. Row hit rate with and without prefetch.

Fig. 3. Request behavior in Bank 0 in a multiprogrammed environment.

1. Combination of two SPECCPU (four copies of each) and one
SPECOMP (with eight threads) benchmarks. Further details of the
simulation environment can be found in Section 5.



a cache replacement-aware mapping [41]. Power consump-
tion is an important factor and, therefore, several techniques
have sought to reduce it [16], [34], [38], [42].

With the advent of chip multiprocessors, however, new
problems arise. Performance isolation and fairness have
become as important as throughput and several publica-
tions have appeared centered on solving these problems.
Fair Queuing [27] uses Network Fair Queuing algorithms to
grant fairness by prioritizing requests with earliest virtual
finish-times. Rafique et al. [28] propose an improvement to
this technique using start time fair queuing, treating each
memory request as a unit of scheduling. Stall-Time Fair

scheduling [25], on the other hand, provides quality of
service by reordering requests to equalize the memory-
related slowdown between threads. ATLAS [14] is more
focused on throughput and reorders thread priorities based
on the service they have attained previously, prioritizing
the ones that have requested the least service. This
technique is based on queuing theory which shows that
when the job size distribution is exponential and the arrival
process is Poisson, then the shortest-queue task assignment
policy is optimal. Thread Cluster Memory (TCM) [15]
scheduling also is focused on system throughput and
divides threads into two separate clusters, latency-sensitive
and bandwidth-sensitive. This scheduler is also based on
the assumption that the system throughput benefits of
prioritizing memory-nonintensive threads over memory-
intensive ones. Therefore, this technique prioritizes always
latency-sensitive threads. Within the latency-sensitive clus-
ter, lower MPKI threads are prioritized following the same
principle. Minimalist Open-Page [12], on the other hand,
provides a tradeoff between throughput and fairness
through the usage of a different mapping that allows a
high enough number of page hits but does not penalize too
much applications with low memory usage or bad locality.
In addition, they also present a memory scheduler directed
with processor-generated prefetch metadata.

And finally, Parallelism-Aware Batch Scheduling [26] is
a technique that enforces fairness and performance by
processing requests from a thread in parallel in the DRAM
banks to reduce the memory-related stall-time experienced
by the thread. One of the main problems when enforcing
fairness in the memory scheduler is starvation avoidance.
PAR-BS creates request batches to ensure that all requests
within a batch are serviced before creating a new one. This
allows more aggressive reordering techniques without
starvation issues and provides some performance isolation.
However, batching requests can also hurt performance

because it is prioritized over achieving a higher row hit rate.
The reordering policy implemented in PAR-BS is based on
the creation of a thread rank. The thread ranking is
computed giving higher priority to the thread with the
lowest number of requests in the batch. This policy tries to
increase the intrathread bank parallelism within a batch.

The main problem in all the existing reordering
techniques is that the important influence of row buffer
locality in the memory system throughput generates a
difficult tradeoff between throughput and fairness or
performance isolation.

4 THREAD ROW BUFFERS

To solve the limitations of existing configurations, we
propose to add a certain number of independent row
buffers. These row buffers are extra storage added into the
DRAM memory to keep several rows active at the same
time. Unlike Cache DRAMs [6], [8], [19] which were
thought as a normal cache, where more capacity means
more performance, row buffers are based on the insight that
with only one buffer per thread or application performance
and isolation can be benefited significantly without having
the overheads of Cache DRAM.

DRAM Cache proposed a unique cache for all the DRAM
memory to store all the rows being activated in the different
banks or in a specific bank. This approach, however,
requires a significant amount of storage capacity and does
not ensure that all applications make an efficient use of
memory in a multiprogrammed environment. Furthermore,
managing the extra storage as a cache implies to add a
replacement mechanism in the memory controller. The
replacement mechanism would require to store all the cache
tags on-chip and the Least Recently Used (LRU) replace-
ment mechanism, which is usually implemented with
binary trees due to its implementation complexity. Since
memory controllers are nowadays integrated on-die, this
technique would involve a significant overhead in terms of
area and energy consumption.

In this paper, we propose to assign a row to each thread,
although row buffers could be also assigned to cores or
applications depending on the hardware underneath. Thus,
we talk about Thread Row Buffers. Every time that a row is
activated in the DRAM, the data are copied to the entry of
the requesting thread without requiring expensive replace-
ment mechanisms. As it is going to be seen, this allocation is
much more efficient than one based in least recently used
data and requires a lower hardware overhead.

Our proposed mechanism only requires the reordering
logic to store the row addresses of the TRBs. Since row
buffers are assigned to threads, the replacement mechanism
is trivial and only requires to add the thread ID in the
request command. While TRBs change the traditional CPU-
DRAM interface, we show in the remainder of the paper the
benefits of moving in this new direction. Plus, in the context
of 3D stacking [19] this separation is already nonexistent.
Fig. 5 shows the structure of the DRAMmemory with TRBs.
The implementation of Thread Row Buffers requires extra
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Fig. 5. DRAM with TRBs structure.



storage in each bank and the corresponding multiplexers to
access them. Memory arrays would not need to be
modified, thus maintaining the same high level of integra-
tion that characterizes current DRAM memories. Memory
controllers store the tag of the active row to know if a
precharge and activation is required. In the same way, the
memory controller responsible of handling TRBs would
have the addresses of the active rows, and therefore, if a
row was already loaded in one TRB, it would not be loaded
into another. This solution allows a more effective use of
TRBs and avoids coherency problems.

The implementation of Thread Row Buffers in DRAM
chips can be done in several ways, using sense amplifiers
like existing row buffers [13] or using SRAM, like on-chip
caches, mixed with the DRAM cells [1], [7]. Assuming the
usage of 6T SRAM cells and using the Cacti [37] tool, we
have estimated the area overhead of the Thread Row
Buffers, which would be 2.04 percent of the total memory
die (assuming a 56:7 mm

2 die size [35]).
Our implementation assumes the same number of

threads as TRB entries to allow performance isolation
between threads. Nevertheless, TRBs can be used in other
contexts with a different number of threads and TRB
entries. The implementation of TRBs enables the memory
controller to actively decide the replacement policy and
management of the TRBs, unlike previous proposals
(i.e., DRAM Cache), and to manage memory accesses in
ways that have not traditionally been possible due to the
limit of a single active row. These alternatives are left for
future study. For instance, TRBs which could be switched
off when not used to reduce the static power consumption
or TRBs could be assigned on an application basis (not on a
thread basis as we show in this paper).

4.1 Service Partitioning Scheduler

Traditional memory schedulers have been limited by the
tradeoff of providing maximum throughput versus some
kind of performance isolation. These schedulers reorder
requests in the bank queues by selecting the request with
highest priority. Priorities are calculated by concatenating
different parameters depending on the type of scheduler.
Fig. 6 shows an example of how the request priority is
calculated for a traditional FR-FCFS scheduler and for the
PAR-BS [26] scheduler. Since the memory row hit rate has a
very high influence on the overall memory throughput,
these techniques give it more importance, potentially
reducing the final isolation. The usage of TRBs, on the
other hand, has the advantage that the last row accessed by
each thread is always going to be loaded in the TRBs,

allowing the memory controller to apply any scheduling
policy without hurting throughput.

As an example to show how easy it is to provide
performance isolation with TRBs, we have prioritized
requests with the method depicted in Fig. 6 as TRB-SP. To
isolate the performance of the different threads, we have
used a system that maintains a thread prioritization and
uses these priorities to reorder requests, giving more
importance to this ordering than the row hit information.

To calculate the thread priority for service partitioning,
we have used a very simple mechanism that uses the most
recent history and requires very little hardware. The
working principle of our priority calculator is that every
time that a request is issued, the owner thread changes its
priority to the minimum (zero). The remaining threads that
used to have lower priority than that thread increase their
priority by one. Therefore, the thread that has been longest
without issuing a request is going to have the maximum
priority. The extra hardware required for priority calcula-
tion is very low and can be seen in Fig. 7. If needed, more
complex scheduling mechanisms could be implemented in
conjunction with TRBs without having to deal with a
performance degradation due to a reduction of the row hit
rate. As we will see, the proposed service partitioning
mechanism is able to enforce a strong performance isolation
without requiring a large hardware overhead.

Fig. 8 shows an example of how the different scheduling
priorities work. We assume two threads (A and B), each of
them always accessing the same row. For each configura-
tion, we can see on the top the requests stored in the bank
queue and on the bottom the requests issued to the DRAM.
It is possible to see how FR-FCFS is able to finish very fast.
This is because it prioritizes requests if there is a row hit,
saving time in precharges and activations. This technique,
however, is not fair and in some cases can stall a request
from a different thread for a long time if multiple requests
to the active row arrive. On the other hand, PAR-BS
prioritizes fairness. The example shows how requests are
grouped in a batch at the beginning and how requests from
threads with fewer requests are given priority. Batching,
however, does not allow new requests to bypass those
within a batch, even if they are to the active row. Therefore,
this reduces the row hit rate and the overall throughput.
TRB-SP is able to combine the benefits of both techniques
by providing the lowest completion time and, in addition,
servicing requests in a fair way. We can see in Fig. 8 how
requests are alternated and this does not penalize the hit
rate due to the ability to store several active rows.

5 EXPERIMENTAL SETUP

We have evaluated our proposed framework with Simics
[20], a full-system execution-driven simulator extended
with the GEMS [21] toolset that provides a detailed memory
hierarchy model. A detailed memory controller and DRAM
memory model has been added, including a power model
based on activity counters and the Micron DDR3 energy
requirements [24], to evaluate our proposal. We have
assumed the usage of SRAM TRBs and, therefore, their
static power and area has been evaluated with Cacti [37].
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Table 1 shows the values for the most important config-

uration parameters.
Fig. 9 shows the evaluated CMP, using 16 processors and

four memory controllers with a dedicated bus. The overall

chip bandwidth is similar to recent processors like IBM

Power7 [32] that has a sustained memory bandwidth of

more than 100 GB/s with eight channels operating at
6.4 GHz. In all the tested configurations, two levels of cache
are used; as well as a MOESI protocol to grant coherence
between nodes. On-chip coherence is granted through a
distributed directory [5]. Local and private L1 and L2 caches
are used in every processor allowing sharing through the
directory.
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Fig. 8. Scheduling example.

Fig. 7. Thread priority calculation hardware.



As we have seen in Section 2.3, hit rate in CMPs is highly
impacted by hardware prefetching; therefore, we have used
stream prefetchers in all the evaluated configurations. A
stream prefetcher like the one in IBM Power4 [11], [36] has
been added to the simulator. As we will see, the addition of
prefetching penalizes the PAR-BS configuration and our
technique due to the increase in the memory-level paralle-
lism. One of the main contributions of TRBs is the ability to
deal with alternating row accesses that make the traditional
FR-FCFS useless in multiprogrammed environments. We
added the prefetchers to provide a more fair comparison
against FR-FCFS, increasing the number of simultaneous
requests to the same row.

To emulate the multiprogrammed execution environ-
ment of current chip multiprocessors, we have used a mix
of single and multithreaded applications. Two multi-
threaded applications from the SPECOMP2001 workload
set have been combined with single-threaded applications
from the SPECCPU2006 workload set. All applications are
simulated with reference input sets. In each combination,
one SPECOMP2001 application is executed with eight
threads in combination with two SPECCPU2006 applica-
tions, each of them running four copies with independent
input data.

Fig. 10 shows with a shaded area the region with more
representative applications. From that area, applications
have been divided in four categories depending on the
number of off-chip misses (MPKI) and the memory-level
parallelism. Fig. 10 shows the division, which considers
applications with more than 1 miss per 1,000 instructions to
have a high number misses and to have a high MLP when
the average number of simultaneous requests is higher than
8. Then, we have selected representative applications from
each category to combine them and have all types of
applications represented. The evaluated applications are
459.GemsFDTD, Gafort, 450.Soplex, 456.hmmer, 444.namd,
and Ammp, which have been used in the evaluation of the
proposed techniques.

These applications have been synchronized to the most
significant execution regions and after warming up the
caches during 1,000M instructions they have been exe-
cuted for 50 million cycles per thread (which represents
400 million instructions on average). System throughput
has been measured using Weighted speedup [30] and
normalized performance with respect to FR-FCFS:

W:Speedup ¼

X

N

i¼0

IPCi

IPCFR�FCFS
i

� �

:
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TABLE 2
Memory Timing Parameters [23]

Fig. 9. Simulated CMP structure.

Fig. 10. Spec OMP2001 and CPU2006 classification.

TABLE 1
Configuration Parameters



To compare the fairness of the evaluated techniques, we
have used the unfairness index [26]. This is the ratio
between the maximum and the minimum memory-related
slowdown. Being the memory related slowdown, the
memory stall time per instruction when running with other
threads divided by the memory stall time per instruction
when running alone on the same system:

MemSlowdowni ¼
MCPIsharedi

MCPIalonei

;

Unfairness ¼
maxMemSlowdown

minMemSlowdown
:

We have evaluated the following configurations to
compare the proposed techniques:

FR-FCFS. Our baseline configuration uses eight bank
memories, a FR-FCFS scheduler and an on-chip prefetcher
with 32 stream buffers of eight entries each.

PAR-BS. We have compared to a state-of-the-art schedul-
ing technique, the Parallelism-Aware Batch Scheduling [26].
We have used a Marking-Cap of 5, which is said to be the
best compromise between system throughput and fairness.
We also evaluated a version with a Marking-Cap of 16 to
ensure that prefetch streams were kept within a batch and
results were very similar.

Cache DRAM. This configuration evaluates a Cache
DRAM [19] with 16 row entries per bank, an LRU replace-
ment policy and a FR-FCFS bank scheduler.

TRB. This organization shows the results obtained for the
Thread Row Buffers, using a row buffer per thread in each
bank. This configuration also uses a FR-FCFS bank
scheduler that only reorders if the first request produces a
row miss.

TRB-SP. In this configuration, TRBs are evaluated with
the service partitioning mechanism in the memory con-
troller to grant performance isolation.

6 RESULTS

In this section, we present the evaluation of the TRB
compared to existing configurations described previously.
Fig. 11 shows the weighted Speedup, normalized through-
put and row hit rate of the evaluated organizations. It can
be seen in the third plot that Thread Row Buffers are able to
increase the row hit rate significantly, from the 54.4 percent
of FR-FCFS to 75 percent. This increase is explained by the
ability of TRBs to keep several active rows at the same time.
Cache DRAM is able to increase the hit rate to 67.6 percent.
The row hit rate improvement results in a lower latency
and, therefore, an increase in the overall throughput.
Weighted speedup is increased on average by 19.7 percent
over FR-FCFS, 23.9 percent over PAR-BS, and 9.1 percent
over Cache DRAM. In terms of aggregated throughput
TRBs also show the best results, improving it on average by
17.1 percent over FR-FCFS, 21.9 percent over PAR-BS, and
6.9 percent over Cache DRAM.
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Fig. 11. Weighted Speedup, normalized throughput, and row hit rate.



The performance of PAR-BS is similar to FR-FCFS. This is
explained by the low hit rate that this configuration
achieves. Previous studies evaluated this technique without
prefetching, and therefore lower memory-level parallelism.
In that environment, a FR-FCFS scheduler is not able to get
a reasonable hit rate and, therefore, the penalization of
grouping requests into batches is small. The addition of
stream prefetchers, however, increases the MLP and shows
that under the presence of prefetching batch grouping may
reduce the overall throughput.

On the other hand, the TRB configuration has a slightly
higher row hit rate than TRB-SP and its performance is
lower. This is explained by the performance isolation
capability of TRB-SP, which is able to reduce the memory
latency of threads with lower number of requests. This
results, in most cases, in a performance improvement for
the majority of threads. In the case of 456_459_ammp,
however, configurations that enforce performance isolation
show worse performance. This application combination
has the highest average number of simultaneous requests
and the impact of the scheduling policy is more clear. In
this case, the service partitioning scheduler stalls some
requests from ammp to grant a fair access to the other
threads, especially those from 456_hmmer. Since ammp
represents half of the threads, the overall performance is
reduced. This reduction, however, is in exchange for a
more fair resource allocation and does not imply a
reduction in memory throughput.

To measure the performance isolation, we have used the
average memory latency of each application, its standard
deviation, and the unfairness metric, shown in Fig. 12. The
second plot shows how TRB-SP enforces performance
isolation. The performance reduction of ammp in favor of
456_hmmer seen in the 456_459_ammp combination re-
duces the latency deviation of this application by 68 percent
over FR-FCFS.

PAR-BS also shows a good standard deviation due to
the usage of a fair scheduler, and is able to reduce it on

average by 13.2 percent over FR-FCFS. The average
latency, however, is high due to the low hit rate. The
configuration with service partitioning, however, shows
the best average results. It is able to reduce the average
latency by 21.3 percent over FR-FCFS, 26.3 percent over
PAR-BS, and 12.8 percent over Cache DRAM. Standard
deviation is also reduced by 40.4 percent over FR-FCFS,
31.4 percent over PAR-BS, and 42.1 percent over Cache
DRAM. TRBs, on the other hand, grant that the row hit
rate is not affected by thread alternation but treat all
requests with the same priority. Therefore, applications
with a higher number of requests can penalize those
with less memory accesses. This explains the variability
of TRBs, which is increased by 14.4 percent compared to
FR-FCFS. If performance isolation is desired, a specific
memory scheduler (like SP) must be implemented in
addition to them.

If we compare the techniques through the unfairness
metric in the third plot from Fig. 12, we can see that also
in this case TRB-SP provides the best fairness. In this case,
the unfairness is reduced by 18.8 percent over FR-FCFS,
5.6 percent over PAR-BS, and 28.5 percent over Cache
DRAM.

Furthermore, DRAM power in modern server systems
can account for 30 percent of total system power [2]. Of this
power, around one-third is spent in the precharge and
activation of rows. Hence, the aforementioned reduction in
row misses also is useful from an energy consumption point
of view. Fig. 13 shows that the power consumption per
request of the TRB is similar to the power consumed in the
other configurations except for the 444_456_ammp config-
uration. The extra power in this case is caused by a very
small number of requests that do not take advantage of the
hit rate improvement. The second plot of Fig. 13 shows
a decomposition of the memory power consumed in the
TRB-SP configuration. It can be seen that in all cases, the
DRAM power consumption is reduced due to a higher hit
rate that avoids row activations which consume a high
amount of energy. However, the extra storage adds a
significant amount of static power. On average, TRBs
increase the required power per request by 1.8 percent
compared to FR-FCFS but reduce it by 8.3 percent compared
to Cache DRAM.

If we look at the energy efficiency, however, results are
much better for TRBs due to the reduction in the average
memory latency (first plot of Fig. 14). Results show that
TRB-SP reduces latency by 18.1 percent compared to FR-
FCFS and by 3.5 percent compared to Cache DRAM. The
second plot shows the energy-delay squared product (ED2),
which is a good measure of energy efficiency (the lower the
better). As expected, a reduced latency with similar power
requirements leads to a much higher energy-efficiency for
TRB configurations. TRB-SP is able to increase the energy
efficiency, reducing the ED

2 by 29.1 percent over FR-FCFS,
41.2 percent over PAR-BS, and 14.7 percent over Cache
DRAM.

6.1 Addition of Extra Banks

A different alternative to increase the memory access
parallelism and increase the overall hit rate would be to
use a higher number of banks, each of them with its
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Fig. 12. Average BM latency, standard deviation, and unfairness.



corresponding row buffer. This solution is orthogonal to the
proposed technique and could be combined with it.

It is important to note that the addition of extra banks

has a high cost in terms of hardware, especially in the

memory controller. It requires adding buffer queues and

arbiters for each new bank, therefore doubling the required

area when doubling the number of banks. In addition,

because the extra banks are not allocated to threads, this

solution still has to deal with the throughput-isolation

tradeoff. This configuration, however, does have the benefit

of being able to activate or precharge more rows simulta-

neously. Since it is interesting to see the tradeoffs between

these alternatives, we have evaluated a configuration with

extra banks (16 Bks) and a configuration that combines both

techniques (TRB-SP_16 Bks).
Fig. 15 shows the performance improvements and row

hit rate of both configurations. It can be seen that Thread

Row Buffers are able to improve the overall throughput as

much as the configuration that doubles the number of

banks with a smaller complexity. If we look at the third

plot, we can see that in terms of row hit rate TRBs are much

more efficient than adding extra banks. TRBs achieve an

average row hit rate of 75 percent compared to the

58 percent of the 16 Bks configuration. Finally, we can see
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Fig. 14. Power, average latency, and energy-efficiency.

Fig. 13. TRB-SP memory power decomposition.



that a combination of both techniques, although having a

high cost in terms of hardware, can double the overall

throughput in some cases, and increase it by 39 percent on

average over FR-FCFS.

7 CONCLUSIONS

In this paper, we have seen that current chip multi-
processors require that we deal with an increasingly
heterogeneous set of applications, which change the
memory access patterns and make organizations opti-
mized for single threaded workloads obsolete. Thread
Row Buffers are able to deal with alternating row access
with the usage of multiple active rows. They are able to
increase the row hit-rate by 38 percent with respect to
FR-FCFS and by 11 percent with respect to Cache DRAM.
This, in turn, increases the overall performance by 17 and
7 percent, respectively.

The increasing number of virtualized environments

shows a demand for performance isolation between

threads. Isolation in existing memory schedulers has been

granted by sacrificing throughput while using traditional

DRAM memories. The addition of TRBs eliminates this

tradeoff, allowing the implementation of more aggressive

schedulers. The configuration with TRBs and service

partitioning is able to reduce the standard deviation of an

application latency by 40 percent over FR-FCFS, 31 percent

over PAR-BS, and 42 percent over Cache DRAM and

unfairness by 18.8 percent over FR-FCFS, 5.6 percent over

PAR-BS, and 28.5 percent over Cache DRAM.
Overall, we have shown that Thread Row Buffers are an

energy-efficient mechanism that allows us to avoid the

throughput-isolation tradeoff. It enables the implementa-

tion of simple fairness or quality-of-service oriented

schedulers while maintaining memory throughput.
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