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Abstract

As multi-core processors with tens or hundreds of cores
begin to proliferate, system optimization issues once
faced only by the high-performance computing (HPC)
community will become important to all programmers.
However, unlike with HPC, the focus of the multi-core
programmer will be on programming productivity and
portability as much as performance. We introduce in
this paper a novel scheduling framework for multi-core
processors that strikes a balance between control over
the system and the level of abstraction. Our framework
uses high-level information supplied by the user to guide
thread scheduling and also, where necessary, gives the
programmer fine control over thread placement.

1 Introduction

Single-threaded processor performance is becoming
power limited, so processor architects are increasingly
turning to multi-core designs to improve processor per-
formance. Such chips include Intel’s experimental Ter-
aFlops processor [9] and Sun’s UltraSPARC T1 proces-
sor [10]. This design trend points to future systems
having tens to hundreds of cores per processor, each
of which is capable of running one or more software
threads simultaneously. Experiments show that a wide
variety of programs can benefit from the hardware paral-
lelism [14] that suchmany-core processors(large-scale
multithreaded chip multiprocessors) will provide.

Many-core processors will bring to desktop comput-
ing power formerly seen only in HPC systems. HPC pro-
grammers have traditionally used explicit thread and data
placement to achieve the best performance for their par-
allel applications—an approach that not only requires a
deep understanding of the hardware architecture of the
HPC system, but also requires careful tailoring of the
program to that specific hardware. We expect the num-
ber of people writing parallel programs to increase sig-
nificantly. However, portability and ease of program-
ming are equally, if not more, important to the gen-
eral programmer than performance. Since the architec-
ture of many-core systems is still evolving, portability is

needed to allow the same program to run well on differ-
ent kinds of many-core systems. As a result, one chal-
lenge for mainstream many-core programming is to de-
velop mechanisms that provide the ability to do HPC-
style customization for performance but do not compro-
mise portability and programmability.

There are a number of challenges involved in design-
ing a portable and easy-to-use, yet high performance
scheduling interface for many-core platforms. For ex-
ample, it will be essential to reduce shared cache misses
since the on-die caches of many-core processors will be
relatively small for at least the next several years, and
memory latencies have grown to several hundred cy-
cles [7]. Similarly, choosing which threads run con-
currently on a processor is important since cache con-
tention and bus traffic can significantly impact applica-
tion performance. It can also be important to decide
which threads to run on each core since simultaneous-
multithreaded (SMT) cores share low-level hardware re-
sources such as TLBs among all threads.

To achieve the best performance for their parallel ap-
plications, programmers have traditionally used explicit
thread and data placement. Most thread library imple-
mentations provide support forpinning threadsto assign
threads to specific CPUs (i.e., hardware threads) and to
restrict their migration [11, 6]. But doing this requires
the programmer to have a deep understanding of the sys-
tem’s architecture, which significantly hampers program
portability and programmability. Similar problems ex-
ist for language-based HPC approaches [3, 1, 4] that are
based on specifyinglocalesor regionsfor computation.

Another challenge is that the scheduling primitives
must support a wide variety of parallelization require-
ments. Moreover, some applications need different
scheduling strategies for different program phases. The
threads of data-parallel applications, for example, are
typically independent: they share only a small amount of
data except at certain communication points. For these
applications, distributing threads widely among the dif-
ferent CPUs is beneficial. On the other hand, the threads
of array-based programs typically share data heavily, so
scheduling the threads on nearby CPUs to share data in



common caches provides the best performance.
This paper introduces a scheduling framework for

many-core systems that tries to strike a balance between
the level of abstraction and the amount of control over
the underlying system. This framework is based on the
concept of theRelated Thread ID(RTID), which is used
to identify a collection of related software threads to the
thread scheduler in order to improve their runtime per-
formance. For example, a group of threads might be
given a common RTID because they share some data or
lock. RTIDs provide a higher level of abstraction than
traditional fixed thread-to-processor mappings. In ad-
dition, RTIDs allow the programmer to express various
scheduling constraints such as whether threads should be
gang scheduled. We are currently finishing an initial im-
plementation of our RTID-based scheduling framework
as an extension of our existing McRT many-core run-
time system [14]. This paper introduces RTIDs, presents
the RTID interface our framework provides to user-level
code, and describes our initial approach to the RTID-
based scheduler design.

The remainder of the paper is organized as follows.
The next section describes characteristics of the many-
core architectures that we target. We present a detailed
description of our framework and its interface API in
Section 3, then Section 4 discusses how our scheduler
framework addresses a variety of design issues. This is
followed in Section 5 by an overview of our scheduler’s
implementation. Section 6 describes related work. The
last section concludes and discusses future directions.

2 Target architecture

The underlying processor architecture plays a significant
role in thread scheduling. While the exact architecture
of large-scale many-core processors is still evolving, we
can list some general characteristics.

Many-core processors will have tens to hundreds of
cores, each of which run application threads on some
number of hardware threads (HWTs). Initially, each
HWT will have a private L1 cache and each core will
have a shared L2 cache shared by all HWTs. Proces-
sors are likely to eventually have multiple levels of pri-
vate cache per HWT, as well as a shared last-level cache.
However, the many-core L2 caches will tend to be sig-
nificantly smaller than those of traditional SMP systems.
In addition, the cores will be interconnected by a high-
bandwidth, low-latency interconnect.

The architectural differences of many-core processors
have a number of consequences. First, on-die commu-
nication will be fast: the latency to access data from
a different HWT will be about two orders of magni-
tude smaller than in today’s SMP systems. Also, the
cache size for each HWT and each core will be one or

two orders of magnitude smaller than the per-processor
caches of today’s SMP systems. These differences mean
that parallelism will be relatively cheap as long as the
required data (and instructions) are on-die. However,
the design of the interconnection fabric will also signifi-
cantly affect latency, so thread placement decisions will
have a big impact on thread performance.

In our current scheduling framework, we target single
many-core processors. We expect to extend our frame-
work to multiple many-core processors in the future. In
addition, we also assume initially that the processor is
homogeneous: that all cores are identical. However,
future processors may be heterogeneous. For example,
some cores may be faster, or may have special support
for vector processing or other computation. We expect
to later extend our framework to support these hetero-
geneous processors. Finally, we assume for now that
the processor provides a coherent shared memory model
with a single shared address space although this may
have NUMA characteristics due to hierarchical caches.
We do not specifically address distributed address spaces
although we may do so in the future.

3 The scheduling framework
The primary goals of our scheduling framework are to
improve application throughput and overall system uti-
lization. A secondary goal of the framework is to im-
prove fairness so that each thread continues to make good
forward progress. These goals sometimes conflict. For
example, to balance system load, the placement frame-
work may schedule threads to run on HWTs distant from
shared data. Also, scheduling threads to run too closely
(for example, packed onto adjacent HWTs) can actually
hurt performance if cache conflicts become too frequent.
Our framework treats the question of how to balance
these goals as a policy decision and lets the user spec-
ify which goal has the highest priority.

The framework provides support for both user-guided
explicit placement as well as automatic best-effort place-
ment. Expert programmers who want to control exactly
where threads are scheduled can use explicit placement
functions to control where to run threads and allocate
data. However, we expect most users to use automatic
placement since this simplifies application development
and allows the same program to run well on a range of
different many-core systems. In this scheme, the pro-
grammer identifies closely-related threads–threads that
share data–and the runtime will do its best to schedule
the threads close together so that they share data through
nearby shared caches. In addition, the framework also
provides a mechanism forgang schedulingthreads—
running them at the same time as well as close together.
This feature is useful, for example, in programs where
threads frequently acquire and release shared locks. In



this case, latency will suffer if threads made newly-
runnable must wait until they can be scheduled to run
on a CPU.

At the heart of our framework is a configurable sched-
uler that decides when and the HWT on which each
thread will be run. Our scheduling algorithm is tailored
for efficiently running one or more applications using
automatic placement. This approach enables both per-
formance and portability since architecture-specific opti-
mizations are implemented within the scheduler. If the
underlying architecture changes, the existing scheduler
can be replaced with one that is tailored for the new ar-
chitecture.

3.1 RTIDs

RTIDs provide a mechanism for programmers to identify
groups of threads that should run close together, for ex-
ample, because they share common data. As an example,
RTIDs can be used to schedule threads so that they can
share data through local caches. The scheduler tries its
best to run threads that share an RTID on nearby HWTs
or cores. In our current design, each thread can have at
most one RTID. If a thread has an RTID, it is specified
when the thread is created. Threads without RTIDs can
be scheduled to run anywhere.

Our framework also allows a programmer to directly
associate an RTID with a data address. The scheduler
will then try to run threads with that RTID close to each
other and to the specified data: that is, it will try to run
the threads on HWTs that share fast caches in order to
minimize cache misses.

Finally, the framework supports attributes for RTIDs
that supply additional information to help guide how
threads sharing that RTID are scheduled. The first at-
tribute is the expected number of simultaneous threads
sharing the RTID. The scheduler will use this informa-
tion to select (at least initially) which HWTs to use for
the RTID’s threads. Two other attributes specify whether
to gang schedule the RTID’s threads, and, if so, the min-
imum number of threads in the gang. These values allow
the scheduler to decide when a quorum of the RTID’s
threads is ready to run. A fourth attribute allows the pro-
grammer to specify whether load balancing is more im-
portant than data proximity. This can be used, for exam-
ple, to help optimize scheduling for data-parallel algo-
rithms, where threads are mostly independent and com-
municate infrequently. This attribute can also be used to
help spread out threads sharing an RTID so as to avoid
cache conflicts.

Because a program’s requirements can change over
its lifetime, programs can also dynamically change an
RTID’s attributes. For example, if a single phase in a
program needs gang scheduling, the program can spec-
ify it for just that one phase.

struct McrtRtidS;
typedef struct McrtRtidS * McrtRtid;

typedef struct {
unsigned doLoadBalancing;
unsigned width;
unsigned minGangCount;

} McrtRtidAttrs;

McrtRtid mcrtCreateRtid(McrtRtidAttrs *attrs);
void mcrtFreeRtid(McrtRtid rtid);
McrtThread *mcrtThreadCreate(McrtThreadFunc f,

void *args,
McrtRtid rtid);

void *mcrtAssociateRtidWithHwt(McrtRtid rtid,
int hwt);

void mcrtAssociateRtidWithData(McrtRtid rtid,
void *addr);

void *mcrtMallocForRtid(size_t size,
McrtRtid rtid);

Figure 1: The RTID placement interface

3.2 The RTID placement interface

This section describes the interface that our placement
framework presents to applications. Although we present
this framework as an extension to the threading and
scheduling support of the McRT many-core runtime sys-
tem [14], nearly the same interface could be added to
other operating systems. For example, supporting these
extensions on Linux would require minor modifications
to the scheduler and the Native POSIX Threads Library
(NPTL) [6].

Figure 1 describes our interface for specifying place-
ment. The interface is relatively short and includes some
RTID-related types, two RTID management functions,
a thread creation function, and a few explicit data and
thread placement functions.

• McrtRtid values, which are opaque, represent
RTIDs.

• McrtRtidAttrs structures specify attributes for
RTIDs. With aMcrtRtidAttrs structure, a pro-
gram can specify a number of items to either control
or guide the scheduling of the RTID’s threads. Most
programs set thedoLoadBalancing field to 0 to
indicate that data proximity is more important than
load balancing. However, this field can also be set
1 to have the scheduler emphasize load balancing.
The width field gives the expected number of si-
multaneous threads sharing the RTID, or 0 if un-
known. Finally, ifminGangCount is greater than
1, the RTID’s threads will be gang scheduled; other-
wise its threads will be run near each other, but not
necessarily at the same time.

• RTIDs are created using themcrtCreateRtid



function. Note that itsattrs argument is a pointer
to an McrtRtidAttrs structure instead of the
structure itself; this allows the program to update
the RTID’s attributes by simply modifying the struc-
ture in memory; the changes will take effect when
the scheduler next runs.

• ThemcrtFreeRtid function frees any resources
associated with the RTID.

• ThemcrtThreadCreate function creates a new
thread. If the new thread should be associated with
an RTID, that RTID is given by thertid parame-
ter; otherwise, 0 (i.e.,NULL) should be given.

• Explicit placement support is provided by the
mcrtAssociateRtidWithHwt function. This
pins an RTID to a particular HWT so that its threads
will always run on that hardware thread.

• Two functions control data placement. The first
function,mcrtAssociateRtidWithData , in-
dicates that the RTID’s threads should be run
on HWTs sharing fast caches that can hold data
at or close to the given address. The second,
mcrtMallocForRtid , is a variant ofmalloc
that allocates the data “close” to the given RTID. It
has one of the HWTs executing the RTID’s threads
allocate the data.

4 Discussion

This section summarizes how our framework addresses
a number of issues that would be faced by any sched-
uler design. First, there is the question of what informa-
tion the application programmer should provide to guide
thread scheduling. Our approach is to require only high-
level information unless explicit thread placement is be-
ing used. We expect the developer to identify the threads
that share common data or locks and to assign those
threads the same RTID. The scheduler will then assign
HWTs to these threads in such a way as to reduce cache
misses. To help guide the scheduler, we also allow the
user to provide a small amount of additional information
such as whether to emphasize load balancing or prox-
imity to data, and whether gang scheduling is required.
Because our scheduling framework does not require the
developer to supply architecture-dependent information,
such as the specific cache level threads should share, it
helps to preserve the application portability that general-
purpose developers need.

Another issue is whether to support explicit placement
of threads and data. Although our scheduling framework
is oriented towards automatic thread scheduling, we also
support explicit placement by allowing the programmer
to bind an RTID to a particular HWT. In this way, our

API for explicit placement is consistent with that for au-
tomatic placement. However, the framework does not
make any performance guarantees if programs mix ex-
plicit and automatic placement for their threads. In addi-
tion our framework also supports explicit data allocation
by allowing the client to specify that data be placed close
to an RTID. In this case the allocation is performed on an
HWT that is executing threads associated with the RTID.

There is also the question of whether the framework
can optimize thread scheduling on a range of different
systems. In the past, parallel programs typically had to
be customized for a particular system to get good scal-
ability and performance on that system. This has been
true, for example, for HPC programs. However, a pro-
gram tuned to run well by itself on a particular system
may not perform well if it is only one of several pro-
grams running simultaneously. Since general-purpose
systems rarely run a single application at a time, we de-
cided in favor of portability and ease of programming.
Our approach is to have the developer guide placement
using RTIDs and then have the scheduler use this in-
formation to place threads to achieve the best possible
performance. While this approach may not be able to
achieve the high performance that programs hand-tuned
for a particular system might achieve, it should provide
good performance across a range of programs on differ-
ent architectures.

5 Scheduler design
Our framework uses an extension of the scheduler in
McRT [14]. This is a highly configurable task-queue-
based scheduler, and clients may specify the number of
task-queues, the task-queue to HWT mapping, as well
as the scheduling policies. Our initial implementation
uses one task-queue per processor core and a combina-
tion of the scheduler’s existing work-stealing and work-
distribution scheduling policies. This configuration al-
lows us to maximize sharing through the L2 (last-level)
caches, while making use of the existing scheduling poli-
cies to achieve good load balancing. In general, our goal
is to improve performance by minimizing contention for
different resources and by maximizing HWT usage.

When new software threads are created, the scheduler
tries to distribute them to task queues based on the load in
the system. If the number of threads is less than the num-
ber of HWTs, the scheduler tries to improve through-
put by channeling work to unused HWTs. Once ev-
ery HWT is in use, the scheduler switches tosaturation
modewhere scheduling is increasingly guided by RTIDs.
When a thread is created in saturation mode, its RTID is
compared to those of threads already in the system. If
that RTID already exists, the scheduler will place this
thread on a task queue for a core that shares as many lev-
els of cache as possible with other threads sharing the



RTID. If that RTID is new, the thread is placed in the
least loaded task-queue. The scheduler also uses work-
stealing to try and keep the system’s load balanced. Idle
HWTs steal work from other tasks queues in the system.
As a result, threads may migrate across HWTs. However,
we expect thread migration to be relatively inexpensive
on many-core processors.

As threads continue to be added to the system, even-
tually threads of multiple RTIDs will be scheduled on
the same core. Our scheduler optimizes the order in
which threads are run by grouping them according to
RTID. When an RTID is scheduled, the threads within
that group are run round-robin for a period of time. To
ensure fairness, RTIDs are occasionally preempted and
replaced at the end of the task queue. This approach is
an extension to CPU affinity in which schedulers place
threads on the same HWT they last ran on in order to
reuse data in local caches. Although CPU affinity is
likely to be less important on many-core systems, where
the fast interconnect reduces the cost of an on-die mem-
ory miss, it is still likely to be important for many appli-
cations.

6 Related work
Many thread libraries on both Windows and POSIX op-
erating systems give clients some control over thread
scheduling. For example, POSIX threads allow clients to
specify a scheduling policy and priority for their threads;
standard scheduling policies include whether to use a
first in-first out or round-robin scheduling policy. Fur-
thermore, thread libraries typically provide some support
for binding a thread to one or more processors.

Solaris provides a locality-oriented mechanism to op-
timize performance in NUMA systems.lgroups (local-
ity groups) [5] represent a collection of CPUs and mem-
ory resources that are within some latency of each other.
Lgroups are hierarchical and are created automatically
by Solaris based on the system’s configuration and dif-
ferent levels of locality. The system assigns each newly-
created thread a home lgroup that is based on load av-
erages, although applications can give a thread a differ-
ent home lgroup. Lgroups help to control where threads
and memory are allocated: when a thread is scheduled
to run, it is assigned the available CPU nearest to the
home lgroup, and memory is gotten either from the home
lgroup or some parent lgroup. As a result, lgroups can be
used to improve the locality of an application’s threads,
but are more restricted than RTIDs, which can also be
used to specify gang scheduling and other scheduling-
related information.

Since RTIDs are used to group related threads they
may be compared with theprocess groupssupported by
both Windows and POSIX operating systems. Process
groups allow a group of processes to be treated as a unit

that can be identified by aprocess group ID. While pro-
cess group IDs have some similarities to RTIDs, they are
primarily used to control the distribution of signals and
not specifically intended to improve performance.

Recent work on scheduling algorithms for many-core
processors includes that of Fedorova [7]. Her cache-fair
thread scheduling algorithm provides fairer thread sched-
ules and greater performance stability on shared-cache
multi-core processors by continually adjusting, for each
thread, its time quantum to ensure that that thread has
a fair miss rate in the L2 (i.e., last-level on-die) cache.
The target-miss-rate algorithm helps to keep processor
utilization high by achieving a target L2 cache miss rate.
It does this by dynamically identifying threads that pro-
voke the highest miss rates and lowering their priori-
ties. Anderson, Calandrino, and Devi [2] apply a cache-
aware thread co-scheduling algorithm to real-time sys-
tems. This algorithm reduces L2 contention by avoid-
ing the simultaneous scheduling of problematic threads
while still ensuring real-time constraints.

There is a large body of related work on thread
scheduling to improve application performance on SMT
processors. For example, Parekh, Eggers, Levy, and
Lo [13] demonstrate significant performance speedups
from scheduling algorithms that uses PMU feedback
to select the best threads to schedule together. They
found the best performance from an algorithm based on
IPC feedback. Fedorova’s non-work-conserving sched-
uler [8], which improves application performance by re-
ducing contention for shared processor resources like the
L2 (last-level on-die) cache. The algorithm uses an an-
alytical model to dynamically determine when it makes
sense to run fewer threads than the number of HWTs.

An especially relevant paper on SMT scheduling is
that by Thekkath and Eggers [15], who found that plac-
ing threads sharing data on the same processor did not
improve cache performance or execution time. However,
their study did not consider more threads than HWTs and
their threads were fairly coarse-grained. We would like
to investigate whether their results still hold today for
both many-core processors and emerging parallel appli-
cations in domains such as streaming, media processing
and RMS (recognition, mining, and synthesis) applica-
tions [12].

7 Conclusion
Many-core systems will encourage the development of
parallel, general-purpose applications. As the number of
programmers for these applications increases, the need
will grow for simpler but still effective ways of using
large-scale parallelism. This paper describes a schedul-
ing framework that tries to achieve good performance for
the majority of applications on different many-core plat-
forms without compromising ease of programming. We



believe having applications provide high-level guidance
to a scheduler through RTIDs will let the scheduler do a
better job for most programs than if those programs did
explicit thread placement.

We are in the process of completing the initial imple-
mentation of this framework. Several mechanisms such
as thread stealing and support for multiple scheduling
policies are already a part of the McRT runtime, and our
framework implementation is an extension of the current
McRT scheduler. Our near-term plans are to evaluate
the framework when used to run a number of our bench-
marks, and then to experiment with different scheduling
policies.

Future work includes the addition of several features
our scheduling framework does not currently support.
This includes support for multiple many-core proces-
sors, non-homogeneous processors, thread priorities, hi-
erarchical RTIDs, multiple RTIDs for each thread, and
NUMA distributed address spaces. In addition, we also
plan to investigate integrating different feedback-based
mechanisms into our scheduler to try to improve perfor-
mance, system utilization, and fairness. In particular, we
want to study how we could use PMU-based information
about thread and system behavior to augment the RTID
information from users.
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