Thread-Specific Heaps for Multi-Threaded Programs

Bjarne Steensgaard
Microsoft Research
One Microsoft Way

Redmond, WA 98052

rusa@microsoft.com

ABSTRACT

Garbage collection for a multi-threaded program typically
involves either stopping all threads while doing the collec-
tion or involves copious amounts of synchronization between
threads. However, a lot of data is only ever visible to a sin-
gle thread, and such data should ideally be collected without
involving other threads.

Given an escape analysis, a memory management system
may allocate thread-specific data in thread-specific heaps
and allocate shared data in a shared heap. Garbage col-
lection of data in a thread-specific heaps can be done inde-
pendent of other threads and of data in their thread-specific
heaps. For multi-threaded programs, thread-specific heaps
allow reduced garbage collection latency for active threads.
On multi-processor computers, thread-specific heaps allow

concurrent garbage collection of different thread-specific heaps

with minimal synchronization overhead.
We present an escape analysis and a sample memory man-
agement system using thread-specific heaps.

1. INTRODUCTION

When doing a garbage collection for a multi-threaded pro-
gram, conventional garbage collectors stop all threads but
one, and let that single thread perform the actual work of
the collection. This strategy avoids the problems of having
multiple threads mutate the heap during the garbage collec-
tion phase. For server-type applications with several hun-
dred threads, the global rendez-vous and subsequent wait for
the garbage collection to finish can be a serious performance
bottleneck.

If it can be pre-determined that some objects allocated by
a given thread never escape that thread, these objects can
be allocated in a section of the heap reserved for that thread.
Another section of the heap can be used for objects that are
shared among threads. Such a division of the heap provides
several advantages to the garbage collection system.

Given that there are no pointers from the shared heap sec-
tion to the thread-specific heap sections, the thread-specific

heap sections can be garbage collected independent of each
other. It is not necessary to rendez-vous with other threads
to perform a garbage collection of a thread-specific heap
section. On a multi-processor computer, multiple thread-
specific heap sections can be garbage collected simultane-
ously without synchronization.

To perform garbage collection of the shared heap section,
it is still necessary to synchronize the threads. In a conven-
tional garbage collector, this entails a global rendez-vous.
However, even when collecting the shared heap section, the
GC latency for active threads can often be reduced. If re-
membered sets are used to track pointers from thread-specific
heap sections to the shared heap section, the shared heap
section can be collected without also collecting the thread-
specific heap sections. If remembered sets are not used, the
thread-specific heap sections must also be collected (in or-
der to find all references to shared objects). However, each
thread does not have to wait for the collection of all the
other thread’s heap sections before it can continue (minimal
synchronization overhead is required, though).

A secondary benefit of the division of the heap into sec-
tions is that for two-space copying collectors the absolute
memory usage is reduced in many cases, as the potential
space overhead becomes the size of the sections actively
being collected as opposed to the size of the entire heap.
Furthermore, memory locality is increased during garbage
collection because collection of a thread-specific heap does
not involve pages allocated to other thread-specific heaps
and collection of the shared heap does not involve pages
allocated to any thread-specific heap.

This paper describes two contributions, a sample program
analysis to compute the information necessary to implement
thread-specific heaps, and a prototype implementation of an
automatic memory manager based on thread-specific heaps.
This particular implementation does not allow pointers from
shared objects to thread-specific objects, collects the shared
heap when collecting the thread-specific heaps, and uses two
generations for each heap. The implementation is done in
the runtime system for Marmot [8], an ahead-of-time native-
code compiler for a subset of Java'.

2. COMPILER SUPPORT FOR THREAD-
SPECIFIC HEAPS

The runtime system is augmented to provide a mechanism
to create objects in a thread-specific heap. The compiler
must choose for each object allocation whether to invoke

!Java is a registered trademark of Sun Microsystems.

this new mechanism or to invoke the existing mechanism to
create objects in the shared heap.

The analysis we use to determine which objects are only
accessed by its creating thread, is a thread escape analy-
sis. Our thread escape analysis is based on type unification
mechanisms and uses polymorphic summaries of methods.
The analysis results are used in a program transformation
specializing methods as necessary to classify all object allo-
cation statements as either creating a thread-specific object
or a shared object. The code generator subsequently gener-
ates code invoking the appropriate allocation mechanism.

The analysis and transformation stages are similar in na-
ture to Ruf’s synchronization elimination analysis and trans-
formation [17]. In the first stage, summary information
about methods are propagated from callees to callers. In
the second stage, information is propagated from callers to
callees while simultaneously specializing interesting meth-
ods depending on where to create objects created (directly
or indirectly) by the methods.

2.1 Escape Analysis

The analysis computes for each global value (reference
constant or static field) and its (transitive) fields and array
elements, whether the value is accessed by more than one
thread. The analysis computes for each method the alias
and thread access effects of the method and its (transitive)
callees.

The analysis is very similar to Ruf’s synchronization re-
moval analysis [17]. The analysis relies on a conservative
estimate of the program call graph. Ruf demonstrated that
such analyses may be extremely fast in practise although
the worst-case time and space complexity is exponential.
More precise analysis results may be obtained by discovering
the call graph during the analysis (by using Milner-Mycroft
style type inference mechanisms[15]), but the difficulty of
implementation and real-life performance of such analyses
is unknown.

Like Ruf’s analysis, our escape analysis does not assume
that an object has escaped a thread simply because it is
a global value or reachable from a global value. Only ob-
jects presumed accessed by multiple threads, and all objects
reachable from such objects, are considered to have escaped
a thread. Global variables thus can be considered thread
local if they are only accessed by a single thread. This fea-
ture is important for a number of programs; for example, it
makes a big difference for many programs that are single-
threaded apart from their use of the AWT libraries.

The analysis results maintain the invariants that any ob-
ject that may be accessed by multiple threads (under con-
servative assumptions about program behavior) are marked
as shared, and that any object that could be stored in a field
or array element of a shared object is also marked shared.

We describe the analysis by describing differences relative
to Ruf’s analysis.

Runtime values are represented by the alias set data struc-
ture:

aliasSet := L |
(fieldMap, created, refThreads, global).

The created and refThreads elements replace elements used
in Ruf’s analysis. The created boolean element is true in
aliasSet components of a method context if the value is
an object that may have been created in the method or

its (transitive) callees. The refThreads is a set of threads.
When the global element is true, the refThreads element de-
scribes the set of threads that may access the value or may
access an object from which the value is reachable. A value
is shared if global is true and refThreads denotes multiple
threads.

The pertinent information in the refThreads element is
whether the value may be accessed by zero, one, or multiple
threads, so significant performance gains are obtained by
using a simplified representation to represent exactly these
properties.

The analysis constraint rules are very similar to those
of Ruf’s analysis. The constraints in Ruf’s analysis for
mhonitorEnter and monitorExit are ignored. For statements
of the form

v=nmnewT,
the following constraint is added:
AS(v).created = true,

where AS(v) returns the aliasSet representing the value stored
in the variable v.

For each statement accessing a value v, the following con-
straint should be added:

if AS(v).global
recursiveAddRefThread(AS(v), TC(m)),

where recursiveAddRefThread(a, b) augments the refThreads
element of a and all aliasSets reachable from a with the set
of threads b.

The intra-procedural analysis to compute method con-
texts summarizing the alias and thread effects of a method
is otherwise performed as described by Ruf. The inter-
procedural propagation of analysis information from callee
method contexts to callers is also performed as described by
Ruf. The pruning of method contexts is modified to reflect
that created objects are interesting, as opposed to synchro-
nized objects in Ruf’s analysis.

2.2 Method Specialization

The goal of the method specialization is to replace state-
ments of the form

v=new T
with statements of the form
v = threadNew T’

where appropriate. The original form is used to create ob-
jects in the shared heap section, and the new form is used
to create objects in the thread-specific heap section of the
thread executing the statement.

For each new statement, if AS(v) is the aliasSet describing
the created value

(fieldMap, created, refThreads, global),

then created will always be true. If global is false, then the
value is never reachable from a global value, and the object
may be allocated in a thread-specific heap section. If global
is true, then the value may be reached from one or more
global values. The refThreads element then describes the
set of threads accessing these global values. If refThreads

is a singleton set, the object may be allocated in a thread-
specific heap section. If refThreads is the empty set, the new
statement is never executed. Only if refThreads represents
more than one thread must the object be allocated in the
shared heap section.

A method creating one or more objects either directly or
indirectly via called methods may be specialized in several
ways depending on the calling context. A method creating
and returning an object may thus result in two specializa-
tions: one creating the object on the shared heap and the
other creating the object on a thread-specific heap. The
ability to create multiple specializations of a method is cru-
cial to obtaining good results. Ruf describes how informa-
tion is propagated from calling contexts to callees to obtain
different method contexts corresponding to different special-
izations.

The method specialization process is otherwise similar to
Ruf’s method specialization and transformation.

3. MEMORY MANAGER USING THREAD-
SPECIFIC HEAPS

We have implemented a prototype memory management
system in Marmot [8] that uses thread-specific heaps. The
implementation only explores one point in the space of mem-
ory managers using thread-specific heaps and should there-
fore not be considered representative of all memory man-
agers using thread-specific heaps. Other variations are sug-
gested in a later section.

The implementation is a variation of an existing genera-
tional garbage collector. The generational collector has two
generations. The young generation is collected by copying
live objects to the old generation. The old generation is col-
lected using two-space copying techniques. The implementa-
tion currently supports remembered sets using a sequential
store write-buffer (there is support for thread-specific write-
buffers and card-marking schemes in the existing collector,
but it is pending for the new memory manager).

The implementation has heap sections for each thread,
and a heap section for shared objects. Each section has a
young and an old generation. One region of memory is used
to contain all the young generations, and another region
of memory is used to contain all the old generations. The
heap sections are given chunks of these regions of memory as
needed. To make tracking of thread-specific versus shared
objects easier, the thread-specific heap sections are allocated
chunks of memory from the lower end of the memory regions
and up, and the shared heap section is allocated chunks of
memory from the higher end of the memory regions and
down.

The original memory manager also allocated memory to
threads in chunks to eliminate the need to obtain a lock
from the common path in the object allocation code. The
new memory manager adds slightly to the amount of froth
(unused pieces of the heap due to the allocation of chunks
of memory) since each thread now has chunks in both its
thread-specific heap and the shared heap.

The implementation currently supports two kinds of garbage
collection: (1) collection of objects in the young generation
only of all the heap sections, and (2) collection of all ob-
jects in all the heap sections. Collection of thread-specific
heaps alone is not currently supported, as it would require
a change in the logic of when to trigger the different kinds

of collections and a change in how memory is obtained for
the younger generations of the heap sections.

3.1 Allocation of Memory

Allocation requests in the new memory manager takes
one of two forms: (1) thread-specific object, or (2) shared
object. Large objects® are pre-tenured and allocated in an
old generation of the relevant heap section; small objects are
allocated in a young generation.

If possible, small objects are allocated from the relevant
heap section’s last chunk (if any) of memory from the young
generation. If not, a new chunk of memory is reserved for
the heap section. The new chunk is an integral number of
pages (currently 4KB) big enough to hold the object to be
allocated. If the memory region containing all the young
generations does not have room for such a chunk, a garbage
collection is initiated. Whether the collection is a minor or
major collection depends on the number of bytes allocated
since the last major collection.

3.2 Minor Collections

During a minor collection, live objects from the region
of memory containing the young generations are copied to
the region of memory containing the old generations. Data
from both the shared and the thread-specific heap sections
are copied.

Given that the shared heap section is always collected,
all threads must rendez-vous, and a single thread performs
(part of) the collection, as in the original implementation.
First, the collecting thread generates a mapping from pages
in the memory region containing the young generations to
the threads assigned those pages. The root set (including
the call stacks of all the threads) is then traversed, and
the directly reachable objects in the young generations are
copied to the corresponding old generations in preparation
for a number of Cheney scans. The mapping from pages
to threads is used to determine the corresponding thread-
specific old generation to copy objects into.

During this initial copying, and during the subsequent
Cheney scans, the memory manager allocates memory to
the shared and thread-specific heaps in chunks as in the
memory region for the young generations. The memory for
the copied objects is allocated from the chunks.

The shared objects are copied from the young generation
to the old generation by a Cheney scan [4]. The Cheney scan
was adapted to deal with chunks of memory as opposed to
a single contiguous memory segment. Only shared objects
are encountered during this scan.

After the scan of the shared heap, all the shared objects
that can be reached without visiting thread-specific objects
in the young generations (whether copied yet, or not) have
been copied to the shared old generation and all their in-
ternal pointers have been fixed up. There may be live non-
copied shared objects reachable only via thread-specific ob-
jects, but most of those are only reachable from a single
thread’s thread-specific objects. The exceptions are shared
objects, created since the last collection, which were reach-
able at one point from the shared root set (in order to be
shared among threads) and were since disconnected from the
shared root set. We assumed the number of such objects to
be minimal.

20bjects over 256KB in size

After the scan of the shared heap, the threads can perform
the remainder of the collection concurrently with minimal
synchronization.

Before releasing all the other threads from the global rendez-
vous, the collecting thread designates a new memory re-
gion to contain all the young generations created when the
threads start running again. As a result, as soon as a thread
has finished collecting it’s own young thread-specific data, it
can commence normal execution; it can ignore other threads
which may still have uncollected data in the old memory re-
gion holding the young generations. In our implementation
we reserve at startup time two regions of memory (currently
16MB each) which alternate being designated to hold the
young generations.

For each thread, the remainder of the collection is per-
formed by two Cheney scans. Any thread that is ready to
run can perform its own collection. Threads that are sus-
pended or waiting can have their collection performed on
their behalf by another thread. In our implementation, spe-
cial garbage collection threads are used to perform collection
on behalf of dormant threads (we currently create a garbage
collection thread for each processor on the underlying ma-
chine). In the remainder of this subsection, when we refer
to a thread, we mean the thread whose collection is being
performed, regardless of whether the collection is done by
the thread itself or by another thread.

The first thread-specific scan traverses the memory areas
containing the copied thread-specific objects. When encoun-
tering a reference to an object in the region of memory hold-
ing the young generations, it must be determined whether
the object is a thread-specific or a shared object. This is
achieved by a simple comparison with the boundary between
the shared and thread-specific pages in that memory region.
The thread-specific objects are just copied into the corre-
sponding thread-specific old generation and references are
forwarded to the copy.

Encountered object in the shared heap could potentially
be shared with other threads, so special care must be taken.
If the referenced object has not been copied, a global lock
is obtained, and the object is copied into a chunk of the
shared heap section owned by the thread. A data structure
is maintained mapping shared objects copied in this phase
to the threads that copied them. If the referenced object
has been copied during the thread-specific scans, the data
structured is consulted to determine which thread did the
copying. If the referenced object was copied by the current
thread, the reference is simply forwarded. If the referenced
object was copied by a different thread, the reference is for-
warded, and the current thread is made dependent upon the
thread that copied the object. A thread should not com-
mence execution until all the threads it is made dependent
upon (transitively) have finished their two scans; otherwise
the thread could reach an object copied by another thread
whose pointer fields have not yet been updated.

The pages in the young generation holding thread-specific
objects for a thread can be relinquished when the first thread-
specific Cheney scan is complete.

The second thread-specific scan traverses the memory ar-
eas containing the shared objects copied during the thread-
specific collection. Any encountered uncopied objects may
be shared with other threads, so a global lock must be
obtained when copying such objects. As in the previous
scan, references are forwarded, but if the referenced object

is copied by a different thread, the current thread is made
dependent upon the thread that copied the object.

When a thread has finished its two thread-specific Ch-
eney scans, the internal references of all objects copied by
the thread have been forwarded as necessary. As soon as all
threads it is dependent upon have completed, all reachable
objects have been copied and their internal references for-
warded, so from the thread’s perspective, the garbage collec-
tion is complete. The thread can therefore commence execu-
tion, even though there may be other threads that haven’t
finished (or even begun) their two thread-specific Cheney
scans.

The pages in the young generation holding shared objects
can be relinquished when all threads have completed their
two Cheney scans.

3.3 Major Collections

A major collection is done in much the same way as a
minor collection. The original and the new memory man-
ager both use the technology of a two-space copying garbage
collector. The new memory manager does a simultaneous
collection of objects from the young and the old generation
into a “new” old generation.

In the original memory manager, maximum memory us-
age occurred during a major collection when there were two
copies of all live objects: one in the source old generation
memory region and one in the destination old generation
memory region. In the new memory manager, source thread-
specific heap memory regions can be relinquished as soon as
the thread finishes its first Cheney scan. In multi-threaded
programs, the threads may not necessarily all be collected si-
multaneously, or peak memory usage for the thread-specific
heaps may not necessarily happen simultaneously, thereby
reducing the absolute memory requirements of the applica-
tion.

Memory usage could be further reduced by performing the
collection of thread-specific heap sections first (allowing the
memory for these heap sections to be relinquished) followed
by a global rendez-vous to do the collection of the shared
data, but in our implementation we favor reduced thread la-
tency and perform the collection of the thread-specific heap
sections last, allowing active threads to run while the collec-
tion of waiting threads is still in progress.

The source shared heap section cannot be relinquished un-
til all the threads have completed their collections. There-
fore, memory usage could potentially increase if a single
thread allocates a lot of memory before the remaining threads
have finished their collections. To avoid this problem, the
memory manager could force straggling threads to finish
their collections before allowing other threads to allocate
substantial amounts of data.

4. EXPERIENCE

We tested the compiler and runtime system on a number
of programs. We report byte and object allocation statis-
tics for a few multi-threaded programs. Plasma and Slice
are modified versions of public domain rendering applets.
They are only multi-threaded due to the use of Marmot’s
AWT library, and we consider them representative of most
other programs that are only multi-threaded for the same
reason. Both have been made to run long enough to ensure
the garbage collector is invoked. Volano Client is the client

application of the VolanoMark 1.0 networking benchmark3.
Volano Server is the server application VolanoMark bench-
mark. We subjected the server application to 3 invocations
of the client application. Mtrt is a multi-threaded ray tracer
distributed with the SPEC JVM98 Benchmarks. While we
would have liked to include a much larger suite of test cases,
there are unfortunately very few interesting publicly avail-
able multi-threaded Java programs.

The analysis and transformation stages in the compiler
have minimal cost. The cost is comparable to the cost of
Ruf’s synchronization elimination, which is measued in sec-
onds for even very large programs.

Figure 1 contains byte and object statistics for the test
programs. Figure 2 contains statistics on the amount of
copying performed during collection for the different kinds
of heap sections. The last column of Figure 2 contains statis-
tics on the amount of cross-thread object conflicts (causing
thread dependencies) during the thread-specific copying of
shared objects. The numbers in Figure 2 are obtained from
a single run of the program; the numbers will often vary
among runs of the same program due to the multi-threaded
nature of the programs.

The data supports our initial assumption that there will
be very few conflicts between threads trying to copy the
same shared object while scanning their own thread-specific
heap sections. The number of conflicts are zero for the
given test runs; if running the Volano Client multiple times
against the same Volano Server, in about 20% of the col-
lections, 2-3 conflicts would occur.

5. SUGGESTED VARIATIONS

Instead of having a single “shared” heap section, as in our
implementation, a set of “shared” heap sections may be used
by the memory manager. A family of threads sharing some
data structures could use a heap section for those data struc-
tures. Other threads not using these data structures would
then not have to wait for a collection of these data struc-
tures. The set of “shared” heap sections has the potential
to have the runtime system let the programmer pay for what
you use when modifying applications by adding threads to
them. It also has the potential to completely isolate an inde-
pendent thread or collection of threads in a runtime system,
allowing the addition of new threads to a program with the
assurance that it will have little effect on the rest of the pro-
gram. Similarly, the thread-specific heap sections could be
divided into multiple heap sections.

In addition to having heap sections for thread-specific and
shared objects, one could add a heap section for objects with
non-trivial finalize methods.? During a collection, reachable
objects in this heap section should stay in the heap section,
while non-reachable objects could have their finalize meth-
ods executed and then be copied to a regular heap section to
avoid having the finalize method executed more than once
by the runtime system.

Each thread could process its own call stack after the
shared heap scan. It may increase the number of cross-
thread object conflicts.

Instead of using two memory regions for new heap gener-
ations, a single memory region could be used by adding a

3VolanoMark is a trademark of Volano LLC.

“Trivial finalize methods are empty after inlining calls of
super.finalize().

free-list of chunks.

In our implementation, the shared heap section is col-
lected by a single thread after a global rendez-vous and each
thread’s thread-specific heap is being collected by the thread
itself or a special collector thread. Collection of each heap
section is thus single-threaded. The heap sections could in-
stead be collected by a concurrent collector.

Given the computed analysis information, the compiler
could specialize the write-buffer code for maintaining the
remembered sets. First, the range checks may be specialized
(depending on the write-buffer implementation). Second,
separate write buffers could be maintained for the thread-
specific heap sections, and even for pointers into thread-
specific young generations as opposed to pointers into shared
young generations. The latter would reduce the amount
of work to be done by the single thread doing the shared
collection.

In distributed systems with program control over place-
ment of objects, similar analysis techniques could be used
to compute a node-local set of objects. Node-local heap
sections may then be garbage collected without consulting
memory managers on other nodes. In a distributed environ-
ment, the benefits will likely be much greater than in the
multi-threaded environment described in this paper.

Object references stored in java.lang.Thread objects are
all assumed to be shared. All Thread objects are stored in
shared java.lang.ThreadGroup objects at thread creation,
and are therefore assumed by the analysis to also be shared
as are their fields, although the fields of each Thread ob-
ject may in practice only be accessed by the thread itself.
An improved analysis should remedy the problems with this
artifact of the Java class libraries.

6. RELATED WORK

Some thread-specific objects, whose lifetime can be bounded
by the lifetime of a stack frame on a thread’s runtime call
stack, may be allocated in the call stack instead of on the
heap. There are several recent implementations of this strat-
egy in runtime systems for Java [2, 5, 9, 21] and various
functional programming languages [3, 7, 12, 13, 14, 16, 18].
Marmot uses the stack allocation transformation described
in [9], so objects allocated in thread-specific heap sections
are not trivially stack allocatable.

The language report for FX91 [10] briefly mentions an
extension of FX91 that uses type annotations to indicate a
storage region in which effects take place.

Tofte and Talpin describes a system (implemented in The
ML Kit and elsewhere) to automatically allocate memory in
regions that are collected in a stack discipline [19, 20]. Each
region has a specific lifetime and is not really related to
threads. Each region is not garbage collected. Christianson
and Velschow extends this idea to Java [6]. Hallenberg ex-
tends Tofte and Talpin’s system as implemented in The ML
Kit with garbage collection of individual regions [11]. De-
spite the lack of support for thread in this family of works,
each of their “regions” can be considered a specialized heap
section holding objects of a specific lifetime.

KaffeOS uses process-specific heaps for Java processes and
shared heaps for data shared among processes [1]. Objects
in the shared heaps are not allowed to reference objects in
process-specific heaps. KaffeOS imposes severe restrictions
on objects in the shared heaps and uses page protection to
enforce those restrictions.

Program bytes/thread | objects/thread | bytes/shared | objects/shared
Plasma 4.3MB 86K 16MB 405K
Slice 26MB 1.1M 6.0MB 110K
Volano Client 491KB 17K 16MB 428K
Volano Server 5.0MB 206K 10MB 160K
Mtrt 27TMB 988K 521KB 363
Figure 1: Byte and object allocation statistics.
Program bytes/thread | objects/thread | bytes/shared | objects/shared | conflicts
Plasma 12KB 385 23KB 677 0
Slice 740B 31 336KB 342 0
Volano Client 3.8KB 22 1.2MB 10K 0
Volano Server 5K 238 1.7MB 18K 0
Mtrt 6.5MB 307K 167KB 68 0

Figure 2: Bytes and objects copied during collections and a conflict count.

None of the many concurrent garbage collection systems
appear to use techniques similar to those presented in this
paper. However, the techniques appear to be orthogonal to
and could be combined with thread-specific heaps..

7. CONCLUSION

Dividing the heap onto sections containing objects with
different (garbage collection) properties appears useful.

The division of objects into those that are known not to
be shared among threads and those that might be shared
among threads enables a memory management system that
can support threads doing garbage collection independent
of other threads and can reduce latency and increase paral-
lelism during garbage collection when doing collections in-
volving shared objects.

A prototype memory management system demonstrating
the latter point has been implemented in Marmot. The re-
sults are promising; for the class of applications the mem-
ory system was designed for, garbage collection latency is
reduced, and multi-processor machines are better utilized
during garbage collection. A better escape analysis is likely
to produce even better results.

Acknowledgments

This work would not have been possible without the Marmot
compiler infrastructure built by the Advanced Programming
Languages Group at Microsoft Research. Erik Ruf’s syn-
chronization elimination code was the basis for the compiler
portion of the work presented in this paper.

8. REFERENCES

[1] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
kaffeos: Isolation, resource management, and sharing
in java. Technical Report UUCS-00-010, Department
of Computer Science, University of Utah, Apr. 2000.

[2] B. Blanchet. Escape Analysis for Object-Oriented
Languages: Application to Java. In Proceedings of the
1999 ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages € Applications
(OOPSLA’99), pages 20-34. ACM Press, Oct. 1999.

[3] B. Blanchet. Escape analysis: Correctness proof,
implementation and experimental results. In

Conference Record of POPL °98: The 25th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 25-37, San Diego,
California, Jan. 98.

[4] C. J. Cheney. A nonrecursive list compacting
algorithm. Commun. ACM, 13(11):677-678, 1970.

[6] J.-D. Choi, M. Gupta, M. Serrano, V. C. Shreedhar,
and S. Midkiff. Escape Analysis for Java. In
Proceedings of the 1999 ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA’99), pages 1-19. ACM
Press, Oct. 1999.

[6] M. V. Christiansen and P. Velschow. Region-based
memory management in java. Master’s thesis,
University of Copenhagen, Denmark, May 1998.

[7] A. Deutsch. On the complexity of escape analysis. In
Conference Record of POPL °97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 358-371, Paris,
France, Jan. 97.

[8] R. Fitzgerald, T. B. Knoblock, E. Ruf,

B. Steensgaard, and D. Tarditi. Marmot: An
optimizing compiler for Java. Software: Practice and
Ezperience, 30(3):199-232, Mar. 2000.

[9] D. Gay and B. Steensgaard. Fast escape analysis and
stack allocation for object-based programs. In 9th
International Conference on Compiler Construction,
volume 1781 of Lecture Notes in Computer Science,
pages 82-93. Springer-Verlag, 2000.

[10] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
O’Toole. Report on the fx-91 programming language.
Technical Report TR-531, MIT/LCS, Feb. 1992.

[11] N. Hallenberg. Combining garbage collection and
region inference in The ML Kit. Master’s thesis,
University of Copenhagen, Denmark, June 1999.

[12] S. Hughes. Compile-time garbage collection for
higher-order functional languages. Journal of Logic
and Computation, 2(4):483-509, Aug. 1992.

[13] K. Inoue, H. Seki, and H. Yagi. Analysis of functional
programs to detect run-time garbage cells. ACM
Trans. Prog. Lang. Syst., 10(4):555-578, Oct. 1988.

[14] M. Mohnen. Efficient compile-time garbage collection
for arbitrary data structures. Technical Report 95-08,

[15]

[16]

[17]

18]

[19]

[20]

[21]

RWTH Aachen, Department of Computer Science,
1995.

A. Mycroft. Polymorphic type schemes and recursive
definitions. In Proceedings of the International
Symposium on Programming, number 167 in Lecture
Notes in Computer Science, pages 217-228.
Springer-Verlag, 1984.

Y. G. Park and B. Goldberg. Escape analysis on lists.
In Proceedings of the ACM SIGPLAN’92 Conference
on Programming Language Design and
Implementation (PLDI), pages 116-127, 1992.

E. Ruf. Removing synchronization operations from
java. In Proceedings of the ACM SIGPLAN 00
Conference on Programming Language Design and
Implementation, Vancouver, Canada, June 2000. ACM
Press.

M. Serrano and M. Feeley. Storage use analysis and its
applications. In Proceedings of the 1st International
Conference on Functional Programming, June 1996.
M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value A-calculus using a stack of regions.
In Proceedings 21st SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages
188-201, Jan. 1994.

M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,
132(2):109-176, Feb. 1997.

J. Whaley and M. Rinard. Compositional Pointer and
Escape Analysis for Java Programs. In Proceedings of
the 1999 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages €
Applications (OOPSLA’99), pages 187-206. ACM
Press, Oct. 1999.

