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Abstract

In theory, multi-threading an application can improve per-

formance (by executing multiple instruction streams simul-

taneously) and simplify program structure (by allowing each

thread to execute synchronously rather than reactively or

asynchronously). In practice, multi-threaded applications

often perform no better, or even worse, than single-threaded

applications due to the overhead of acquiring and releasing

locks. In addition, multi-threaded applications are hard to

program due to the complex concurrency control protocols

required to avoid race conditions and deadlocks.

This paper describes the Thread-Specific Storage pattern,

which alleviates several problems with multi-threading per-

formance and programming complexity. The Thread-Specific

Storage pattern improves performance and simplifies multi-

threaded applications by allowing multiple threads to use

one logically global access point to retrieve thread-specific

data without incurring locking overhead for each access.

1 Intent

Allows multiple threads to use one logically global access

point to retrieve thread-specific data without incurring lock-

ing overhead for each access.

2 Motivation

2.1 Context and Forces

The Thread-Specific Storage pattern should be applied to

multi-threaded applications that frequently access objects

that are logically global but physically specific to each

thread. For instance, operating systems like UNIX and

Win32 report error information to applications using errno.

1This research is supported in part by a grant from Siemens AG.
2This research is funded by British Telecom, plc.

When an error occurs in a system call, the OS sets errno
to report the problem and returns a documented failure sta-

tus. When the application detects the failure status it checks

errno to determine what type of error occurred.

For instance, consider the following typical C code frag-

ment that receives buffers from a non-blocking TCP socket:

// One global errno per-process.
extern int errno;

void *worker (SOCKET socket)
{

// Read from the network connection
// and process the data until the connection
// is closed.

for (;;) {
char buffer[BUFSIZ];
int result = recv (socket, buffer, BUFSIZ, 0);

// Check to see if the recv() call failed.
if (result == -1) {

if (errno != EWOULDBLOCK)
// Record error result in thread-specific data.
printf ("recv failed, errno = %d", errno);

} else
// Perform the work on success.
process_buffer (buffer);

}
}

If recv returns �1 the code checks that errno !=

EWOULDBLOCK and prints an error message if this is not

the case (e.g., if errno == EINTR), otherwise it processes

the buffer it receives.

2.2 Common Traps and Pitfalls

Although the “global error variable” approach shown above

works reasonably3 well for single-threaded applications,

subtle problems occur in multi-threaded applications. In par-

ticular, race conditions in preemptively multi-threaded sys-

tems can cause an errno value set by a method in one

thread to be interpreted erroneously by applications in other

3The Appendix discusses the tradeoffs of reporting errors using alterna-

tive techniques (such as exceptions and passing an explicit error parameter

to each call).
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result = recv (socket,
buffer, BUFSIZ, 0);

Thread T1 Thread T2

T1 preempted

if (errno == EWOULDBLOCK)
// T1 falsely assumes its
// recv() was interrupted!

// sets errno = EWOULDBLOCK

result = recv (socket,
buffer, BUFSIZ, 0);

// sets errno = EINTR

T2 preempted

Figure 1: Race Conditions in Multi-threaded Programs

threads. Thus, if multiple threads execute the worker func-

tion simultaneously it is possible that the global version of

errno will be set incorrectly due to race conditions.

For example, two threads (T1 and T2) can perform recv
calls on the socket in Figure 1. In this example, T1’s recv
returns �1 and sets errno to EWOULDBLOCK, which indi-

cates no data is queued on the socket at the moment. Be-

fore it can check for this case, however, the T1 thread is

preempted and T2 runs. Assuming T2 gets interrupted, it

sets errno to EINTR. If T2 is then preempted immediately,

T1 will falsely assume its recv call was interrupted and

perform the wrong action. Thus, this program is erroneous

and non-portable since its behavior depends on the order in

which the threads execute.

The underlying problem here is that setting and testing the

global errno value occurs in two steps: (1) the recv call

sets the value and (2) the application tests the value. There-

fore, the “obvious” solution of wrapping a mutex around

errno will not solve the race condition because the set/test

involves multiple operations (i.e., it is not atomic).

One way to solve this problem is to create a more so-

phisticated locking protocol. For instance, the recv call

could acquire an errno mutex internally, which must be

released by the application once the value of errno is tested

after recv returns. However, this solution is undesirable

since applications can forget to release the lock, thereby

causing starvation and deadlock. Moreover, if applications

must check the error status after every library call the ad-

ditional locking overhead will degrade performance signifi-

cantly, even when multiple threads are not used.

2.3 Solution: Thread-Specific Storage

A common solution to the traps and pitfalls described above

is to use the Thread-Specific Storage pattern. This pattern

resolves the following forces:

� Efficiency: Thread-specific storage allows sequential

methods within a thread to access thread-specific objects

atomically without incurring locking overhead for each ac-

cess.

� Simplify application programming: Thread-specific

storage is simple for application programmers to use because

system developers can make the use of thread-specific stor-

age completely transparent at the source-code level via data

abstraction or macros.

� Highly portable: Thread-specific storage is available on

most multi-threaded OS platforms and can be implemented

conveniently on platforms (such as VxWorks) that lack it.

Therefore, regardless of whether an application runs in a

single thread or multiple threads, there should be no addi-

tional overhead incurred and no changes to the code required

to use the Thread-Specific Storage pattern. For example, the

following code illustrates how errno is defined on Solaris

2.x:

// A thread-specific errno definition (typically
// defined in <sys/errno.h>).
#if defined (_REENTRANT)
// The _errno() function returns the
// thread-specific value of errno.

#define errno (*_errno())
#else
// Non-MT behavior is unchanged.
extern int errno;
#endif /* REENTRANT */

void *worker (SOCKET socket)
{

// Exactly the same implementation shown above.
}

When the REENTRANT flag is enabled the errno symbol

is defined as a macro that invokes a helper function called

errno, which returns a pointer to the thread-specific value

of errno. This pointer is dereferenced by the macro so that

it can appear on either the left or right side of an assignment

operator.

3 Applicability

Use the Thread-Specific Storage pattern when an application

has the following characteristics:

� It was originally written assuming a single thread of

control and is being ported to a multi-threaded environ-

ment without changing existing APIs; or

� It contains multiple preemptive threads of control that

can execute concurrently in an arbitrary scheduling or-

der, and

� Each thread of control invokes sequences of methods

that share data common only to that thread, and

� The data shared by objects within each thread must be

accessed through a globally visible access point that is

“logically” shared with other threads, but “physically”

unique for each thread; and
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TS Object Collection

set_object (key)
get_object (key)

TS Object Proxy

setspecific ()
getspecific()

key

TS ObjectApplication
Thread

Figure 2: Structure of Participants in the Thread-Specific

Storage Pattern

� The data is passed implicitly between methods rather

than being passed explicitly via parameters.4

Understanding the characteristics described above is crucial

to using (or not using) the Thread-Specific Storage pattern.

For example, the UNIX errno variable is an example of

data that is (1) logically global, but physically thread-specific

and (2) passed implicitly between methods.

Do not use the Thread-Specific Storage pattern when an

application has the following characteristics:

� Multiple threads are collaborating on a single task that

requires concurrent access to shared data. For instance,

a multi-threaded application may perform reads and

writes concurrently on an in-memory database. In this

case, threads must share records and tables that are not

thread-specific. If thread-specific storage was used to

store the database, the threads could not share the data.

Thus, access to the database records must be controlled

with synchronization primitives (e.g., mutexes) so that

the threads can collaborate on the shared data.

� It is more intuitive and efficient to maintain both a

physical and logical separation of data. For instance,

it may be possible to have threads access data visible

only within each thread by passing the data explicitly

as parameters to all methods. In this case, the Thread-

Specific Storage pattern may be unnecessary.

4 Structure and Participants

Figure 2 illustrates the structure of the following participants

in the Thread-Specific Storage pattern:

Application Threads

� Application threads use TS Object Proxies to

access TS Objects residing in thread-specific stor-

age. As shown in Section 9, an implementation of the

Thread-Specific Storage pattern can use smart pointers

to hide the TS Object Proxy so that applications

appear to access the TS Object directly.

4This situation is common when porting single-threaded APIs to multi-

threaded systems.

Thread-Specific (TS) Object Proxy (errno macro)

� The TS Object Proxy defines the interface of a

TS Object. It is responsible for providing access

to a unique object for each application thread via the

getspecific and setspecific methods. For in-

stance, in the error handling example from Section 2,

the errno TS Object is an int.

A TS Object Proxy instance is responsible for a

type of object, i.e., it mediates access to a thread-

specific TS Object for every thread that accesses the

proxy. For example, multiple threads may use the same

TS Object Proxy to access thread-specific errno
values. The key value stored by the proxy is as-

signed by the TS Object Collection when the

proxy is created and is passed to the collection by the

getspecific and setspecific methods.

The purpose of TS Object Proxies is to hide

keys and TS Object Collections. Without the

proxies, the Application Threads would have

to obtain the collections and use keys explicitly. As

shown in Section 9, most of the details of thread-

specific storage can be completely hidden via smart

pointers for the TS Object Proxy.

Thread-Specific (TS) Object (* errno() value)

� A TS Object is a particular thread’s instance of a

thread-specific object. For instance, a thread-specific

errno is an object of type int. It is managed by

the TS Object Collection and accessed only

through a TS Object Proxy.

Thread-Specific (TS) Object Collection

� In complex multi-threaded applications, a thread’s

errno value may be one of many types of data resid-

ing in thread-specific storage. Thus, for a thread to re-

trieve its thread-specific error data it must use a key.

This key must be associated with errno to allow a

thread to access the correct entry in the TS Object
Collection.

The TS Object Collection contains a set of

all thread-specific objects associated with a particular

thread, i.e., every thread has a unique TS Object
Collection. The TS Object Collection
maps keys to thread-specific TS Objects. A TS
Object Proxy uses the key to retrieve a specific TS
Object from the TS Object Collection via

the get object(key) and set object(key)
methods.

5 Collaborations

The interaction diagram in Figure 3 illustrates the following

collaborations between participants in the Thread-Specific

Storage pattern:

3



Application
Thread

OBJECT OPERATION

Thread state or
global structure

TS
Proxy

getspecific()

COLLECTION LOOKUP

TS-Object
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TS
Object

RETURN COLLECTION

TS-Object

Collection

RETURN TS-OBJECT

OBJECT OPERATION

OBJECT LOOKUP
get_object (key)

TS Object

method ()

lookup ()

Figure 3: Interactions Among Participants in the Thread-

Specific Storage Pattern

� Locate the TS Object Collection: Methods in each

Application Thread invoke the getspecific and

setspecific methods on the TS Object Proxy to

access the TS Object Collection, which is stored in-

side the thread or in a global structure indexed by the thread

ID.5

� Acquire the TS Object from thread-specific storage:

Once the TS Object Collection has been located, the

TS Object Proxy uses its key to retrieve the correct TS
Object from the collection.

� Set/get TS Object state: At this point, the application

thread operates on the TS Object using ordinary C++

method calls. No locking is necessary since the object is ref-

erenced by a pointer that is accessed only within the calling

thread.

6 Consequences

6.1 Benefits

There are several benefits of using the Thread-Specific Stor-

age pattern, including:

Efficiency: The Thread-Specific Storage pattern can be

implemented so that no locking is needed to thread-specific

data. For instance, by placing errno into thread-specific

storage, each thread can reliably set and test the completion

status of methods within that thread without using complex

synchronization protocols. This eliminates locking overhead

for data shared within a thread, which is faster than acquiring

and releasing a mutex [1].

Ease of use: Thread-specific storage is simple for appli-

cation programmers to use because system developers can

make the use of thread-specific storage completely transpar-

ent at the source-code level via data abstraction or macros.

5Every thread in a process contains a unique identifying value called a

“thread ID,” which is similar to the notion of a process ID.

6.2 Liabilities

There are also the following liabilities to using the Thread-

Specific Storage pattern:

It encourages the use of (thread-safe) global variables:

Many applications do not require multiple threads to access

thread-specific data via a common access point. When this

is the case, the data should be stored so that only the thread

owning the data can access it. For example, consider a net-

work server that uses a pool of worker threads to handle in-

coming requests from clients. These threads may log the

number and type of services performed. This logging mech-

anism could be accessed as a global Logger object utiliz-

ing Thread-Specific Storage. A simpler approach, however,

would represent each worker thread as an Active Object [2]

with an instance of the Logger stored internally. In this

case, no overhead is required to access the Logger, as long

as it is passed as a parameter to all functions in the Active

Object.

It hides the structure of the system: The use of thread-

specific storage hides the relationships between objects in an

application, potentially making the application harder to un-

derstand. Explicitly representing relationships between ob-

jects can eliminate the need for thread-specific storage in

some cases, as described in Appendix A.2.

7 Implementation

The Thread-Specific Storage pattern can be implemented in

various ways. This section explains each step required to

implement the pattern. The steps are summarized as follows:

1. Implement the TS Object Collections: If the OS does

not provide an implementation of thread-specific storage, it

can be implemented using whatever mechanisms are avail-

able to maintain the consistency of the data structures in the

TS Object Collections.

2. Encapsulate details of thread-specific storage: As

shown in Section 8, interfaces to thread-specific storage are

typically weakly-typed and error-prone. Thus, once an im-

plementation of thread-specific storage is available, use C++

programming language features (such as templates and over-

loading) to hide the low-level details of thread-specific stor-

age behind OO APIs.

The remainder of this section describes how to implement

the low-level thread-specific storage APIs. Section 8 pro-

vides complete sample code and Section 9 examines several

ways to encapsulate low-level thread-specific storage APIs

with C++ wrappers.

7.1 Implement the TS Object Collections

The TS Object Collection shown in Figure 2 con-

tains all TS Objects belonging to a particular thread. This

collection can be implemented using a table of pointers to
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Thread-Specific
Objects

thread_ID
TS_Object_Collection

THREADSTHREADS

1: pthread_getspecific(key)

3: get_object(key)

2: hash_table_lookup(thread ID)
 Hash Table

Thread-specific Object
tables indexed by key

Figure 4: External Implementation of Thread-Specific Stor-

age

TS Objects indexed by keys. A thread must locate

its TS Object Collection before accessing thread-

specific objects by their keys. Therefore, the first de-

sign challenge is determining how to locate and store TS
Object Collections.

TS Object Collections can be stored either (1) ex-

ternally to all threads or (2) internally to each thread. Each

approach is described and evaluated below:

1. External to all threads: This approach defines a

global mapping of each thread’s ID to its TS Object
Collection table (shown in Figure 4). Locating the right

collection may require the use of a readers/writer lock to pre-

vent race conditions. Once the collection is located, however,

no additional locking is required since only one thread can be

active within a TS Object Collection.

2. Internal to each thread: This approach requires each

thread in a process to store a TS Object Collection
with its other internal state (such as a run-time thread stack,

program counter, general-purpose registers, and thread ID).

When a thread accesses a thread-specific object, the object

is retrieved by using the corresponding key as an index into

the thread’s internalTS Object Collection (shown in

Figure 5). This approach requires no additional locking.

Choosing between the external and internal implementa-

Thread-Specific
Objects

Thread-Specific
Objects

THREAD  ATHREAD  A THREAD  BTHREAD  B

Thread-Specific Object
tables indexed by key

1: pthread_getspecific(key)

2: get_object(key)

Figure 5: Internal Implementation of Thread-Specific Stor-

age

tion schemes requires developers to resolve the following

tradeoffs:

Fixed- vs. variable-sized TS Object Collections: For

both the external and internal implementations, the TS
Object Collection can be stored as a fixed-size ar-

ray if the range of thread-specific keys is relatively small.

For instance, the POSIX Pthread standard defines a mini-

mum number of keys, POSIX THREAD KEYS MAX, that

must be supported by conforming implementations. If the

size is fixed (e.g., to 128 keys, which is the POSIX default),

the lookup time can be O(1) by simply indexing into the

TS Object Collection array using the object’s key,

as shown in Figure 5.

The range of thread-specific keys can be large, however.

For instance, Solaris threads have no predefined limit on the

number of keys. Therefore, Solaris uses a variable-sized data

structure, which can increase the time required to manage the

TS Object Collection.

Fixed- vs. variable-sized mapping of thread IDs to TS

Object Collections: Thread IDs can range from very small

to very large values. This presents no problem for inter-

nal implementations since the thread ID is implicitly asso-

ciated with the corresponding TS Object Collection
contained in the thread’s state.

For external implementations, however, it may be imprac-

tical to have a fixed-size array with an entry for every possi-

ble thread ID value. Instead, it is more space efficient to have

threads use a dynamic data structure to map thread IDs to TS
Object Collections. For instance, one approach is to

use a hash function on the thread ID to obtain an offset into a

hash table bucket containing a chain of tuples that map thread

IDs to their corresponding TS Object Collection (as

shown in Figure 4).

Global vs. local TS Object Collections: The internal

approach stores the TS Object Collections locally
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with the thread, whereas the external approach stores them

globally. Depending on the implementation of the exter-

nal table, the global location can allow threads to access

other threads’ TS Object Collections. Although

this seems to defeat the whole point of thread-specific stor-

age, it is useful if the thread-specific storage implementation

provides automatic garbage collection by recycling unused

keys. This feature is particularly important on implemen-

tations that limit the number of keys to a small value (e.g.,

Windows NT has a limit of 64 keys per process).

However, using an external table increases the access time

for every thread-specific object since synchronization mech-

anisms (such as readers/writer locks) are required to avoid

race conditions if globally accessible table is modified (e.g.,

when creating new keys). On the other hand, keeping the TS
Object Collection locally in the state of each thread

requires more storage per-thread, though no less total mem-

ory consumption.

8 Sample Code

8.1 Implementing the POSIX Pthreads

Thread-Specific Storage API

The following code shows how thread-specific storage can

be implemented when TS Objects are stored “internally”

to each thread using a fixed-sized array of keys. This exam-

ple is adapted from a publically available implementation [3]

of POSIX Pthreads [4].

The thread state structure shown below contains the

state of a thread:

struct thread_state
{

// The thread-specific error number.
int errno_;

// Thread-specific data values.
void *key_[_POSIX_THREAD_KEYS_MAX];

// ... Other thread state.
};

In addition to errno and the array of thread-specific storage

pointers, this structure also includes a pointer to the thread’s

stack and space to store data (e.g., the program counter) that

is saved/restored during a context switch.

For a particular thread-specific object, the same key value

is used to set and get thread-specific values for all threads.

For instance, if Logger objects are being registered to keep

track of thread-specific logging attributes, the thread-specific

Logger proxy will be assigned some key value N . All

threads will use this value N to access their thread-specific

logging object. A count of the total number of keys currently

in use can be stored globally to all threads, as follows:

typedef int pthread_key_t;

// All threads share the same key counter.
static pthread_key_t total_keys_ = 0;

The total keys count is automatically incremented ev-

ery time a new thread-specific key is required, as shown in

the pthread key create function below:

// Create a new global key and specify
// a "destructor" function callback.
int
pthread_key_create (pthread_key_t *key,

void (*thread_exit_hook) (void *))
{

if (total_keys_ >= _POSIX_THREAD_KEYS_MAX) {
// pthread_self() refers to the context of the
// currently active thread.
pthread_self ()->errno_ = ENOMEM;
return -1;

}

thread_exit_hook_[total_keys_] = thread_exit_hook;
*key = total_keys_++;
return 0;

}

The pthread key create function allocates a new key

value that uniquely identifies a thread-specific data ob-

ject. In addition, it allows an application to associate a

thread exit hook with a key. This hook is a pointer

to a function that is called automatically when (1) a thread

exits and (2) there is a thread-specific object registered for a

key. An array of function pointers to “thread exit hooks” can

be stored globally, as follows:

// Exit hooks to cleanup thread-specific keys.
static void
(*thread_exit_hook_[_POSIX_THREAD_KEYS_MAX]) (void);

The pthread exit function below shows how thread

exit hook functions are called in the implementation of

pthread exit:

// Terminate the thread and call thread exit hooks.
void pthread_exit (void *status)
{

// ...
for (i = 0; i < total_keys; i++)
if (pthread_self ()->key_[i]

&& thread_exit_hook_[i])
// Indirect pointer to function call.
(*thread_exit_hook_[i])

(pthread_self ()->key_[i]);
// ...

}

Applications can register different functions for each

thread-specific data object, but for each object the same func-

tion is called for each thread. Registering dynamically allo-

cated thread-specific objects is a common use-case. There-

fore, thread exit hooks typically look like the following:

static void
cleanup_tss_Logger (void *ptr)
{

// This cast is necessary to invoke
// the destructor (if it exists).
delete (Logger *) ptr;

}

This function deallocates a dynamically allocated Logger
object.

The pthread setspecific function binds a value
to the given key for the calling thread:

6



// Associate a value with a data key
// for the calling thread.
int pthread_setspecific (int key,

void *value)
{
if (key < 0 || key >= total_keys) {
pthread_self ()->errno_ = EINVAL;
return -1;

}

pthread_self ()->key_[key] = value;
return 0;

}

Likewise, pthread getspecific stores into value
the data bound to the given key for the calling thread:

// Retrieve a value from a data key
// for the calling thread.
int pthread_getspecific (int key,

void **value)
{
if (key < 0 || key >= total_keys) {
pthread_self ()->errno_ = EINVAL;
return -1;

}

*value = pthread_self ()->key_[key];
return 0;

}

Because data are stored internally in the state of each thread,

neither of these functions requires any additional locks to

access thread-specific data.

8.2 Using Thread-Specific Storage in Applica-

tions

The example below illustrates how to use the thread-specific

storage APIs from the POSIX Pthread specification in a C

function that can be called from more than one thread with-

out having to call an initialization function explicitly:

// Local to the implementation.
static pthread_mutex_t keylock =
PTHREAD_MUTEX_INITIALIZER;

static pthread_key_t key;
static int once = 0;

void *func (void)
{
void *ptr = 0;

// Use the Double-Checked Locking pattern
// (described further below) to serialize
// key creation without forcing each access
// to be locked.

if (once == 0) {
pthread_mutex_lock (&keylock);
if (once == 0) {
// Register the free(3C) function
// to deallocation TSS memory when
// the thread goes out of scope.
pthread_key_create (&key, free);
once = 1;

}
pthread_mutex_unlock (&keylock);

}

pthread_getspecific (key, (void **) &ptr);

if (ptr == 0) {
ptr = malloc (SIZE);
pthread_setspecific (key, ptr);

}

return ptr;
}

8.3 Evaluation

The solution above directly invokes the thread-specific li-

brary functions (such as pthread getspecific and

pthread setspecific) in application code. However,

these APIs, which are written in C, have the following limi-

tations:

� Non-portable: The interfaces of POSIX Pthreads, So-

laris threads, and Win32 threads are very similar. However,

the semantics of Win32 threads are subtly different since

they do not provide a reliable means of cleaning up ob-

jects allocated in thread-specific storage when a thread exits.

Moreover, there is no API to delete a key in Solaris threads.

This makes it hard to write portable code among UNIX and

Win32 platforms.

� Hard to use: Even with error checking omitted, the lock-

ing operations shown by the func example in Section 8.2

are complex and non-intuitive. This code is a C implementa-

tion of the Double-Checked Locking pattern [5]. It’s instruc-

tive to compare this C implementation to the C++ version in

Section 9.2.1 to observe the greater simplicity, clarity, and

type-safety resulting from the use of C++ wrappers.

� Non-type-safe: The POSIX Pthreads, Solaris, and

Win32 thread-specific storage interfaces store pointers to

thread-specific objects as void *’s. Although this ap-

proach is flexible, it’s easy to make mistakes since void
*’s eliminate type-safety.

9 Variations

Section 8 demonstrated how to implement and use the

Thread-Specific Storage pattern via POSIX pthread inter-

faces. However, the resulting solution was non-portable,

hard to use, and not type-safe. To overcome these limita-

tions, additional classes and C++ wrappers can be developed

to program thread-specific storage robustly in a type-safe

manner.

This section illustrates how to encapsulate low-level

thread-specific storage mechanisms provided by Solaris

threads, POSIX Pthreads, or Win32 threads using C++ wrap-

pers. Section 9.1 describes how to encapsulate the POSIX

Pthread library interfaces with hard-coded C++ wrappers

and Section 9.2 describes a more general solution using C++

template wrappers. The example used for each alternative

approach is a variant of the Logger abstraction described

in Section 6.2.
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9.1 Hard-coded C++ Wrapper

One way to make all instances of a class be thread-specific

is to use thread-specific library routines directly. The steps

required to implement this approach are described below. Er-

ror checking has been minimized to save space.

9.1.1 Define the Thread-Specific State Information

The first step is to determine the object’s state information

that must be stored or retrieved in thread-specific storage.

For instance, a Logger might have the following state:

class Logger_State
{
public:
int errno_;
// Error number.

int line_num_;
// Line where the error occurred.

// ...
};

Each thread will have its own copy of this state information.

9.1.2 Define an External Class Interface

The next step is to define an external class interface that is

used by all application threads. The external class interface

of the Logger below looks just like an ordinary non-thread-

specific C++ class:

class Logger
{
public:
// Set/get the error number.
int errno (void);
void errno (int);

// Set/get the line number.
int line_num (void);
void line_num (int);

// ...
};

9.1.3 Define a Thread-Specific Helper Method

This step uses the thread-specific storage functions provided

by the thread library to define a helper method that returns a

pointer to the appropriate thread-specific storage. Typically,

this helper method performs the following steps:

1. Key initialization: Initialize a key for each thread-

specific object and use this key to get/set a thread-specific

pointer to dynamically allocated memory containing an in-

stance of the internal structure. The code could be imple-

mented as follows:

class Logger
{
public:
// ... Same as above ...

protected:
Logger_State *get_tss_state (void);

// Key for the thread-specific error data.
pthread_key_t key_;

// "First time in" flag.
int once_;

};

Logger_State *Logger::get_tss_state (void)
{

// Check to see if this is the first time in
// and if so, allocate the key (this code
// doesn’t protect against multi-threaded
// race conditions...).
if (once_ == 0) {
pthread_key_create (this->key_, free);
once_ = 1;

}

Logger_State *state_ptr;

// Get the state data from thread-specific
// storage. Note that no locks are required...
pthread_getspecific (this->key_,

(void **) &state_ptr);

if (state_ptr == 0) {
state_ptr = new Logger_State;
pthread_setspecific (this->key_,

(void *) state_ptr);
}

// Return the pointer to thread-specific storage.
return state_ptr;

};

2. Obtain a pointer to the thread-specific object:

Every method in the external interface will call the

get tss state helper method to obtain a pointer to the

Logger State object that resides in thread-specific stor-

age, as follows:

int Logger::errno (void)
{

return this->get_tss_state ()->errno_;
}

3. Perform normal operations: Once the external inter-

face method has the pointer, the application can perform op-

erations on the thread-specific object as if it were an ordinary

(i.e., non-thread-specific) C++ object:

Logger logger;

int
recv_msg (HANDLE socket, char *buffer,

size_t bufsiz)
{

if (recv (socket, buffer, bufsiz, 0) == -1) {
logger->errno () = errno;
return -1;

}
// ...

}
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int main (void)
{
// ...
if (recv_msg (socket, buffer, BUFSIZ) == -1

&& logger->errno () == EWOULDBLOCK)
// ...

};

9.1.4 Evaluation of the Hard-coded Wrapper

The advantage of using a hard-coded wrapper is that it

shields applications from the knowledge of the thread-

specific library functions. The disadvantage of this approach

is that it does not promote reusability, portability, or flexibil-

ity. In particular, for every thread-specific class, the devel-

oper needs to reimplement the thread-specific helper method

within the class.

Moreover, if the application is ported to a platform with

a different thread-specific storage API, the code internal to

each thread-specific class must be altered to use the new

thread library. In addition, making changes directly to the

thread-specific class makes it hard to change the threading

policies. For instance, changing a thread-specific class to

a global class would require intrusive changes to the code,

which reduces flexibility and reusability. In particular, each

access to state internal to the object would require changes to

the helper method that retrieves the state from thread-specific

storage.

9.2 C++ Template Wrapper

A more reusable, portable, and flexible approach is to im-

plement a TS Object Proxy template that is responsi-

ble for all thread-specific methods. This approach allows

classes to be decoupled from the knowledge of how thread-

specific storage is implemented. This solution improves the

reusability, portability, and flexibility of the code by defin-

ing a proxy class called TSS. As shown below, this class is

a template that is parameterized by the class whose objects

reside in thread-specific storage:

// TS Proxy template
template <class TYPE>
class TSS
{
public:
// Constructor.
TSS (void);

// Destructor
˜TSS (void);

// Use the C++ "smart pointer" operator to
// access the thread-specific TYPE object.
TYPE *operator-> ();

private:
// Key for the thread-specific error data.
pthread_key_t key_;

// "First time in" flag.
int once_;

// Avoid race conditions during initialization.

Thread_Mutex keylock_;

// Cleanup hook that deletes dynamically
// allocated memory.
static void cleanup_hook (void *ptr);

};

The methods in this class are described below. As before,

error checking has been minimized to save space.

9.2.1 The C++ Delegation Operator

Applications can invoke methods on a TSS proxy as if they

were calling the target class by overloading the C++ delega-

tion operator (operator->). The C++ delegation operator

used in this implementation controls all access to the thread-

specific object of class TYPE. The operator-> method

receives special treatment from the C++ compiler. As de-

scribed in Section 9.2.3, it first obtains a pointer to the ap-

propriate TYPE from thread-specific storage and then redel-

egates the original method invoked on it.

Most of the work in the TSS class is performed in the

operator-> method shown below:

template <class TYPE> TYPE *
TSS<TYPE>::operator-> ()
{

TYPE *tss_data = 0;

// Use the Double-Checked Locking pattern to
// avoid locking except during initialization.

// First check.
if (this->once_ == 0) {
// Ensure that we are serialized (constructor
// of Guard acquires the lock).

Guard <Thread_Mutex> guard (this->keylock_);

// Double check
if (this->once_ == 0) {

pthread_key_create (&this->key_,
&this->cleanup_hook);

// *Must* come last so that other threads
// don’t use the key until it’s created.
this->once_ = 1;

}
// Guard destructor releases the lock.

}

// Get the data from thread-specific storage.
// Note that no locks are required here...
pthread_getspecific (this->key_,

(void **) &tss_data);

// Check to see if this is the first time in
// for this thread.
if (tss_data == 0) {
// Allocate memory off the heap and store
// it in a pointer in thread-specific
// storage (on the stack...).
tss_data = new TYPE;

// Store the dynamically allocated pointer in
// thread-specific storage.
pthread_setspecific (this->key_,

(void *) tss_data);
}
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return tss_data;
}

The TSS template is a proxy that transparently transforms

ordinary C++ classes into type-safe, thread-specific classes.

It combines the operator-> method with other C++ fea-

tures like templates, inlining, and overloading. It also utilizes

patterns like Double-Checked Locking Optimization [5] and

Proxy [6, 7]).

The Double-Checked Locking Optimization pattern is

used in operator-> to test the once flag twice in the

code. Although multiple threads could access the same in-

stance of TSS simultaneously, only one thread can validly

create a key (i.e., via pthread key create). All threads

will then use this key to access a thread-specific object of the

parameterized class TYPE. Therefore, operator-> uses a

Thread Mutex keylock to ensure that only one thread

executes pthread key create.

The first thread that acquires keylock sets once to

1 and all subsequent threads that call operator-> will

find once != 0 and therefore skip the initialization step.

The second test of once handles the case where multi-

ple threads executing in parallel queue up at keylock
before the first thread has set once to 1. In this case,

when the other queued threads finally obtain the mutex

keylock , they will find once equal to 1 and will not

execute pthread key create.

Once the key is created, no further locking is nec-

essary to access the thread-specific data. This is be-

cause the pthread fgetspecific,setspecificg
functions retrieve the TS Object of class TYPE from the

state of the calling thread. No additional locks are needed

since this thread state is independent from other threads.

In addition to reducing locking overhead, the implemen-

tation of class TSS shown above shields application code

from knowledge of the fact that objects are specific to the

calling thread. To accomplish this, the implementation uses

C++ features such as templates, operator overloading, and

the delegation operator (i.e., operator->).

9.2.2 The Constructor and Destructor

The constructor for the TSS class is minimal, it simply ini-

tializes the local instance variables:

template <class TYPE>
TSS<TYPE>::TSS (void): once_ (0), key_ (0) {}

Note that we do not allocate the TSS key or a new TYPE
instance in the constructor. There are several reasons for this

design:

� Thread-specific storage semantics: The thread that ini-

tially creates the TSS object (e.g., the main thread) is often

not the same thread(s) that use this object (e.g., the worker

threads). Therefore, there is no benefit from pre-initializing

a new TYPE in the constructor since this instance will only

be accessible by the main thread.

� Deferred initialization: On some OS platforms, TSS

keys are a limited resource. For instance, Windows NT

only allows a total of 64 TSS keys per-process. Therefore,

keys should not be allocated until absolutely necessary. In-

stead, the initialization is deferred until the first time the

operator-> method is called.

The destructor for TSS presents us with several tricky de-

sign issues. The obvious solution is to release the TSS key

allocated in operator->. However, there are several prob-

lems with this approach:

� Lack of features: Win32 and POSIX pthreads define a

function that releases a TSS key. However, Solaris threads

do not. Therefore, writing a portable wrapper is hard.

� Race conditions: The primary reason that Solaris

threads do not provide a function to release the TSS key is

that it is costly to implement. The problem is that each thread

separately maintains the objects referenced by that key. Only

when all these threads have exited and the memory reclaimed

is it safe to release the key.

As a result of the problems mentioned above, our destruc-

tor is a no-op:

template <class TYPE>
TSS<TYPE>::˜TSS (void)
{
}

The cleanup hook is a static method that casts its ptr
argument to the appropriate TYPE * before deleting it:

template <class TYPE> void
TSS<TYPE>::cleanup_hook (void *ptr)
{

// This cast is necessary to invoke
// the destructor (if it exists).
delete (TYPE *) ptr;

}

This ensures that the destructor of each thread-specific object

is called when a thread exits.

9.2.3 Use-case

The following is a C++ template wrapper-based solution for

our continuing example of a thread-specific Logger ac-

cessed by multiple worker threads:

// This is the "logically" global, but
// "physically" thread-specific logger object,
// using the TSS template wrapper.
static TSS<Logger> logger;

// A typical worker function.
static void *worker (void *arg)
{

// Network connection stream.
SOCK_Stream *stream =
static_cast <SOCK_Stream *> arg;

// Read from the network connection
// and process the data until the connection
// is closed.
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for (;;) {
char buffer[BUFSIZ];
int result = stream->recv (buffer, BUFSIZ);

// Check to see if the recv() call failed.
if (result == -1) {
if (logger->errno () != EWOULDBLOCK)
// Record error result.
logger->log ("recv failed, errno = %d",

logger->errno ());
} else
// Perform the work on success.
process_buffer (buffer);

}
}

Consider the call to logger->errno above. The C++

compiler replaces this call with two method calls. The first

is a call to TSS::operator->, which returns a Logger
instance residing in thread-specific storage. The compiler

then generates a second method call to the errno method

of the logger object returned by the previous call. In this

case, TSS behaves as a proxy that allows an application to

access and manipulate the thread-specific error value as if it

were an ordinary C++ object.6

The Logger example above is a good example where us-

ing a logically global access point is advantageous. Since

the worker function is global, it is not straightforward for

threads to manage both a physical and logical separation of

Logger objects. Instead, a thread-specific Logger allows

multiple thread to use a single logical access point to manip-

ulate physically separate TSS objects.

9.2.4 Evaluation

The TSS proxy design based on the C++ operator-> has

the following benefits:

� Maximizes code reuse by decoupling thread-specific

methods from application-specific classes (i.e., the formal

parameter class TYPE) it is not necessary to rewrite the sub-

tle thread-specific key creation and allocation logic.

� Increases portability: Porting an application to another

thread library (such as the TLS interfaces in Win32) only

require changing the TSS class, not any applications using

the class.

� Greater flexibility and transparency: Changing a class

to/from a thread-specific class simply requires changing how

an object of the class is defined. This can be decided at

compile-time, as follows:

#if defined (_REENTRANT)
static TSS<Logger> logger;
#else
// Non-MT behavior is unchanged.
Logger logger;
#endif /* REENTRANT */

6Note that C++ operator-> does not work for built-in types like int
since there are no methods that can be delegated to, which is why we cannot

use int in place of the Logger class used above.

Note that the use-case for logger remains unchanged regard-

less of whether the thread-specific or non-thread-specific

form of Logger is used.

10 Known Uses

The following are known uses of the Thread-Specific Storage

pattern:

� The errno mechanism implemented on OS platforms

that support the POSIX and Solaris threading APIs are

widely-used examples of the Thread-Specific Storage

pattern [1]. In addition, the C runtime library pro-

vided with Win32 supports thread-specific errno. The

Win32 GetLastError/SetLastError functions

also implement the Thread-Specific Storage pattern.

� In the Win32 operating system, windows are owned

by threads [8]. Each thread that owns a window has

a private message queue where the OS enqueues user-

interface events. API calls that retrieve the next mes-

sage waiting to be processed dequeue the next message

on the calling thread’s message queue, which resides in

thread-specific storage.

� OpenGL [9] is a C API for rendering three-dimensional

graphics. The program renders graphics in terms of

polygons that are described by making repeated calls

to the glVertex function to pass each vertex of the

polygon to the library. State variables set before the

vertices are passed to the library determine precisely

what OpenGL draws as it receives the vertices. This

state is stored as encapsulated global variables within

the OpenGL library or on the graphics card itself. On

the Win32 platform, the OpenGL library maintains a

unique set of state variables in thread-specific storage

for each thread using the library.

� Thread-specific storage is used within the ACE net-

work programming toolkit [10] to implement its error

handling scheme, which is similar to the Logger ap-

proach described in Section 9.2.3. In addition, ACE im-

plements the type-safe thread-specific storage template

wrappers described in Section 9.2.

11 Related Patterns

Objects implemented with thread-specific storage are often

used as per-thread Singletons [7], e.g., errno is a per-thread

Singleton. Not all uses of thread-specific storage are Single-

tons, however, since a thread can have multiple instances of

a type allocated from thread-specific storage. For instance,

each Task object implement in ACE [10] stores a cleanup

hook in thread-specific storage.

The TSS template class shown in Section 8 serves as a

Proxy [7, 6] that shields the libraries, frameworks, and appli-

cations from the implementation of thread-specific storage

provided by OS thread libraries.
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The Double-Checked Locking Optimization pattern [5]

is commonly used by applications that utilize the Thread-

Specific Storage pattern to avoid constraining the order of

initialization for thread-specific storage keys.

12 Concluding Remarks

Multi-threading an existing application often adds signifi-

cant complexity to the software due to the additional con-

currency control protocols needed to prevent race conditions

and deadlocks [11]. The Thread-Specific Storage pattern al-

leviates some of synchronization overhead and programming

complexity by allowing multiple threads to use one logically

global access point to retrieve thread-specific data without

incurring locking costs for each access.

Application threads use TS Object Proxies to ac-

cess TS Objects. The proxies delegate to TS Object
Collections to retrieve the objects corresponding to

each application thread. This ensures that different appli-

cation threads do not share the same TS Object.

Section 9.2 showed how the TS Object Proxy par-

ticipant of the Thread-Specific Storage pattern can be im-

plemented to ensure threads only access their own data

through strongly-typed C++ class interfaces. When com-

bined with other patterns (such as Proxy, Singleton, and

Double-Checked Locking) and C++ language features (such

as templates and operator overloading), the TS Proxy can

be implemented so that objects using the Thread-Specific

Storage pattern can be treated just like conventional objects.
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A Alternative Solutions

In practice, thread-specific storage is typically used to re-

solve the following two use-cases for object-oriented soft-

ware:

1. To implicitly communicate information (e.g., error in-

formation) between modules.

2. To adapt legacy single-threaded software written in a

procedural style to modern multi-threaded operating

systems and programming languages.

It is often a good idea, however, to avoid thread-specific

storage for use-case #1 because it can increase coupling be-

tween modules and reduce reusability. In the case of error

handling, for instance, thread-specific storage can often be

avoided by using exceptions, as described in Section A.1.

The use of thread-specific storage for use-case #2 can

not be avoided except through redesign. When designing

new software, however, thread-specific storage can often be

avoided by using exception handling, explicit intercompo-

nent communication contexts, or reified threads, as described

below.

A.1 Exception Handling

An elegant way of reporting errors between modules is to

use exception handling. Many modern languages, such as

C++ and Java, use exception handling as an error reporting

mechanism. It is also used in some operating systems, such

as Win32. For example, the following code illustrates a hy-

pothetical OS whose system calls throw exceptions:
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void *worker (SOCKET socket)
{
// Read from the network connection
// and process the data until the connection
// is closed.
for (;;) {
char buffer[BUFSIZ];

try {
// Assume that recv() throws exceptions.
recv (socket, buffer, BUFSIZ, 0);
// Perform the work on success.
process_buffer (buffer);

} catch (EWOULDBLOCK) {
continue;

} catch (OS_Exception error) {
// Record error result in thread-specific data.
printf ("recv failed, error = %s",

error.reason);
}

}

There are several benefits to using exception handling:

� It is extensible: Modern OO languages facilitate the ex-

tension of exception handling policies and mechanisms via

features (such as using inheritance to define a hierarchy of

exception classes) that have minimal intrusion on existing

interfaces and usage.

� It cleanly decouples error handling from normal pro-

cessing: For example, error handling information is not

passed explicitly to an operation. Moreover, an application

cannot accidentally “ignore” an exception by failing to check

function return values.

� It can be type-safe: In a strongly typed languages, such

as C++ and Java, exceptions are thrown and caught in a

strongly-typed manner to enhance the organization and cor-

rectness of error handling code. In contrast to checking a

thread-specific error value explicitly, the compiler ensures

that the correct handler is executed for each type of excep-

tion.

However, there are several drawbacks to the use of excep-

tion handling:

� It is not universally available: Not all languages pro-

vide exception handling and many C++ compilers do not im-

plement exceptions. Likewise, when an OS provides excep-

tion handling services, they must be supported by language

extensions, thereby reducing the portability of the code.

� It complicates the use of multiple languages: Since

languages implement exceptions in different ways, or do not

implement exceptions at all, it can be hard to integrate com-

ponents written in different languages when they throw ex-

ceptions. In contrast, reporting error information using inte-

ger values or structures provides a universal solution.

� It complicates resource management: e.g., by increas-

ing the number of exit paths from a block of C++ code [12].

If garbage collection is not supported by the language or pro-

gramming environment, care must be taken to ensure that

dynamically allocated objects are deleted when an exception

is thrown.

� It is potentially time and/or space inefficient: Poor im-

plements of exception handling incur time and/or space over-

head even when exceptions are not thrown [12]. This over-

head can be particularly problematic for embedded systems

that must be small and efficient.

The drawbacks of exception handling are particularly

problematic for system-level frameworks (such as kernel-

level device drivers or low-level communication subsystems)

that must run portably on many platforms. For these types of

systems, a more portable, efficient, and thread-safe way to

handle errors is to define an error handler abstraction that

maintains information about the success or failure of opera-

tions explicitly.

A.2 Explicit Contexts for Intercomponent

Communication

Thread-specific storage is usually used to store per-thread

state to allow software components in libraries and frame-

works to communicate efficiently. For example, errno
is used to pass error values from a called component to

the caller. Likewise, OpenGL API functions are called to

pass information to the OpenGL library, which are stored in

thread-specific state. The use of thread-specific storage can

be avoided by explicitly representing the information passed

between components as an object.

If the type of information that must be stored by the com-

ponent for its users is known in advance, the object can be

created by the calling thread and passed to the component

as an extra argument to its operations. Otherwise, the com-

ponent must create an object to hold context information in

response to a request from the calling thread and return an

identifier for the object to the thread before the thread can

make use of the component. These types of objects are of-

ten called context objects; context objects that are created on

demand by a software component are often called sessions.

A simple example of how a context object can be created

by a calling thread is illustrated by the following error han-

dling scheme, which passes an explicit parameter to every

operation:

void *worker (SOCKET socket)
{

// Read from the network connection and
// process the data until the connection
// is closed.

for (;;) {
char buffer[BUFSIZ];
int result;
int errno;

// Pass the errno context object explicitly.
result = recv (socket, buffer, BUFSIZ,

0, &errno);

// Check to see if the recv() call failed.
if (result == -1) {

if (errno != EWOULDBLOCK)
printf ("recv failed, errno = %d", errno);
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} else
// Perform the work on success.
process_buffer (buffer);

}

Context objects created by components can be imple-

mented by using the Type-Safe Session pattern [13]. In this

pattern, the context object stores the state required by the

component and provides an abstract interface that can be in-

voked polymorphically. The component returns a pointer to

the abstract interface to the calling thread that subsequently

invokes operations of the interface to use the component.

An example of how Type-Safe Sessions are used is il-

lustrated by the difference between OpenGL and the in-

terface provided by the Java AWT library [14] for ren-

dering graphics onto devices such as windows, printers or

bitmaps. In the AWT, a program draws onto a device by

requesting a GraphicsContext from the device. The

GraphicsContext encapsulates the state required to ren-

der onto a device and provides an interface through which

the program can set state variables and invoke drawing op-

erations. Multiple GraphicsContext objects can be cre-

ated dynamically, thereby removing any need to hold thread-

specific state.

The benefits of using context objects compared with

thread-local storage and exception handling are the follow-

ing:

� It is more portable: It does not require language features

that may not be supported universally;

� It is more efficient: The thread can store and access the

context object directly without having to perform a look-up

in the thread-specific storage table. It does not require the

compiler to build additional data structures to handle excep-

tions.

� It is thread-safe: The context object or session handle

can be stored on the thread’s stack, which is trivially thread-

safe.

There are several drawbacks with using context objects

created by the calling thread, however:

� It is obtrusive: The context object must be passed to

every operation and must be explicitly checked after each

operation. This clutters the program logic and may require

changes to existing component interfaces to add an error han-

dler parameter.

� Increased overhead per invocation: Additional over-

head will occur for each invocation since an additional pa-

rameter must be added to every method call, regardless of

whether the object is required. Although this is acceptable

in some cases, the overhead may be noticeable for methods

that are executed very frequently. In contrast, an error han-

dling scheme based on thread-specific storage need not be

used unless an error occurs.

Compared to creating context objects in the calling thread,

using sessions created by the component has the following

benefits:

� It is less obtrusive: A thread does not have to explicitly

pass the context object to the component as an argument to

its operations. The compiler arranges for a pointer to con-

text object to be passed to its operations as the hidden this
pointer.

� It automates initialization and shutdown: A thread

cannot start using a session until it has acquired one from

a component. Components can therefore ensure that opera-

tions are never called when they are in inconsistent states. In

contrast, if a component uses hidden state, a caller must ex-

plicitly initialize the library before invoking operations and

shutdown the component when it has finished. Forgetting to

do so can cause obscure errors or waste resources.

� Structure is explicit: The relationships between differ-

ent modules of code is explicitly represented as objects,

which makes it easier to understand the behavior of the sys-

tem.

Creating context objects within the component has the

following drawback compared to creating them upon the

caller’s stack:

� Allocation overhead: The component must allocate the

session object on the heap or from some encapsulated cache.

This will be usually be less efficient than allocating the object

on the stack.

A.3 Objectified Threads

In an object-oriented language, an application can explicitly

represent threads as objects. Thread classes can be defined

by deriving from an abstract base class that encapsulates any

state required to run as a concurrent thread and invokes an in-

stance method as the entry point into the thread. The thread

entry method would be defined as a pure virtual function in

the base class and defined in derived classes. Any required

thread-specific state (such as session contexts) can be de-

fined as object instance variables, making it available to any

method of the thread class. Concurrent access to these vari-

ables can be prevented through the use of language-level ac-

cess control mechanisms rather than explicit synchronization

objects.

The following illustrates this approach using a variant of

the ACE Task [10], which can be used to associate a thread

of control with an object.

class Task
{
public:

// Create a thread that calls the svc() hook.
int activate (void);

// The thread entry point.
virtual void svc (void) = 0;

private:
// ...

};

class Animation_Thread : public Task
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{
public:
Animation_Thread (Graphics_Context *gc)
: device_ (gc) {}

virtual void svc (void)
{
device_->clear ();
// ... perform animation loop...

}

private:
Graphics_Context *device_;

};

The use of objectified threads has the following advan-

tages:

� It is more efficient: A thread does not need to perform

a look-up in a hidden data structure to access thread-specific

state.

� It is not obtrusive: When using an objectified thread, a

pointer to the current object is passed as an extra argument

to each function call. Unlike the explicit session context, the

argument is hidden in the source code and managed automat-

ically by the compiler, keeping the source code uncluttered.

The use of objectified threads has the following disadvan-

tages:

� Thread-specific storage is not easily accessible: In-

stance variables cannot be accessed except by class methods.

This makes it non-intuitive to use instance variables to com-

municate between reusable libraries and threads. However,

using thread-specific storage in this way increases coupling

between components. In general, exceptions provide a more

decoupled way of reporting errors between modules, though

they have their own traps and pitfalls in languages like C++

[12].

� Overhead: The extra, hidden parameter passed to every

operation will cause some overhead. This may be noticeable

in functions that are executed very frequently.
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