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Concise Papers 
Threaded Linear Hierarchical Quadtrees for 

Computation of Geometric Properties of 
Binary Images 

A. UNNIKRISHNAN, PRITI SHANKAR, A N D  Y. V. VENKATESH 

Abstract-A modification of the linear quadtree [3], the threaded lin- 
ear hierarchical quadtree (TLHQT), is proposed for the computation 
of geometric properties of binary images. Since most of the algorithms 
used in connection with computation of geometric properties require 
frequent exploration of adjacencies, a structure which keeps perma- 
nently in memory some adjacency links is introduced. In this paper, 
we present some results obtained by using the TLHQT for labeling 
connected components, evaluating perimeter and Euler’s number in a 
quadtree environment. The algorithms for computing perimeter and 
Euler number and the first phase of the labeling algorithm are shown 
to have time complexity O (  B ) ,  where B is the number of black nodes 
of the quadtree. The authors determine the adjacency links at the very 
beginning-namely, when the binary image is mapped from raster scan 
to the quadtree. Pixel adjacency is, in fact, available during row scan- 
ning, and node’s adjacency is easy to evaluate locally when performing 
condensation of nodes into larger quadrants and also while merging 
partial quadtrees. Although the structure requires space nearly four 
times as much as the linear quadtfee, the requirement is roughly half 
that for the pointer-based quadtree. Also it appears that for computing 
geometric properties, the TLHQT offers execution timings better than 
those obtained by both the linear and pointer-based quadtrees and the 
graph structure reported in [16]. 

Index Terms-Binary images, geometric properties, hierarchical 
quadtree, linear quadtree, quadtree. 

INTRODUCTION 
It is known that, among the various data structures proposed for 

representing binary images, quadtrees lead to a saving in storage 
and facilitate the implementation of many operations on these im- 
ages, like the computation of geometric properties. The quadtree 
arises from the representation of a regular decomposition of a square 
grid of size 2 “  x 2“ ,  enclosing the image, into homogeneously 
colored quadrants, the smallest quadrant being a pixel [ I ] .  

There are two commonly used representations of the quadtree in 
the computer: 

1) Each node of the tree is represented as a record with six fields, 
in which four fields are pointers to the sons, one is a pointer to the 
father and the last encodes the color (i.e., black, white, or gray) 
of the node [ l ] ,  [2], [7]-[9]. 

2) Each black node is represented as an n-digit quaternary code 
(“q-code”) and the codes are numerically ordered in an array to 
get a linear quadtree, thereby avoiding pointers. 

Fig. l(a)-(d) illustrates the two representation schemes. Other 
representation schemes include the forest of quadtrees (131, the DF 
expression [14], the leaf codes [15],  the B+-trees [17], and more 
recently the graph quadtrees [ 161. For a detailed review of the var- 
ious representation schemes, see [2]. 
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Fig. I .  Quadtree for a binary picture. (a) 2‘ x 2’ binary picture. (b) As- 

signment of links. (c) Pointer based quadtree. (d) Linear quadtree (4 is 
used as label). 

In this paper, we introduce a modification of the linear quadtree 
called the threaded linear hierarchical quadtree (TLHQT) and ex- 
plore the possibility of deriving this structure directly from the ras- 
ter scan of a binary image, to be used later to compute the geo- 
metric properties of binary images. We consider the following three 
typical geometric properties: 

1) connected component labeling 
2) perimeter 
3) Euler number. 
The rest of the paper is organized as follows. 
Section II :  Threaded linear hierarchical quadtree (TLHQT). 
Section III: Conversion of a raster-scanned binary image to 

Section IV: Computation of geometric properties. 
Section V: Concluding remarks. 

11. THREADED LINEAR HIERARCHICAL QUADTREE (TLHQT) 
The computation of most of the geometric properties of binary 

images needs information regarding spatially adjacent nodes of the 
quadtree. In the pointer-based structure, traversal of the appropri- 
ate links is necessary to locate a neighbor at same level [4] while 
in the linear quadtree, this is achieved by first computing the q- 
code of a neighbor of same size and then searching for the presence 
of the neighbor q-code in the linear quadtree itself [3]. The authors 
[6] have shown that by structuring the q-codes (in terms of size) 
into a hierarchy of arrays, the search for a q-code of size 4 A  is 
restricted to the subarray at level k .  Also, by using a bottom-up 
approach, which analyses, from the pixel level q-codes, in  size- 
increasing order, the computational time can be further reduced. 

In this paper, we propose a structure to eliminate these searches 
altogether. We do this by generating and storing in each node the 
information about neighbors during the raster scan conversion, i n  

TLHQT. 
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TABLE I 
THE LHQT FOR THE BINARY IMAGE OF Fic. I(a) 

Hierarchically Linear 
Ordered Hierarchical 

Level q-Code. q-Codes (LHQC) 

2 244 2 
1 124 12 

134 13 
0 300 300 

30 I 30 1 
302 302 
320 320 
322 322 

I 1 4  I 300 I EEl+”b I 
I I ‘  1 I I 5 I 301 

I 

I I !  I 

addition to the q-code of the node. The main idea is to link a black 
node, identified by a q-code and its position in one of the n arrays, 
with its black neighbors at the same or higher level of hierarchy. 
The threading is thus different from the one proposed by Hunter 
and Steiglitz [5]. In the “roped” quadtrees proposed by Hunter and 
Steiglitz, every black node has pointers (or ropes) to its four neigh- 
bors. But the neighbors pointed to need not be all leaf nodes, with 
the result additional tree traversals are necessary to locate the 
neighboring leaf nodes. It can be seen that in the new structure 
called the threaded linear hierarchical quadtree (TLHQT), every 
node pointed to is a black node. The computation of geometric 
properties involving exploration of adjacencies is therefore faster 
than using a “roped” quadtree. 

We now give the definition of TLHQT, based on the LHQT pro- 
posed by the authors [6]. Note that if only the black nodes of a 
pointer-based quadtree (or the q-codes of a linear quadtree) are ar- 
ranged in a hierarchy of n arrays, according to size, we obtain the 
LHQT with the following properties. 

1) The array at level k ( 0  < k < n - 1 ) contains b, black nodes 
of size 4‘, represented by ( n  - k )  quaternary digits called linear 
hierarchical q-codes (LHQC’s). 

2) The LHQC’s in each level k are sorted in an increasing order. 
If, in addition, links to the neighbor nodes along the directions 

NORTH, EAST, SOUTH, and WEST at the same or higher levels 
(i.e., at levels > k )  of hierarchy are provided, the threaded linear 
hierarchical quadtree (TLHQT) is obtained. Formally, the TLHQT 
is defined as follows (using Pascal-like constructs): 

type INDEX = 1 . . MAX; {MAX is a large integer} 
DIRECTION 
THREADNODE = record 

= (NORTH, EAST, SOUTH, WEST); 

LINK : INDEX; 

QNODE 

TLHQT 
var T : TLHQT; 

DIR : DIRECTION; 
NEXT : A THREADNODE; 

end; 
= record 

THREAD : THREADNODE; 
end; 
= array [INDEX] of QNODE; 

QCD : LHQC; 

Remark I :  If T[I].thread = nil then T [ I ]  has no black neigh- 
bor at the same or higher levels. 

Remark 2: A QNODE at level k will have links to a neighbor 
of same size only along the directions EAST and SOUTH, as these 
QNODE’s are sorted in increasing order, with respect to the LHQC 
of the QNODE. 

For illustration, Tables I and I1 present, respectively, the LHQT 
and the TLHQT for Fig. l(a). 

111. CONVERSION OF A RASTER SCANNED BINARY IMAGE TO 
TLHQT 

Often, the input to an imaging system is derived from a raster 
scan of the scene, and, therefore, it is desirable to build the TLHQT 
as and when the raster rows are scanned. In [ 1 I ] ,  an algorithm is 
given to construct the LHQT from a raster scan. Other algorithms 
for building quadtrees from raster can be found in [18], [19]. In 
this paper, we show that the TLHQT can also be similarly con- 
structed, using a marginal overhead of space and time (when com- 
pared to the generation of LHQT), required to introduce the threads. 

The basic idea is to build the TLHQT from the top and bottom 
halves of the image separately. This generates two sets of linked 
lists, one set of each half, storing the QNODE’s, as defined in 
Section 11. Thus if LIST-TOP[k] and LIST-BOT[k] are the two 
sets of linked lists fork  = 0, 1, . . . n - 2, the two are merged to 
produce a final hierarchy of n lists, representing the TLHQT for 
the image. The TLHQT for each half is generated by recursively 
subdividing each half into subhalves and combining the partial 
TLHQT’s generated for each subhalf. 

As an illustration of the procedure, consider the 2’ X 2’ image 
of Fig. 2(a), with rows numbered from 0 to 7. The partial TLHQT 
for rows 0, 1 is first formed and stored as LIST-TOP[k], k = 0, 
1. Next, the partial LHQT for rows 2 and 3 is constructed and 
stored as LIST-BOT[k], k = 0, 1 .  Then LIST-TOP[k] and LIST- 
-BOT[k], k = 0, 1, are combined (i.e., condensed and merged) to 
yield LIST[k], k = 0, 1, 2. LIST[k] will be the LIST-TOP(k] for 
rows 0..3. Similarly, LIST-BOT[k], k = 0, I ,  2 is generated for 
rows 4..7. LIST-TOP[k] and LIST-BOT[k], k = 0, 1 ,  2, 3 are 
combined to yield the final TLHQT in the linked list, LIST. 

The above technique is implemented using a recursive procedure 
RASQUAD(k, I, lineno). This procedure is initially invoked with 
parameter values k = n ,  1 = top and lineno = 0. The procedure is 
recursively invoked by decrementing k by 1 until k = 1 .  The call 
sequences of the procedure, when applied to the binary image of 
Fig. 2(a) are given in Fig. 2(b). For k = 1 ,  the first two rows 
(numbered 0 and 1) of the image are read into a buffer and the 
corresponding TLHQT, viz. LIST-TOP[k], k = 0, I ,  for these two 
rows is constructed. Next, for the second instance of k = 1, rows 
2 and 3 are read into a buffer and the TLHQT, LISTBOT[k], k = 
0, 1, is constructed. Then LIST-TOP and LIST-BOT are com- 
bined to form the TLHQT, LIST . [k] ,  k = 0, 1 ,  2, for rows 0. .3 .  
This operation is repeated until the TLHQTs for the top and bottom 
halves of the image are combined. 

The complete algorithm consists of two distinct stages: 
1) Generating the partial TLHQT from the scan rows corre- 

sponding to k = 1. 
2) Combining the TLHQT’s of the top and bottom halves of the 

portion scanned, corresponding to k > 1, to produce a single list, 
LIST [i], i = k ,  k - 1 ,  

The latter stage involves two steps: consider level k > 1 of re- 
cursion. 

1, 0. 
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RASQUAD (1.TOy 0) generates(11 CAND-TOP. NIL 

RASQUAD(1pOT. 2 I generates (I ICAND-BOT = I  12,13 
(21 LIST-TOPIlI= NIL, LIST-TOP [O]=NIL 

~2lL lST~~T[11=~2,131,L IST~BOT [Ol = NIL 
) . 

RASClUAD(2,ToP. 01 generates~llCAND-TOP =(12 131 
(21 LIST- TOFT21 = NIL LIST-TOP [ l ]  = I 12,13 I 

LIST-TOPLOl i NIL 
RASQUAD (l.ToF1L lgenerales ( l ICAND-T0~=~(302)  

RASOUADIl.BOT.6lgenerates (llCAND-BOT= ( 320 I 

~21LlST_TOP~lI=~20,21 ),LIST-TOP[OI 
= ( 300,301,302 1 

(2lLIST-BOT U1 d22.231 
LIST-BOT 101 = (320  , 322 I 

RASQUAD (2 BOT.Ll~erates(l)CAND-BOT = (2.300.301 I 
I . -  

(21 LIST- BOT [2I: ( 2 )  
LIST- BOT C 1 1 =  NIL 
LIST- BOT101 =~300,301,302.320,3221 

RASOUAD(3,TO~OIgeneratesll)LIST[2]=12I, LlSTLlI = I  12 ,13 I 
LIST ~0~=(300 ,301 ,302  320,3221 

(C) 
Fig. 2.  Execution of the procedure RASQUAD for a typical image. (a) 

Recursive invocation of RASQUAD. (b) The 8 x 8 image of Fig. I(a). 
(c) Execution of the procedure RASQUAD for a typical image. 

a) If four q-codes of size 4 k -  I ,  two from LIST-TOP[k - 1 ] 
and two from LIST-BOT[k - I ] ,  happen to be in a quadrant, they 
“condense” to a single q-code of size 4 h ,  which gets entered into 
LIST[k] . 

b) The individually sorted lists of LIST-TOP[i] and LIST- 
-BOT[i] are pairwise merged for i = k - 1, & - 2, * * . , 0 into 
a single list LIST[i]. 

The algorithm outputs an array of lists, LIST[k], k = 0, 1, . . .  , n - 1, where LIST[k] contains the threaded QNODE’s ai 
level k .  LIST is easily converted into the array TLHQT (defined in 
Section 11). See Fig. 2 for an illustration of the threading, conden- 
sation, and merging operations. 

Threads are introduced at three stages as explained below. Let 
the EAST and WEST threads be called horizontal threads and the 
NORTH and SOUTH threads, the vertical threads. 

Stage a ) :  During the scanning of a pair of rows, the pixels are 
read in quadrant-wise. Thus the vertical threads (across pixels) and 
the horizontal threads are easily introduced by computing the ad- 
jacencies with the last three QNODE’s generated. 

Stage b): When four QNODE’s of level k - 1 condense to a 
QNODE QI  at level k, the horizontal threads to the previously 
generated QNODE 4 2  of level k are introduced when Q1 is in- 
serted into LIST[k]. All QNODE’s of level < k - 1 that were 
previously linked to any four of the condensing QNODE’s must be 
relinked to Q I .  It can be seen that such QNODE’s to be relinked 
are only horizontal to Q1. 

Stage c):  Vertical threads are introduced before merging LIST- 
-TOP[i] and LIST-BOT[i], i = k - 1 , k - 2, . * * , 0. At level 
k,  when RASQUAD returns LIST-TOP and LIST-BOT, it also 
returns two additional lists CAND-TOP and CAND-BOT, respec- 
tively, for the top and bottom halves of the section being scanned, 
which contain the QNODEs of level < k - 1 sharing a common 
boundary across the two halves. The vertical threads are introduced 
across the elements of CAND-TOP and CAND-BOT. 

The space and time requirements of the algorithm can be shown 
to be same as that required for generating LHQT plus an extra 

TABLE 111 
COMPARISON OF EXECUTION TIMINGS (IN ms) OF THE ALGORITHMS TO 

CONVERT FROM RASTER TO LHQT A N D  TLHQT. SPACE CORRESPONDS TO 
THE MAXIMUM SPACE TAKEN IN TERMS OF THE LENGTHS OF THE LISTS. IS 

FOR THE MAXIMUM SPACE TAKEN BY THE ALGORITHM TO BUILD LHQT, 
WHILE s 2  IS FOR THE EXTRA SPACE TAKEN BY THE CAND LISTS. B 

REPRESENTS THE NUMBER OF BLACK NODES. THE IMAGES 2-7 HAVE THEIR 
LEVEL-WISE DISTRIBUTION OF QNODE’s SKEWED TOWARDS PIXELS. 

Timing (ms) 

Raster- Raster- 
Space 

SI No. LHQT TLHQT B SI s2  

1 702 765 51 70 8 
2 90 1 1147 418 424 31 
3 913 1099 343 356 26 
4 926 1076 256 292 18 
5 986 1310 624 609 38 
6 942 1250 585 582 34 
1 811 1206 410 465 25 

amount of space and time required for the lists CAND generated 
at various instances. (It may be noted that when the procedure 
RASQUAD returns, the list CAND is returned as CAND-TOP or 
CAND-BOT.) In the Appendix, it is shown that in the case of 
images whose levelwise distribution of LHQCs is skewed towards 
pixels, the additional space requirement is O (  Bn2/2”)  and the cor- 
responding time requirement is O ( B ) .  Table I11 gives the total ex- 
ecution timings and extra space consumed by the algorithm for six 
typical cases of a 64 * 64 image. The time required to build LHQT, 
given in Table 111, shows that the extra amount of time to build 
TLHQT is of O ( B ) .  

I v .  COMPUTATION OF GEOMETRIC PROPERTIES 

We now use the TLHQT to compute three typical geometric 
properties (of binary images) that require exploration of adjacen- 
cies. They are: 1) connected component labeling, 2) perimeter, and 
3) Euler number. We demonstrate that the adjacencies are easily 
explored using the threads, thus simplifying the respective algo- 
rithms. 

A .  Connected Component Labeling 
This is the process of assigning a label to all those QNODE’s 

which form a connected set. The algorithms given in [6] and [7] 
accomplish the labeling in two steps: 

1) The QNODE’s are assigned initial labels with the constraint 
that the label assigned to a QNODE is propagated to all its neigh- 
bors. If a QNODE and its neighbor assume different labels, the two 
labels are put into an equivalence set. 

2) The equivalence sets are merged to form equivalence classes 
[20], [2 I]. A unique label is assigned to all those QNODE’s whose 
label is in a single equivalence class. 

The proposed algorithm uses the TLHQT as the input and exe- 
cutes the two steps in a way different from and faster than the ones 
found in [6] and [7]. In fact, for a given QNODE, the adjacency 
in all four directions is easily explored using the threads. Once a 
link is established from a given QNODE Q1 to its neighbor 4 2  in 
a given direction using a procedure EXPLORE-ADJ, both Q1 and 
4 2  are labeled. A label originating at the node Q1 is spread to the 
maximal area of the connected region by recursively invoking the 
procedure EXPLORE-ADJ for 4 2 .  As a result, the number of 
equivalence sets of labels is minimized. A QNODE Q1 which is 
examined in all four directions has its label > 0 if Q1 is not iso- 
lated. This fact is made use of in avoiding any possible reconsi- 
deration of Q1 at a latter stage. Thus it can be seen that for the 
phase 1 of the labeling algorithm, each QNODE is visited only 
once. See Fig. 3 for an illustration of the procedure. 
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AI I ,  DIR=SOUTH o*-o"-ojo' 
0;' 

At H, DIR~SQIJTH ( n o  extro-labels 1 

At B.DIR=SOUTH 7' A 

0;' 
At H, DIR~SQIJTH ( n o  extro-labels 1 

At B.DIR=SOUTH 7' A 

At G I  DIR =EAST ( B is already carsidered 1 

At E, DIR=SOUTH At C, DIRSOUTH 
0 

AI D .  MR-SOUTH At F, DIR =SOUTH 

Fig. 3 .  An illustration of execution of the labeling algorithm. 

B. Perimeter Computation 

Perimeter is the length of the boundary of a binary picture. While 
using the TLHQT for the computation of perimeter, we note that a 
QNODE at level k can contribute to the perimeter an amount equal, 
at most, to 4 X 2. Whenever a QNODE has a link to a neighbor, 
twice the length of the segment shared by the QNODE and the 
neighbor is subtracted from the global variable PERIMETER. After 
the four directions have been examined, PERIMETER is updated 
by 4 X 2. Note that each QNODE is examined only once. 

C. Euler Number Computation 

Euler number of an image is the difference between the number 
of connected components and the number of holes in  the image. 
Dyer [9] has shown that the Euler number is given by B - E + V ,  
where B is the number of black nodes, E the number of pairs of 

B 65 ,  

U A D  

(b) 
Fig. 4. An illustration of (a) TRIPLES and (b) QUADRUPLES 

adjacent blocks, and V the number of instances of three or four 
blocks sharing a comer without a white block touching the same 
comer. (We refer to these instances as triples and quadruples re- 
spectively. See Fig. 4.) 

In a TLHQT, B is the number of QNODE's and E is the number 
of threads. Thus V alone needs to be computed. To this end, con- 
sider Fig. 4(a) corresponding to the case of a triple. Each triple can 
be represented by a graph having three vertices and three links. A 
vertex is associated with a black block and an.edge with a thread. 
Eight graphs are possible for triples, of which only four represent 
valid geometrical placements of blocks. All the four graphs and the 
corresponding placement of blocks are given in Fig. 5. It can be 
seen that there is a starting vertex in each graph, from which it is 
possible to reach a common vertex, moving first clockwise and 
then anticlockwise. Because of symmetry with respect to the start- 
ing vertex, only the graphs shown in Fig. 5(a) and (b) arc consid- 
ered for explaining the algorithm to detect triples. 

The quadruple shown in Fig. 4(b) can also be represented sim- 
ilarly by a graph having four vertices and four links. Here only 
eight graphs represent valid placement of nodes and because of 
symmetry with respect to the starting vertex, only four cases shown 
in Fig. 6 need to be considered. 

The basic idea behind the proposed algorithm using the TLHQT 
is to compute the number of instances of triples and quadruples in 
the image traversing the links originating from a QNODE. From 
Figs. 5 and 6, it follows that to locate a triple (or a quadruple) 
around the NORTH and EAST directions of a QNODE Q, one has 
to traverse the links in both directions. Starting along the NORTH 
direction, if one collects successive clockwise links in a set, the 
traversal terminates in  at most three steps. Now if one starts from 
Q and proceeds along the EAST direction, collecting successive 
anticlockwise links, one is bound to find a link that belongs to the 
first set, in cases shown in Fig. 5 and Fig. 6(a). (b), and (c). How- 
ever, the case corresponding to the graph in Fig. 6(d) needs a 
slightly different treatment, since starting from the vertices A and 
C ,  one cannot go beyond one step in the two perpendicular direc- 
tions. Since A and Care considered one after the other, the decision 
regarding quadruple has to be deferred until both A and C are con- 
sidered. The QNODE (say A )  which is examined first will mark 
the two QNODE's B and D reachable from A ;  the other QNODE 
(say C )  examined next will find B and D marked, detecting a quad- 
ruple. See Figs. 7 and 8 for typical outputs. 

D. Complexity of the Algorithms 

It is easy to see that for the perimeter computation and for the 
first phase of the connected component labeling, each black node 
(i.e., a QNODE) is examined only once. For these two cases, the 
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(a) (b) (C) 
Fig. 5 .  Possible instances of TRIPLES. 

(a) (b) (C) (d) 

Fig. 6.  Four of the eight possible instances of QUADRUPLES. 
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Fig. 7 .  Typical output for the algorithms of Section IV 

complexity is therefore O ( B ) .  (However, as regards the second 
phase of the algorithm for the labeling, the time complexity is de- 
pendent on the merging technique and since it is a common factor 
for implementation of the same algorithm on other structures too, 
we have not considered it separately.) Also in the algorithm to 
compute the Euler number, around a QNODE, at the most only 
three instances of a triple or a quadruple are encountered; each such 
instance requires the traversal of at most four links. The algorithm 
also therefore has a time complexity of O ( B ) .  

V. SPACE REQUIREMENT OF THE TLHQT 

The space consumed by the TLHQT is dependent on the total 
number of threads. Refemng to Fig. 9, it can be seen that a given 
QNODE can occupy only one of the four quadrants indicated. The 
maximum number of links possible for each of these quadrants is 
indicated in Fig. 9. Therefore, on the average, the maximum num- 

Y 
U 

m 

n 
L 

Fig. 8 .  Typical output for the algorithms of Section 1V 

4 

quodronl0 

quodmnt 2 

@ quodrant 1 

0 
.) 

quadrant 3 

(b) 
Fig. 9. (a) Arrangement of the maximum possible number of threads in 

each quadrant. (b) Arrangements of quadrants. 

ber of threads possible out of a QNODE is only 3. Assuming that 
there are B black QNODE's in the image and an extra word is 
necessary to store the LHQC of the QNODE, the average of the 
maximum space required will be (proportional to) 4B. This may 
be contrasted with the storage requirement of the pointer-based 
quadtrees which is (proportional to) 8 ( B  + W ) ,  assuming that each 
node requires 6 fields and that of the B-trees which is (proportional 
to) 8B [17]. 
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TABLE IV 
COMPARISON OF EXECUTION TIMINGS (mS) WITH THE ALGORITHMS OF SAMET 

AND TAMINNEN [ 161 ON THREE GEOMETRIC PROPERTIES COMPUTED. 
(IMAGES 2-7 HAVE THEIR BLACK NODES DISTRIBUTION SKEWED TOWARD 

PIXELS). 

Perimeter Euler Number Labeling 

S1 No. B Thread ST Thread ST 
~ 

56 5 21 
418 33 109 
343 27 87 
256 21 55 
624 48 173 
585 46 143 
470 37 130 

7 33 
90 151 
79 119 
62 76 

131 238 
134 198 
112 149 

Thread ST 

12 43 
138 172 
102 153 
73 117 

230 308 
208 286 
154 201 

Legend-Thread: TLHQT; ST: Samet and Taminnen algorithm. 

TABLE V 
COMPARISON OF EXECUTION TIMINGS (IN ms) OF THE LABELING ALGORITHM 

ON VARIOUS REPRESENTATION SCHEMES 

TLHQT 
(bottom- 

SI No. B UP) 

1 56 12 
2 418 138 
3 343 102 
4 256 73 
5 624 230 
6 585 208 

LHQT ST 

73 43 
439 172 
308 153 
135 117 
717 308 
659 286 

LQ 

570 
1589 
789 
47 1 

1572 
1277 

PBQT 

38 
369 
254 
113 
588 
572 

Legend-LQ: linear quadtree; ST: Samet and Taminnen [16]; PBQT: 
pointer-based quadtree. 

VI. CONCLUDING REMARKS 
A variant of the linear quadtree, the threaded linear hierarchical 

quadtree (TLHQT) is proposed for representing binary images. The 
structure is shown to consume space of the 0(4B), where B is the 
number of black nodes of the quadtree. Also by using this struc- 
ture, efficient algorithms are presented for the computation of geo- 
metric properties of binary images. All the algorithms have a space 
requirement of O( B);  and the algorithms to compute perimeter and 
Euler number run in time O ( B ) ,  while the first phase of the label- 
ing algorithm also executes in time O ( B ) .  The performance of the 
algorithms to compute geometric properties is compared with other 
similar algorithms appearing in literature, in Tables IV and V. It 
is observed that the algorithms presented here perform better than 
other similar algorithms. It is also shown that the TLHQT can be 
built directly from a raster scan of the image, requiring an addi- 
tional space and time (over what is necessary to build the LHQT) 
of O ( B n 2 / 2 " )  and O ( B ) ,  respectively. 

APPENDIX 
We compute here the space and time for raster to TLHQT con- 

version over the raster to LHQT conversion, as this excess amount 
is what is required for the introduction of threads during raster scan. 
To  this end, we derive three results here: 

1) An estimate of the expected size of the list CAND at any 
level k ,  0 I k 5 n - 1. 

2 )  Maximum amount of space required to store the various 
CAND lists. 

3) The expected amount of time required to introduce the 
threads. 

From the algorithm, it is clear that all horizontal threads are 
introduced as and when a QNODE is built and hence no significant 

amount of space and time is required to introduce horizontal 
threads, when compared to the other phases of the algorithm. How- 
ever, vertical threads at any level k ,  0 I k s n - l ,  of recursion 
are introduced after scanning two lists, CAND-TOP and CAND- 

BOT, respectively, for the top and bottom halves of the image 
segment, consisting of 2' lines, corresponding to level k .  Each ele- 
ment of each of these lists is scanned at most once and therefore 
the space and time required to introduce threads is directly related 
to the size of the list CAND at various stages of recursion. 

We first state our assumptions: 
1) The black nodes of the image are uniformly distributed over 

the image grid. Thus if bk is the expected number of black nodes 
at any level k ,  0 c k 5 n - 1 ,  corresponding to a level of recur- 
sion k and in an area covered by 2 lines of the raster is b k / 2  n - k .  

2 )  In practice, there are many images which have their distri- 
bution of nodes skewed towards pixels. To  derive a realistic com- 
plexity estimate, such a distribution of nodes expressible as shown 
below is assumed. Let B be the total number of QNODE's of the 
TLHQT 

bk = B p k + ' ,  0 C p < 1 ( 1 )  

n -  I 

S.t. p* c p k  = 1. 
k =  I 

It can be seen that the value of p that satisfies ( 2 )  is nearly 0.5 + 
1 /3  * 2".  Accordingly, in the results derived below, the fact that 
p = 0.5 + 1 /3  * 2" is used in simplifying the expressions. 

Result 1:  The expected size of the list CAND at any level of 
recursion k ,  1 5 k I n - 1 is given by 

B P ( ( 2 P I k + l  - 1) ck = 
2 " ( 2 p  - 1) . 

Proofi The list CAND at level k will contain appropriate bor- 
der node of sizes up to 4 '. Therefore, 

By Assumption 2 ,  this reduces to 
k + l - l )  

e,= E-- 
i = O  2n-i - 2 " ( 2 p  - 1 )  

0 

Result 2: The maximum space required to store various CAND 
lists is 0 ( n * ~ / 2 " ) .  

Proofi It may be noted that at level k of recursion, the 
QNODE's of level k are inserted into the list CAND only after 
condensation at level k + 1. So while estimating the space require- 
ment, it is sufficient to consider b,,  0 s i I k - 1 in deriving the 
value of ck. Therefore from Result 1, it follows that 

BP((2PIk  - 1)  ck = 
2 " ( 2 p  - 1) . 

The maximum number of CAND lists that can exist simulta- 
neously, are present after the last two lines of image are analyzed. 
Fig. 10 illustrates this fact for a 16 X 16 image where the dark 
circles indicate the levels at which the CAND lists are active, i.e., 
remaining to be scanned. The expected maximum storage space for 
these lists is given by 

using Result 1. 
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Therefore, 

Fig. 10. A typical stage in the execution of the algorithm RASQUAD after 
scanning all the lines. 

F o r p  = 0.5 + 1 / 3  * 2 ” ,  the above sum reduces to 

n - l  

( 3 / 2 ) B p  ( 2 p ) ’  - 1 + C,  
k =  I 

n -  I 

= ( 3 / 2 )  Bp k =  c I (1 + j--$r - 1) + $ 

for practical values of n considered. 
so, 

B n -  I 

k = l  ck+cl=2”+’c k =  I k 

= o ( $ ) .  

BP +2” 

0 

Result 3: The amount of time required to introduce the vertical 
threads is O ( B ) .  

Proof: At any level k ,  2 5 k 5 n ,  of recursion, at any in- 
stance, two lists CAND-TOP and CAND-TOP produced from level 
k - 1 are scanned. There are 2”-‘  such instances corresponding 
to each level of recursion. So the time T required to introduce ver- 
tical threads is proportional to 2 n - k  x 2 x ck- I .  

Due to the introduction of threads, the border QNODE’s of level 
k - 1, that do not condense, are in CAND-TOP or CAND-BOT. 
So the value of ck as given by Result 1 is used here. 

so, 

n 

= 2 “ - ‘ * 2  B p ( ( 2 p ) k  - using Result 1 
k = 2  2 ” ( 2 p  - 1) ’ 

1 
usingp = 0.5 + - 

3 * 2 ”  

and considering practial values of n .  
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