
IEEE TRANSACTlONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 5, MAY 1988 6.59

Concise Papers
Threaded Linear Hierarchical Quadtrees for

Computation of Geometric Properties of
Binary Images

A. UNNIKRISHNAN, PRITI SHANKAR, A N D Y. V. VENKATESH

Abstract-A modification of the linear quadtree [3], the threaded lin-
ear hierarchical quadtree (TLHQT), is proposed for the computation
of geometric properties of binary images. Since most of the algorithms
used in connection with computation of geometric properties require
frequent exploration of adjacencies, a structure which keeps perma-
nently in memory some adjacency links is introduced. In this paper,
we present some results obtained by using the TLHQT for labeling
connected components, evaluating perimeter and Euler’s number in a
quadtree environment. The algorithms for computing perimeter and
Euler number and the first phase of the labeling algorithm are shown
to have time complexity O (B) , where B is the number of black nodes
of the quadtree. The authors determine the adjacency links at the very
beginning-namely, when the binary image is mapped from raster scan
to the quadtree. Pixel adjacency is, in fact, available during row scan-
ning, and node’s adjacency is easy to evaluate locally when performing
condensation of nodes into larger quadrants and also while merging
partial quadtrees. Although the structure requires space nearly four
times as much as the linear quadtfee, the requirement is roughly half
that for the pointer-based quadtree. Also it appears that for computing
geometric properties, the TLHQT offers execution timings better than
those obtained by both the linear and pointer-based quadtrees and the
graph structure reported in [16].

Index Terms-Binary images, geometric properties, hierarchical
quadtree, linear quadtree, quadtree.

INTRODUCTION
It is known that, among the various data structures proposed for

representing binary images, quadtrees lead to a saving in storage
and facilitate the implementation of many operations on these im-
ages, like the computation of geometric properties. The quadtree
arises from the representation of a regular decomposition of a square
grid of size 2 “ x 2“ , enclosing the image, into homogeneously
colored quadrants, the smallest quadrant being a pixel [I] .

There are two commonly used representations of the quadtree in
the computer:

1) Each node of the tree is represented as a record with six fields,
in which four fields are pointers to the sons, one is a pointer to the
father and the last encodes the color (i.e., black, white, or gray)
of the node [l] , [2], [7]-[9].

2) Each black node is represented as an n-digit quaternary code
(“q-code”) and the codes are numerically ordered in an array to
get a linear quadtree, thereby avoiding pointers.

Fig. l(a)-(d) illustrates the two representation schemes. Other
representation schemes include the forest of quadtrees (131, the DF
expression [14], the leaf codes [15], the B+-trees [17], and more
recently the graph quadtrees [161. For a detailed review of the var-
ious representation schemes, see [2].

Manuscript received February 27, 1987; revised October 30, 1987.
A. Unnikrishnan and Y. V. Venkatesh are with the Department of Elec-

trical Engineering, Indian Institute of Science, Bangalore 560 012, India.
P. Shankar is with the Department of Computer Science and Automa-

tion, Indian Institute of Science, Bangalore 560 012, India.
IEEE Log Number 8819888.

N

01 ={124,13L,2L.4,300.30l,302,320,322.)
(D) (El IF) (G) IH) (1) (L l IN)

(d)
Fig. I . Quadtree for a binary picture. (a) 2‘ x 2’ binary picture. (b) As-

signment of links. (c) Pointer based quadtree. (d) Linear quadtree (4 is
used as label).

In this paper, we introduce a modification of the linear quadtree
called the threaded linear hierarchical quadtree (TLHQT) and ex-
plore the possibility of deriving this structure directly from the ras-
ter scan of a binary image, to be used later to compute the geo-
metric properties of binary images. We consider the following three
typical geometric properties:

1) connected component labeling
2) perimeter
3) Euler number.
The rest of the paper is organized as follows.
Section II : Threaded linear hierarchical quadtree (TLHQT).
Section III: Conversion of a raster-scanned binary image to

Section IV: Computation of geometric properties.
Section V: Concluding remarks.

11. THREADED LINEAR HIERARCHICAL QUADTREE (TLHQT)
The computation of most of the geometric properties of binary

images needs information regarding spatially adjacent nodes of the
quadtree. In the pointer-based structure, traversal of the appropri-
ate links is necessary to locate a neighbor at same level [4] while
in the linear quadtree, this is achieved by first computing the q-
code of a neighbor of same size and then searching for the presence
of the neighbor q-code in the linear quadtree itself [3]. The authors
[6] have shown that by structuring the q-codes (in terms of size)
into a hierarchy of arrays, the search for a q-code of size 4 A is
restricted to the subarray at level k . Also, by using a bottom-up
approach, which analyses, from the pixel level q-codes, in size-
increasing order, the computational time can be further reduced.

In this paper, we propose a structure to eliminate these searches
altogether. We do this by generating and storing in each node the
information about neighbors during the raster scan conversion, i n

TLHQT.

0098-5589/88/0500-0659$01 .OO 0 1988 IEEE

660 IEEE TRANSACTIONS ON SOFTWARE

level

2 1

ENGINEERING, VOL. 14. NO 5 . M A Y 1 9 X X

indcl LHQC THREAD as a linked list

2 NIL

TABLE I
THE LHQT FOR THE BINARY IMAGE OF Fic. I(a)

Hierarchically Linear
Ordered Hierarchical

Level q-Code. q-Codes (LHQC)

2 244 2
1 124 12

134 13
0 300 300

30 I 30 1
302 302
320 320
322 322

I 1 4 I 300 I EEl+”b I
I I ‘ 1 I I 5 I 301

I

I I ! I

addition to the q-code of the node. The main idea is to link a black
node, identified by a q-code and its position in one of the n arrays,
with its black neighbors at the same or higher level of hierarchy.
The threading is thus different from the one proposed by Hunter
and Steiglitz [5]. In the “roped” quadtrees proposed by Hunter and
Steiglitz, every black node has pointers (or ropes) to its four neigh-
bors. But the neighbors pointed to need not be all leaf nodes, with
the result additional tree traversals are necessary to locate the
neighboring leaf nodes. It can be seen that in the new structure
called the threaded linear hierarchical quadtree (TLHQT), every
node pointed to is a black node. The computation of geometric
properties involving exploration of adjacencies is therefore faster
than using a “roped” quadtree.

We now give the definition of TLHQT, based on the LHQT pro-
posed by the authors [6]. Note that if only the black nodes of a
pointer-based quadtree (or the q-codes of a linear quadtree) are ar-
ranged in a hierarchy of n arrays, according to size, we obtain the
LHQT with the following properties.

1) The array at level k (0 < k < n - 1) contains b, black nodes
of size 4‘, represented by (n - k) quaternary digits called linear
hierarchical q-codes (LHQC’s).

2) The LHQC’s in each level k are sorted in an increasing order.
If, in addition, links to the neighbor nodes along the directions

NORTH, EAST, SOUTH, and WEST at the same or higher levels
(i.e., at levels > k) of hierarchy are provided, the threaded linear
hierarchical quadtree (TLHQT) is obtained. Formally, the TLHQT
is defined as follows (using Pascal-like constructs):

type INDEX = 1 . . MAX; {MAX is a large integer}
DIRECTION
THREADNODE = record

= (NORTH, EAST, SOUTH, WEST);

LINK : INDEX;

QNODE

TLHQT
var T : TLHQT;

DIR : DIRECTION;
NEXT : A THREADNODE;

end;
= record

THREAD : THREADNODE;
end;
= array [INDEX] of QNODE;

QCD : LHQC;

Remark I : If T[I].thread = nil then T [I] has no black neigh-
bor at the same or higher levels.

Remark 2: A QNODE at level k will have links to a neighbor
of same size only along the directions EAST and SOUTH, as these
QNODE’s are sorted in increasing order, with respect to the LHQC
of the QNODE.

For illustration, Tables I and I1 present, respectively, the LHQT
and the TLHQT for Fig. l(a).

111. CONVERSION OF A RASTER SCANNED BINARY IMAGE TO
TLHQT

Often, the input to an imaging system is derived from a raster
scan of the scene, and, therefore, it is desirable to build the TLHQT
as and when the raster rows are scanned. In [1 I] , an algorithm is
given to construct the LHQT from a raster scan. Other algorithms
for building quadtrees from raster can be found in [18], [19]. In
this paper, we show that the TLHQT can also be similarly con-
structed, using a marginal overhead of space and time (when com-
pared to the generation of LHQT), required to introduce the threads.

The basic idea is to build the TLHQT from the top and bottom
halves of the image separately. This generates two sets of linked
lists, one set of each half, storing the QNODE’s, as defined in
Section 11. Thus if LIST-TOP[k] and LIST-BOT[k] are the two
sets of linked lists fork = 0, 1, . . . n - 2, the two are merged to
produce a final hierarchy of n lists, representing the TLHQT for
the image. The TLHQT for each half is generated by recursively
subdividing each half into subhalves and combining the partial
TLHQT’s generated for each subhalf.

As an illustration of the procedure, consider the 2’ X 2’ image
of Fig. 2(a), with rows numbered from 0 to 7. The partial TLHQT
for rows 0, 1 is first formed and stored as LIST-TOP[k], k = 0,
1. Next, the partial LHQT for rows 2 and 3 is constructed and
stored as LIST-BOT[k], k = 0, 1 . Then LIST-TOP[k] and LIST-
-BOT[k], k = 0, 1, are combined (i.e., condensed and merged) to
yield LIST[k], k = 0, 1, 2. LIST[k] will be the LIST-TOP(k] for
rows 0..3. Similarly, LIST-BOT[k], k = 0, I , 2 is generated for
rows 4..7. LIST-TOP[k] and LIST-BOT[k], k = 0, 1 , 2, 3 are
combined to yield the final TLHQT in the linked list, LIST.

The above technique is implemented using a recursive procedure
RASQUAD(k, I, lineno). This procedure is initially invoked with
parameter values k = n , 1 = top and lineno = 0. The procedure is
recursively invoked by decrementing k by 1 until k = 1 . The call
sequences of the procedure, when applied to the binary image of
Fig. 2(a) are given in Fig. 2(b). For k = 1 , the first two rows
(numbered 0 and 1) of the image are read into a buffer and the
corresponding TLHQT, viz. LIST-TOP[k], k = 0, I , for these two
rows is constructed. Next, for the second instance of k = 1, rows
2 and 3 are read into a buffer and the TLHQT, LISTBOT[k], k =
0, 1, is constructed. Then LIST-TOP and LIST-BOT are com-
bined to form the TLHQT, LIST . [k] , k = 0, 1 , 2, for rows 0. .3 .
This operation is repeated until the TLHQTs for the top and bottom
halves of the image are combined.

The complete algorithm consists of two distinct stages:
1) Generating the partial TLHQT from the scan rows corre-

sponding to k = 1.
2) Combining the TLHQT’s of the top and bottom halves of the

portion scanned, corresponding to k > 1, to produce a single list,
LIST [i], i = k , k - 1 ,

The latter stage involves two steps: consider level k > 1 of re-
cursion.

1, 0.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 5 , MAY 1988 66 1

RASQUAD (1.TOy 0) generates(11 CAND-TOP. NIL

RASQUAD(1pOT. 2 I generates (I ICAND-BOT = I 12,13
(21 LIST-TOPIlI= NIL, LIST-TOP [O]=NIL

~2lL lST~~T[11=~2,131,L IST~BOT [Ol = NIL
) .

RASClUAD(2,ToP. 01 generates~llCAND-TOP =(12 131
(21 LIST- TOFT21 = NIL LIST-TOP [l] = I 12,13 I

LIST-TOPLOl i NIL
RASQUAD (l.ToF1L lgenerales (l ICAND-T0~=~(302)

RASOUADIl.BOT.6lgenerates (llCAND-BOT= (320 I

~21LlST_TOP~lI=~20,21),LIST-TOP[OI
= (300,301,302 1

(2lLIST-BOT U1 d22.231
LIST-BOT 101 = (320 , 322 I

RASQUAD (2 BOT.Ll~erates(l)CAND-BOT = (2.300.301 I
I . -

(21 LIST- BOT [2I: (2)
LIST- BOT C 1 1 = NIL
LIST- BOT101 =~300,301,302.320,3221

RASOUAD(3,TO~OIgeneratesll)LIST[2]=12I, LlSTLlI = I 12 ,13 I
LIST ~0~=(300 ,301 ,302 320,3221

(C)
Fig. 2. Execution of the procedure RASQUAD for a typical image. (a)

Recursive invocation of RASQUAD. (b) The 8 x 8 image of Fig. I(a).
(c) Execution of the procedure RASQUAD for a typical image.

a) If four q-codes of size 4 k - I , two from LIST-TOP[k - 1]
and two from LIST-BOT[k - I] , happen to be in a quadrant, they
“condense” to a single q-code of size 4 h , which gets entered into
LIST[k] .

b) The individually sorted lists of LIST-TOP[i] and LIST-
-BOT[i] are pairwise merged for i = k - 1, & - 2, * * . , 0 into
a single list LIST[i].

The algorithm outputs an array of lists, LIST[k], k = 0, 1, . . . , n - 1, where LIST[k] contains the threaded QNODE’s ai
level k . LIST is easily converted into the array TLHQT (defined in
Section 11). See Fig. 2 for an illustration of the threading, conden-
sation, and merging operations.

Threads are introduced at three stages as explained below. Let
the EAST and WEST threads be called horizontal threads and the
NORTH and SOUTH threads, the vertical threads.

Stage a) : During the scanning of a pair of rows, the pixels are
read in quadrant-wise. Thus the vertical threads (across pixels) and
the horizontal threads are easily introduced by computing the ad-
jacencies with the last three QNODE’s generated.

Stage b): When four QNODE’s of level k - 1 condense to a
QNODE QI at level k, the horizontal threads to the previously
generated QNODE 4 2 of level k are introduced when Q1 is in-
serted into LIST[k]. All QNODE’s of level < k - 1 that were
previously linked to any four of the condensing QNODE’s must be
relinked to Q I . It can be seen that such QNODE’s to be relinked
are only horizontal to Q1.

Stage c): Vertical threads are introduced before merging LIST-
-TOP[i] and LIST-BOT[i], i = k - 1 , k - 2, . * * , 0. At level
k, when RASQUAD returns LIST-TOP and LIST-BOT, it also
returns two additional lists CAND-TOP and CAND-BOT, respec-
tively, for the top and bottom halves of the section being scanned,
which contain the QNODEs of level < k - 1 sharing a common
boundary across the two halves. The vertical threads are introduced
across the elements of CAND-TOP and CAND-BOT.

The space and time requirements of the algorithm can be shown
to be same as that required for generating LHQT plus an extra

TABLE 111
COMPARISON OF EXECUTION TIMINGS (IN ms) OF THE ALGORITHMS TO

CONVERT FROM RASTER TO LHQT A N D TLHQT. SPACE CORRESPONDS TO
THE MAXIMUM SPACE TAKEN IN TERMS OF THE LENGTHS OF THE LISTS. IS

FOR THE MAXIMUM SPACE TAKEN BY THE ALGORITHM TO BUILD LHQT,
WHILE s 2 IS FOR THE EXTRA SPACE TAKEN BY THE CAND LISTS. B

REPRESENTS THE NUMBER OF BLACK NODES. THE IMAGES 2-7 HAVE THEIR
LEVEL-WISE DISTRIBUTION OF QNODE’s SKEWED TOWARDS PIXELS.

Timing (ms)

Raster- Raster-
Space

SI No. LHQT TLHQT B SI s2

1 702 765 51 70 8
2 90 1 1147 418 424 31
3 913 1099 343 356 26
4 926 1076 256 292 18
5 986 1310 624 609 38
6 942 1250 585 582 34
1 811 1206 410 465 25

amount of space and time required for the lists CAND generated
at various instances. (It may be noted that when the procedure
RASQUAD returns, the list CAND is returned as CAND-TOP or
CAND-BOT.) In the Appendix, it is shown that in the case of
images whose levelwise distribution of LHQCs is skewed towards
pixels, the additional space requirement is O (Bn2/2”) and the cor-
responding time requirement is O (B) . Table I11 gives the total ex-
ecution timings and extra space consumed by the algorithm for six
typical cases of a 64 * 64 image. The time required to build LHQT,
given in Table 111, shows that the extra amount of time to build
TLHQT is of O (B) .

I v . COMPUTATION OF GEOMETRIC PROPERTIES

We now use the TLHQT to compute three typical geometric
properties (of binary images) that require exploration of adjacen-
cies. They are: 1) connected component labeling, 2) perimeter, and
3) Euler number. We demonstrate that the adjacencies are easily
explored using the threads, thus simplifying the respective algo-
rithms.

A . Connected Component Labeling
This is the process of assigning a label to all those QNODE’s

which form a connected set. The algorithms given in [6] and [7]
accomplish the labeling in two steps:

1) The QNODE’s are assigned initial labels with the constraint
that the label assigned to a QNODE is propagated to all its neigh-
bors. If a QNODE and its neighbor assume different labels, the two
labels are put into an equivalence set.

2) The equivalence sets are merged to form equivalence classes
[20], [2 I]. A unique label is assigned to all those QNODE’s whose
label is in a single equivalence class.

The proposed algorithm uses the TLHQT as the input and exe-
cutes the two steps in a way different from and faster than the ones
found in [6] and [7]. In fact, for a given QNODE, the adjacency
in all four directions is easily explored using the threads. Once a
link is established from a given QNODE Q1 to its neighbor 4 2 in
a given direction using a procedure EXPLORE-ADJ, both Q1 and
4 2 are labeled. A label originating at the node Q1 is spread to the
maximal area of the connected region by recursively invoking the
procedure EXPLORE-ADJ for 4 2 . As a result, the number of
equivalence sets of labels is minimized. A QNODE Q1 which is
examined in all four directions has its label > 0 if Q1 is not iso-
lated. This fact is made use of in avoiding any possible reconsi-
deration of Q1 at a latter stage. Thus it can be seen that for the
phase 1 of the labeling algorithm, each QNODE is visited only
once. See Fig. 3 for an illustration of the procedure.

662 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 13. NO. 5 . MAY I 9 X X

AI I , DIR=SOUTH o*-o"-ojo'
0;'

At H, DIR~SQIJTH (n o extro-labels 1

At B.DIR=SOUTH 7' A

0;'
At H, DIR~SQIJTH (n o extro-labels 1

At B.DIR=SOUTH 7' A

At G I DIR =EAST (B is already carsidered 1

At E, DIR=SOUTH At C, DIRSOUTH
0

AI D . MR-SOUTH At F, DIR =SOUTH

Fig. 3 . An illustration of execution of the labeling algorithm.

B. Perimeter Computation

Perimeter is the length of the boundary of a binary picture. While
using the TLHQT for the computation of perimeter, we note that a
QNODE at level k can contribute to the perimeter an amount equal,
at most, to 4 X 2. Whenever a QNODE has a link to a neighbor,
twice the length of the segment shared by the QNODE and the
neighbor is subtracted from the global variable PERIMETER. After
the four directions have been examined, PERIMETER is updated
by 4 X 2. Note that each QNODE is examined only once.

C. Euler Number Computation

Euler number of an image is the difference between the number
of connected components and the number of holes in the image.
Dyer [9] has shown that the Euler number is given by B - E + V ,
where B is the number of black nodes, E the number of pairs of

B 65 ,

U A D

(b)
Fig. 4. An illustration of (a) TRIPLES and (b) QUADRUPLES

adjacent blocks, and V the number of instances of three or four
blocks sharing a comer without a white block touching the same
comer. (We refer to these instances as triples and quadruples re-
spectively. See Fig. 4.)

In a TLHQT, B is the number of QNODE's and E is the number
of threads. Thus V alone needs to be computed. To this end, con-
sider Fig. 4(a) corresponding to the case of a triple. Each triple can
be represented by a graph having three vertices and three links. A
vertex is associated with a black block and an.edge with a thread.
Eight graphs are possible for triples, of which only four represent
valid geometrical placements of blocks. All the four graphs and the
corresponding placement of blocks are given in Fig. 5. It can be
seen that there is a starting vertex in each graph, from which it is
possible to reach a common vertex, moving first clockwise and
then anticlockwise. Because of symmetry with respect to the start-
ing vertex, only the graphs shown in Fig. 5(a) and (b) arc consid-
ered for explaining the algorithm to detect triples.

The quadruple shown in Fig. 4(b) can also be represented sim-
ilarly by a graph having four vertices and four links. Here only
eight graphs represent valid placement of nodes and because of
symmetry with respect to the starting vertex, only four cases shown
in Fig. 6 need to be considered.

The basic idea behind the proposed algorithm using the TLHQT
is to compute the number of instances of triples and quadruples in
the image traversing the links originating from a QNODE. From
Figs. 5 and 6, it follows that to locate a triple (or a quadruple)
around the NORTH and EAST directions of a QNODE Q, one has
to traverse the links in both directions. Starting along the NORTH
direction, if one collects successive clockwise links in a set, the
traversal terminates in at most three steps. Now if one starts from
Q and proceeds along the EAST direction, collecting successive
anticlockwise links, one is bound to find a link that belongs to the
first set, in cases shown in Fig. 5 and Fig. 6(a). (b), and (c). How-
ever, the case corresponding to the graph in Fig. 6(d) needs a
slightly different treatment, since starting from the vertices A and
C , one cannot go beyond one step in the two perpendicular direc-
tions. Since A and Care considered one after the other, the decision
regarding quadruple has to be deferred until both A and C are con-
sidered. The QNODE (say A) which is examined first will mark
the two QNODE's B and D reachable from A ; the other QNODE
(say C) examined next will find B and D marked, detecting a quad-
ruple. See Figs. 7 and 8 for typical outputs.

D. Complexity of the Algorithms

It is easy to see that for the perimeter computation and for the
first phase of the connected component labeling, each black node
(i.e., a QNODE) is examined only once. For these two cases, the

663 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 5 , MAY 1988

(a) (b) (C)
Fig. 5 . Possible instances of TRIPLES.

(a) (b) (C) (d)

Fig. 6. Four of the eight possible instances of QUADRUPLES.

w
0
2
J

cl
m
L

0

W
I-

c

I-
UI
z

2
I

0
z

a

1

"1,

.... . .

Fig. 7 . Typical output for the algorithms of Section IV

complexity is therefore O (B) . (However, as regards the second
phase of the algorithm for the labeling, the time complexity is de-
pendent on the merging technique and since it is a common factor
for implementation of the same algorithm on other structures too,
we have not considered it separately.) Also in the algorithm to
compute the Euler number, around a QNODE, at the most only
three instances of a triple or a quadruple are encountered; each such
instance requires the traversal of at most four links. The algorithm
also therefore has a time complexity of O (B) .

V. SPACE REQUIREMENT OF THE TLHQT

The space consumed by the TLHQT is dependent on the total
number of threads. Refemng to Fig. 9, it can be seen that a given
QNODE can occupy only one of the four quadrants indicated. The
maximum number of links possible for each of these quadrants is
indicated in Fig. 9. Therefore, on the average, the maximum num-

Y
U

m

n
L

Fig. 8 . Typical output for the algorithms of Section 1V

4

quodronl0

quodmnt 2

@ quodrant 1

0
.)

quadrant 3

(b)
Fig. 9. (a) Arrangement of the maximum possible number of threads in

each quadrant. (b) Arrangements of quadrants.

ber of threads possible out of a QNODE is only 3. Assuming that
there are B black QNODE's in the image and an extra word is
necessary to store the LHQC of the QNODE, the average of the
maximum space required will be (proportional to) 4B. This may
be contrasted with the storage requirement of the pointer-based
quadtrees which is (proportional to) 8 (B + W) , assuming that each
node requires 6 fields and that of the B-trees which is (proportional
to) 8B [17].

664 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 5 . MAY 1988

TABLE IV
COMPARISON OF EXECUTION TIMINGS (mS) WITH THE ALGORITHMS OF SAMET

AND TAMINNEN [161 ON THREE GEOMETRIC PROPERTIES COMPUTED.
(IMAGES 2-7 HAVE THEIR BLACK NODES DISTRIBUTION SKEWED TOWARD

PIXELS).

Perimeter Euler Number Labeling

S1 No. B Thread ST Thread ST
~

56 5 21
418 33 109
343 27 87
256 21 55
624 48 173
585 46 143
470 37 130

7 33
90 151
79 119
62 76

131 238
134 198
112 149

Thread ST

12 43
138 172
102 153
73 117

230 308
208 286
154 201

Legend-Thread: TLHQT; ST: Samet and Taminnen algorithm.

TABLE V
COMPARISON OF EXECUTION TIMINGS (IN ms) OF THE LABELING ALGORITHM

ON VARIOUS REPRESENTATION SCHEMES

TLHQT
(bottom-

SI No. B UP)

1 56 12
2 418 138
3 343 102
4 256 73
5 624 230
6 585 208

LHQT ST

73 43
439 172
308 153
135 117
717 308
659 286

LQ

570
1589
789
47 1

1572
1277

PBQT

38
369
254
113
588
572

Legend-LQ: linear quadtree; ST: Samet and Taminnen [16]; PBQT:
pointer-based quadtree.

VI. CONCLUDING REMARKS
A variant of the linear quadtree, the threaded linear hierarchical

quadtree (TLHQT) is proposed for representing binary images. The
structure is shown to consume space of the 0(4B), where B is the
number of black nodes of the quadtree. Also by using this struc-
ture, efficient algorithms are presented for the computation of geo-
metric properties of binary images. All the algorithms have a space
requirement of O(B); and the algorithms to compute perimeter and
Euler number run in time O (B) , while the first phase of the label-
ing algorithm also executes in time O (B) . The performance of the
algorithms to compute geometric properties is compared with other
similar algorithms appearing in literature, in Tables IV and V. It
is observed that the algorithms presented here perform better than
other similar algorithms. It is also shown that the TLHQT can be
built directly from a raster scan of the image, requiring an addi-
tional space and time (over what is necessary to build the LHQT)
of O (B n 2 / 2 ") and O (B) , respectively.

APPENDIX
We compute here the space and time for raster to TLHQT con-

version over the raster to LHQT conversion, as this excess amount
is what is required for the introduction of threads during raster scan.
To this end, we derive three results here:

1) An estimate of the expected size of the list CAND at any
level k , 0 I k 5 n - 1.

2) Maximum amount of space required to store the various
CAND lists.

3) The expected amount of time required to introduce the
threads.

From the algorithm, it is clear that all horizontal threads are
introduced as and when a QNODE is built and hence no significant

amount of space and time is required to introduce horizontal
threads, when compared to the other phases of the algorithm. How-
ever, vertical threads at any level k , 0 I k s n - l , of recursion
are introduced after scanning two lists, CAND-TOP and CAND-

BOT, respectively, for the top and bottom halves of the image
segment, consisting of 2' lines, corresponding to level k . Each ele-
ment of each of these lists is scanned at most once and therefore
the space and time required to introduce threads is directly related
to the size of the list CAND at various stages of recursion.

We first state our assumptions:
1) The black nodes of the image are uniformly distributed over

the image grid. Thus if bk is the expected number of black nodes
at any level k , 0 c k 5 n - 1 , corresponding to a level of recur-
sion k and in an area covered by 2 lines of the raster is b k / 2 n - k .

2) In practice, there are many images which have their distri-
bution of nodes skewed towards pixels. To derive a realistic com-
plexity estimate, such a distribution of nodes expressible as shown
below is assumed. Let B be the total number of QNODE's of the
TLHQT

bk = B p k + ' , 0 C p < 1 (1)

n - I

S.t. p* c p k = 1.
k = I

It can be seen that the value of p that satisfies (2) is nearly 0.5 +
1 /3 * 2". Accordingly, in the results derived below, the fact that
p = 0.5 + 1 /3 * 2" is used in simplifying the expressions.

Result 1: The expected size of the list CAND at any level of
recursion k , 1 5 k I n - 1 is given by

B P ((2 P I k + l - 1) ck =
2 " (2 p - 1) .

Proofi The list CAND at level k will contain appropriate bor-
der node of sizes up to 4 '. Therefore,

By Assumption 2 , this reduces to
k + l - l)

e,= E--
i = O 2n-i - 2 " (2 p - 1)

0

Result 2: The maximum space required to store various CAND
lists is 0 (n * ~ / 2 ") .

Proofi It may be noted that at level k of recursion, the
QNODE's of level k are inserted into the list CAND only after
condensation at level k + 1. So while estimating the space require-
ment, it is sufficient to consider b,, 0 s i I k - 1 in deriving the
value of ck. Therefore from Result 1, it follows that

BP((2PIk - 1) ck =
2 " (2 p - 1) .

The maximum number of CAND lists that can exist simulta-
neously, are present after the last two lines of image are analyzed.
Fig. 10 illustrates this fact for a 16 X 16 image where the dark
circles indicate the levels at which the CAND lists are active, i.e.,
remaining to be scanned. The expected maximum storage space for
these lists is given by

using Result 1.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 5 , MAY 1988 665

Therefore,

Fig. 10. A typical stage in the execution of the algorithm RASQUAD after
scanning all the lines.

F o r p = 0.5 + 1 / 3 * 2 ” , the above sum reduces to

n - l

(3 / 2) B p (2 p) ’ - 1 + C,
k = I

n - I

= (3 / 2) Bp k = c I (1 + j--$r - 1) + $

for practical values of n considered.
so,

B n - I

k = l ck+cl=2”+’c k = I k

= o ($) .

BP +2”

0

Result 3: The amount of time required to introduce the vertical
threads is O (B) .

Proof: At any level k , 2 5 k 5 n , of recursion, at any in-
stance, two lists CAND-TOP and CAND-TOP produced from level
k - 1 are scanned. There are 2”-‘ such instances corresponding
to each level of recursion. So the time T required to introduce ver-
tical threads is proportional to 2 n - k x 2 x ck- I .

Due to the introduction of threads, the border QNODE’s of level
k - 1, that do not condense, are in CAND-TOP or CAND-BOT.
So the value of ck as given by Result 1 is used here.

so,

n

= 2 “ - ‘ * 2 B p ((2 p) k - using Result 1
k = 2 2 ” (2 p - 1) ’

1
usingp = 0.5 + -

3 * 2 ”

and considering practial values of n .

ACKNOWLEDGMENT

The authors thank the anonymous referees whose suggestions
greatly improved the presentation of the paper.

REFERENCES

[I] A. Klinger and C. R. Dyer, “Experiments in picture representation
using regular decomposition,” Comput. Graphics Image Processing,
vol. 5, no. 1, pp. 68-105, Mar. 1976.

[2] H. Samet, “The quadtrees and related hierarchical data structures,”
ACM Comput. Surveys, vol. 16, no. 2, pp. 187-260, June 1984.

[3] 1. Gargantini, “An effective way to represent quadtrees,” Commun.
ACM, vol. 25 , no. 12, pp. 905-910, Dec. 1983.

[4] H. Samet, “Neighbouring finding techniques for images represented
by quadtrees,” Comput. Graphics Image Processing, vol. 18, no. 1,
pp. 37-57, Jan. 1982.

[5] G. M. Hunter and K. Steiglitz, “Operations on images using quad-
trees,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, no.
2, pp. 145-153, Apr. 1979.

[6] A. Unnikrishnan, Y. V. Venkatesh, and P. Shankar, “Connected
component labelling using quadtrees-A bottom-up approach,” Com-
put. J., vol. 30, no. 2, pp. 176-182, Feb. 1987.

[7] H. Samet, “Connected component labelling using quadtrees,” J.
~~

ACM, vol. 28, no. 3, pp. 487-501, July 198i.
- , “Computing perimeters of regions in images represented by
quadtrees,” IEEE Trans. Pattern Anal, Machine Intell., vol. 3, no.

C. R. Dyer, “Computing the Euler number of an image from its quad-
tree,’’ Comput. Graphics Image Processing, vol. 13, no. 3, pp. 270-
276, July 1981.
A. Unnikrishnan, Y. V. Venkatesh, and P. Shankar, “Distribution of
black nodes at various levels in a linear quadtree,” Pattern Recog-
nition Lett., vol. 6, pp. 341-342, Dec. 1987.
A. Unnikrishnan and Y. V. Venkatesh, “An algorithm to convert a
raster scanned image to linear hierarchical quadtrees,” Dep. Elec.
Eng., Indian Inst. Sci., Bangalore, India, Tech. Rep., May 1985.
A. Unnikrishnan, P. Shankar, and Y. V. Venkatesh, “An algorithm
to convert from rasters to threaded linear hierarchical quadtrees,”
Dep. Elec. Eng., Indian Inst. Sci., Bangalore, India, Tech. Rep.,
July 1985.
L. Jones and S.S. lyengar, “Space and time efficient virtual quad-
trees,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no.
2, pp. 244-247, Mar. 1984.
E. Kawaguchi and T. Endo, “On a method of binary picture repre-
sentation and its application to data compression,” IEEE Trans. Put-
tern Anal. Machine Intell., vol. PAMI-1, no. 1, pp. 27-35, Jan. 1980.
M. A. Oliver and N. E. Wiseman, “Operations on quadtree encoded
images,” Comput. J., vol. 26, no. 1, pp. 83-92, 1983.
H. Samet and M. Tamminen, “Computing geometric properties of
images represented by, linear quadtrees,” IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-7, no. 2, pp. 229-239, Mar. 1985.
D. J. Abel, “A B-tree structure for large quadtrees,” Conlput. Vi-
sion, Graphics, Image Processing, vol. 27, no. 1, pp. 19-31, July
1984.
H. Samet, “An algorithm for converting rasters to quadtrees,” IEEE
Trans. Pattern Anal. Machine Intell., vol. PAMI-3, no. 1 , pp. 93-
95, Jan. 1981.
C. A. Shaffer apd H. Samet, “Optimal quadtree construction algo-
rithms,” Comput. Vision, Graphics, Image Processing, pp. 402-419,
Mar. 1987.

6, pp. 683-687, NOV. 1981.

[20] D. E. Knuth, The Art of Computer Programming, Vol. I , Funrlamen-

1211 R. E. Tarjan, “Efficiency of a good but not linear set union algo-
tal Algorithms, 2nd ed.

rithm,” J. ACM, vol. 22, no. 2, pp. 215-225, Apr. 1975.

Reading, MA: Addison-Wesley, 1975.

