

Threads Cannot be Implemented as a Library

Hans-J. Boehm
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2004-209
November 12, 2004 *

E-mail: Hans.Boehm@hp.com

threads, library,
register promotion,
compiler
optimization,
garbage collection

In many environments, multi-threaded code is written in a language that
was originally designed without thread support (e.g. C), to which a
library of threading primitives was subsequently added. There appears to
be a general understanding that this is no t the right approach. We provide
specific arguments that a pure library approach, in which the compiler is
designed independently of threading issues, cannot guarantee correctness
of the resulting code.

We first review why the approach almost works, and then examine some
of the surprising behavior it may entail. We further illustrate that there
are very simple cases in which a pure library-based approach seems
incapable of expressing an efficient parallel algorithm.

Our discussion takes place in the context of C with Pthreads, since it is
commonly used, reasonably well specified, and does not attempt to
ensure type-safety, which would entail even stronger constraints. The
issues we raise are not specific to that context.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Threads Cannot Be Implemented As a Library

Hans-J. Boehm
HP Laboratories

1501 Page Mill Rd.
Palo Alto, CA 94304

Hans.Boehm@hp.com

ABSTRACT
In many environments, multi-threaded code is written in a
language that was originally designed without thread sup-
port (e.g. C), to which a library of threading primitives was
subsequently added. There appears to be a general under-
standing that this is not the right approach. We provide
specific arguments that a pure library approach, in which
the compiler is designed independently of threading issues,
cannot guarantee correctness of the resulting code.

We first review why the approach almost works, and then
examine some of the surprising behavior it may entail. We
further illustrate that there are very simple cases in which a
pure library-based approach seems incapable of expressing
an efficient parallel algorithm.

Our discussion takes place in the context of C with
Pthreads, since it is commonly used, reasonably well spec-
ified, and does not attempt to ensure type-safety, which
would entail even stronger constraints. The issues we raise
are not specific to that context.

1. INTRODUCTION
Multi-threaded programs are rapidly becoming pervasive,

driven primarily by two considerations:

• Many programs need to carry on several different log-
ically concurrent interactions. For example, they may
need to concurrently serve several different client pro-
grams, or provide several related services which can
progress asynchronously, usually in separate windows,
to a single user. Threads provide a clean structuring
mechanism for such programs.

• Multiprocessors are finally becoming mainstream.
Many of the most popular processors in desktop com-
puters support multiple hardware contexts in a sin-
gle processor, making them logically multiprocessors.
In addition, essentially every microprocessor manufac-
turer who is not already shipping chip-level multipro-
cessors has announced the intention to do so within a

year. This even applies to some intended for embedded
applications, where multiprocessors can provide more
compute throughput with less total power consump-
tion (cf. [3]).

In many cases, there is no way to effectively utilize the
performance of the additional processor cores or hard-
ware threads without writing explicitly multi-threaded
programs.1

Most multi-threaded programs communicate through mem-
ory shared between the threads. Many such programs are
written in a language such as Java, C#, or Ada, which pro-
vides threads as part of the language specification. Recent
experience has shown that it is quite tricky to correctly spec-
ify such a language, particularly when type-safety and secu-
rity considerations are involved. However, these issues are
becoming reasonably well-understood.[19]

Here we focus on another large set of applications which
are written in languages such as C or C++ that do not pro-
vide for multiple threads as part of the language specifica-
tion. Instead thread support is provided by add-on libraries.
In order to focus these discussions, we concentrate on what is
arguably the best specified representative of these, Posix[13]
threads.2

We argue that these environments are as under-specified
as the original Java memory model[23], though for some-
what different reasons. In particular, essentially any appli-
cation must rely on implementation-defined behavior for its
correctness. Implementations appear to have converged on
characteristics that make it possible to write correct multi-
threaded applications, though largely, we believe, based on
painful experiences rather than strict adherence to stan-
dards. We believe that there is little general understanding
on what those characteristics are, nor the exact constraints

1Other alternatives include running multiple independent
processes, automatically parallelizing existing sequential
code, or using a hardware context to prefetch data for the
main sequential thread[8]. The first two are clearly signif-
icant in certain important domains, e.g. to many network
server or numerical applications, but are generally less ap-
plicable to, for example, typical desktop or hand-held appli-
cations, even when those require substantial CPU resources,
such as for image processing. The last applies to a wide va-
riety of domains, but has much more limited benefit than
explicitly parallel client code.
2We explicitly do not address the less frequently used envi-
ronments in which multiple concurrent threads communicate
communicate primarily through message passing, such as C
programs communicating only through the MPI[29] library,
or Erlang[9] or Concurrent ML[24] programs.

that language implementations need to obey. Several recent
papers suggest that these issues are also not fully appreci-
ated by the research community.

Here we point out the important issues, and argue that
they lie almost exclusively with the compiler and the lan-
guage specification itself, not with the thread library or its
specification. Hence they cannot be addressed purely within
the thread library.

Most of the pieces we present have been at least superfi-
cially mentioned elsewhere, though we believe that particu-
larly the important relationship between register promotion
and thread-safety is not widely understood.3 Our contri-
bution is to present these pieces coherently as an argument
that concurrency must be addressed at the language level.4

Together with several others, we are joining in an effort[1]
to revise the C++ language standard to better accommo-
date threads. Our goal here is to describe precisely why that
is necessary, and why similar efforts are needed for most
other environments relying on library-based threads.

2. OVERVIEW
We review the approach to threads exemplified by the

Pthreads approach, explaining how and why it appears to
work. We then discuss three distinct deficiencies in this
approach, each of which can lead, and at least two of which
have lead, to subtly incorrect code. Each of these failures
is likely to be very intermittent, and hard to expose during
testing. Thus it is particularly important to resolve these
issues, since they are likely to lead to unreliable production
code, and make it impossible to guarantee correctness of
multi-threaded programs.

Library-based approaches to concurrency normally require
a very disciplined style of synchronization by multi-threaded
programs. Although we agree that this is appropriate for
perhaps 98% of uses, we argue that it eliminates some low-
level programming techniques which, in some cases, may be
essential for obtaining any performance benefit from mul-
tiple processors. In other cases, such low-level program-
ming techniques can be used to improve the performance of
higher-level library primitives, and thus provide pervasive
performance improvements for a large collection of applica-
tions. Thus, although these usage rules are highly desirable
guidelines, we argue that they are inappropriate as abso-
lute requirements in a world in which we need to rely on
multiprocessors for performance.

3. THE PTHREADS APPROACH TO CON-
CURRENCY

Any language supporting concurrency must specify the
semantics of multi-threaded execution. Most fundamentally,
it must specify a “memory model”, i.e. which assignments
to a variable by one thread can be seen by a concurrently
executing thread.

3The only discussion we could find is in an HP Technical
Brief[12], which addresses these issue only very partially and
from a different perspective.
4Peter Buhr [7] makes a similar sounding argument, but he
focusses on code written under very different assumptions
from the Pthreads model, such as the implementation of
the threads library itself. We concentrate on problems that
cannot be isolated to the threads library.

Traditionally[15] concurrent execution was viewed as sim-
ply an interleaving of the steps from the threads participat-
ing in the computation. Thus if we started in an initial state
in which all variables are zero, and one thread executes:

x = 1; r1 = y;

while another executes

y = 1; r2 = x;

either the assignment to x or the assignment to y must
be executed first, and either r1 or r2 must have a value of 1
when execution completes.5

This is probably the most intuitive memory model, though
not necessarily the one that is easiest to use in practice.6 It
is referred to as sequential consistency.

In practice, it appears unlikely that such a restrictive
memory model can be implemented with reasonable per-
formance on conventional architectures. Essentially all re-
alistic programming language implementations supporting
true concurrency allow both r1 and r2 to remain zero in the
above example.

There are two reasons for this:

• Compilers may reorder memory operations if that
doesn’t violate intra-thread dependencies. Each pair
of actions in the above threads could be reordered,
since doing so does not change the meaning of each
thread, taken in isolation. And performing loads early
may result in a better instruction schedule, potentially
resulting in performance improvements. (Cf. [2].)

• The hardware may reorder memory operations based
on similar constraints. Nearly all common hardware,
e.g. X86 processors, may reorder a store followed by
a load[17]. Generally a store results immediately in a
write-buffer entry, which is later written to a coherent
cache, which would then be visible to other threads.

Thus it is customary to specify a much weaker memory
model, which allows results such as r1 = r2 = 0 in the above
example. Both the original Java memory model and the
new one described in [19] do so, as does the Pthreads stan-
dard[13].

The Pthreads standard intentionally avoids specifying a
formal semantics for concurrency. The rationale for the stan-
dard states in part:

“Formal definitions of the memory model were
rejected as unreadable by the vast majority of
programmers. In addition, most of the formal
work in the literature has concentrated on the
memory as provided by the hardware as opposed
to the application programmer through the com-
piler and runtime system. It was believed that a
simple statement intuitive to most programmers
would be most effective”.

5Many more such examples were discussed as part of the
work on the Java memory model, which is captured in [22]
6As was pointed out during the discussions in [22], it has
the clear disadvantage that shared variables used for syn-
chronization are not identified by the source.

Instead, it informally decrees:

“Applications shall ensure that access to any
memory location by more than one thread of
control (threads or processes) is restricted such
that no thread of control can read or modify a
memory location while another thread of control
may be modifying it. Such access is restricted
using functions that synchronize thread execu-
tion and also synchronize memory with respect
to other threads. The following functions syn-
chronize memory with respect to other threads:

..., pthread mutex lock(), ...,

..., pthread mutex unlock(), ...

[Many other synchronization functions listed]”7

Unlike in Java, it is acceptable to leave the semantics
of programs with “races”, i.e. concurrent reads and writes
or concurrent writes, formally undefined, and the standard
chooses to do so. (In Java, this is unacceptable because
the language is designed to limit the damage that can be
caused by untrusted, and possibly malicious code. Thus the
semantics of such code need to be specified. We make no
guarantees about malicious C/C++ code.)

In practice, C and C++ implementations that support
Pthreads generally proceed as follows:

1. Functions such as pthread mutex lock() that are
guaranteed by the standard to “synchronize mem-
ory” include hardware instructions (“memory barri-
ers”) that prevent hardware reordering of memory op-
erations around the call.8

2. To prevent the compiler from moving memory
operations around calls to functions such as
pthread mutex lock(), they are essentially treated as
calls to opaque functions, about which the compiler
has no information. The compiler effectively assumes
that pthread mutex lock() may read or write any
global variable. Thus a memory reference cannot sim-
ply be moved across the call. This approach also en-
sures that transitive calls, e.g. a call to a function f()

which then calls pthread mutex lock(), are handled
in the same way more or less appropriately, i.e. mem-
ory operations are not moved across the call to f()

either, whether or not the entire user program is being
analyzed at once.

This approach clearly works most of the time. Unfortu-
nately, we will see that it is too imprecise to allow the pro-
grammer to reason convincingly about program correctness,
7This is somewhat further clarified in the rationale. Aside
from some insightful discussion of hardware memory re-
ordering, probably the most relevant statements are: “All
these functions would have to be recognized by advanced
compilation systems so that memory operations and calls
to these functions are not reordered by optimization. All
these functions would potentially have to have memory syn-
chronization instructions added, depending on the particular
machine.” There is no discussion of indirect calls to these
functions.
8It is probably acceptable to guarantee that, e.g. for
pthread mutex lock() and pthread mutex unlock(), mem-
ory operations not move out of a critical section. Full mem-
ory barriers may not be needed. See below.

or to provide clear guidance to the compiler implementor.
As a result, apparently correct programs may fail intermit-
tently, or start to fail when a new compiler or hardware
version is used. The resulting failures are triggered by spe-
cific thread schedules, and are thus relatively hard to detect
during testing.

A secondary problem with this approach is that, in some
cases, it excludes the best performing algorithmic solutions.
As a result, many large systems, either intentionally, or unin-
tentionally, violate the above rules. The resulting programs
are then even more susceptible to the above problems.

4. CORRECTNESS ISSUES
We list three different issues that we have encountered

with the current Pthreads approach. We are not aware of
cases in which the first problem led to an actual failure. But
anecdotes abound about failures caused by the second prob-
lem, and we have personally encountered an intermittent
failure caused by the third.

4.1 Concurrent modification
The Pthreads specification prohibits races, i.e. accesses to

a shared variable while another thread is modifying it. As
pointed out by the work on the Java memory model[19], the
problem here is that whether or not a race exists depends on
the semantics of the programming language, which in turn
requires that we have a properly defined memory model.
Thus this definition is circular.

As a concrete example (essentially figure 6 from [14]), con-
sider two threads, each executing one of the following two
statements, again in an initial state in which x and y are
zero:

if (x == 1) ++y;

if (y == 1) ++x;

Does this program contain a race? Is x == 1 and y == 1
an acceptable outcome?

Under the sequentially consistent interpretation, there is
no race, since no variable can become nonzero. Hence we
can argue that this is a valid Pthreads program, and x ==
0 and y == 0 is the only valid outcome. (This is in fact the
approach taken in [19].)

On the other hand, if our compiler is allowed to transform
sequential code not containing calls to pthread operations
in any way that preserves sequential correctness, the above
could be transformed to9

++y; if (x != 1) --y;

++x; if (y != 1) --x;

9This is probably far-fetched in this example. But it is
hard to argue that similar speculative execution is never
profitable, especially in the presence of (possibly mislead-
ing) profile information, and potentially complex instruc-
tion scheduling constraints. And the real question here is
whether the transformation is correct, not whether it is prof-
itable.

This would argue both that there is a race, the semantics
of this program is formally undefined and x == 1 and y ==
1 is a potential outcome.

Indeed, under the implementation strategy we outlined
above, in which the compiler is unaware of threads, it is
allowed to transform code subject only to sequential cor-
rectness constraints and hence could generate the code con-
taining a race.

Thus we believe that the circularity in the definition is a
real issue, though probably not one likely to generate fre-
quent practical problems. Resolving it essential requires a
programming-language-defined and compiler-respected mem-
ory model, simply to ensure that the user and compiler can
agree on when there is a data race.

The remaining two issues are much more serious in prac-
tice.

4.2 Rewriting of Adjacent Data
In our preceding example, a compiler could potentially

introduce a race by speculatively executing a store operation
early. There is in fact no prohibition against storing into a
variable that is never mentioned in the source. And indeed,
for C or C++ (but not Java), that is often unavoidable.

Consider a C “struct” containing bit fields on a little-
endian 32-bit machine:

struct { int a:17; int b:15 } x;

Since very few machines support a 17-bit-wide store in-
struction, the assignment x.a = 42 is likely to be imple-
mented as something like

{

tmp = x; // Read both fields into

// 32-bit variable.

tmp &= ~0x1ffff; // Mask off old a.

tmp |= 42;

x = tmp; // Overwrite all of x.

}

Note that this effectively stores into both x.a and x.b

normally storing the original value of x.b back into x.b.
For sequential code this is completely uncontroversial. But

if there is a concurrent update to x.b that occurs between
the tmp = x and x = tmp assignments in the above code, we
have introduced a race, and the concurrent update to x.b

may be lost, in spite of the fact that the two threads operate
on completely distinct fields.

On most architectures this is unavoidable for bit-fields.
The behavior is sanctioned by the Pthreads standards, since
it prohibits a concurrent write to a “memory location” (a
formally undefined term) not just a concurrent write to a
program variable.10

Unfortunately, this behavior is currently not restricted to
adjacent bit-fields. A compiler may read and rewrite any
other fields sharing the same “memory location” being as-
signed. And it may be quite profitable for a compiler to
take advantage of this. As an admittedly extreme example,
consider the following structure on a 64-bit machine, where
it is know to the compiler that x is 64-bit aligned:

10This formulation was the subject of a clarification request
for the Posix standards[28]. The result makes it clear that
this was intentional, and “memory location” is intended to
be implementation defined.

struct { char a; char b; char c; char d;

char e; char f; char g; char h; } x;

where the programmer intended a to be protected by one
lock, and the other fields by another. If the compiler sees
the sequence of assignments:

x.b = ’b’; x.c = ’c’; x.d = ’d’;

x.e = ’e’; x.f = ’f’; x.g = ’g’; x.h = ’h’;

It would almost certainly be more efficient to compile this
into (taking some liberties with the C notation):

x = ’hgfedcb\0’ | x.a;

i.e. to compile it into a load of x.a, which is then ‘or’ed
with a constant representing the values of the other seven
fields, and stored back as a single 64-bit quantity, rewriting
all of x.

Again, this transformation introduces a potential race,
this time with a concurrent assignment to x.a, even though
the two threads may in fact access disjoint sets of fields. It
would also break code that accesses all fields from multiple
threads, but chooses to protect x.a with a different lock than
the other fields, a fairly common occurrence in practice.

The current Pthreads specification explicitly allows this,
without any restriction on the field types. By our reading,
it even allows it for adjacent global variables outside of a
struct declaration. Since linkers may, and commonly do,
reorder globals, this implies that an update to any global
variable may potentially read and rewrite any other global
variable.

We do not believe that any interesting Pthreads programs
can be claimed to be portable under these rules.

Fortunately, the original motivation for this lax specifica-
tion seems to stem from machine architectures that did not
support byte-wide stores.11 To our knowledge, no such ar-
chitectures are still in wide-spread multiprocessor use. And
in the case of uniprocessors, restartable atomic sequences[4]
can be used to make byte stores appear atomic.

The real issue here is that for a language such as C, the
language specification needs to define when adjacent data
may be overwritten. We believe that for the language to be
usable in a multi-threaded context, this specification needs
to be much more restrictive than what a highly optimiz-
ing compiler for a single-threaded language would naturally
implement, e.g. by restricting implicit writes to adjacent
bit-fields.

4.3 Register promotion
There are other optimizing transformations that introduce

variable updates were there were none in the source code.
Consider the following program which repeatedly updates

the global shared variable x inside a loop. As is common
in some library code, the access to x is protected by a lock,
but the lock is acquired conditionally, most probably de-
pending on whether a second thread has been started inside

11The first iteration of the Alpha architecture had this char-
acteristic, as did some earlier word-addressable machines.
In the case of the Alpha, this part of the architecture was
quickly revised.

the process:

for (...) {

...

if (mt) pthread_mutex_lock(...);

x = ... x ...

if (mt) pthread_mutex_unlock(...);

}

Assume the compiler determines (e.g. based on profile
feedback or on static heuristics as in, for example, [31])
that the conditionals are usually not taken, e.g. because
this application rarely creates a second thread. Following
the implementation strategy outlined above, and treating
pthread mutex lock() and pthread mutex unlock() sim-
ply as opaque function calls, it is beneficial to promote x to
a register r in the loop, using, for example, the algorithms
outlined in [26] or [18]. This results in

r = x;

for (...) {

...

if (mt) {

x = r; pthread_mutex_lock(...); r = x;

}

r = ... r ...

if (mt) {

x = r; pthread_mutex_unlock(...); r = x;

}

}

x = r;

The pthread standard requires that memory must be
“synchronized with” the logical program state at the
pthread mutex lock() and pthread mutex unlock() calls.
By a straightforward interpretation of that statement, we
believe that this requirement is technically satisfied by the
transformation.

The problem is that we have introduced extra reads and
writes of x while the lock is not held, and thus the result-
ing code is completely broken, in spite of the fact that the
implementation seems to satisfy the letter of the specifica-
tion, and is performing transformations that are reasonable
without threads.

It is worth noting that identical problems arise if the
above code had called functions named f and g instead
of pthread mutex lock and pthread mutex unlock, since f

and g may (indirectly) call thread library synchronization
primitives. Hence, again in this case, thread-safe compi-
lation restricts transformations on code that may not be
known to invoke thread primitives, and it has implications
beyond the semantics of added library calls; register promo-
tion around unknown procedure calls is generally unsafe.

This again argues that compilers must be aware of the
existence of threads, and that a language specification must
address thread-specific semantic issues. And this one ap-
pears to have profound practical implications. We know of
at least three optimizing compilers (two of them production
compilers) that performed this transformation at some point
during their lifetime; usually at least partially reversing the
decision when the implications on multi-threaded code be-
came known.

Unfortunately, we expect that in this case thread-safety
has a measurable cost in single-threaded performance. Hence

confusion about thread-safety rules may also make it hard
to interpret even single-threaded benchmark performance.

5. PERFORMANCE
The only parallel programming style sanctioned by the

Pthreads standard is one in which Pthread library mutual
exclusion primitives are used to prevent concurrent modifi-
cation of shared variables. And it is this restriction that al-
lowed the implementation strategy outlined above to almost
work. With this restriction, the order in which memory op-
erations become visible is intended to be irrelevant unless
memory operations are separated by a call to a Pthreads-
library routine.

There is much evidence that, at least in our context, this
was mostly a reasonable choice. Programs that rely on mem-
ory ordering without explicit synchronization are extremely
difficult to write and debug.

However, there is a cost involved in following this dis-
cipline. Operations such as pthread mutex lock() and
pthread mutex unlock() typically require one hardware
atomic memory update instruction each. On some architec-
tures (e.g. X86 processors), these instructions also implicitly
prevent hardware reordering of memory references around
the call. When they don’t, a separate memory barrier in-
struction may be required as well. In addition, a dynamic
library call is often involved.

The cost of atomic operations and memory barriers varies
widely, but is often comparable to that of a hundred or
more register-to-register instructions, even in the absence
of a cache miss. For example, on some Pentium 4 proces-
sors, hardware instructions to atomically update a memory
location require well over 100 processor cycles, and these
can also double as one of the cheaper mechanisms for ensur-
ing that a store operation becomes visible to other threads
before a subsequent load.

As a result of the high cost of these hardware instructions,
and the even higher cost of the pthread primitives built on
them, there are a small number of cases in which synchro-
nization performance is critical, and more careful and di-
rect use of the hardware primitives, together with less con-
strained use of shared variables, is essential. In some cases it
may also be necessary to avoid dead-lock issues inherent in
lock-based programming[6], or desirable because a different
parallel programming model is preferable for an application
(cf. [27]).

The potential practical benefit of parallel algorithms in-
volving races has long been recognized. A variant of Gauss-
Seidel iteration that took advantage of data races on a mul-
tiprocessor was described by Rosenfield in 1969[25].

The continued use of the“double-checked locking” idiom,
even in contexts such as ours, where it is both technically
incorrect[21], and often dangerous in practice, is another
indication of at least the perceived need for such techniques.

There is a large literature on lock-free and wait-free pro-
gramming techniques (cf. [30, 10, 11]) that addresses pro-
gramming techniques which rely directly on atomic memory
operations, in addition to simple atomic loads and stores,
but avoid locks. Java recently added a facility for support-
ing this kind of programming[16]. These all involve races in
our present sense.

Although these techniques are currently only appropriate
for a small fraction of multi-threaded code, they are often de-
sirable in lower level libraries, and hence may affect the per-

formance of many programs whose authors are unaware of
them. For example, it is quite common to use atomic incre-
ment operations in the implementation of reference counting
in the standard C++ string library.12

These techniques generally rely on the ability to access
shared variables with ordinary load and store instructions.
In practice, some control over reordering memory references
is needed as well, but much of the performance of these
techniques is attributable to minimizing such restrictions on
reordering.

5.1 Expensive Synchronization: An Example
There are many examples in the literature in which lock-

free code provides a performance advantage. See for example
[20] for a recent and particularly interesting one.

What follows is a particularly simple example, which we
believe more clearly illustrates the issues. It takes the form
of a simple parallel Sieve of Eratosthenes algorithm, for
which shared variable access without ordering or synchro-
nization overhead appears to be critical.

Although this problem appears contrived, it was extracted
from a similar issue which occurred in our mark-sweep
garbage collector. And indeed, any graph traversal algo-
rithm using mark bits to track visited nodes will incur simi-
lar overheads, though it would probably represent a smaller
fraction of the entire algorithm.

Consider the following Sieve of Eratosthenes implementa-
tion:

for (my_prime = start;

my_prime < 10000; ++my_prime)

if (!get(my_prime)) {

for (multiple = my_prime;

multiple < 100000000;

multiple += my_prime)

if (!get(multiple)) set(multiple);

}

where get and set operations implement a Boolean ar-
ray A containing 100 million elements. In the simplest case,
we might declare A as a sufficiently large array initialized
to false values, and get(i) and set(i) may both be imple-
mented as A[i].

For all values i between 10,000 and 100,000,000, this sim-
ple algorithm arranges that on completion get(i) is false if
and only if i is prime.13

Interestingly, it continues to do so if we run multiple copies
of this program concurrently in multiple threads, assuming
get and set operate on the same array, in such a way that
the entry corresponding to a set argument becomes true
sometime before program completion, and get returns false
for entries that have never been set.

(Clearly set(i) is called only values i which are either
smaller than 10,000, or a multiple of such a number. Thus

12The GNU C++ library currently does so. There is a strong
argument that, especially in a multi-threaded context, the
reference counting here is actually counter-productive. But
reference counting implemented with atomic operations
greatly outperforms the same algorithms implemented in
terms of locks.

13As a sacrifice to simplicity, this algorithm does have the
minor deficiency that, as stated, it fails to compute primes
smaller than 10,000. But even computing those with the
normal sequential algorithm would take a trivial amount of
time.

� � � �� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

 0

 10

 20

 30

 40

 50

 60

Mutex spinl. at. upd. unsafe

1 thread
2 threads
4 threads

Figure 1: Sieve execution time for byte array (secs)

it is never called on a prime in our range of interest. Con-
sider the smallest composite number greater than or equal
to 10,000 on which it is not called. This is a multiple of
some number j < 10, 000. For any thread not to invoke set

on all multiples of j, get(j) must have returned true. But
then some other thread must have called set(j). That same
thread would have invoked set on all multiples of j.)

Thus N copies of the above program running in N threads,
correctly compute primes under extremely weak assump-
tions about the order in which set operations become visible
to other threads. If updates by one thread become visible to
another before program termination, one thread will be able
to take advantage of work done by another, and we will see
speed-ups due the additional threads. Perhaps more inter-
estingly, there appears to be no good way to take advantage
of this with proper synchronization to prevent concurrent
modification of array elements.

Figure 1 gives running times of the above program, using
1, 2, or 4 concurrent threads, on a 4-way multiprocessor with
relatively low hardware synchronization overhead (1 GHz
Itanium 2, Debian Linux, gcc3.3)14. Here the “bit-array” A

is implemented as an array of bytes. The first set of bars uses
traditional pthread “mutex” synchronization (one lock per
256 entries), and the second uses more recently introduced
spin-locks, which perform somewhat better in this case.15

The third uses “volatile” accesses to the array without other
synchronization,while the last uses ordinary array accesses.
The fourth uses ordinary byte loads and stores. Only the
first two are compatible with pthread programming rules.

Figure 2 presents similar data, but with A implemented as
a bit array. In this case the third set of bars uses a hardware
“cmpxchg” instruction in the set implementation to atom-
ically update a bit in the array without risk to the adjacent
bits. The fourth set of bars reflects the performance of the
program which implements set with an ordinary ‘or’ opera-

14Note that gcc3.3 generally does not pipeline such loops,
which is important on this architecture, for this simple a
loop. Hence absolute performance is almost certainly sub-
optimal with this compiler, and the actual overhead of the
synchronization operations is understated.

15This version performs worse than the mutex implementa-
tion if processors are heavily over-committed, as with 20
threads. Hence it is often undesirable in practice. But
none of our tests reported here exercise that case. The
lock-free implementations are robust against processor over-
commitment.

� � � �� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	

� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� � � �� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

 0

 10

 20

 30

 40

 50

 60

Mutex spinl. at. upd. unsafe

1 thread
2 threads
4 threads

Figure 2: Sieve execution time for bit array (secs)

� � � �� � �

! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !

" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "
" "

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$ $ $
$ $ $
$ $ $
$ $ $
$ $ $

% %
% %
% %
% %
% %

& & &
& & &
& & &
& & &
& & &

' ' '
' ' '
' ' '
' ' '
' ' '

(((()))

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,

- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

. .

. .

. .

. .

/ /
/ /
/ /
/ /

0 0
0 0
0 0
0 0

1 1
1 1
1 1
1 1

2 2 2 23 3 3

4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4

5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5

6 6 6
6 6 6
6 6 6
6 6 6
6 6 6
6 6 6
6 6 6
6 6 6
6 6 6

7 7 7
7 7 7
7 7 7
7 7 7
7 7 7
7 7 7
7 7 7
7 7 7
7 7 7

8 8
8 8
8 8
8 8
8 8

9 9
9 9
9 9
9 9
9 9

: :
: :
: :
: :

; ;
; ;
; ;
; ;

 0

 10

 20

 30

 40

 50

 60

 70

 80

Mutex spinl. at. upd. unsafe

1 thread
2 threads
4 threads

Figure 3: HT P4 execution time for byte array (secs)

tion into the bit vector. This is incorrect for more than one
thread. (Like most programs with data races, it rarely fails
during simple testing like this. Thus time measurements are
no problem.)

Note that in either case, we obtain no speed-up over the
synchronization-free single-threaded version by using the
Pthread mutex primitives, but we see substantial speed-ups
(and hence effective multiprocessor use) for the lock-free im-
plementations.

Repeating the byte-array experiment on a hyper-threaded
Pentium 4 (2GHz, 2 processors with 2 threads each, Fedora
Core 2 Linux), with relatively higher synchronization costs,
we see even less promising results for the fully synchronized
versions in figures 3. Here the single-threaded version seems
essentially optimal, perhaps because it already saturates the
memory system.

But for more realistic uses of a shared bit array, we again
return to a picture more similar to the Itanium results.
Figure 4 gives the time (in milliseconds) required for our
garbage collector[5] to trace a heap containing slightly more
than 200MB of 24-byte objects, with byte arrays used to
represent mark bits. We again vary the number of threads
participating in the trace. (For the fully synchronized ver-
sion, we use a lock per page in the heap.) We see reasonable
scaling with thread count, since the number of threads is
less than the number of hardware threads. But even with 4
threads, the properly synchronized code only barely exceeds
the performance of a single synchronization-free thread, and

< < < <= = =

> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >
> > >

? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @

A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A
A A A

B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B

C C C
C C C
C C C
C C C
C C C
C C C
C C C
C C C
C C C
C C C
C C C
C C C
C C C

D D D DE E E

F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F

G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G

H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H
H H H H

I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

J J J J
J J J J
J J J J
J J J J
J J J J
J J J J
J J J J
J J J J
J J J J
J J J J

K K K
K K K
K K K
K K K
K K K
K K K
K K K
K K K
K K K
K K K

L L L LM M M

N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N
N N N N

O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O
O O O

P P P P
P P P P
P P P P
P P P P
P P P P
P P P P
P P P P
P P P P
P P P P
P P P P

Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q

R R R
R R R
R R R
R R R
R R R

S S S
S S S
S S S
S S S
S S S

 0

 500

 1000

 1500

 2000

Mutex spinl. at. upd.

1 thread
2 threads
4 threads

Figure 4: HT P4 time for tracing 200 MB (msecs)

that only with the use of spin-locks.

5.2 Implications of lock-free code
As the above argues, there are cases in which it appears

impossible to gain benefit from a multiprocessor without di-
rect fine-grained use of atomic operations. This is impossible
in a purely library-based threads implementation in which
concurrent variable accesses are disallowed. Once we allow
concurrent updates, it falls on the language specification to
give their semantics, and on the compiler itself to implement
them.

It is still possible to encapsulate the primitives in some-
thing that looks to the programmer like a library for access-
ing shared variables. Some of the recent Java extensions [16]
take this route. But to retain full performance, the imple-
mentation needs to understand that some of these primitives
impose special memory ordering constraints.

The presence of unprotected concurrent accesses to shared
variables also implies that additional properties of a pthread-
like implementation become visible, and should be specified.
Consider the sequence

x = 1;

pthread_mutex_lock(lock);

y = 1;

pthread_mutex_unlock(lock);

Some implementations of pthread mutex lock() only in-
clude a one-way “acquire” barrier. Thus the above may be
executed as

pthread_mutex_lock(lock);

y = 1;

x = 1;

pthread_mutex_unlock(lock);

with the two assignments reordered. A direct reading
of the pthread standard appears to preclude that, but the
transformation is undetectable in the absence of races. On
some architectures it has a significant performance impact,
and is thus desirable.

Once we accept the existence of lock-free code, this dis-
tinction becomes visible. To preserve performance, locking
operations should probably not be specified as preventing all
reordering around them. Indeed, the Java memory model
does not.

6. TOWARDS A SOLUTION
Several of us are trying to address these problems in the

context of the C++ standard.[1] Other participants in this
effort include Andrei Alexandrescu, Kevlin Henney, Doug
Lea, Maged Michael, and Bill Pugh.

We currently expect all of the problems to be solvable
by a solution based on the approach of the Java Mem-
ory Model[19], but adapted to the differing language design
goals in a number of ways:

1. Some type-safety and security motivated issues be-
come far less critical. In particular, it is not clear that
much of the work on causality in [19] is needed in the
context of a type-unsafe language.

2. The Java memory model traded performance for sim-
plicity in a few cases (e.g. the prohibition against re-
ordering a volatile store followed by a volatile load),
which may be inappropriate in this context.

3. In the case of at least C++ bit-fields, the compiler
must introduce stores, and hence the possibility of
races, that were not present in the source. It seems
likely that on modern architectures this can be lim-
ited to adjacent bit-fields.

7. REFERENCES
[1] A. Alexandrescu, H.-J. Boehm, K. Henney, D. Lea,

and B. Pugh. Memory model for multithreaded C++.
http://www.open-std.org/JTC1/SC22/WG21/docs/
papers/2004/n1680.pdf.

[2] M. Auslander and M. Hopkins. An overview of the
PL.8 compiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, pages 22–31,
1982.

[3] A. Bechini, P. Foglia, and C. A. Prete. Fine-grain
design space exploration for a cartographic soc
multiprocessor. ACM SIGARCH Computer
Architecture News (MEDEA Workshop), 31(1):85–92,
March 2003.

[4] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast
mutual exclusion for uniprocessors. In ASPLOS-V:
Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 223–233, October 1992.

[5] H.-J. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans Boehm/gc/.

[6] H.-J. Boehm. An almost non-blocking stack. In
Proceedings of the Twenty-third Annual ACM
Symposium on Principles of Distributed Computing,
pages 40–49, July 2004.

[7] P. A. Buhr. Are safe concurrency libraries possible.
Communications of the ACM, 38(2):117–120,
February 1995.

[8] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,
Y.-F. Lee, D. Lavery, and J. P. Shen. Speculative
precomputation: Long-range prefetching of delinquent
loads. In Proceedings of the 28th International
Symposium on Computer Architecture, pages 14–15,
2001.

[9] Ericsson Computer Science Laboratory. Open source
Erlang. http://www.erlang.org.

[10] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):123–149, 1991.

[11] M. Herlihy. A methodology for implementing highly
concurrent data structures. ACM Transactions on
Programming Languages and Systems, 15(5):745–770,
1993.

[12] HP Technical Brief. Memory ordering optimization
considerations. http://h21007.www2.hp.com/dspp/
files/unprotected/ddk/Optmiztn.pdf.

[13] IEEE and The Open Group. IEEE Standard
1003.1-2001. IEEE, 2001.

[14] JSR 133 Expert Group. Jsr-133: Java memory model
and thread specification. http://www.cs.umd.edu/
∼pugh/java/memoryModel/jsr133.pdf, August 2004.

[15] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Transactions on Computing, C-28(9):690–691, 1979.

[16] D. Lea. Concurrency jsr-166 interest site. http://
gee.cs.oswego.edu/dl/concurrency-interest.

[17] D. Lea. The JSR-133 cookbook for compiler writers.
http://gee.cs.oswego.edu/dl/jmm/cookbook.html.

[18] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu.
Register promotion by sparse partial redundancy
elimination of loads and stores. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, pages 26–37,
1998.

[19] J. Manson, W. Pugh, and S. Adve. The java memory
model. In Conference Record of the Thirty-Second
Annual ACM Symposium on Principles of
Programming Languages, January 2005.

[20] M. M. Michael. Scalable lock-free dynamic memory
allocation. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and
Implementation, pages 35–46, 2004.

[21] B. Pugh. The “double-checked locking is broken”
declaration. http://www.cs.umd.edu/∼pugh/
java/memoryModel/DoubleCheckedLocking.html.

[22] B. Pugh. The java memory model. http://
www.cs.umd.edu/∼pugh/java/memoryModel/.

[23] W. Pugh. The java memory model is fatally flawed.
Concurrency - Practice and Experience,
12(6):445–455, 2000.

[24] J. H. Reppy. Cml: A higher-order concurrent
language. In Proceedings of the ACM SIGPLAN 1991
Conference on Programming Language Design and
Implementation, pages 293–305, 1991.

[25] J. L. Rosenfield. A case study in programming for
parallel processors. Communications of the ACM,
12(12):645–655, December 1969.

[26] A. V. S. Sastry and R. D. C. Ju. A new algorithm for
scalar register promotion based on ssa form. In
Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and
Implementation, pages 15–25, 1998.

[27] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the Fourteenth Annual
ACM Symposium on Principles of Distributed
Computing, pages 204–213, 1995.

[28] A. Terekhov and D. Butenhof. The austin common

standards revision group: Enhancement request 9
(austin/107): Clarification of “memory location”.
http://www.opengroup.org/
austin/docs/austin 107.txt, May 2002.

[29] The MPI Forum. The message passing interface (MPI)
standard. http://www-unix.mcs.anl.gov/mpi/.

[30] R. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ5118, IBM Almaden
Research Center, 1986.

[31] Y. Wu and J. R. Larus. Static branch frequency and
program profile analysis. In Proceedings of the 27th
Annual International Symposium on
Microarchitecture, pages 1–11, 1994.

