
ThreadSanitizer – data race detection in practice

Konstantin Serebryany
OOO Google
7 Balchug st.

Moscow, 115035, Russia
kcc@google.com

Timur Iskhodzhanov
MIPT

9 Institutskii per.
Dolgoprudny, 141700, Russia

timur.iskhodzhanov@phystech.edu

ABSTRACT
Data races are a particularly unpleasant kind of threading
bugs. They are hard to find and reproduce – you may not
observe a bug during the entire testing cycle and will only
see it in production as rare unexplainable failures. This pa-
per presents ThreadSanitizer – a dynamic detector of data
races. We describe the hybrid algorithm (based on happens-
before and locksets) used in the detector. We introduce
what we call dynamic annotations – a sort of race detec-
tion API that allows a user to inform the detector about
any tricky synchronization in the user program. Various
practical aspects of using ThreadSanitizer for testing multi-
threaded C++ code at Google are also discussed.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging —
Testing tools.

General Terms
Algorithms, Testing, Reliability.

Keywords
Concurrency Bugs, Dynamic Data Race Detection, Valgrind.

1. INTRODUCTION
A data race is a situation when two threads concurrently

access a shared memory location and at least one of the
accesses is a write.

Such bugs are often difficult to find because they happen
only under very specific circumstances which are hard to
reproduce. In other words, a successful pass of all tests
doesn’t guarantee the absence of data races. Since races
can result in data corruption or segmentation fault, it is
important to have tools for finding existing data races and
for catching new ones as soon as they appear in the source
code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WBIA ’09, Dec 12, New York City, NY
Copyright 2009 ACM 978-1-60558-793-6/12/09 ...$10.00.

The problem of precise race detection is known to be NP-
hard (see [20]). However, it is possible to create tools for
finding data races with acceptable precision (such tools will
miss some races and/or report false warnings).

Virtually every C++ application developed at Google is
multithreaded. Most of the code is covered with tests, rang-
ing from tiny unit tests to huge integration and regression
tests. However, our codebase had never been studied using
a data race detector. Our main task was to implement and
deploy a continuous process for finding data races.

2. RELATED WORK
There are a number of approaches to data race detection.

The three basic types of detection techniques are: static, on-
the-fly and postmortem. On-the-fly and postmortem tech-
niques are often referred to as dynamic.

Static data race detectors analyze the source code of a
program (e.g. [11]). It seems unlikely that static detectors
will work effectively in our environment: Google’s code is
large and complex enough that it would be expensive to add
the annotations required by a typical static detector.

Dynamic data race detectors analyze the trace of a par-
ticular program execution. On-the-fly race detectors process
the program’s events in parallel with the execution [14, 22].
The postmortem technique consists in writing such events
into a temporary file and then analyzing this file after the
actual program execution [18].

Most dynamic data race detection tools are based on one
of the following algorithms: happens-before, lockset or both
(the hybrid type). A detailed description of these algorithms
is given in [21]. Each of these algorithms can be used in the
on-the-fly and postmortem analysis.

3. HISTORY OF THE PROJECT
Late in 2007 we tried several publicly available race de-

tectors, but all of them failed to work properly “out of the
box”. The best of these tools was Helgrind 3.3 [8] which had
a hybrid algorithm. But even Helgrind had too many false
positives and missed many real races. Early in 2008 we mod-
ified the Helgrind’s hybrid algorithm and also introduced an
optional pure happens-before mode. The happens-before
mode had fewer false positives but missed even more data
races than the initial hybrid algorithm. Also, we introduced
dynamic annotations (section 5) which helped eliminate false
positive reports even in the hybrid mode.

Still, Helgrind did not work for us as effectively as we
would like it to — it was still too slow, missed too many

62

races in the pure happens-before mode and was too noisy in
the hybrid mode1.

So, later in 2008 we implemented our own race detector.
We called this tool “ThreadSanitizer”. ThreadSanitizer
uses a new simple hybrid algorithm which can easily be used
in a pure happens-before mode. It supports the dynamic
annotations we have suggested for Helgrind. Also, we have
tried to make the race reports as informative as possible to
make the tool easier to use.

4. ALGORITHM
ThreadSanitizer is implemented as a Valgrind [19] tool2.

It observes the program execution as a sequence of events.
The most important events are memory access events and
synchronization events. Memory access events are Read

and Write. Synchronization events are either locking events
or happens-before events. Locking events are WrLock, RdLock,
WrUnlock and RdUnlock. Happens-before events are
Signal and Wait

3.
These events, generated by the running program, are ob-

served by ThreadSanitizer with the help of the underlying bi-
nary translation framework (Valgrind). The detector keeps
the state based on the history of the observed events and
updates it using a certain state machine. To formally de-
scribe the state and the state machine we will need some
definitions.

4.1 Definitions
Tid (thread ID): a unique number identifying a thread of

the running program.
ID: a unique ID of a memory location4.
EventType: one of Read, Write, WrLock, RdLock,

WrUnlock, RdUnlock, Signal, Wait.
Event: a triple {EventType, T id, ID}. We will write

EventTypeTid(ID) or EventType(ID) if the T id is obvi-
ous from the context.

Lock: an ID that appeared in a locking event.
A lock L is write-held by a thread T at a given point of

time if the number of events WrLockT (L) observed so far
is greater than the number of events WrUnlockT (L).

A lock L is read-held by a thread T if it is write-held by
T or if the number of events RdLockT (L) is greater than
the number of events RdUnlockT (L).

Lock Set (LS): a set of locks.
Writer Lock Set (LSWr): the set of all write-held locks

of a given thread.
Reader Lock Set (LSRd): the set of all read-held locks

of a given thread.
Event Lock Set: LSWr for a Write event and LSRd

for a Read event.
Event context: the information that allows the user to

understand where the given event has appeared. Usually,
the event context is a stack trace.

Segment: a sequence of events of one thread that con-
tains only memory access events (i.e. no synchronization

1The current version of Helgrind (3.5) is different; it is faster
but has only a pure happens-before mode.
2At some point it was a PIN [15] tool, but the Valgrind-
based variant has proved to be twice as fast.
3In the original Lamport’s paper [14] these are called Send
and Receive.
4In the current implementation ID represents one byte of
memory, so on a 64-bit system it is a 64-bit pointer.

 Thread T1
 S1

 Signal(H1)
 S4

 Thread T2
 S2

 Wait(H1)
 S5

 Signal(H2)
 S6

 Thread T3
 S3

 Wait(H2)
 S7

Figure 1: Example of happens-before relation.
S1 ≺ S4 (same thread); S1 ≺ S5 (happens-before arc
SignalT1

(H1) – WaitT2
(H1)); S1 ≺ S7 (happens-before is

transitive); S4 6≺ S2 (no relation).

events). The context of a segment is the context of the
first event in the segment. Each segment has its writer and
reader LockSets (LSWr and LSRd). Each memory access
event belongs to exactly one segment.

Happens-before arc: a pair of events X = SignalTX
(AX)

and Y = WaitTY
(AY) such that AX = AY , TX 6= TY and

X is observed first.
Happens-before: a partial order on the set of events.

Given two events X = TypeXTX
(AX) and Y = TypeYTY

(AY),
the event X happens-before or precedes the event Y (in short,
X ≺ Y ; � and 6� are defined naturally) if X has been ob-
served before Y and at least one of the following statements
is true:

• TX = TY .

• {X, Y } is a happens-before arc.

• ∃E1, E2 : X � E1 ≺ E2 � Y (i.e. ≺ is transitive).

The happens-before relation can be naturally defined for
segments since segments don’t contain synchronization events.
Figure 1 shows three different threads divided into segments.

Segment Set: a set of N segments {S1, S2, ..., SN} such
that ∀i, j : Si 6� Sj .

Concurrent: two memory access events X and Y are
concurrent if X 6� Y , Y 6� X and the intersection of the lock
sets of these events is empty.

Data Race: a data race is a situation when two threads
concurrently access a shared memory location (i.e. there are
two concurrent memory access events) and at least one of
the accesses is a Write.

4.2 Hybrid state machine
The state of ThreadSanitizer consists of global and per-

ID states. The global state is the information about the
synchronization events that have been observed so far (lock
sets, happens-before arcs). Per-ID state (also called shadow
memory or metadata) is the information about each memory
location of the running program.

ThreadSanitizer’s per-ID state consists of two segment
sets: the writer segment set SSWr and the reader segment
set SSRd. SSWr of a given ID is a set of segments where
the writes to this ID appeared. SSRd is a set of all seg-
ments where the reads from the given ID appeared, such

63

that ∀Sr ∈ SSRd, Sw ∈ SSWr : Sr 6� Sw (i.e. all segments in
SSRd happen-after or are unrelated to segments in SSWr).

Each memory access is processed with the following pro-
cedure. It adds and removes segments from SSWr and SSRd

so that SSWr and SSRd still match their definitions. At the
end, this procedure checks if the current state represents a
race.

Handle-Read-Or-Write-Event(IsWrite,T id, ID)
1 � Handle event Read Tid(ID) or Write Tid(ID)
2 (SSWr, SSRd)← Get-Per-ID-State(ID)
3 Seg ← Get-Current-Segment(T id)
4 if IsWrite

5 then � Write event: update SSWr and SSRd

6 SSRd ← {s : s ∈ SSRd ∧ s 6� Seg}
7 SSWr ← {s : s ∈ SSWr ∧ s 6� Seg} ∪ {Seg}
8 else � Read event: update SSRd

9 SSRd ← {s : s ∈ SSRd ∧ s 6� Seg} ∪ {Seg}
10 Set-Per-ID-State(ID, SSWr, SSRd)
11 if Is-Race(SSWr, SSRd)
12 then � Report a data race on ID

13 Report-Race(IsWrite,T id, Seg, ID)

Checking for race follows the definition of race (4.1). Note
that the intersection of lock sets happens in this procedure,
and not earlier (see also 4.5).

Is-Race(SSWr, SSRd)
1 � Check if we have a race.
2 NW ← Segment-Set-Size(SSWr)
3 for i← 1 to NW

4 do W1 ← SSWr[i]
5 LS1 ← Get-Writer-Lock-Set(W1)
6 � Check all write-write pairs.
7 for j ← i + 1 to NW

8 do W2 ← SSWr[j]
9 LS2 ← Get-Writer-Lock-Set(W2)

10 Assert(W1 6�W2 and W2 6� W1)
11 if LS1 ∩ LS2 = ∅
12 then return true

13 � Check all write-read pairs.
14 for R ∈ SSRd

15 do LSR ← Get-Reader-Lock-Set(R)
16 if W1 6� R and LS1 ∩ LSR = ∅
17 then return true

18 return false

Our ultimate goal is the race-reporting routine. It prints
the contexts of all memory accesses involved in a race and
all locks that were held during each of the accesses. See
appendix B for an example of output. Once a data race is
reported on ID, we ignore the consequent accesses to ID.

Report-Race(IsWrite,T id, Seg, ID)
1 (SSWr, SSRd)← Get-Per-ID-State(ID)
2 Print(“Possible data race: ”)
3 Print(IsWrite ? “Write” : “Read”)
4 Print(“ at address ” , ID)
5 Print-Current-Context(T id)
6 Print-Current-Lock-Sets(T id)
7 for S ∈ SSWr \ Seg

8 do Print(“Concurrent writes: ”)
9 Print-Segment-Context(S)

10 Print-Segment-Lock-Sets(S)
11 if not IsWrite

12 then return
13 for S ∈ SSRd \ Seg

14 do if S 6� Seg

15 then Print(“Concurrent reads: ”)
16 Print-Segment-Context(S)
17 Print-Segment-Lock-Sets(S)

4.3 Segments and context
As defined in (4.1), the segment is a sequence of memory

access events and the context of the segment is the context
of its first event. Recording the segment contexts is critical
because without them race reports will be less informative.
ThreadSanitizer has three different modes5 with regard to
creation of segments:
1 (default): Segments are created each time the program
enters a new super-block (single-entry multiple-exit region)
of code. So, the contexts of all events in a segment belong
to a small range of code, always within the same function.
In practice, this means that the stack trace of the previ-
ous access is nearly precise: the line number of the topmost
stack frame may be wrong, but all other line numbers and
all function names in the stack traces are exact.
0 (fast): Segments are created only after synchronization
events. This means that events inside a segment may have
very different contexts and the context of the segment may
be much different from the contexts of other events. When
reporting a race in this mode, the contexts of the previous
accesses are not printed. This mode is useful only for re-
gression testing. For performance data see 7.2.
2 (precise, slow): Segments are created on each memory
access (i.e. each segment contains just one event). This
mode gives precise stack traces for all previous accesses, but
is very slow. In practice, this level of precision is almost
never required.

4.4 Variations of the state machine
The state machine described above is quite simple but

flexible. With small modifications it can be used as a pure
happens-before detector or else it can be enhanced with a
special state similar to the initialization state described in
[22]. ThreadSanitizer can use either of these modifications
(adjustable by a command line flag).

4.4.1 Pure happens-before state machine
As any hybrid state machine, the state machine described

above has false positives (see 6.4). It is possible to avoid
most (but not all) false positives by using the pure happens-
before mode.

Extended happens-before arc: a pair of events (X, Y)
such that X is observed before Y and one of the following
is true:

• X = WrUnlockT1
(L), Y = WrLockT2

(L).

• X = WrUnlockT1
(L), Y = RdLockT2

(L).

• X = RdUnlockT1
(L), Y = WrLockT2

(L).

5Controlled by the --keep-history=[012] command flag;
Memcheck and Helgrind also have similar modes controlled
by the flags --track-origins=yes|no and --history-
level=none|approx|full respectively.

64

 Thread T1

 WrLock(L)

 WrUnlock(L)

 Thread T2
 RdLock(L)

 RdUnlock(L)

Figure 2: Extended happens-before arc.

• (X, Y) is a happens-before arc.

If we use the extended happens-before arc in the definition
of happens-before relation, we will get the pure happens-
before state machine similar to the one described in [9]6.

The following example explains the difference between
pure happens-before and hybrid modes.

Thread1 Thread2

obj ->UpdateMe ();
mu.Lock ();
flag = true;
mu.Unlock ();

mu.Lock ();
bool f = flag;
mu.Unlock ();
if (f) obj ->UpdateMe ();

The first thread accesses an object without any lock and
then sets the flag under a lock. The second thread checks
the flag under a lock and then, if the flag is true, accesses
the object again. The correctness of this code depends on
the initial value of the flag. If it is false, the two accesses
to the object are synchronized correctly; otherwise we have
a race. ThreadSanitizer cannot distinguish between these
two cases. In the hybrid mode, the tool will always re-
port a data race on such code. In the pure happens-before
mode, ThreadSanitizer will behave differently: if the race
is real, the race may or may not be reported (depends on
timing, this is why the pure happens-before mode is less
predictable); if there is no race, the tool will be silent.

4.4.2 Fast-mode state machine
In most real programs, the majority of memory locations

are never shared between threads. It is natural to optimize
the race detector for this case. Such an optimization is im-
plemented in ThreadSanitizer and is called fast mode7.

Memory IDs in ThreadSanitizer are grouped into cache
lines. Each cache line contains 64 IDs and the T id of the
thread which made the first access to this cache line. In
fast mode, we ignore all accesses to a cache line until we
see an access from another thread. This indeed makes the
detection faster — according to our measurements it may
increase the performance by up to 2x, see 7.2.

This optimization affects accuracy. Eraser [22] has the ini-
tialization state that reduces the number of false positives
produced by the lock-set algorithm. Similarly, the Thread-
Sanitizer’s fast mode reduces the number of false positives
in the hybrid state machine. Both these techniques may as
well hide real races.

The fast mode may be applied to the pure happens-before
state machine, but we don’t do this because the resulting
detector will miss too many real races.

6Controlled by the --pure-happens-before command line
flag.
7Controlled by the --fast-mode command line flag.

4.5 Comparison with other state machines
ThreadSanitizer and Eraser [22, 13] use locksets differ-

ently. In Eraser, the per-ID state stores the intersection
of locksets. In ThreadSanitizer, the per-ID state contains
original locksets (locksets are stored in segments, which are
stored in segment sets and, hence, in the per-ID state) and
lockset intersection is computed each time when we check
for a race. This way we are able to report all locks involved
in a race. Surprisingly enough, this extra computation adds
only a negligible overhead.

This difference also allows our hybrid state machine to
avoid a false report on the following code. The accesses in
three different threads do not have any common lock, yet
they are correctly synchronized8.

Thread1 Thread2 Thread3

mu1.Lock ();
mu2.Lock ();
obj -> Change ();
mu2.Unlock ();
mu1.Unlock ();

mu2 .Lock ();
mu3 .Lock ();
obj ->Change ();
mu3 .Unlock ();
mu2 .Unlock ();

mu1.Lock ();
mu3.Lock ();
obj ->Change ();
mu3.Unlock ();
mu1.Unlock ();

ThreadSanitizer’s pure happens-before mode finds the same
races as the classical Lamport’s detector [14] (we did not
try to prove it formally though). On our set of unit tests
[7], it behaves the same way as other pure happens-before
detectors (see appendix A)9. The noticeable advantage of
ThreadSanitizer in the pure happens-before mode is that
it also reports all locks involved in a race — the classical
pure happens-before detector knows nothing about locks and
can’t include them in the report.

5. DYNAMIC ANNOTATIONS
Any dynamic race detector must understand the synchro-

nization mechanisms used by the tested program, otherwise
the detector will not work. For programs that use only
POSIX mutexes, it is quite possible to hard-code the knowl-
edge about the POSIX API into the detector (most popular
detectors do this). However, if the tested program uses other
means of synchronization, we have to explain them to the
detector. For this purpose we have created a set of dynamic
annotations — a kind of race detection API.

Each dynamic annotation is a C macro definition. The
macro definitions are expanded into some code which is later
intercepted and interpreted by the tool10. You can find our
implementation of the dynamic annotations at [7].

The most important annotations are:

• ANNOTATE_HAPPENS_BEFORE(ptr),

• ANNOTATE_HAPPENS_AFTER(ptr)

These annotations create, respectively, Signal(ptr) and

8These cases are rare. During our experiments with Hel-
grind 3.3, which reported false positives on such code, we
saw this situation only twice.
9It would be interesting to compare the accuracy of the de-
tectors on real programs, but in our case it appeared to be
too difficult. Other detectors either did not work with our
OS and compiler or did not support our custom synchroniza-
tion utilities and specific synchronization idioms (e.g. syn-
chronization via I/O). Thus we have limited the comparison
to the unit tests.

10Currently, the dynamic annotations are expanded into
functions calls, but this is subject to change.

65

Wait(ptr) events for the current thread; they are used
to annotate cases where a hybrid algorithm may pro-
duce false reports, as well as to annotate lock-free syn-
chronization. Examples are provided in section 6.4.

Other annotations include:

• ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(lock)

Tells the detector to treat lock as in pure-happens-
before mode (even if all other locks are handled as
in hybrid mode). Using this annotation with the hy-
brid mode we can selectively apply pure hapens-before
mode to some locks. In the pure happens-before mode
this annotations is a no-op.

• ANNOTATE_CONDVAR_LOCK_WAIT(cv,mu)

Creates a Wait(cv) event that matches the cv.Signal()
event (cv is a conditional variable, see 6.4.1).

• ANNOTATE_BENIGN_RACE(ptr)

Tells that races on the address “ptr” are benign.

• ANNOTATE_IGNORE_WRITES_BEGIN,

• ANNOTATE_IGNORE_WRITES_END

Tells the tool to ignore all writes between these two
annotations. Similar annotations for reads also exist.

• ANNOTATE_RWLOCK_CREATE(lock),

• ANNOTATE_RWLOCK_DESTROY(lock),

• ANNOTATE_RWLOCK_ACQUIRED(lock, isRW),

• ANNOTATE_RWLOCK_RELEASED(lock, isRW)

Is used to annotate a custom implementation of a lock
primitive.

• ANNOTATE_PUBLISH_MEMORY_RANGE(ptr,size)

Reports that the bytes in the range [ptr, ptr + size)
are about to be published safely. The race detector
will create a happens-before arc from this call to sub-
sequent accesses to this memory. Usually required only
for hybrid detectors.

• ANNOTATE_UNPUBLISH_MEMORY_RANGE(ptr,size)

Opposite to ANNOTATE_PUBLISH_MEMORY_RANGE. Reports
that the bytes in the range [ptr, ptr + size) are not
shared between threads any more and can be safely
used by the current thread w/o synchronization. The
race detector will create a happens-before arc from all
previous accesses to this memory to this call. Usually
required only for hybrid detectors.

• ANNOTATE_NEW_MEMORY(ptr, size)

Tells that a new memory has been allocated by a cus-
tom allocator.

• ANNOTATE_THREAD_NAME(name)

Tells the name of the current thread to the detector.

• ANNOTATE_EXPECT_RACE(ptr)

Is used to write unit tests for the race detector.

With the dynamic annotations we can eliminate all false
reports of the hybrid detector and hide benign races. As
a result, ThreadSanitizer will find more races (as compared
to a pure happens-before detector) but will not report false
races.

6. RACE DETECTION IN PRACTICE

6.1 Performance
Performance is critical for the successful use of race de-

tectors, especially in large organizations like Google. First,
if a detector is too slow, it will be inconvenient to use it for
manual testing or debugging. Second, slower detector will
require more machine resources for regular testing, and the
machine resources cost money. Third, most of the C++ ap-
plications at Google are time-sensitive and will simply fail
due to protocol timeouts if slowed down too much.

When we first tried Helgrind 3.3 on a large set of unit
tests, almost 90% of them failed due to slowdown. With our
improved variant of Helgrind and, later, with ThreadSani-
tizer we were able to achieve more than 95% pass rate. In
order to make the remaining tests pass, we had to change
various timeout values in the tests11.

On an average Google unit test or application the slow-
down is 20-50 times, but in extreme cases the slowdown
could be as high as 10000 times (as for example an artificial
stress test for a race detector) or as low as 2 times (the test
mostly sleeps or waits for I/O). See also section 7.2.

ThreadSanitizer spends almost all the time intercepting
and analyzing memory accesses. If a given memory location
has been accessed by just one thread, the analysis is fast
(especially in the fast mode, see section 4.4.2). If a memory
location has been accessed by many threads and there have
been a lot of synchronization events, the analysis is slow.

So, there are two major ways to speed up the tool: make
the analysis of one memory access faster and analyze fewer
memory accesses. In order to make the analysis of one ac-
cess faster, we used various well known techniques and al-
gorithms such as vector time-stamps ([9]) and caching. We
also limited the size of a segment set with a small constant
(currently, 4) to avoid huge slowdowns in corner cases. But
whatever we do to speed up the analysis, the overhead will
always remain significant: remember that we replace a mem-
ory access instruction with a call to a quite sophisticated
function that usually runs for few hundreds of CPU cycles.

A much more attractive approach is to reduce the number
of analyzed memory accesses. For example, ThreadSanitizer
does not instrument the internals of the threading library
(there is no sense in analysing races on internal representa-
tion of a mutex). The tool also supports a mechanism to
ignore parts of the program marked as safe by the user12.
In some cases this allows to speed up the run by 2-3 times
by ignoring a single hot spot.

Adaptive instrumentation [16] seems promising. We also
plan to use static analysis performed by a compiler to skip
instrumentation when we can prove thread-safety statically.

Another way to reduce the number of analyzed memory
accesses is to run the tool on an optimized binary. Unfortu-
nately, the current implementation does not work well with
fully optimized code (e.g. gcc -O2)13, but the following gcc
flags give 50%-100% speedup compared to a non-optimized

11This had a nice side effect. Many of the tests that were fail-
ing regularly under ThreadSanitizer were known to be flaky
(they were sometimes failing when running natively) and
ThreadSanitizer helped to find the reason of that flakiness
just by making tests slower.

12Controlled by the --ignore command line flag.
13This is a limitation of both gcc, Valgrind and ThreadSani-
tizer.

66

compilation while maintaining the same level of usability:
gcc -O1 -g -fno-inline -fno-omit-frame-pointer -fno-

builtin14.

6.2 Memory consumption
The memory consumption of ThreadSanitizer consists mostly

of the following overhead:

• A constant size buffer that stores segments, including
stack traces. By default, there are 223 segments and
each occupies ≈100 bytes (≈50 bytes in 32-bit mode).
So, the buffer is ≈800M. Decreasing this size may lead
to loosing some data races. If we are not tracking the
contexts of previous accesses (see 4.3), the segments
occupy much less memory (≈250M).

• Vector time clocks attached to each segment. This
memory is limited by the number of threads times the
number of segments, but in most cases it is quite small.

• Per-ID state. In the fast mode, the memory required
for per-ID state linearly depends on the amount of
memory shared between more than one thread. In
the full hybrid and in the pure happens-before modes,
the footprint is a linear function of all memory in the
program. However, these are the worst case assump-
tions and in practice a simple compression technique
reduces the memory usage significantly.

• Segment sets and locksets may potentially occupy ar-
bitrary large amount of memory, but in reality they
constitute only a small fraction of the overhead.

All these objects are automatically recycled when applicable.
On an average Google unit test the memory overhead is

within 3x-4x (compared to a native run). Obviously, a test
will fail under ThreadSanitizer if there is not enough RAM
in the machine. Almost all unit tests we have tried require
less than 4G when running under ThreadSanitizer. Real
applications may require 8G and more. See also 7.2 for the
actual numbers.

6.2.1 Flushing state
Even though the memory overhead of ThreadSanitizer is

sane on average, there are cases when the tool would con-
sume all the memory it could get. In order to stay robust,
ThreadSanitizer flushes all its internal state when the mem-
ory overhead is above a certain limit (supplied by the user or
derived from ulimit) or when the tool has used all available
segments and none of them can be recycled. Obviously, if a
flush happens between two memory accesses which race with
each other, such a race will be missed, but the probability
of such situation is low.

6.3 Common real races
In this section we will show the examples of the most

frequent races found in our C++ code. The detailed analysis
of some of these races is given at [7].

6.3.1 Simple race
The simplest possible data race is the most frequent one:

two threads are accessing a variable of a built-in type with-
out any synchronization. Quite frequently, such races are

14This applies to gcc 4.4 on x86 64.

benign (the code counts some statistic that is allowed to be
imprecise). But sometimes such races are extremely harmful
(e.g. see 7.1).

Thread1 Thread2

int v; ...
v++; v++;

6.3.2 Race on a complex type
Another popular race happens when two threads access

a non-thread-safe complex object (e.g. an STL container)
without synchronization. These are almost always danger-
ous.

Thread1 Thread2

std ::map <int ,int > m; ...
m[123] = 1; m[345] = 0;

6.3.3 Notification
A data race occurs when a boolean or an integer variable is

used to send notifications between threads. This may work
correctly with some combination of compiler and hardware,
but for portability we do not recommend programmers to
assume implicit semantics of the target architecture.

Thread1 Thread2

bool done = false; ...

while (!done)
sleep (1);

done = true;

6.3.4 Publishing objects without synchronization
One thread initializes an object pointer (which was ini-

tially null) with a new value, another thread spins until the
object pointer becomes non-null. Without proper synchro-
nization, the compiler may do surprising transformations
(code motion) with such code which will lead to (occasional)
failures. In addition to that, on some architectures this race
may cause failures due to cache-related effects.

Thread1 Thread2

MyObj * obj = NULL;
...
obj = new MyObj ();

while(obj == NULL)
yield ();

obj ->DoSomething ();

6.3.5 Initializing objects without synchronization

static MyObj *obj = NULL;
void InitObj () {

if (! obj)
obj = new MyObj ();

}

Thread1 Thread2

InitObj (); InitObj ();

This may lead e.g. to memory leaks (the object may be
constructed twice).

6.3.6 Write during a ReaderLock
Updates happening under a reader lock.

Thread1 Thread2

mu.ReaderLock ();
var ++;
mu.ReaderUnlock();

mu. ReaderLock ();
var ++;
mu. ReaderUnlock();

67

6.3.7 Adjacent bit fields
The code below looks correct at the first glance. But if x

is “struct { int a:4, b:4; }”, we have a bug.

Thread1 Thread2

x.a++; x.b++;

6.3.8 Double-checked locking
The so called doubled-checked locking is well known to

be an anti-pattern ([17]), but we still find it occasionally
(mostly in the old code).

bool inited = false;
void Init() {

// May be called by multiple threads .
if (! inited) {

mu.Lock ();
if (! inited) {

// .. initialize something
}
inited = true;
mu.Unlock ();

}
}

6.3.9 Race during destruction
Sometimes objects are created on the stack, passed to an-

other thread and then destroyed without waiting for the
second thread to finish its work.

void Thread1 () {
SomeType object ;
ExecuteCallbackInThread2 (

SomeCallback , &object);
...
// "object " is destroyed when
// leaving its scope.

}

6.3.10 Race on vptr
Class A has a function Done(), virtual function F() and a

virtual destructor. The destructor waits for the event gen-
erated by Done(). There is also a class B, which inherits A

and overrides A::F().

class A {
public :
A() {
sem_init (&sem_ , 0, 0);

}
virtual void F() {
printf ("A::F\n");

}
void Done() {
sem_post (& sem_);

}
virtual ~A() {
sem_wait (& sem_);
sem_destroy (& sem_);

}
private :
sem_t sem_;

};

class B : public A {
public :
virtual void F() {
printf ("B::F\n");

}
virtual ~B() { }

};

static A *obj =
new B;

An object obj of static type A and dynamic type B is cre-
ated. One thread executes obj->F() and then signals to
the second thread. The second thread calls delete obj (i.e.
B::~B) which then calls A::~A, which, in turn, waits for the
signal from the first thread. The destructor A::~A overwrites
the vptr (pointer to virtual function table) to A::vptr. So,

if the first thread executes obj->F() after the second thread
started executing A::~A, then A::F will be called instead of
B::F.

Thread1 Thread2

obj ->F();
obj ->Done ();

delete obj;

6.4 Common false positives
Here we show the three most common types of false posi-

tives, i.e. the situations where the code is correctly synchro-
nized, but ThreadSanitizer will report a race. The annota-
tions given in the code examples explain the synchronization
to the tool; with these annotations no reports will appear.

6.4.1 Condition variable

Thread1 Thread2

obj -> UpdateMe ();
mu.Lock();
c = true;
cv.Signal ();
mu.Unlock ();

mu.Lock ();
while (!c)

cv.Wait(&mu);
ANNOTATE_CONDVAR_LOCK_WAIT (

&cv , &mu);
mu.Unlock ();
obj -> UpdateMe ();

This is a typical usage of a condition variable [12]: the two
accesses to obj are serialized. Unfortunately, it may be mis-
understood by the hybrid detector. For example, Thread1
may set the condition to ”true” and leave the critical section
before Thread2 enters the critical section for the first time
and blocks on the condition variable. The condition of the
while(!c) loop will never be true and cv.Wait() method
won’t be called. As a result, the happens-before dependency
will be missed.

6.4.2 Message queue
Some message queues may also be unfriendly to the hybrid

detector.

class Queue {
public :
void Put(int* ptr) {

mu_.Lock ();
queue_ .push_back (ptr);
ANNOTATE_HAPPENS_BEFORE (ptr);
mu_.Unlock ();

}
int* Get () {

int *res = NULL;
mu_.Lock ();
if (! queue_ .empty ()) {

res = queue_ .front ();
ANNOTATE_HAPPENS_AFTER (res);
queue_ . pop_front ();

}
mu_.Unlock ();
return res;

}
private :
std :: queue queue_ ;
Mutex mu_;

};

The queue implementation above does not use any happens-
before synchronization mechanism but it does actually cre-
ate a happens-before dependency between Put() and Get().

68

Thread1 Thread2

*ptr = ...;
queue .Put(ptr);

ptr = queue.Get ();
if (ptr)

*ptr = ...;

A message queue may be implemented via atomic oper-
ations (i.e. without any Mutex). In this case even a pure
happens-before detector may report false positives.

6.4.3 Reference counting
Another frequent cause of false positives is reference count-

ing. As with message queues, mutex-based reference count-
ing will result in false positives in the hybrid mode, while
a reference counting implemented via atomics will confuse
even the pure happens-before mode. And again, the anno-
tations allow the tool to understand the synchronization.

class SomeReferenceCountedClass {
public :
void Unref () {

ANNOTATE_HAPPENS_BEFORE (&ref_);
if (AtomicIncrement(&ref_ , -1) == 0) {

ANNOTATE_HAPPENS_AFTER (& ref_);
delete this;

}
} ...

private :
int ref_;

}

6.5 General advice
Applying a data race detector to an arbitrary C++ pro-

gram may be arbitrarily hard. However, if the developers
follow several simple rules, race detectors can be used at full
power. Here we summarize the recommendations we give to
C++ developers at Google.

First of all, variables shared between threads are best pro-
tected by a mutex. Always use mutex unless you know for
sure that it causes a significant performance loss.

When possible, try to reuse the existing standard synchro-
nization primitives (e.g. message queues, reference counting
utilities, etc) instead of re-inventing the wheel. If you really
need your own synchronization mechanism, annotate it with
dynamic annotations (section 5).

Avoid using condition variables directly as they are not
friendly to hybrid detectors. Instead, wrap the condition
loop while(!c) cv.Wait(&mu) into a separate function and
annotate it (6.4.1). In Google’s internal C++ library such
function is a part of the Mutex API.

Try not to use atomic operations directly. Instead, wrap
the atomic operations into functions or classes that imple-
ment certain synchronization patterns.

Remember that dynamic data race detection (as well as
most other kinds of dynamic analysis) is slow. Do not hard-
code any timeout values into your program. Instead, allow
the timeout values to be changed via command line flags,
environment variables or configuration files.

Never use sleep() as synchronization between threads,
even in unit tests.

Don’t over-synchronize. Excessive synchronization may
be just as incorrect as no synchronization at all, but it may
hide real races from data race detectors.

6.5.1 Choosing the mode
Which of the three modes of ThreadSanitizer should one

choose?
If you are testing an existing software project, we suggest

you to start with the pure happens-before mode (4.4.1). Un-
less you have lock-free synchronization (which you will have
to annotate), every reported race will be real.

Once you fixed all reports from the pure happens-before
mode (or if you are starting a new project), switch to the
fast mode (4.4.2). You may see few false reports (6.4), which
can be easily eliminated. If your aim is to find the maximal
number of bugs and agree to spend some more time for an-
notations, use the full hybrid mode (4.2).

For regression testing prefer the hybrid mode (either full
or fast) because it is more predictable. It is often the case
that a race is detected only on one of 10-100 runs by the
pure happens-before mode, while the hybrid mode finds it
in each run.

7. RACE DETECTION FOR CHROMIUM
One of the applications we test with ThreadSanitizer is

Chromium [1], an open-source browser project.
The code of Chromium browser is covered by a large num-

ber of tests including unit tests, integration tests and inter-
active tests running the real application. All these tests
are continuously run on a large number of test machines
with different operating systems. Some of these machines
run tests under Memcheck (the Valgrind tool which finds
memory-related errors, see [8]) and ThreadSanitizer. When
a new error (either a test failure or a race report from
ThreadSanitizer) is found after a commit to the repository,
the committer of the change is notified. These reports are
available for other developers and maintainers as well.

We have found and fixed a few dozen data races in Chro-
mium itself, and in some third party components used by
this project. You may find all these bugs by searching for
label:ThreadSanitizer at www.crbug.com.

7.1 Top crasher
One of the first data races we found in Chromium hap-

pened to be the cause of a serious bug, which had been
observed for several months but had not been understood
nor fixed15. The data race happened on a class called Ref-

Counted. The reference counter was incremented and decre-
mented from multiple threads without synchronization. When
the race actually occurred (which happened very rarely), the
value of the counter became incorrect. This resulted in ei-
ther a memory leak or in two calls of delete on the same
memory. In the latter case, the internals of the memory al-
locator were corrupted and one of the subsequent calls to
malloc failed with a segmentation fault.

The cause of these failures was not understood for a long
time because the failure never happened during debugging,
and the failure stack traces were in a different place. Thread-
Sanitizer found this data race in a single run.

The fix for this data race was simple. Instead of the Ref-

Counted class we needed to use RefCountedThreadSafe, the
class which implements reference counting using atomic in-
structions.

15See the bug entries http://crbug.com/18488 and
http://crbug.com/15577 describing the race and the
crashes, respectively.

69

Table 1: Time and space overhead compared to Helgrind and Memcheck on Chromium tests.
The performance of ThreadSanitizer is close to Memcheck. On large tests (e.g. unit), ThreadSanitizer can be twice as fast as
Helgrind. The memory consumption is also comparable to Memcheck and Helgrind.

app base ipc net unit

native 3s 172M 77s 1811M 5s 325M 50s 808M 43s 914M
Memcheck-no-hist 6.7x 2.0x 1.7x 1.1x 5.2x 1.1x 3.0x 1.6x 14.8x 1.7x
Memcheck 10.5x 2.6x 2.2x 1.1x 8.2x 1.2x 5.1x 2.3x 29.7x 1.9x
Helgrind-no-hist 13.9x 2.7x 1.8x 1.8x 5.4x 1.5x 4.5x 2.2x 48.7x 3.4x
Helgrind 14.9x 3.8x 1.7x 1.9x 6.7x 1.7x 11.9x 2.5x 62.3x 3.8x
TS-fast-no-hist 6.2x 4.2x 2.2x 1.2x 11.1x 1.8x 3.9x 1.7x 19.2x 2.2x
TS-fast 7.9x 7.6x 2.4x 1.5x 12.0x 3.6x 4.7x 2.4x 21.6x 2.8x
TS-full-no-hist 8.4x 4.2x 2.4x 1.2x 11.3x 1.8x 4.7x 1.6x 22.3x 2.3x
TS-full 13.8x 7.4x 2.8x 1.5x 11.9x 3.6x 6.3x 2.3x 28.6x 2.5x
TS-phb-no-hist 8.3x 4.2x 2.8x 1.2x 11.2x 1.8x 4.7x 1.8x 23.0x 6.2x
TS-phb 14.2x 7.4x 2.6x 1.5x 11.8x 3.6x 6.2x 2.3x 28.6x 2.5x

7.2 Performance evaluation on Chromium
We used Chromium unit tests for performance evaluation

of ThreadSanitizer. We compared our tool with Helgrind
and Memcheck 3.5.0 [8]. Even though Memcheck is not a
race detector, it performs similar instrumentation; this tool
is well known for its high quality and practical usefulness.

Table 1 gives the summary of the results. ThreadSani-
tizer was run in three modes: --pure-happens-before=yes

(phb), --fast-mode=yes (fast) and --fast-mode=no (full).
Similarly to ThreadSanitizer, Helgrind and Memcheck have
modes where the history of previous accesses is not tracked
(4.3). In the table, such modes are marked with no-hist.
The tests were built using gcc -O1 -g -fno-inline -fno-

omit-frame-pointer -fno-builtin flags for the x86 64 plat-
form and run on Intel Core 2 Duo Q6600 with 8Gb or RAM.

As may be seen from Table 1, the performance of Thread-
Sanitizer is close to Memcheck. The average slowdown com-
pared to the native run is less than 30x. On large tests like
unit, ThreadSanitizer can be twice as fast as Helgrind.

The memory consumption is also comparable to Mem-
check and Helgrind. ThreadSanitizer allocates a large con-
stant size buffer of segments (see 6.2), hence on small tests
it consumes more memory than other tools.

ThreadSanitizer flushes its state (see 6.2.1) 90 times on
unit, 34 times on net and 4 times on base test sets when
running in the full or pure happens-before modes with his-
tory tracking enabled. In the fast mode and with disabled
history tracking ThreadSanitizer never flushes its state on
these tests.

8. CONCLUSIONS
In this paper we have presented ThreadSanitizer, a dy-

namic detector of data races. ThreadSanitizer uses a new
algorithm; it has several modes of operation, ranging from
the most conservative mode (which has few false positives
but also misses real races) to a very aggressive one (which
has more false positives but detects the largest number of
real races). To the best of our knowledge ThreadSanitizer
has the most detailed output and it is the only dynamic race
detector with hybrid and pure happens-before modes.

We have introduced the dynamic annotations, a sort of
API for a race detector. Using the dynamic annotations
together with the most aggressive mode of ThreadSanitizer
enables us to find the largest number of real races while

keeping zero noise level (no false positives or benign races
are reported).

ThreadSanitizer is heavily used at Google for testing var-
ious C++ applications, including Chromium. In this paper
we discussed a number of practical issues which we have
faced while deploying ThreadSanitizer.

We believe that our ThreadSanitizer has noticeable advan-
tages over other dynamic race detectors in terms of practical
use. The current implementation of ThreadSanitizer is built
on top of the Valgrind binary translation framework and it
can be used to test C/C++ programs on Linux and Mac.
The source code of ThreadSanitizer is published under the
GPL license and can be downloaded at [7].

9. ACKNOWLEDGMENTS
We would like to thank Mike Burrows, the co-author of

Eraser [22], for his great support of our project at Google
and for many algorithmic suggestions, and Julian Seward,
the author of Valgrind and Helgrind [8, 19], for his amazing
tools and fruitful discussions.

10. REFERENCES
[1] Chromium project. http://dev.chromium.org.

[2] Intel Parallel Studio. http://software.intel.com/en-
us/intel-parallel-studio-home.

[3] Intel Thread Checker.
http://software.intel.com/en-us/intel-thread-checker.

[4] Multi-Thread Run-time Analysis Tool for Java.
http://www.alphaworks.ibm.com/tech/mtrat.

[5] Pin - a dynamic binary instrumentation tool.
http://www.pintool.org.

[6] Sun Studio. http://developers.sun.com/sunstudio.

[7] ThreadSanitizer project: documentation, source code,
dynamic annotations, unit tests.
http://code.google.com/p/data-race-test.

[8] Valgrind project. Home of Memcheck, Helgrind and
DRD. http://www.valgrind.org.

[9] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A
theory of data race detection. In PADTAD ’06:
Proceedings of the 2006 workshop on Parallel and
distributed systems: testing and debugging, pages
69–78, New York, NY, USA, 2006. ACM.

[10] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen.
Unraveling Data Race Detection in the Intel R© Thread

70

Checker. In First Workshop on Software Tools for
Multi-core Systems (STMCS), in conjunction with
IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), March,
volume 26, 2006.

[11] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. In SOSP
’03: Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 237–252, New
York, NY, USA, 2003. ACM.

[12] F. Garcia and J. Fernandez. Posix thread libraries.
Linux J., 70es (Feb. 2000):36, 2000.

[13] J. J. Harrow. Runtime checking of multithreaded
applications with visual threads. In Proceedings of the
7th International SPIN Workshop on SPIN Model
Checking and Software Verification, pages 331–342,
London, UK, 2000. Springer-Verlag.

[14] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 190–200, New York, NY, USA,
2005. ACM.

[16] D. Marino, M. Musuvathi, and S. Narayanasamy.
Literace: effective sampling for lightweight data-race
detection. In PLDI ’09: Proceedings of the 2009 ACM
SIGPLAN conference on Programming language
design and implementation, pages 134–143, New York,
NY, USA, 2009. ACM.

[17] S. Meyers and A. Alexandrescu. C++ and the Perils
of Double-Checked Locking: Part I. DOCTOR
DOBBS JOURNAL, 29:46–49, 2004.

[18] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards,
and B. Calder. Automatically classifying benign and
harmful data races using replay analysis. In PLDI ’07:
Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
pages 22–31, New York, NY, USA, 2007. ACM.

[19] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and
implementation, pages 89–100, New York, NY, USA,
2007. ACM.

[20] R. H. B. Netzer and B. P. Miller. What are race
conditions?: Some issues and formalizations. ACM
Letters on Programming Languages and Systems
(LOPLAS), 1(1):74–88, 1992.

[21] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In PPoPP ’03: Proceedings of the
ninth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 167–178, New
York, NY, USA, 2003. ACM.

[22] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

APPENDIX

A. OTHER RACE DETECTORS
Here we briefly describe some of the race detectors avail-

able for download.
Helgrind is a tool based on Valgrind [19, 8]. Helgrind

3.5 is a pure happens-before detector; it supports a sub-
set of dynamic annotations described in section 5. Part of
ThreadSanitizer’s instrumentation code is derived from Hel-
grind. DRD is one more Valgrind-based race detector with
similar properties.

Intel Thread Checker [3, 10, 9] is a pure happens-before
race detector. It supports an analog of dynamic annota-
tions (a subset). It works on Linux and Windows. Thread
Checker’s latest reincarnation is called Intel Parallel In-
spector [2] and is based on PIN [15, 5]. As of November
2009, the Parallel Inspector is available only for Windows.

Sun Thread Analyzer, a part of Sun Studio [6]. A
hybrid race detector. It supports an analog of dynamic an-
notations (a small subset). It works only together with the
Sun Studio compiler (so we did not try it for our real tasks).

IBM MTRAT [4] is a race detector for Java. It uses
some variant of hybrid state machine and does not support
any annotations. As of the version from March 2009, the
noise level seems to be rather high.

B. EXAMPLE OF OUTPUT
Here we give a simple test case where a wrong mutex is

used in one place. For more examples refer to [7].

Mutex mu1 ; // This Mutex guards var.
Mutex mu2 ; // This Mutex is not related to var.
int var ;
// Runs in thread named ’test -thread -1’
void Thread1 () {

mu1.Lock (); // Correct Mutex .
var = 1;
mu1.Unlock ();

}
// Runs in thread named ’test -thread -2’
void Thread2 () {

mu2.Lock (); // Wrong Mutex.
var = 2;
mu2.Unlock ();

}

The output of ThreadSanitizer will contain stack traces for
both memory accesses, names of both threads, information
about locks held during each access and the description of
the memory location.

WARNING: Possible data race during write of size 4

T2 (test-thread-2) (locks held: {L134}):

#0 Thread2() racecheck_unittest.cc:7034

#1 MyThread::ThreadBody(MyThread*) ...

Concurrent write(s) happened at these points:

T1 (test-thread-1) (locks held: {L133}):

#0 Thread1() racecheck_unittest.cc:7029

#1 MyThread::ThreadBody(MyThread*) ...

Address 0x63F260 is 0 bytes inside data symbol "var"

Locks involved in this report: {L133, L134}

L133

#0 Mutex::Lock() ...

#1 Thread1() racecheck_unittest.cc:7028 ...

L134

#0 Mutex::Lock() ...

#1 Thread2() racecheck_unittest.cc:7033 ...

71

