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THREAT EQUILIBRIA AND FAIR SETTLEMENTS IN COOPERATIVE GAMES

by

Roger B. Myerson

1. Introduction

In cooperative situations involving many individuals, threats can play
an important part in determining how the fruits of cooperation will be
allocated to the participants. To study the role of threats in cooperation,
we may conceptually divide the negotiation process into two stages. First
comes the threats stage, when individuals and groups announce threats against
each other. Then comes the settlement stage, in which an agreement is gen-
erated, allocating payoffs to individuals in proportion to their power (as
expressed in the threats).

To describe how threats might be generated in an n-person cooperative
game, Harsanyi [ 1] suggested constructing a larger noncooperative game in
which there are 2™-1 agents, each of whom must select a threat strategy for
one possible coalition in the original game. The Shapley value [ % ] has an
important role in Harsanyi's model, as what we will call a settlement func-
tion . 1In this paper we will see why it may be more natural to revise Harsanyi's
model by using the partition function value [ 5] in place of the Shapley

value.

2. The Basic Framework

We will describe our basic conflict situation by an n-person game in nor-

mal form. Formally,I" is an n-person game in normal form if

(1) T = ;Dy,e.e5D 3Up500,T)



where N = {1,2,...,n3, each Di is a nonempty finite set, and each Ui is a real-
valued function defined on the domain D1 X D2 X eoe X Dn' We interpret N as
the set of players in the game, who are numbered from 1 to n. For each player
i, D; is the set of pure strategies which player i could choose if he played

the game noncooperatively. And each Ui is the utility function for player i,

so that Ui(dl""’dn) would be the payoff to player i (measured in some
vonNeumann-Morgenstern utility scale) if (dl,...,dn) were the combination of
strategies chosen by the players.

If T is a cooperative game, then the players can form coalitions to
choose their strategies jointly. For any set of players S C N, the set of

joint strategies for S, which would be available to the members of S if they

acted together as a coalition, is

(2) B.= X D, .
S ies i

3°

Let CL be the set of all possible coalitions which could form among the

For example, B{13 = D1 and B{1,3] = D1 X D

players in N; that is:

(3) CL = {S:SCN, S # ¢} .

A threat for coalition S is a commitment by the members of S to carry

out some joint strategy in B, if the negotiations should break down during

S
settlement stage in such a way that the members of S are in agreement with

each other but with no other players. We will assume that a threat will be
generated for every possible coalition in CL during the threats stage of the

negotiations. That is, the set of all possible combinations of threats which

may be generated is ¥ BS
SeCL
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Notice that we are allowing all 2"-1 sets of players to plan threats
against each other, not just some disjoint collection of coalitions. There
is no inconsistency problem here, since the threats of intersecting coalitions
are conditioned on mutually exclusive events. For example, suppose N = {1,2,3].
Then a threat for coalition {1,2} is a conditional commitment to carry out
some joint strategy b{1’23 = (dl’dZ) if players 1 and 2 should find themselves
in agreement against 3 after a breakdown of negotiations. On the other hand,
a threat for coalition {1,3} is a conditional commitment to carry out some
joint strategy b{1’33 = (di,dg) if 1 and 3 should find themselves in agreement
against 2 after a breakdown of negotiations. Thus there is no reason to re-
quire that d1 should equal d’, since these are commitments for player 1 con-
ditioned on mutually exclusive events.

Since the universal coalition N is itself a coalition, we are implicitly
including the possibility of a threat for coalition N. One may object that
the conditional plans of the universal coalition should not be called a 'threat",
since there is no one left to threaten. In a later section, we will assume
that the threat for coalition N should be part of the final settlement which
is actually carried out. Nevertheless, for uniformity of terminology, we
will refer to the plans of all coalitions, including N, as '"threats".

So far we have only discussed the first stage of negotiations, the threats
stage. The outcome of the threats stage is the vector of coalition threats

b &€ X B, selected by the 2.1 coalitions. But the significance of these

SeCL 5

threats is measured by their impact on the second stage of negotiations, the
settlement stage.

At this point we shall leave the settlement stage of negotiations as some-
thing of a black box. One may imagine that an arbitrator will come along, look

at all the threats which have been made, and then compute some fair payoff
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allocation to be the final binding settlement. But the only assumptions we
require now are that the settlement stage of the negotiations will always
generate some payoff allocation and that this outcome will depend on some or
all of the coalitions' threats. Thus, the settlement stage of the negotia-

tions may be modeled by some settlement function of the form

(&) f: X B - R"
SECL

mapping vectors of threats into payoff allocation vectors. That is, if
£€.) ' were the settlement function in a negotiation process, and if

b= (b were the combination of threats chosen by the various coalitions,

s’ secL
then fi(b) would be the player i's expected utility payoff in the final

settlement,

3. Threat Equilibria and Cooperative Solutions

. . n
In this section we assume that a settlement function f: X BS - R has
SeCL

been specified for our game I'. (We shall return to the problem of finding a
reasonable settlement function in Section 4.) Given this settlement function,
we can try to answer the question: how should the coalitions choose their
threats?

We may assume that, for each S € CL, there is some coalition agent res-

ponsible for selecting the threat bS € BS for S. Then the threats stage of
the negotiation process begins to look like a normal form game, in which CL

is the set of "players'", and By is the set of pure strategies for coalition S.
All that we need to complete the normal form structure is to specify a utility
function for each coalition S.

The agent for coalition S does not expect his threat to be actually carried

out, so he must judge his threat solely in terms of its impact on what the



members of S will get in the final settlement. Thus a reasonable utility

function for coalition S in the threats game is Uf: X B, —» R where:
S SECL 5

£
(5) vty = = £, ) .
S ies *

That is, the "payoff" to coalition S is the sum of the payoffs to the mem-
bers of S in the final settlement allocation.

The threats-game for I', with respect to the settlement function £, is

then defined to be;

(6) r*(f) = <CL;<Bs>seCL;(U§>s€CL)'

T*(f) is a mathematical game in normal form, and so, by Nash [ 6 ], it must
have an equilibrium in mixed strategies (that is, in which the coalitions may

randomize their threat selections). We define a threat equilibrium for T

to be an equilibrium for this threats-game T'*(f).

In a threat equilibrium, every coalition's threat maximizes the total
payoff which its members can expect from the final settlement, given the threats
planned by the other coalitions. In this sense, the equilibrium threats are
the rational threats for coalitions to use in negotiations. Thus, we can de-

fine a cooperative solution for I' (with respect to f) to be any payoff allocat-

ing x € R" such that x = f(b) for some threat equilibrium b (or such that

X = E(f(g)) for some mixed-strategy threat equilibrium g}.
U

4, The Fair Settlement Function

In the last section, we saw that it is straightforward to develop a theory
of cooperative solutions and rational threats for T', once a settlement func-
tion has been specified. So the crucial step in building a theory of coopera-"

tive games must be the construction of a settlement function. In this section,



we will define two axioms which a reasonable settlement function might satisfy,
and we will show the unique function satisfying both axioms.

We shall henceforth assume that utility is transferable between the

players in I'. That is, the payoffs to the players are assumed to be measured
in units of some freely exchangeable commodity, like money. See [2 ] for
some theoretical arguments to justify the important role which this trans-
ferrable utility assumption has played in game theory.

One basic requirement of a settlement function is that its allocation
should always be feasible. With transferable . utility, we can guarantee

feasibility if f(-) satisfies the following equation:

) z fi(b) = X Ui(bN) for any b€ X B

ien ien secL °

higey -

(Here bN is the N-component of the vector b = (bS)SECL'

SO0 Ui(bN) is well-defined.) The idea behind (7) is that the joint strategy

chosen by the universal coalition N should be actually carried out in the

T e

.gettlement, but tﬁ;éFﬁenﬁiéﬁt be followed by some utility trans«

fers or sidepayments between the players. We can Fhink of these transfers as
bribes which may be required to induce some smallér coalitions not to carry
out their threats.

Axiom 1 expresses a stronger version of (7). The basic idea is that, if
there are two groups of players who effectively ignore each other in all coali-
tion plans, then the fair settlement should not require any coordination or
transfers between these two groups. To develop this idea formally, we need
some additional notation.

Suppose S and T are two disjoint sets of players, and suppose bS = (di)iE

S

and bT = (di)ieT are threats for S and T (in B, and BT respectively). Then

S

we let (bs,bT> = (d That is, (bs,bT> is the threat for SUT in which

i) 1esur”

Notice that b_&€B._= X D.
NN |,
i€N

l,
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the S and T factions act as in their bS and bT threats separately.
For any set of players T & N and any threats-combination b = (bS)S€CL’

we say that b is T-decomposable iff

(8) b, = (bSnT,bS\T>, for every S € CL.
When threats are T-decomposable, there is no effective threat coordination
between the members of T and those outside T. Axiom 1 suggests that, if the
vector of threats happens to be T-decomposable, then there should be no
utility transfers between the players in T and those outside T.

Axjom 1. For any TS N and any b€ X B

H
sec, °
- if b is T-decomposable then

s £ ()= = u,.M®m).
ier jer * N

(Notice that bN = <bT’bN\T> if b is T-decomposable.

Notice also that b is always N-decomposable, so Axiom 1 implies (7).)

Consider the problem of a coalition S as it chooses its strategy in the
threat-game. According to (5), the criterion to be maximized in the selec-
tion of bS € BS is X fi(b). But a typical player j €S really wants to maxi-

ies

mize fj(b). If these criteria are not strategically equivalent for the pur-
poses of choosing bs, then there may be some conflicting interests among the
members of S when they choose their threat. To prevent such conflict of
interests, a fair settlement function should be designed so that all members
of coalition S would always gain or lose equally by a change in their collec-
tive S-threat bs. A natural unit for comparing gains of different players is
the transferrable unit of utility. So Axiom 2 suggests that the difference

between what two players get in the final settlement should not be influenced
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by the threat of a coalition to which both belong.

Axiom 2. For any S € CL, any i € S, and any j € S,

f (b)) - fj(b) does not depend on bS € B That is,
i

g*

for any b € X B. and any b, € B_, £,(b) - £,(b)
TECL T 58 1 J

- AN '

= fi(b-S’bS) fj(b_s,bs).

(Here (b_s,b;) denotes the vector identical to b

except that the S-component is changed to bé.)

Let PT be the set of all partitions of N; that is:
k

(9) PT = {{sl,sz,...,sk}:sinsj =@ if i # j» U s, = N}

i=1 .
If S is a coalition, we will let s be the number of players in S; and if Q is
a partition, we will let q be the number of coalitions in Q.

Our main result is that Axioms 1 and 2 uniquely determine the settlement

function £(.).

Theorem 1. A settlement function f: X B, = R® satisfies
s€cr, S

Axioms 1 and 2 if and only if, for all i € N:

= @l L. g L ,
£,(b) jgN QEPT( DR CIORY e SéQ (q-1) (n-5) Uj(<bT>TEQ)
(i£s)
(i€s)

(Uj(<bT>T€d)iS the utility payoff which player j would get before

transfers if all the coalitions in Q carried out their threats.)



5. Relationship to the Shapley Value

The formula in Theorem 1 can be interpreted in terms of partition func-

tion games. We define an embedded coalition to be an ordered pair (S,Q) such

that Q is a partition of N and S is one of the coalitions in Q. ©Let ECL be

the set of all embedded coalitions, so:
(10) ECL = {(5,Q):Q € PT,S € Q} .

Lucas and Thrall [ 3] defined a partition function game to be a vector w in

ECL

R (so w = (w ). In a partition function game w, the (S,Q)-com-

S’Q)(S,Q)EECL

ponent w is interpreted as the wealth of transferrable utility which would

5,Q
be available to the members of coalition S if the players were aligned into

the coalitions of partition Q.

Given a vector of coalition threats b € X B_, let W(b) be the partition

S€CL S
function game defined by:
(11) We o) = 2 U.((b) ), V(5,Q)€ECL.

It can be shown that the formula in Theorem 1 is then equivalent to:

(12) £(b) = &(W(b)),

where @:RECL - RN is the natural generalization of the Shapley value to parti-

tion function games, as defined in [5 ].
Harsanyi presents a bargaining model in [1 ], which differs from ours

mainly in that he uses a settlement function based on the Shapley value for

characteristic function games. To be precise, we may define V: X BS - RCL
SeCL

by:

(13) Vs(b) = 'z Ui((bs,bN\S>), ¥ s € CcL.

1€S
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Then Harsanyi's settlement function (for games with transferable utility)

turns out to be

(14) T(b) = 9(V(b)),

where ¢ is the Shapley value [ 8]. Harsanyi's settlement function satisfies
our Axiom 2, but does not satisfy Axiom 1.

For two-person games (n=2) with ‘transferable utility, the formulas of (12)
and - (14) coincide, and both generate the same cooperative solution theory
as the Nash bargaining solution [ 7]. For n > 3, however, (12) and (14) are

strictly different settlement functions.

6. Individual Rationality and Pareto-Optimality

Let f be as in Theorem 1, and suppose b € X B
SECL

g is a threat-equilibrium

for T" with respect to £f. 1If b is the vector of threats made in the first
stage of the negotiations, then player i will expect payoff fi(b) from the
final settlement. But can player i do better on his own?

We must allow that any player i always has the option to reject the
settlement, and to drop out of the universal coalition. This action would
leave player i alone against the players in the complementary coalition
N\{i}. The threats-vector b tells us what they would do; they would have to
carry out their threat bN\{i}' Theorem 2 asserts that player i could not do
better against this threat than he can do in the settlement. Thus, no player
should want to reject the settlement if everyone else is willing to accept it.
In this sense, the settlement in our cooperative solution is individually

rational or stable.
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Theorem 2. If b is a threat equilibrium with respect to f
(the settlement function from Theorem 1), then for any

i € N and any di € D,:
£5(b) 2 U; (b 14045

Theorem 3 asserts that the settlement in our cooperative solution is also

Pareto-gptimal.

Theorem 3., For b and f as in Theorem 2,

n n n
= = : ’
.§1 fi(b) = .%1 Ui(bN) :?i;mum '%1 Ui(bN)'
i= i= N BN i=
7. Example
Consider a three-person game in which:
N = {1,2,3};
= . = 2 = .
b, = {0,135 D, = (2,3} = D,
Ui(dl,dz,dB) = di - (8 - d1 - d2 - d3).

We can interpret this game as an oligopoly problem, where player 1 is a small
firm and players 2 and 3 are large firms, all producing for the same market.
The small firm can produce either no output or one unit, and each of the large
firms can produce either 2 or 3 units of output. Then the market price depends
on total output in such a way that profit-per-unit equals eight minus total
output., Each firm's profit equals its own output times the profit-per-unit.
The set of coalitions playing in the threats game I'*(f) is:
cL = {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}].

The coalition strategy sets are as follows:
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By = L0535 Bryy = (D, (DT = Bray

B{l,Z} = {(0’2)’(1’2)’(053)’(1’3)} = B{1,3} 5

Bry,3p = ((2:2),(2,3),(3,2),(3,3)]; and
B{l 2,3} {(,2,2),(1,2,2),(0,3,2),(0,2,3),(1,2,2),(1,3,2),(1,2,3),(0,3,3),(1,3,3)}

When n=3, our formula for f in Theorem 1 turns out to give:
1% £®) = %(Ul(b{1,2,3}) +Uy(bry 9,39 tUsbry 53900
* %(Ul(b{l,z}’b{B}) + Uy (g 0yoP3y)) - %U3(b{1,2}’b{3})
+ %(Ul(b{l,3}’b{2}) * U3y 33P0y - %Uz(b{1,3]’b{2})
+ %(Ul(b{l}’b{Z,B}) - %(Uz(b{l}’b{z;aﬁ*'Us(b{l}’b{2,3}))
eyt E % Gy Pty
=301 Cppbray by

along with similar equations for fz(b) and f3(b).
Computing the utility functions for the threats game T*(f) as in (5), we
can then analyze T'*(f) to find a threat equilibrium., It can be shown that

there is a unique equilibrium for I*(f), which is described in the following

table.

S s
{1} (L

f2} (3

{3} (3)
{1,2} (1,3)
{1,3} (1,3)
{2,3) (2,2)
{1,2,3) (0,2,2)

Table 1. The threat equilibrium
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Thus, in threat equilibrium, all coalitions are threatening to produce as
much as they can, except for {2,3} and {1,2,3}. The strategy by = (0,2,2) is

easy to understand, since it maximizes total payoff to the three players

3

(z U1(0,2,2) = 16), and is therefore the only Pareto-optimal joint strategy
i=1

(when utility is transferable).
To understand the threat of coalition {2,3], suppose that the coalition
were considering changing to another threat, say b%z 3) = (3,3). Such a
b

change (increasing the threatened production level for {2,3] to 6) would give

1CnpPa,sp TS 2 tnyPe, s

and

|
(o))

U (115523 * U2 ®r135{2,3)) =

+

< =
U213 Pp2,3)) * U3 PrayoPa,ap) T 1
Decreasing Ul(b{l]’b{z 3}) tends to improve the bargaining position of 2 and
b
3, but decreasing UZ(b{l]’b{Z,B]) + U3(b{1},b{2’3}) tends to hurt their bar-
gaining position. The net effect of these two changes must be determined by
the settlement function, and it turns out that
1
f(b) = (3 3> 6 6 3 )

while

f(b_{2,3},b {2,3]) = (4,6,6).

. 7
Thus, the net effect of changing from b{2’3] to b{2’3} would be to hurt the
bargaining position of players 2 and 3,
Similar arguments can be given to verify that no coalition can benefit by
changing from its threat in Table 1. Thus this is indeed a threat equilibrium,

and the cooperative solution is £(b) = (3%, 6% s 6%).
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If we used the Harsanyi-Shapley settlement function f (recall (14)), we
would find that b from Table 1 would still be an equilibrium for the threats-

game Tx(}). But T(b) = 22, 62 6%). Notice that

1) =23 <3 =0 (br1q5bp, 59)-

Thus the cooperative solution generated by the Harsanyi-Shapley settlement func-

tion does not satisfy the individual rationaiity property of Theorem 2.

8. Proofs
PROOF OF THEOREM 1.

Throughout this proof, we shall assume that f satisfies the formula in the
Theorem, which is equivalent to (12). We must first show that this f satis-
fies Axioms 1 and 2.

Axiom 1 follows from Corollary 1 in [5 ]. Suppose that b is T-decomposable.
Let T* = {T,M\T}. Then the partition function game W(b) (recall (11)) satis-

fies:

wS,Q(b) iés Ui(<bR>R§Q)

U, (b,

ies R’ReQAT*’

N W (), Y(S,Q)€ECL .
SEQAT* S,QAT*

&S

]

This equation implies that W(b) is T#-decomposable as defined in [ 5 ]. Then

Corollary 1 of [5 ] implies

z @i(w(b)) = WT (b) .

i€T T

Translating back, using (11) and (12), gives us

> f.(b) = = U,(b.,b..») = Z U.(b.)
ier * jer L TMT ier = N
(using T-decomposability of b for the second equality). This proves that £

satisfies Axiom 1.



_15-

q-1 1 1
Let ai,k,Q = (-1) (q-]‘)' (n - S’ZSQ (q-]_) (n"S ) ) ‘

(igs’)
(k¢s’)

Now, suppose S is a given coalition and {i,j} C S. Observe that:

(16) fi(b) - fj(b) = Z Z (a,

o oeer 0 T 2, P )

TEQ

But Uk(<bT>T€Q) depends on bS only if S€Q, and a; if S€ Q. So

k07 %3,k,Q
the terms in (16) which depend on bS all have zero coefficients, which proves
Axiom 2.

Now suppose that f’ satisfies Axioms 1 and 2. We must show that £ = f.
To do so, we will need some graph-theoretical concepts developed in [4].

A graph is a set of links between pairs of players. We will denote the
link between i and j by i:j. (Since these are undirected links, i:j=j:i.)

For any coalition S and graph g, let S/g be the partition of S into com-
ponents which are connected by g within S. (That is, two members of S are
grouped together in S/g iff they can be connected by a path in g which stays

within S.) N/g is thus the partition of N into the connected components of g.

Given b € X BS’ we define b/g € X BS so that:
SECL SeCL

(b/g)S = <bT>Tes/g’ VS E€CL.

We shall prove that

(17) £’ (b/g) = £(b/g), for every graph g.
This will imply that £(b) = f(b’), because b = b/g, where E is the complete
graph linking all pairs of players.

Suppose that (17) does not hold. Then we can f£ind a graph g such that

£/ (g) # £(g) but £’ (g’) = f(g') for every graph g’ with fewer links than g.
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For any link i:j in g, consider the graph gij = g\{i:j} in which this one link
is removed. Observe that S/g = S/gij unless i and j both belong to S. Thus,
the only components of b/gij which differ from b/g are the components for
coalitions containing both i and j. So, using Axiom 1 for f and £, and using

the fact that g,, has fewer links than g, we get:
1]
’ ’ _ _ e
£, (b/g) - £(b/g) = £ (b/g; ) - £5(b/g, )
= £ (b P - £, = - .
¢ /glJ) J(b/gij) £, (b/g) fj(b/g)
So for any two players i and j connected in N by g, we have
’ et -

But for any connected component S € N/g, b/g is S-decomposable, so

T fi(b/g) = U.((b/g)y) = & £,(blg) .
ies * ies * N gt

These two results imply that f;(b/g) = fi(b/g) for all i, contrary to the way

that g was constructed, This proves (17) and completes the proof of the theorem.

PROOF OF THEOREM 2.
Given the threat equilibrium b, suppose (contrary to the theorem) that

satisfy:

4
fi(b) < Ui(bN\{i]’di)' Then let b€ X BS

SeCL

<b§\{i]’di> , if i € S,

n

bS , if i € S.

Since b’ is {i}-decomposable, Axiom 1 implies:

fi(b’) = Ui(bN\{i3,di).
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Observe that each term in the formula for fi (as given in Theorem 1)
depends on the threat of only one coalition containing i. Furthermore b
and b’ differ only in components corresponding to coalitions which contain

i, Thus:

fi(b’) - £,M) = S§CL(fi(b_S,bg) - £,.())
(i€s)

So for at least one S € CL containing i, we must have
4
fi(b_s,bs) > fi(b).

Then, by Axiom 2,

s £.( .,b)> £ £.(0) .
jes 3 55 4eg 3

By (5), this contradicts the fact that b is a threat equilibrium, so the hypo-
thetical di could not exist and the theorem is proved.
(Note: with more involved notation, this proof can be extended to prove

Theorem 2 for mixed-strategy equilibria as well.)

PROOF OF THEOREM 3.
The first equation follows from Axiom 1. Then, since b is an equilibrium,

I -
for any other bN € BN'

S £ (b)> = £.(b_,bl)= Z U, (b).
iex * ey = NN ey N
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we will define two axioms which a reasonable settlement function might satisfy,
and we will show the unique function satisfying both axioms.

We shall henceforth assume that utility is transferable between the

players in I'. That is, the payoffs to the players are assumed to be measured
in units of some freely exchangeable commodity, like money. See [2 ] for
some theoretical arguments to justify the important role which this trans-
ferrable utility assumption has played in game theory.

One basic requirement of a settlement function is that its allocation
should always be feasible. With transferable . utility, we can guarantee

feasibility if £(-) satisfies the following equation:

(7) % fi(b) = Z Ui(bN) for any b &€ X B

i€N ieN SECL S

(Here bN is the N-component of the vector b = (bS>SECL' Notice thatlﬁqEBN==iZNDi,
so Ui(bN) is well-defined.) The idea behind (7) is that the joint strategy
chosen by the universal coalition N should be actﬁalfy éafried out in the

I3 i .

settlement, but that it ﬁight be. followed by some utility trans-
fers or sidepayments between the players. We can think of these transfers as
bribes which may be required to induce some smalle? coalitions not to carry
out their threats. |

Axiom 1 expresses a stronger version of (7). The basic idea is that, if
there are two groups of players who effectively ignore each other in all coali-
tion plans, then the fair settlement should not require any coordination or
transfers between these two groups. To develop this idea formally, we need
some additional notation.

Suppose S and T are two disjoint sets of players, and suppose bS = (di)iES
and bT = (di)iET are threats for S and T (in BS and BT respectively). Then

we let (bS,bT> = That is, (bs,bT> is the threat for SUT in which

(di)iESUTf



