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Abstract Eyetracking research in psychology has grown ex-

ponentially over the past decades, as equipment has become

cheaper and easier to use. The surge in eyetracking research

has not, however, been equaled by a growth inmethodological

awareness, and practices that are best avoided have become

commonplace. We describe nine threats to the validity of

eyetracking research and provide, whenever possible, advice

on how to avoid or mitigate these challenges. These threats

concern both internal and external validity and relate to the

design of eyetracking studies, to data preprocessing, to data

analysis, and to the interpretation of eyetracking data.

Keywords Eyetracking . Best practice . Experimental

design . Data analysis . Researcher degrees of freedom .
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Eye-movement recordings began in the 19th century. During

most of the 20th century, it was very difficult and expensive to

record and analyze eye movements. Researchers who built or

bought an eyetracker could easily spend a year setting it up,

and the analysis was equally time-consuming. Hartridge and

Thomson (1948) devised a method for analyzing eye

movements at a rate of almost 3 h of analysis time for 1 s of

recorded data, and as Monty (1975) remarked: BIt is not un-

common to spend days processing data that took only minutes

to collect^ (pp. 331–332). Even in the 1990s, eyetrackers were

found in only a few psychology, biology, and medical labs, at

places such as NASA, and in some very tech-savvy commer-

cial advertisement companies or car manufacturers. Usually

there was enough time to acquire the method from knowl-

edgeable colleagues and to run numerous pilots before the

actual data were recorded and analyzed. Since the early

2000s, eye-movement research has been adopted in many

new disciplines, many of them applied and full of researchers

with little experience in experimental design and statistics.

This diversification of eye-movement research has largely

been driven by technological development: Modern video-

based eyetrackers drastically simplified eyetracking, often

with a Bplug-and-play^ approach. Some of the eyetracking

hardware companies were highly successful in expanding

their customer base into new areas by making eyetracking

seem easy. Although the eyetracker users extended into new

fields, the experimentation and analysis skills necessary to

operate the equipment did not always follow suit. For exam-

ple, a survey of eyetracking research on decision-making

(Schulte-Mecklenbeck, Fiedler, Renkewitz, & Orquin, 2017)

showed that 35% of the reviewed studies included fewer than

16 critical trials. The reviewed studies originated from various

disciplines, such as psychology, marketing, economics, neu-

roscience, and human–computer interaction. The same survey

showed that 20% had fewer than five trials, and 12% had but a

single critical trial (Schulte-Mecklenbeck et al., 2017).

Although a single trial might be standard in medical research,

it is rarely recommendable in eyetracking studies using, for

instance, naturalistic stimuli. In this article, we caution against

using such a low number of trials (see the Undersampling of

Naturalistic Stimuli section), since it diminishes stimuli
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representativeness and threatens the external validity of the

study. The survey also reveals that many studies use total

dwell time as a dependent variable and that many studies

analyze multiple eye-movement metrics (see also von der

Malsburg & Angele, 2017). Here we advise against the use

of total dwell time (in the Total Dwell Time section) and

against analyzing multiple eye-movement metrics (in the

Analyzing Multiple Metrics section). We consider the former

a threat to the construct validity and the latter a threat to the

statistical validity of eye-movement research.

Motivated by these concerns, we outline a number of

threats to the validity of eye-movement research. Shadish,

Cook, and Campbell (2002) have described a general list of

threats to the validity of experimental and quasi-experimental

research. Following their example, we organize our list into

threats to internal and threats to external validity. By internal

validity, we refer to the extent to which warranted, and some-

times causal, inferences can be made from eyetracking stud-

ies, and with external validity, we refer to the ability to gener-

alize these inferences to new populations and stimuli.

Throughout the article, we refer to various studies to illus-

trate different points about eyetracking research practices. It is

important to note that although some studies are used as ex-

amples of practices that involve threats to validity, each study

must be understood in its own context. In experimental de-

sign, we are often forced to make trade-offs between various

problems and threats. When solving one problem, we often

acquire a new one. If we, for instance, use simplistic stimuli to

achieve internal validity, we often sacrifice external validity,

and vice versa.

We do not wish to reiterate what has already been said

about the proper way to conduct eyetracking research (for

overviews, see Duchowski, 2007; Holmqvist et al., 2011;

Russo, 2011), but hope to challenge common assumptions in

eye-movement research and to increase awareness of method-

ological pitfalls. Although we believe that all threats are de-

scribed in sufficient depth to make recommendations for eye-

movement research, our examination is far from exhaustive.

Threats to internal validity

Inappropriate comparisons

Many eyetracking studies aim to compare the distribution of

eye movements to different objects in an image. For instance,

Dodd et al. (2012) investigated whether participants fixate

more pleasing or more aversive objects, depending on their

left-wing versus right-wing political orientation. Glöckner and

Herbold (2011) studied whether decision-makers fixate more

on the probabilities or the payoffs when choosing between

risky gambles, and Baker, Schweitzer, Risko, Ware, and

Sinnott-Armstrong (2013) studied whether readers of

neuroscience articles pay more attention to neuroimages than

to bar graphs. Although these examples may seem uncontro-

versial, the last example is, at least in principle, an inappropri-

ate comparison. In the first example (Dodd et al., 2012), com-

parisons are made between groups of participants with respect

to the same stimuli whereas the last (Baker et al., 2013) com-

pares between stimuli (neuroimages vs. bar graphs). Contrary

to the authors’ expectations, readers pay less attention to the

interesting neuroimages than to the supposedly dull bar

graphs. Why could this be an inappropriate comparison?

The possible causes for fixating either object differ. Bar graphs

could very well receive more fixations than neuroimages be-

cause they are harder to understand, not because they are more

interesting (Shah & Hoeffner, 2002). The risky gambles ex-

ample can in principle lead to a similar challenge. Suppose, for

instance, that a study predicts that participants use a decision

strategy that results in more fixations to payoffs than to prob-

abilities. In experiments with gambles, information is typical-

ly presented using the same number of characters—for exam-

ple, B15%^ and B$25^—but imagine that payoffs were pre-

sented as Btwenty five dollars.^ If so, participants would need

more fixations and longer time to process the payoff informa-

tion because of its unfamiliar presentation and the fact that it

contains 19 rather than three characters (Rayner, 2009). Such a

presentation would lead to a difference in eye movements in

the predicted direction and we would wrongfully conclude

that the data supports our prediction. Even in the standard case

in which probabilities and payoffs are presented using num-

bers, one could make a similar argument that the lower famil-

iarity of probabilities could lead to longer fixation durations.

The problem with inappropriate comparisons is particularly

unfortunate considering the aim of much eyetracking re-

search—namely, to compare eye movements executed to dif-

ferent stimuli. There are, however, a few ways of solving this

problem:

& The researcher examines differences in eye movements

due to stimulus features and develops or selects stimuli

that differ systematically on one or more features (see,

e.g., Orquin & Lagerkvist, 2015; Towal, Mormann, &

Koch, 2013).

& Comparisons are made between different groups of partic-

ipants to the same stimuli. Dodd and colleagues, for in-

stance, compared whether political left- versus right-wing

participants fixate more on positive or negative images

thereby avoiding a direct comparison between different

types of images (Dodd et al., 2012).

& The comparison is made between sets of stimuli that are

large enough to assume that irrelevant feature differences

randomize away (see the section on Undersampling

Naturalistic Stimuli). Nummenmaa and colleagues, for in-

stance, compared 16 pleasant to 16 unpleasant and 16 neu-

tral images to understand attention capture by aversive
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stimuli relative to positive or neutral stimuli (Nummenmaa,

Hyönä, & Calvo, 2006).

Analyzing multiple metrics

Recognizing data fishing in psychology and attempts to coun-

ter it are becomingmore commonplace (Wicherts et al., 2016),

but what about eyetracking research? As it turns out,

eyetracking research probably provides an even higher num-

ber of researcher degrees of freedom than other quantitative

methods. Eyetracking data requires multiple preprocessing

steps and each step can be adjusted to provide a different

result: Changing the size of areas of interest (AOI) can, for

instance, improve the fit of a model (Orquin, Ashby, & Clarke,

2016). A surprisingly common feature in eyetracking studies

is comparison of multiple AOIs on multiple eye-movement

metrics (von der Malsburg & Angele, 2017). For instance, in

a study on food nutrition labels, Antúnez et al. (2013) com-

pared six AOIs in one condition and four AOIs in another on

five different metrics yielding 105 significance tests. In the

absence of a Bonferroni correction or directed hypotheses, it

makes no sense to interpret these significance tests. Another

challenge with this approach is that the metrics in question

tend to be highly correlated, such as total fixation duration,

fixation count, and visit count.

Perhaps this highly data-driven approach to research has

become popular because the data processing tools from com-

mercial vendors invite their users to try out a broad scan of all

possible comparisons. Although exploratory approaches have

their merits, most eye-movement studies would benefit from

directed hypotheses and predictions. Fortunately, it is easy to

avoid analyzing multiple metrics by following a few simple

steps: (1) Formulate a hypothesis from theory, earlier studies,

pilot studies, or lay notions, and think of it in terms of eye

movements. (2) Take the stimulus or trial mechanism and

draw or simulate participants’ expected eye movements. (3)

Consider what is most important in the drawing or simulation

in order to test the hypothesis: movement, position, latency or

numerosity measures? (4) Finally, consult a list of measures

(e.g., Holmqvist et al., 2011), and settle only on those mea-

sures necessary to test the hypothesis.

Data quality

Data quality comprises many aspects of research—for exam-

ple, the end-to-end latency (Reingold, 2014), tracking loss, or

sensitivity to a participant’s movements (Niehorster,

Cornelissen, Holmqvist, Hooge, & Hessels, 2017). Data qual-

ity can vary considerably across eyetrackers. The average ac-

curacy (validity) ranges from around 0.4° to around 2°

(Holmqvist, Zemblys, Mulvey, Cleveland, & Pelz, 2015).

The difference in precision (reliability) has even a larger

range, from around 0.005° root-mean squared (RMS) in the

best remote eyetrackers, to 0.5° RMS in the poorest

(Holmqvist et al., 2015). These data quality issues imply that

fixations are never measured at their true location begging the

question of how small objects can reliably be studied with

eyetracking. For instance, using a Tobii eyetracker with a pre-

sumed accuracy of 0.5° and precision 0.35°, Donovan and

Litchfield (2013) studied detection of cancer nodules, the

smallest of which were 0.28°. Similarly, Orquin and

Lagerkvist (2015) studied detection of product labels that

were 1.8° using a Tobii eyetracker with an accuracy of 0.5°

and precision of 0.18°. In both cases, the obvious question is

whether the stimuli are large enough for the respective

eyetrackers. So far, no standard to determine the smallest pos-

sible object that can be used with a given eyetracker’s accura-

cy and precision has been proposed.

In order to propose a standard, we introduce a few con-

cepts. We refer to the percentage of fixations to an object that

fall within the boundaries of the object as the capture rate.

Low capture rates may cause several problems such as uncer-

tainty about the amount of fixations to a given object, and if

objects are close to each other, it leads to assignment of fixa-

tions to wrong AOIs (Orquin et al., 2016). The capture rate is a

function of the true location and distribution of eye fixations

and the hardware-related noise distribution. If the properties of

the true fixation distribution are unknown, it is safest to as-

sume that fixations are uniformly distributed within the

boundaries of the object, thereby making no assumptions

about which parts of the stimulus are more likely to be fixated.

To understand the different factors that may influence the

capture rate, we perform a simulation study on the effects of

accuracy, precision, stimulus size, stimulus shape, offset an-

gle, and the centrality of the fixation distribution. We examine

the effects of accuracy, precision, stimulus size, and fixation

distribution separately, and the effects of stimulus shape and

offset angle together. Unless stated otherwise, the simulation

assumes a round object with the true fixation locations uni-

formly distributed inside the object. All simulations follow the

same procedure: First, we obtain the true fixation location by

drawing 100,000 random samples from a bivariate uniform

distribution. The distribution ranges from (0, 0) to (xul, yul),

where xul and yul are the upper limits on the x- and y-axes. We

then retain all fixations that fall within r° of the center of the

distribution, thereby obtaining a circle with r being the radius.

Then we draw offset angles uniformly—that is, the direction

in which the fixation is being offset, between 0° and 360°—as

well as offset distances from a normal distribution with mean

equal to the accuracy of the eyetracker and standard deviation

equal to the precision of the eyetracker. Next we compute the

offset fixation, by adding the offset distance in the offset angle

to each true fixation location. We compute the capture rate as

the percentage of offset fixations that fall within r degrees of

the center of the object. To study the effect of stimulus size, we
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vary xul and yul, and to study accuracy and precision, we vary

the mean and standard deviation of the offset distance distri-

bution. To study stimulus shape, we vary the proportion be-

tween xul and yul, thereby creating objects with a higher or a

lower height-to-width ratio—that is, changing the ratio of pe-

rimeter to area. To study the effect of fixation distribution

centrality, we draw the true fixation distribution from a beta

distribution varying the alpha and beta parameters. The larger

the beta-to-alpha parameter ratio, the more central the fixation

distribution becomes. To study the offset angle, we draw offset

angles uniformly between 0° and 360°, or if an offset angle

tendency is assumed, we draw a single common offset angle

from a uniform distribution between 0° and 360°.

The results of the simulation studies are shown in Fig. 1.

The figure shows that larger stimulus sizes increase the cap-

ture rate, and that even for an excellent eyetracker, with accu-

racy = .5 and precision = .1, stimuli have to be more than 5° in

diameter to achieve a high capture rate—that is, above .8. We

also see that as accuracy and precision gradually decline, the

capture rate goes down, but this is mostly true for small stimuli

≤2°, whereas large objects, ≥8°, retain a high capture rate even
for very poor levels of accuracy and precision. We also see

that the capture rate is influenced by the centrality of the fix-

ation distribution, with more central distributions leading to

higher capture rates. Finally, we see that as the area-to-

perimeter ratio of a stimulus increases, the capture rate de-

creases and the variance of the capture rate increases. The

ideal stimulus is therefore a circle, since it minimizes the

area-to-perimeter ratio. Stimulus shapes such as rectangles

are more vulnerable to offset angles, and therefore yield lower

capture rates on average.

Generally, the simulations show that predicting the capture

rate in a specific situation requires knowledge about the size

and shape of the stimulus, the accuracy and precision of the

eyetracker, and whether fixations are centrally distributed. We

therefore recommend that studies that require high capture

rates perform simulation studies beforehand. As an alternative

to capture rate simulations, one can use a heuristic solution. If

we assume that fixations are uniformly distributed and that our

stimulus is circular, the capture rate can be approximated as

the intersection between two displaced circles. This heuristic

only holds when precision is very low, <.2, in which case the

heuristic solution is identical to the actual one to the third

decimal. To compute the heuristic, we only need to know

Fig. 1 Simulation results showing the expected capture rates depending
on various factors. (Top left) Effects of stimulus size. (Topmiddle) Effects
of eyetracker accuracy. (Top right) Effects of eyetracker precision.
(Bottom left) Effects of the centrality of fixations to the object. The
gray line indicates a uniform distribution of fixations, with more-central
fixation distributions to the right of the line. (Bottom right) Effects of

height-to-width ratio for rectangular stimuli. A ratio of 1 indicates a
square, and higher ratios indicate more rectangular stimuli. The line
shows the mean capture rate, and the shaded area indicates the minimum
and maximum capture rates. The software for generating these calcula-
tions is available at https://github.com/jacoborquin/capturerate
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the radius of the (round) stimulus, r, and the accuracy of the

eyetracker, represented here as d:

capture rate ¼
2r2cos−1

d

2r

� �

−
1

2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2−d2
p

πr2

When the precision of the eyetracker is 0, the heuristic

solution is similar to the results obtained by simulation. It is

important, however, that the heuristic be used only for round

stimuli when we can safely assume uniform fixation distribu-

tions, and when the precision is below .2. In Table 1, we

present the simulation results for six common eyetrackers,

assuming round stimuli and a uniform fixation distribution.

Hidden defaults

A hidden default is a decision we are unaware of havingmade.

Hidden defaults occur whenever we copy other researchers’

experimental designs without considering alternatives, or

when we analyze our eyetracking data unaware of the many

transformations the software has performed on the data. The

problem with hidden defaults is that they do not ensure an

optimal result. In fact, hidden defaults are a guaranteed way

of propagating poor ideas from researcher to researcher. As an

example, many researchers may fail to realize that remote

eyetrackers often average the positions of both eyes as a de-

fault, even though it is generally recommended to rely on the

position of the dominant eye (Holmqvist et al., 2011, pp. 42,

60, 119). Of course, averaging might make sense in some

situations. Both accuracy and precision have been found to

improve when averaging the eyes (Cui & Hondzinski, 2006),

but even with just a slight difference in timing between the

two eyes, averaging the signals could alter saccade measures

such as the latency, velocity profile, and peak velocity or

skew. For studies in which these saccade measures are impor-

tant, it is advisable to turn off averaging (Holmqvist et al.,

2011, p. 60).

More generally, data processing in any eyetracker is largely

a trade secret. Averaging can be turned off, but filtering is

often hidden and can alter the saccade profile in ways that

are very hard to remedy. Figure 2 shows how saccades have

been given a very high onset acceleration, most likely by

internal filtering.

Hidden defaults exist not only in software but also in spe-

cific lines of research. An example is the unfortunate use of

high cutoffs for minimal fixation durations. For instance,

Jansen, Nederkoorn, and Mulkens (2005) used a 300-ms min-

imum fixation duration threshold. Manor and Gordon (2003)

noted that 200 ms has become the de facto standard in clinical

studies, originally derived from a 1962 study of eye move-

ments in reading. Since the range from 200 to 300 ms often

encompasses the median of a fixation duration distribution

(Holmqvist et al., 2011, p. 381), around 50% of the fixations

will be lost with such a high cutoff, tending to change the

results of a study entirely.

Less obvious hidden defaults only become evident with

time. Saccade onset thresholds, hidden inside algorithms,

guide how fast the eye must move before the movement can

be considered a saccade. In a meta-analysis on Parkinson’s

disease, Chambers and Prescott (2010) surprisingly found that

when tracking with video-based eyetrackers, patients have

longer saccade latencies than controls, but not when tracked

with scleral search coils (Robinson, 1963). They noted that

Parkinson patients’ saccades are subdued, meaning that the

eye accelerates less vigorously. As a result, their saccades will

typically take slightly longer to cross a saccade onset velocity

threshold, even if the true latency is identical to that of con-

trols. This effect is pronounced in video-based eyetracking,

because the onset velocity threshold is higher than in the al-

gorithms for coil data, which have less noise. In both cases,

the saccade onset threshold is hidden in the software, inacces-

sible to the user. Saccade detection may work for control sub-

jects and yet fail for clinical groups with nonnormal velocities.

The only way to circumvent the problem of event detection is

manual inspection, preferably of each saccade in each trial for

each subject.

A simple remedy for hidden defaults is to map the flow of

information and the data-processing steps, and to make active

choices about each of these. Mapping the process, however,

may be difficult, but help can be found in methodological

overviews (Holmqvist et al., 2011; Schulte-Mecklenbeck

et al., 2017).

Total dwell time (also known as total gaze duration or total

fixation duration)

The total dwell time (TDT) is the sum of all dwells (set of one

ormore consecutive fixations in anAOI) falling within an area

of interest (AOI) during a trial or any other specified period of

time (Holmqvist et al., 2011, pp. 190, 389). This metric is very

popular and has been used in many published articles

(Schulte-Mecklenbeck et al., 2017). The problem with TDT

Table 1 Minimum stimulus sizes, in degrees of visual angle, to obtain
an 80% capture rate for a noncentral (uniform) fixation distribution, given
the manufacturer-reported hardware accuracy and precision

Eyetracker Accuracy Precision Min Size

EyeLink 1000 (ideal calibration) .25 .01 1.6°

EyeLink 1000 (average calibration) .5 .05 3.2°

Tobii 1750 .5 .25 3.3°

Tobii 2150 .5 .35 3.4°

SMI RED .4 .03 2.6°

Eye Tribe 1 .1 6.4°
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is that it often involves inappropriate aggregation of data. TDT

becomes inappropriate when a researcher uses the metric to

draw conclusions about one AOI receiving more attention

than another AOI. Although it may be true that TDT is higher

for AOI A than for AOI B, the difference in TDT can arise

from three independent conditions. First, AOI A may receive

more fixations or dwells than B; second, fixations to A may

have a longer duration than fixations to B; and third, Amay be

fixated with a higher likelihood than B. Each of these three

conditions has a different psychological interpretation.

& If A receives more dwells than B, even when both are

fixated in all trials, this means that participants are more

likely to refixate A. Refixations are probably due to top-

down control, such as a high relevance of the stimulus to

the task (Orquin & Mueller Loose, 2013) or the stimulus

being confusing or difficult to process (Rayner, 2009).

& If the duration of fixations to A lasts longer than that of

fixations to B, this can mean that A is the more complex

stimulus, requiring a longer processing time (Just &

Carpenter, 1976), or it may mean that A is the more inter-

esting or relevant stimulus (Orquin & Mueller Loose,

2013).

& If A is more likely to be fixated than B, this could be due to

both top-down and bottom-up control processes—that is,

goal-driven versus stimuli-driven fixations. A bottom-up

process would, for instance, imply that A is more salient

than B, and therefore more likely to attract fixations (Itti &

Koch, 2001). A top-down process would imply that A is

more relevant than B, consequently attracting more fixa-

tions (Orquin & Lagerkvist, 2015).

Finding a difference in TDTonly means that at least one of

the three conditions has been met, and interpreting the

difference requires breaking down the metric into its constit-

uent parts.

To demonstrate this, we performed a reanalysis of the ex-

periment reported in Orquin and Lagerkvist (2015). Their

study investigated the effects of visual and motivational sa-

lience on eye movements in consumer choices. The study was

a mixed within-subjects–between-subjects experiment in

which participants made decisions between two food prod-

ucts, one of which bore a product label. The motivational

salience of the label was manipulated between subjects by

providing the participants with instructions about the label

having a positive, a negative, or a neutral meaning. The visual

salience of the label was manipulated within subjects as either

high or low salience, by controlling the transparency of the

label. We also analyzed the effect of product position. In the

choice task, products were placed on the left or the right side

of the screen, and we expected participants to have more eye

movements to the left option in correspondence with their

reading direction. To demonstrate the redundancy of TDT,

we began by analyzing TDT and then proceeded to calculate

fixation likelihood. Given a difference in fixation likelihoods,

we analyzed fixation count, fixation duration, dwell count,

and dwell duration conditionally on the AOI being fixated.

We fitted all metrics with generalized linear mixed models

by using the nlme package in R. To account for dependencies,

we fitted random intercepts grouped by participant and trial.

The results of the analyses are shown in Table 2, and the

observed effects are illustrated in Fig. 3. The left–right posi-

tion of a product had a significant effect on TDT, with the left

option having a higher TDT, as expected. Breaking down this

effect, we found that there was no variance in the fixation

likelihoods; all products were fixated in all trials. The differ-

ence in TDT therefore stems from one of the other metrics. In

fact, all of the other metrics—fixation count, fixation duration,

Fig. 2 Saccades recorded with the Tobii glasses II, 100 Hz. The red line
is the velocity, and the blue line is the x-coordinate. The sharp onsets of
saccades contrasts with smooth offsets, with no postsaccadic oscillations,
suggesting that these saccade profiles are the result of a hidden filter. This

suspicion is further supported by an RMS/STD value for this recording of
0.38, which is much lower than the expected 1.41 for unfiltered data
(Holmqvist et al., 2017)
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dwell count, and dwell duration—were significantly different.

The left option received more fixations and dwells, but the

right option had longer fixations and dwells. Visual salience

had a marginally significant effect on TDT, and this effect was

explained entirely by differences in fixation likelihood, with

the high-salience label being more likely to be fixated than the

low-salience one. Given that the label was fixated, there were

no differences in any of the other metrics. Motivational sa-

lience had no effect on TDT, but our breakdown approach

revealed that there was nevertheless a significant difference

in fixation likelihood, as well as marginal effects on fixation

duration and dwell count. We concluded from this reanalysis

that given a difference in TDTs, we cannot know what under-

lying metric drives this difference. Given that no difference in

TDTs is present, we also cannot conclude that there are also no

differences in the underlying metrics. For this reason, we ad-

vise against the use of TDT in eyetracking research.

Fixed versus free exposure time

When designing eyetracking experiments, we must decide on

the duration of stimulus exposure. A common approach is to

fix the exposure time so that a participant sees a stimulus for

some predetermined period of time (Reutskaja, Nagel,

Camerer, & Rangel, 2011). The alternative, using a free expo-

sure time, allows participants to gaze at the stimulus for as

long as they wish, typically until the participant presses a

key on the mouse or the keyboard. Although a fixed exposure

time has its merits in, for instance, psychophysics, it tends to

be misapplied in more behavior-oriented studies. The problem

is twofold. First, it is difficult to match the exposure time to the

exact point in time at which the participant would have other-

wise terminated the trial. A fixed exposure times will therefore

always be either shorter or longer than the participant-driven

exposure time. This deviation will most likely create an expe-

rience of either time pressure (Reutskaja et al., 2011) or

idleness (Hsee, Yang, & Wang, 2010). In many cases, time

pressure is what the experimenter hopes to achieve—idleness

probably is not. The second problem with a fixed exposure

time is interpretation of the data. Assuming idleness, one must

consider the distribution of eye movements in the idle period.

For example, in a discrete-choice experiment with fixed ex-

posure time, one has a clear interpretation of eye movements

until the decision is made. In the idle period, however, the

participant may stare at any object at random or continue in

a postdecision process (Clement, 2007). As a rule, it is there-

fore advisable not to use a fixed exposure time, but there are,

of course, situations in which it is required. If we, for instance,

wish to understand the development of a fixation process over

time, a fixed exposure time allows for direct comparison of

different trials. Using free exposure times, on the other hand,

requires that we transform trials of different lengths or focus

our analysis on, for instance, the first 500 ms after stimulus

onset or the last 500 ms before a response is made (Shimojo,

Simion, Shimojo, & Scheier, 2003).

Assuming an eye–mind relationship (reverse inference)

It can be very tempting to think that eyetrackers report atten-

tion or some other cognitive process. Eyetrackers, however,

report eye movements and gaze, while attention is always

inferred. Nevertheless, because attention plays a central part

in many models of cognition, researchers often assert the so-

called eye–mind assumption, which was proposed by Just and

Carpenter (1976). On the basis of studies of eye movements in

reading, they suggested that there is no appreciable lag be-

tween what is being fixated and what is being processed at a

cognitive level. The eye–mind assumption originated from

reading research but has been introduced into other areas, as

well (Svenson, 1979).

There is, indeed, a relation between looking and thinking,

but this relation must be proved rather than just assumed,

because of its many caveats and exceptions. For instance,

eye movements are closely coupled with attention, such that

a saccade is always preceded by a change in attention (Deubel

& Schneider, 1996). However, because attention shifts before

the fixation ends, attention and fixations are not perfectly

coupled. In fact, the eye–mind assumption has been falsified

in various instances. For instance, Deubel (2008) has shown

disassociations of fixations and attention by up to 250 ms in

Table 2 Significance tests for the breakdown of TDT in terms of its underlyingmetrics for three different factors: Position, plus visual andmotivational
salience

Dependent variable Position Visual Salience Motivational Salience

Total dwell duration F(1, 1715) = 36.125, p < .001 F(1, 1044) = 4.897, p = .027 F(2, 147) = 1.512, p = .224

Fixation likelihood No variance in fixation likelihood F(1, 1044) = 8.205, p = .004 F(2, 147) = 11.79, p < .001

Fixation count F(1, 1715) = 36.298, p < .001 F(1, 567) = 2.514, p = .113 F(2, 141) = 0.008, p = .992

Fixation duration F(1, 1715) = 12.669, p < .001 F(1, 567) = 0.892, p = .345 F(2, 141) = 2.57, p = .080

Dwell count F(1, 1715) = 574.495, p < .001 F(1, 567) = 0.244, p = .622 F(2, 141) = 2.498, p = .086

Dwell duration F(1, 1715) = 27.673, p < .001 F(1, 567) = 0.522, p = .470 F(2, 141) = 1.448, p = .238
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some situations. For all these reasons, the eye–mind assump-

tion should only be made after careful deliberation.

Instead of the eye–mind assumption, which is difficult to

support, eyetracking researchers may instead consider a signal

detection assumption. The question is whether fixations to an

object imply that the object has been processed, and whether

the absence of fixations implies that the object has not been

processed. We can then consider situations that lead to false

positives (fixated but not processed) and false negatives (not

fixated but processed).

One of the situations that may lead to false negatives is the

possibility of peripheral processing—that is, an observer de-

tecting and identifying an object without fixating it. The in-

fluence of peripheral vision is well established in both reading

and scene viewing (Rayner, 2009), and peripherally processed

words can lead to semantic activation and priming effects

(Devine, 1989). One of the challenges in ruling out peripheral

uptake is that it depends on the features of the stimuli, such as

the size and contrast of objects (Melmoth&Rovamo, 2003) or

how crowded the scene is around the object (Whitney & Levi,

2011), as well as on characteristics of the observer, such as the

level of expertise and familiarity with the task (Reingold,

Charness, Pomplun, & Stampe, 2001).

One of the situations that may lead to false positives is the

risk of selective feature extraction. It has been demonstrated

that observers typically fail to extract or encode all possible

features from visual objects, only extracting or encoding the

task-relevant features (Hayhoe, Bensinger, & Ballard, 1998).

This means that we cannot conclude from a fixation to an

object that the object as a whole has been processed. Instead,

the observer may only have processed a single feature of the

object. A related phenomenon is inattentional blindness, in

which observers make a direct fixation to an object yet are

unaware of the existence of the fixated object (Koivisto,

Hyönä, & Revonsuo, 2004).

Another issue that may lead to both false positives and false

negatives is inappropriate AOI definitions. Because of inac-

curacies in both eyetrackers and the human visual system,

fixations often fall outside the object that is the target of the

saccade. If the AOI around an object has a narrow margin—

for example, <0.5° beyond the object border—we may fail to

detect fixations falling outside the object, leading to false neg-

atives. On the other hand, when objects are placed close to

each other, we risk assigning fixations that fall outside an

object to a neighboring object, leading to false positives for

the neighboring object (Orquin et al., 2016).

Finally, it is worth mentioning that other data sources—for

example, choice data, verbal protocols, and retention tests—

can suggest whether the object was processed and taken into

consideration. This is known as methodological triangulation

(Holmqvist et al., 2011, p. 95).

Threats to external validity

Undersampling of naturalistic stimuli

As we discussed above, it is regrettably common to find

eyetracking studies with only one or two critical trials

(Schulte-Mecklenbeck et al., 2017). Besides the fact that a

limited number of trials leads to lower statistical power, it

leads to another negative consequence. Whenever studies rely

on naturalistic stimuli—for instance, images of products or

advertising—one necessarily factors into the experiment any

random features of those stimuli. Some images may be more

or less bright, include more or larger objects, and so forth. Eye

movements are highly susceptible to these stimulus differ-

ences (Orquin & Mueller Loose, 2013). However, these dif-

ferences are not a problem as such. We can think of the ex-

perimental stimuli as a random effect; in this case, the more

trials we include, the safer it is to assume that any differences

wash out over the conditions of interest. Including more and

heterogeneous stimuli, then, actually adds to the robustness of

the conclusions (Cooper, Hedges, & Valentine, 2009).

Experiments with only one or two trials, on the other hand,

produce eye-movement distributions that are specific to the

particular stimulus. As a rule of thumb, using more trials al-

ways reduces the bias in our stimulus sample. We can calcu-

late the expected deviation, E[d], of a sample of size N from a

normally distributed population as:

E d½ � ¼ ∫
∞

0 2xf xð Þdx

where f(x) is the probability density function for a normal

distribution with mean equal zero, and standard deviation,

σ = s/
ffiffiffiffi

N
p

, where s is the population standard deviation. As

N increases, the standard deviation of the sample, σ, de-

creases and the expectation of the sample going toward

zero, which is the population mean. Following this we see that

having more than 16 trials yield an average bias <0.2 SD—

that is, a small effect in terms of Cohen’s d. Using one trial

yields an average bias >0.75 SD—that is, a large effect, mean-

ing that our sample is biased or unrepresentative of the popu-

lation. If we assume that the stimuli differ on more features—

for example, visual salience, surface size, and position—the

probability of at least one feature being biased is 1 – Pk, where

P is the probability of the feature being biased, and k is the

number of features. To demonstrate the importance of ade-

quate sampling, we reanalyzed data from Peschel and

Orquin (2013). Their data set was based on a list of 158 con-

sumer products from four categories sold in Danish supermar-

kets. The product features—for example, brand, logo, image,

�Fig. 3 Effects of position on screen, visual salience (bottom-up
condition), and motivational salience (top-down condition) on total dwell
time and its underlying metrics
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and nutrition labels—were described with regard to their vi-

sual salience, relative surface size, and distance to the center of

the product, dimensions known to influence the probability of

consumers fixating nutrition labels (Graham, Orquin, &

Visschers, 2012). Our question was, how many products

should we include in a study in order to reliably estimate

the probability of consumers fixating nutrition labels? If

we only include one product, we are likely to either over- or

underestimate the probability of consumers fixating the label

by a large margin. To understand how many products we

would need for a representative sample, we focused on the

80 products that carried nutrition labels. We drew sample sizes

from 1 to 25 products. For each sample size, we iterated

10,000 times and computed the absolute deviation of the sam-

ple mean from the population mean. We then divided by the

population standard deviation to obtain a standardized effect

size measure: |Msample –Mpopulation|/SDpopulation. The results of

the simulation are shown in Fig. 4. The figure is nearly iden-

tical to the analytical solution, showing that a representative

sample, defined as deviating by less than 0.2 SDs from the

population on all three dimensions, on average requires 16

products.

Generalization of eye-movement distributions

Applied research often wishes to make inferences about clas-

ses of stimuli such as advertising, product packaging, health

warnings, and so forth, for policy purposes (Graham et al.,

2012). If the experiment suffers from undersampling of natu-

ralistic stimuli, then clearly we cannot generalize anything

beyond the sparse stimuli. Even if the experiment uses a broad

range of stimuli, it may still be difficult to generalize eye

movements beyond the laboratory environment. As we

discussed above, eye movements are highly susceptible to

small changes in the environment. In a laboratory setting,

we may find that participants exposed to faces fixate directly

on the eyes. Generalizing this eye-movement distribution to

the real world would, however, be problematic, since people

in natural environments mostly fixate just below the eyes

(Foulsham, Walker, & Kingstone, 2011).

One remedy of this problem would be to change the focus

from eye-movement distributions to psychological mecha-

nisms. A causal mechanism is our best chance of generalizing

beyond the laboratory (Cooper et al., 2009). For instance, a

psychological mechanism such as central gaze bias—that is, a

Fig. 4 (Top left) Expected deviations (as standard deviations [SD]) between a stimulus sample of size N and the stimulus population of nutrition labels,
(Top right) Histogram of salience ranks. (Bottom left) Histogram of surface size. (Bottom right) Histogram of distance to center
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tendency to fixate the center of an array of products—may

transfer well from the laboratory to the supermarket (Gidlöf

& Holmqvist, 2011). Mechanism studies, however, impose

greater demands on the research question and experimental

design. First, we need to identify possible mechanisms based

on known or new theoretical considerations about eye-

movement control processes. Second, on the basis of the spe-

cific hypothesis, we need a true experimental design with

random assignment to treatment conditions; that is, besides

our manipulation of the independent variable, everything else

has to remain equal. Using a quasi-experimental design,

Lohse (1997), for example, studied the effect of surface size

on eye movements to yellow-page advertising. Even though

the study was informative about the effect of surface size, in

theory it is impossible to make causal claims about surface

size, because it could be confounded with other variables.

Third, given that we hypothesized a causal mechanism, con-

ducted a true experiment, and established a statistical effect on

eye movements, we would still have to exercise caution in

making any claims about causality. Only in the absence of

alternative explanations and successful replications of our hy-

pothesis could we have confidence in the causal mechanism.

Summary

Eyetracking research has experienced a surge in the past de-

cade as the equipment has become cheaper and easier to use.

Many types of eyetrackers can be operated without any skills

in experimental design or data analysis, thereby lowering the

barriers to conducting eyetracking research. This development

may have led to some research practices that would best be

avoided.Motivated by this concern, we have proposed a list of

threats to the validity of eye-movement research. The list of

threats will allow researchers to identify problems before

conducting their studies and may serve as a reference for ed-

itors and reviewers. It is important, however, to realize that

this list cannot replace what has already been said about sound

research practices, and that the list may not be exhaustive.

New threats may be added as methodological research pro-

gresses. Also, we must emphasize that the list should never be

applied uncritically, lest it become a hidden default.

Author note The authors thank Ignace Hooge, Richard Dewhurst, and
Sonja Perkovic for comments on previous versions of the manuscript.
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