
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Three Aspects of Real-Time Multiprocessor

Scheduling: Timeliness, Fault Tolerance,

Mixed Criticality

RISAT MAHMUD PATHAN

Division of Networks and Systems

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2012

Three Aspects of Real-Time Multiprocessor Scheduling: Timeliness,

Fault Tolerance, Mixed Criticality

Risat Mahmud Pathan

Göteborg, Sweden, 2012

ISBN: 978-91-7385-754-3

Copyright c© Risat Mahmud Pathan, 2012.

Doktorsavhandlingar vid

Chalmers tekniska högskola

Ny serie Nr 3435

ISSN 0346-718X

Technical Report No. 86D

Dependable Real-Time Systems Group

Department of Computer Science and Engineering

Chalmers University of Technology

Contact Information:

Division of Networks and Systems

Department of Computer Science and Engineering

Chalmers University of Technology

SE-412 96, Göteborg, Sweden

Phone: +46 (0)31-772 10 00

Fax: +46 (0)31-772 36 63

http://www.chalmers.se/cse/

Printed by Chalmers Reproservice

Göteborg, Sweden 2012

http://www.chalmers.se/cse/

Three Aspects of Real-Time Multiprocessor Scheduling: Timeliness,
Fault Tolerance, Mixed Criticality

Risat Mahmud Pathan

Department of Computer Science and Engineering

Chalmers University of Technology, Sweden

Abstract

The design of real-time systems faces two important challenges: incorporating more

functions/services on existing hardware to make the system more attractive to the mar-

ket, and deploying existing software on multiprocessors (e.g., multicore) to utilize more

processing power. Adding more services on the same hardware needs efficient resource

utilization. In addition, satisfying the real-time constraints, while at the same time effi-

ciently utilizing the multiprocessor platform, is a challenging problem. This thesis deals

with global multiprocessor scheduling for real-time systems, that is, the fixed-priority

scheduling of sporadic tasks, where each task is allowed to run on any processor.

More specifically, this thesis considers three aspects of the design and analysis of

global scheduling algorithms: timeliness, fault tolerance, and mixed criticality. Timeli-

ness is about meeting the deadlines of the tasks; fault tolerance is about producing the

correct output within the deadline even in the presence of faults; and mixed criticality is

about facilitating the certification of systems when tasks having different criticality (or

importance) are hosted on a common computing platform.

With respect to the timeliness aspect, global multiprocessor scheduling is analyzed

(by assuming no faults and the same criticality for all the tasks) in order to propose

new fixed-priority assignment policies and efficient schedulability tests. The proposed

schedulability tests are shown to not only dominate (from a theoretical point of view)

but also significantly outperform (by using simulation experiments) the state-of-the-art

schedulability tests for global fixed-priority scheduling.

To allow for the combination of fault tolerance and timeliness, new scheduling al-

gorithms that use time redundancy (i.e., execution of backup task) to tolerate multiple

hardware and software faults are proposed. To account for the potential intrusive effect

of time-redundant execution of backup tasks on the capability to meet task deadlines,

new efficient schedulability tests for the proposed algorithms are derived. If a task set

satisfies the schedulability tests, then all the task deadlines are met even when multiple

faults (restricted by the assumed fault model) are to be tolerated using time redundancy.

To allow mixed-criticality tasks to be hosted on the same multiprocessor platform, a

new algorithm for fixed-priority scheduling is proposed. The purpose of the algorithm

is to facilitate certification, while at the same time efficiently utilizing the processing

platform. A schedulability test for the algorithm can determine whether the appropriate

level of assurance, according to the requirement of some certification authority/standard

for meeting the deadlines of the mixed-criticality tasks, is guaranteed or not.

Keywords: Real-Time Systems, Sporadic Tasks, Fixed Priority, Global Multiprocessor Schedul-

ing, Time Redundancy, Fault-Tolerant Scheduling, Mixed-Criticality Systems

List of Publications

This thesis is based on and extends the results in the following works:

⊲ Risat Mahmud Pathan, “Schedulability Analysis of Mixed-Criticality Systems on

Multiprocessors,” 24th Euromicro Conference on Real-Time Systems (ECRTS),

Pisa, Italy, 2012.

⊲ Risat Mahmud Pathan and Jan Jonsson, “A New Fixed-Priority Assignment Al-

gorithm for Global Multiprocessor Scheduling,” Technical Report No. 2012:10,

Department of Computer Science and Engineering, Chalmers University of Tech-

nology, Sweden, 2012.

⊲ Risat Mahmud Pathan and Jan Jonsson, “FTGS: Fault-Tolerant Fixed-Priority

Scheduling on Multiprocessors,” 8th IEEE International Conference on Embed-

ded Software and Systems (ICESS), Changsha, China, 2011.

⊲ Risat Mahmud Pathan and Jan Jonsson, “Improved Schedulability Tests for Global

Fixed-Priority Scheduling,” 23rd Euromicro Conference on Real-Time Systems

(ECRTS), Porto, Portugal, 2011.

⊲ Risat Mahmud Pathan and Jan Jonsson, “Exact Fault-Tolerant Feasibility Anal-

ysis of Fixed-Priority Real-Time Tasks,” 16th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA),

Macau SAR, P.R.C., 2010.

The following works are related but not covered in this thesis:

⊲ Risat Mahmud Pathan and Jan Jonsson, “Load Regulating Algorithm for Static-

Priority Task Scheduling on Multiprocessors,” 24th IEEE International Parallel

and Distributed Processing Symposium (IPDPS), Atlanta, USA, 2010.

⊲ Risat Mahmud Pathan and Jan Jonsson, “Parameterized Schedulability Analysis

on Uniform Multiprocessors,” 39th International Conference on Parallel Pro-

cessing (ICPP), San Diego, CA, USA, 2010.

v

vi LIST OF PUBLICATIONS

⊲ Risat Mahmud Pathan, “Fault-Tolerant Real-Time Scheduling using Chip Multi-

processors,” Proceedings Supplemental volume of the 7th European Dependable

Computing Conference (EDCC), Kaunas, Lithuania, 7-9 May, 2008.

⊲ Johan Nordlander, Rolf Johansson and Risat Mahmud Pathan, “Unambiguous

Semantics In Automotive Timing Modeling,” 1st Workshop on Critical Auto-

motive applications: Robustness & Safety (CARS) in conjunction with the 8th

European Dependable Computing Conference (EDCC), Valencia, Spain, 2010.

Acknowledgments

First of all, I would like to thank my advisor Professor Jan Jonsson for his excellent

comments, invaluable ideas, feedback, and most importantly, his confidence in me to

carry out this research. It has been an extreme pleasure and a privilege working with

and learning from him. I am grateful to him for supervising my work over the past

couple of years with great patience and enthusiasm. I am thankful to Jan also for spon-

soring my trips to several conferences, which have helped me to learn and to get better

understanding of the real-time systems community.

Special thanks and gratitude to my thesis examiner Professor Johan Karlsson for his

feedback and sharing with me his knowledge on fault-tolerant computer systems. I thank

Professor Koen Claessen, Professor Per Stenström and Professor Philippas Tsigas for

helpful discussion about the direction of research during my PhD follow-up meetings.

Thanks to Dr. Johan Nordlander, Dr. Rolf Johansson and Dr. Anders Svensson who

I worked with and learned from while working on the TIMMO and MCC-AI projects.

Thanks to former gratuates Dr. Raul Barbosa and Dr. Daniel Skarin for their valuable

suggestion and discussion during my early years as a PhD student. Thanks to Peter

Lundin, head of my division, for helping me in dealing with administrative issues.

I am extremely grateful and would like to take the opportunity to thank Professor

Sanjoy Baruah for hosting me as a visiting researcher in the Real-Time Systems Group

at the University of North Carolina (UNC) at Chapel-Hill, USA in Fall, 2011. His

guidance has always been a source of inspiration for research during my stay at UNC. I

also thank all the members of the Real-Time Systems Group at UNC for their friendship.

Many thanks to all my colleagues at the Department of Computer Science and Engi-

neering at Chalmers for creating such a friendly and stimulating working environment.

Thanks to Associate Professor Roger Johansson and Arne Dahlberg for their help and

advice regarding my role as teaching assistant in different courses at Chalmers. Thanks

to Eva Axelsson, Peter Helander, Marianne Pleén-Schreiber, Tiina Rankanen, and other

administrative personnel for helping me with different office-related matters. I am very

thankful for the friendship that I have received from Alen, Angelos, Anurag, Behrooz,

Bhabi, Dmitry, Erik, Fatemeh, Jakob, Kashab, Madhavan, Negin, Ruben, Tung, and all

other PhD and post-doctoral students. Special thanks to former graduates Dr. Mafijul

Islam and Dr. M.M. Waliullah who helped me settling — received me at the airport,

cooked me dinner, helped me finding an apartment — when I first arrived in Sweden.

Thanks to the anonymous reviewers in the research community who reviewed our

submitted manuscripts and gave comments in improving our work before publication.

vii

viii ACKNOWLEDGMENTS

I would like to thank the Swedish Agency for Innovation Systems (VINNOVA) for

funding this research under the TIMMO (P30619-2), TIMMO-2-USE (39005), NFFP-4

(S4207), and Multi-Core Computing in Automotive Industry (MCC-AI) projects.

I want to express my deepest gratitude and thanks to my parents, brother and sister

who have been always encouraging me in pursuing my study. Without their support and

care I would not have finished doing this work. Finally, I thank my wife Nashita Moona

and our son Mahir Samran Pathan for their love, continuous support, and particularly,

for their patience during the last five years of my PhD study. Thank You!

Risat Mahmud Pathan

October 16, 2012

Contents

Abstract iii

List of Publications v

Acknowledgments vii

1 Introduction 1

1.1 Context of this Research . 3

1.2 Contribution Areas . 7

1.2.1 Timeliness . 7

1.2.2 Timeliness vs. Fault-Tolerance 10

1.2.3 Timeliness vs. Mixed-Criticality 14

1.3 Applicability of this Research . 16

2 Preliminaries 19

2.1 Real-Time Systems . 19

2.1.1 Sporadic Task Systems . 19

2.1.2 Task Priority . 21

2.1.3 Preemptive Scheduling . 21

2.1.4 Work-Conserving Scheduling 21

2.1.5 Schedulability and Optimality 22

2.1.6 Schedulability Test . 22

2.1.7 Minimum Achievable Density 23

2.1.8 Scheduling Algorithms . 24

2.2 Fault-Tolerant Systems . 27

2.2.1 Failure, Error, and Fault . 27

2.2.2 Error Detection Techniques 29

2.3 Mixed-Criticality Systems . 30

3 Models 33

3.1 Task Model . 33

3.2 Resource Model . 37

3.3 Fault Model . 38

CONTENTS

4 Goals and Contributions 41

5 Density-Bound-Based Test 45

5.1 Introduction . 46

5.2 Related Work . 48

5.3 Parameters of Task Model . 49

5.4 Constrained-Deadline Tasks: Density-Bound 50

5.4.1 Prior Results and Useful Definitions 51

5.4.2 “Special” Task Set and its Schedulability 53

5.4.3 Slack-Monotonic Hybrid Priority Assignment 56

5.4.4 Density Bound for Policy ISM-DS 58

5.5 Policy ISM-DS[ξ]: Searching the Threshold 62

5.6 Empirical Investigation . 65

5.6.1 Task Sets Generation Algorithm 66

5.6.2 Result Analysis . 67

5.7 Implicit-Deadline Tasks: Utilization Bound 72

5.7.1 Independent and Scale Invariant Priority Assignment 73

5.8 Uniprocessor Slack-Monotonic Scheduling 75

5.9 Summary . 76

6 Iterative Tests 77

6.1 Introduction . 78

6.2 An Analysis Framework . 81

6.2.1 Audsley’s OPA Algorithm . 82

6.3 Related Work . 85

6.3.1 State-of-the-art Iterative Tests 86

6.4 The H-ODA-LC Test . 89

6.4.1 Applying HPA Policy to ODA-LC Test 89

6.5 The IA-DA Test . 92

6.5.1 Overview of the IA-DA Test 92

6.5.2 New Criterion for Separation 93

6.5.3 Priority Assignment Algorithm: the IA-DA Test 99

6.6 The IA-RT Test . 103

6.6.1 The D-RTA-LC Test . 103

6.6.2 Priority Assignment Algorithm: the IA-RT Test 104

6.7 Empirical Investigation . 107

6.7.1 Result Analysis . 108

6.8 Summary . 112

CONTENTS

7 Fault-Tolerant Scheduling on Uniprocessor 113

7.1 Introduction . 113

7.2 System Model . 115

7.2.1 Traditional Deadline-Monotonic (DM) Scheduling 117

7.3 Related Work . 117

7.4 Problem Formulation . 119

7.5 Load Factors and Composability . 121

7.5.1 Calculation of Load-Factor-i 122

7.5.2 Calculation of Load-Factor-HPi 124

7.6 Exact Schedulability Test . 138

7.7 Algorithm for the FTDM Schedulability Test 141

7.7.1 Multiprocessor Scheduling . 144

7.8 Summary . 145

8 Fault-Tolerant Scheduling on Multiprocessors 147

8.1 Introduction . 147

8.2 Related Work . 149

8.3 System Models and the FTGS Scheduling 151

8.4 Problem Statement . 152

8.5 Analysis for Tolerating Task Errors . 153

8.6 Calculating Interfering Workload . 155

8.6.1 Workload of task τi . 156

8.6.2 Interfering Workload of task τi 160

8.7 Total Interfering Workload of the Tasks in HPk 162

8.7.1 Finding Carry-in Set Q(S, a, m̂, c) 162

8.7.2 Total Interfering Workload and Schedulability Test 165

8.8 Tolerating Processor Failures . 169

8.9 Graceful Degradation . 171

8.9.1 Direct Rejection . 172

8.9.2 Criticality-Based Eviction . 172

8.9.3 Imprecise Computation . 173

8.10 Summary . 173

9 Mixed-Criticality Systems 175

9.1 Introduction . 175

9.2 System Model and The Scheduler . 178

9.3 Schedulability Analysis: an Overview 180

9.3.1 Dual-Criticality Systems . 181

9.4 RTA Procedure at LO Criticality Level 182

9.4.1 New RTA for Sporadic Task Systems 182

9.5 RTA Procedure at HI Criticality Level 184

9.5.1 Workload of τk ∈ hpL(i) within [rxi , r
x
i + t) 185

CONTENTS

9.5.2 Workload of τk ∈ hpH(i) within [rxi , r
x
i + t) 186

9.5.3 The RTA Test for HI Criticality Level 190

9.6 Schedulability Analysis for L > 2 . 192

9.6.1 Finding Priorities using Audsley’s Algorithm 194

9.7 Empirical Investigation . 195

9.8 Related Works . 197

9.9 Summary . 200

10 Conclusion 201

A Proofs of Theorems and Lemmas 219

B Additional Graphs for Iterative Tests 229

1
Introduction

The demand for more functionalities and comfort in the use of today’s prevailing com-

puterized systems is increasing. The types and varieties of different functions or services

determine the competitiveness of computerized systems — e.g., portable devices, cars,

aircrafts — in the market. A modern passenger car, now-a-days equipped with dozens of

processors, does not only provide functions related to vehicle control but also supports

services related to comfort and safety. The development of such complex computerized

systems with increasingly higher number of functionalities requires rigorous design and

analysis effort to ensure that the system is “predictable”.

In my opinion, a system is predictable if any possible run-time behavior and its

consequences are either known or can be tuned to be known during the design of the

system. One way to characterize a computerized system is based on its functional and

non-functional behaviors. The functional behaviors of a system are the main activities or

services provided by the system, for example, anti-lock braking system (ABS) in a car,

online stock trading service, auto-pilot function in an aircraft, and so on. The end-users

directly interact with the functional behaviors of a system. The non-functional behaviors

are the qualitative or quantitative measure of the functional behaviors. Examples of non-

functional behaviors of computerized systems are throughput, timeliness, and energy

consumption (e.g., in portable devices). The users perceive the non-functional behaviors

while interacting with the functional behaviors of the system.

The aim of the research presented in this thesis is to aid the system designer in en-

suring predictability regarding some important non-functional behaviors of a class of

computer systems known as real-time systems. The most prominent non-functional be-

havior of a real-time system is the requirement on producing the output within a certain

deadline (also referred to as timeliness). Examples of such systems are automotive,

1

2 CHAPTER 1. INTRODUCTION

avionics, space systems, nuclear power plants, and consumer electronics. This thesis

focuses on modeling, analysis, and verification of some important non-functional be-

haviors of real-time systems.

The modeling and analysis of key non-functional behaviors of real-time systems

are important to ensure predictability. This is because the popularity and success of

a computerized system does not only depend on what it does but also on how it does

it. Consider the example of withdrawing money from an ATM where a customer en-

joys the opportunity of getting cash in a remote location without visiting the bank in

person. However, the client would not be satisfied if the ATM does not dispense the

cash few seconds after correct credentials are entered into the machine’s keypad. The

ability to withdraw cash at a remote location is a functional behavior of the ATM while

the time it takes in dispensing cash is an important non-functional behavior. Another

non-functional behavior for an ATM system is its fault-tolerance capability: after with-

drawing cash from an ATM, the account balance of the customer must not be updated

incorrectly even if the system encounters some fault. Acceptable non-functional behav-

iors are crucial to customer satisfaction with the functional behaviors of the system.

What is modeling? In the context of this thesis modeling refers to the act of formally

representing the parameters and assumptions of the system relevant to the non-functional

behaviors under study. In particular, the software (e.g., functional behaviors) and hard-

ware (e.g., number and type of processors) are abstracted using modeling. In addition,

the constraints needed for acceptable non-functional behavior of the system are formally

captured. Modeling eliminates unnecessary details and captures only the relevant infor-

mation necessary for analyzing the non-functional behavior under study. For example,

dispensing cash within 5 seconds, after correct credentials are entered, may be an ac-

ceptable non-functional behavior to most of the clients of an ATM. This non-functional

behavior, i.e., time it takes in dispensing cash, can be modeled using a parameter called

“dispenseTime”. And, the acceptable behavior of dispenseTime can be modeled as a

constraint such that “dispenseTime ≤ 5 seconds”.

What is analysis? In the context of this thesis analysis refers to evaluating the non-

functional behavior from the worst-case perspective. Analysis is about determining the

worst-case situation that might occur at run-time and (qualitatively or quantitatively)

evaluating the non-functional behavior during that particular situation. However, iden-

tifying the worst case may not be trivial or its analysis may not be simple or straight-

forward. In the ATM example, finding the worst case of the non-functional behavior

dispenseTime means finding the maximum time the ATM takes in dispensing cash.

And, the analysis of dispenseTime requires the consideration of several factors for ex-

ample, hardware, software, network latency, time to check the customer’s account bal-

ance, and so on. Determining the exact worst-case behavior of the system, considering a

particular non-functional behavior, may not be always possible due to shortage of time,

limited resources, or due to the complexity of the analysis. In such case, the worst-case

behavior may need to be safely approximated which introduces pessimism in the analy-

sis. The degree of pessimism determines the preciseness of analysis — lower pessimism

(without compromising the correctness) means more precise analysis.

1.1. CONTEXT OF THIS RESEARCH 3

Is the system acceptable? Whether a non-functional behavior is acceptable or not is

determined using verification. While analysis estimates the quality of the non-functional

behavior from the worst-case viewpoint, verification is about checking whether this

quality is acceptable to the customers or compliant with some certification standard.

For example, if the analysis of non-functional behavior dispenseTime concludes that

dispenseTime = 20 seconds, then the verification step would conclude that the be-

havior dispenseTime is not acceptable because “dispenseTime > 5 seconds”. Unac-

ceptable non-functional behaviors may require changes in hardware, software or even a

re-specification of the system. Clearly, such changes cost significant time and/or money.

Appropriate modeling, effective analysis and efficient verification of non-functional

behaviors of real-time systems are therefore of utmost importance and are also the main

ingredients of this thesis.

1.1 Context of this Research

The non-functional behaviors of a system may not be specified by the end-users, e.g.,

buyers of passenger cars.1 The end-users may remain unaware of the important non-

functional behaviors of the system. However, the end-users become aware of the exis-

tence and importance of a non-functional behavior if its quality becomes unsatisfactory

in some way. The level of acceptability of a particular non-functional behavior is mod-

eled as one or more design constraints which are verified before the system is put in

mission. It is the responsibility of the system designers to ensure that functional behav-

iors are correctly implemented and that the design constraints used to model the accept-

ability of the non-functional behaviors are satisfied. This thesis addresses the modeling,

analysis, and verification of three important non-functional behaviors of real-time sys-

tems: timeliness, fault tolerance, and mixed criticality.

Timeliness is a non-functional behavior which is about meeting the deadlines of the

real-time applications deployed on a particular computing platform. Acceptable time-

liness behaviors of real-time application are specified as timing constraints. The first

research question addressed in this thesis considers timeliness:

Q1 How to guarantee that all the deadlines of a real-time application are

met on a particular computing platform?

Fault tolerance is a non-functional behavior which is about providing correct service

even in the presence of faults. Fault-tolerant behavior is implemented using hardware

(space) or software (time) redundancy in many safety-critical systems, for example, au-

tomotive, aircraft, and space shuttle applications. This thesis considers fault-tolerant

1However, the OEM (not an end-user) of a passenger car may specify the non-functional behaviors when

ordering or buying particular component from an external supplier. Non-functional behaviors of defense

applications are often specified by the corresponding military organization.

4 CHAPTER 1. INTRODUCTION

systems that are also real-time systems. Deviation from acceptable timeliness or fault-

tolerant behavior of such systems might result in catastrophic consequences, for exam-

ple, loss of human lives, threat to the environment or severe economic loss.

The timeliness and fault-tolerant behaviors may be dependent on one another in

a conflicting way. For example, the likelihood of meeting timing constraints of a fault-

tolerant system may decrease as the amount of space or time redundancy used to achieve

fault-tolerance is increased. In other words, the requirement on timeliness in such case

is competing with the requirement on fault-tolerant behavior. To that end, the second

research question addressed in this thesis considers this interdependency of timeliness

and fault-tolerance:

Q2 How to guarantee that all the deadlines of a real-time application are

met on a particular computing platform while providing fault toler-

ance using time or space redundancy?

Mixed criticality is a non-functional behavior which is about providing certain level

of assurance regarding the correct behavior (e.g., meeting the deadlines) of different

multi-criticality functions hosted on a common computing platform. Traditionally, the

design of a non-mixed-criticality system assumes the same criticality level for all the

functions present in the system. In contrast, an Mixed Criticality (MC) system has mul-

tiple criticality levels where each function is assigned one unique criticality based on its

“importance”. For example, the ABS function in a car is assigned a safety criticality

level that is relatively higher than that is assigned to the DVD player function. Higher

criticality level assigned to a function means that higher degree of assurance is needed

regarding the correct behavior of the function.

The design of safety-critical systems considers the integration of multiple functions

having different criticality levels on a single, powerful processor due to space, weight

and power (SWaP) concerns. The run-time behavior of such systems varies based on the

operating environment, hardware dynamics, input parameters, and so on. The behavior

of the system at each time instant determines the criticality behavior of the system at

that time instant. The criticality behavior of the system changes from one time instant

to another while the statically-assigned criticality of each function does not change.

MC systems often need to be certified by a third party, known as a certification au-

thority (CA). Certification is about ensuring certain level of confidence regarding the

acceptable (i.e., correct) behavior of the system. For example, certifying an aircraft may

need to verify that standard design guidelines are followed during the development of

the flight-control software. A certified product is considered safe and also promotes

confidence among the end-users in buying that product. The degree of assurance needed

for certifying the behavior of an MC system as “correct” at one criticality level is typi-

cally different from the assurance needed at a different criticality level. In this thesis, the

correct behavior of an MC system is modeled using timing constraints (i.e., deadlines).

Whether the deadline of a function is met or not depends on the worst-case execution

time (WCET) of the function, which is the maximum CPU time the function requires to

complete its execution. The WCET of a function can be approximated at varying degrees

1.1. CONTEXT OF THIS RESEARCH 5

of confidence or assurance, depending on the inaccuracy or difficulty in estimating the

true WCET, for example, due to the variability in inputs, operating environment, hard-

ware dynamics, and so on. The higher degree of assurance needed in estimating the

WCET of a function, the larger (more conservative) the WCET bound tends to be in

practice. The criticality behavior of the system is then determined by comparing the

actual execution time of each function with the WCET that is estimated using different

degrees of assurance.

Conventional real-time scheduling policies for non-MC systems can not address both

deadline and criticality (e.g., multiple WCET of the same function). The third research

question addressed in this thesis considers this interdependency between timeliness and

mixed-criticality:

Q3 How to guarantee that all the deadlines of a real-time application are

met while ensuring certification at each criticality level?

In the context of this thesis, timeliness is about meeting deadlines; fault tolerance is

about providing correct service even in the presence of faults while satisfying the timing

constraints; and mixed criticality is about certifying the integration of mixed-criticality

functions considering varying degrees of confidence in the WCET estimation of each

function. The first problem considers the timeliness requirement independent of other

non-functional behaviors while the second and third problems address the interdepen-

dency of different non-functional behaviors: timeliness vs. fault-tolerance and timeli-

ness vs. mixed-criticality, respectively.

Application Characteristics. Many real-time applications, e.g., control and monitor-

ing, are modeled as a collection of recurrent tasks with stringent/hard deadlines. A task

is a particular piece of program code that performs some computation, e.g., reading sen-

sor data, writing actuator value, executing a control loop, etc. The recurrent task model

considered in this thesis is the sporadic task model where the inter-arrival time (period)

of each task has a lower bound and the relative deadline of each task is not greater than

its period. An instance (also, called job) of the task is said to be released when it be-

comes available for execution. The releases of two consecutive jobs are separated by

at least the period of the task. The deadline is “relative” in the sense that whenever a

job is released, the deadline for that job applies with respect to its release time. Each

task is also characterized by exactly one WCET (i.e., the maximum CPU time the task

requires to finish its execution2). Every job of the task must finish its execution before

its corresponding deadline expires (i.e., the timing constraint of the task).

The category of real-time systems having stringent timing constraints is called hard

real-time systems. If the timing constraints of a hard real-time system are not satis-

fied, then the consequences may be catastrophic, for instance, threat to human lives.

2The non-functional behavior timeliness, when considered independent of other non-functional behaviors,

is based on the modeling of non-MC systems. So, only one WCET of each task is considered. Different

WCET of the same task is considered when modeling MC systems.

6 CHAPTER 1. INTRODUCTION

Consequently, it is of utmost importance for designers of hard real-time systems to en-

sure a priori that all the timing constraints will be met when the system is in mission.

The timing constraints of hard real-time applications can be fulfilled using appropriate

scheduling of the tasks on a particular hardware platform. Scheduling is the policy of

allocating resources (e.g., CPU time, communication bandwidth) to the tasks of the ap-

plication that are competing for the same resource. Scheduling algorithms and their

analysis that can be used to verify the timing constraints of hard real-time systems

are at the heart of the research presented in this thesis.

Computing Platform. The emerging Chip-Multiprocessors (CMPs) technology, where

multiple processing cores are placed on the same chip, is attractive for real-time systems

design due to the computation power provided by such technology. Major processor-

chip manufactures have already shifted towards multicore architecture to overcome the

heat and thermal limitations in the design of single-core processors. Multicore proces-

sors are commonplace in both general purpose (e.g., Intel’s dual-, quad-core processors)

and embedded domains (e.g., ARM’s Cortex family of processors). The trend is now

incorporating more and more cores on the same chip. Intel’s Teraflop research chip has

announced the design of an 80 core platform. The current shift towards multicores by

prominent chip vendors indicates that the commercially available off-the-shelf proces-

sors in near future would be only multicores. To this end, this thesis considers real-time

scheduling on a computing platform having multiple identical processors/cores.

Scheduling Policy. The dominating scheduling approach in industry for meeting the

hard deadlines of application tasks is the fixed-priority (FP) scheduling policy, due to its

flexibility, ease of debugging, and predictability. Under the FP scheduling strategy, each

task is assigned a priority that never changes during the execution of the task. This thesis

addresses preemptive global FP scheduling of sporadic tasks on a platform consists of

identical processors or cores. In preemptive global FP scheduling, at each time instant,

the highest-priority runnable3 task is dispatched for execution if a processor is idle. If

all the processors are busy and a relatively lower-priority task is executing on some

processor, then the highest-priority runnable task is dispatched for execution on that

processor by preempting the lower-priority task. The preempted task may later resume

its execution on any processor (i.e., the assumed execution model allows migration).

Given the trend of widespread diffusion of multicore platform for real-time systems,

there are several challenges in global scheduling on multiprocessors. It has already

been shown by the researchers in the real-time systems community that the relatively

mature theories and techniques applicable to analyze timeliness on uniprocessor plat-

form are not applicable (i.e., perform poorly) to global multiprocessor scheduling. For

example, while the best fixed-priority ordering of sporadic tasks is known for unipro-

cessor FP scheduling, the best priority ordering for global FP scheduling is not cur-

rently known. In addition, when the non-functional behavior timeliness is considered

in addition to other non-functional behaviors like fault tolerance or mixed criticality,

the schedulability analysis becomes even more difficult. This thesis addresses such

3A task is runnable if it has been released but has not completed its execution

1.2. CONTRIBUTION AREAS 7

challenges by proposing new techniques to analyze global multiprocessor scheduling

in order to answer the three research questions mentioned above.

Why global multiprocessor scheduling? There are two main paradigms for multi-

processor FP scheduling of real-time tasks: the global approach and the partitioned

approach. In the partitioned approach, each of the tasks is preassigned to exactly one

processor and allowed to execute only on that processor (i.e., no migration is allowed).

Each processor can execute the assigned tasks using some uniprocessor FP schedul-

ing algorithm, for example, Deadline-Monotonic (DM) scheduling in which task with

shorter relative deadline is given higher fixed priority. In the real-time research com-

munity, there is no clear evidence that one scheduling paradigm is superior to another:

one task set that is deemed schedulable using global FP scheduling may be not schedu-

lable using partitioned FP scheduling, and conversely. However, global scheduling is

advocated in this thesis for several reasons. First, the open research problems related to

global FP scheduling are very challenging. Second, the adoption of global scheduling in

actual multicore systems is becoming more likely as various mechanisms (e.g., locked

cache) are being proposed to reduce migration overhead. Third, global scheduling does

not require an a priori assignment of tasks to the processors (finding an optimal task

assignment to processors is known as an NP-hard problem) and provides the flexibility

to execute a task on any processor by allowing migrations. Finally, global scheduling

does not require reassignment of the tasks if a new task has to be accepted in the system,

for example, due to function or component upgrade (such reassignment is needed for

partitioned scheduling when tasks are presorted prior to assigning them to processors).

1.2 Contribution Areas

What follows in this section are the major challenges and the contributions in dealing

with each of the research questions mentioned above.

1.2.1 Timeliness

The most important non-functional behavior of a real-time system is timeliness. In this

thesis, timeliness means meeting the deadlines of a set of real-time sporadic tasks. The

output of a task corresponds to the functional behavior while the time at which the output

is generated is related to the non-functional behavior timeliness. The deadline by which

the output has to be generated is modeled as a timing constraint.

The means to satisfy the timing constraints is to appropriately schedule the tasks

on the processors. Whereas the uniprocessor real-time scheduling theory is considered

very mature, a comprehensive multiprocessor scheduling theory has yet to be developed.

Many of the well-understood traditional uniprocessor scheduling algorithms perform

poorly (in terms of hard real-time schedulability) on multiprocessors. There is conse-

quently a need for the design and analysis of multiprocessor scheduling algorithms. This

thesis considers global FP scheduling and its analysis to verify whether all the deadlines

of the tasks are met or not.

8 CHAPTER 1. INTRODUCTION

Research Challenges. The two major research challenges for global FP scheduling

are: (i) priority assignment problem, and (ii) schedulability testing problem. In global

FP scheduling of sporadic tasks, whether a particular task, say task τ , meets its deadline

or not depends on the tasks having priorities higher than that of task τ . This is because

the set of higher priority tasks determine the length of the cumulative time interval dur-

ing which all the processors are busy executing these higher priority tasks while the task

τ is awaiting execution (called the interference on task τ due to the higher priority tasks).

Since the priority ordering of the tasks determines the set of tasks having higher priori-

ties than the priority of each task, the interference that a particular task suffers depends

entirely on the priority ordering. Therefore, deriving a good fixed-priority assignment

policy for global FP scheduling is important to guarantee the schedulability of each task.

A priority assignment is said to be optimal if given some priority ordering for which all

the deadlines of the tasks are met, then the optimal priority assignment also guarantees

the same. While the optimal fixed-priority ordering of sporadic tasks scheduled preemp-

tively on a uniprocessor is known4, the optimal fixed-priority ordering for preemptive

global multiprocessor scheduling is still unknown.

Whether the deadlines of the hard real-time tasks are met or not needs to be de-

termined offline based on a schedulability test. A schedulability test of a scheduling

algorithm is a condition that, when satisfied for a given task set, guarantees that all the

deadlines of the tasks are met using that scheduling algorithm. Deriving a schedulability

test involves analyzing the worst-case behavior of the scheduling algorithm. The worst-

case behavior for global FP scheduling of sporadic tasks is difficult to determine.5 To

circumvent this problem, the worst-case behavior of global FP scheduling algorithm is

approximated by introducing some degree of pessimism during the schedulability anal-

ysis. The challenge is to introduce as little pessimism as possible during the analysis in

order to derive a more effective schedulability test based on a more precise analysis.

Contributions. In order to address the two problems just discussed, new fixed-priority

assignment policies and effective schedulability tests for global FP scheduling of spo-

radic tasks are proposed in this thesis. Two different flavors of global FP schedulabil-

ity tests are proposed: density-bound tests and iterative tests. One of the most simple

schedulability tests is the density-bound test in which it is only required to check exactly

one condition: if the total density6 of a sporadic task set is not greater than a threshold

(called the density bound), then all the tasks meet their deadlines. A larger density

bound means a better schedulability test. Moreover, the density-bound test relates the

sum of the densities of all the tasks in a task set to the total available processing capac-

4Deadline-monotonic priority ordering is optimal for uniprocessor FP scheduling where each task’s rela-

tive deadline is less than or equal to its period.
5The worst-case scenario in analyzing a FP scheduling algorithm is called a critical-instant (formally

defined later). While the critical instant for uniprocessor FP scheduling is known, the critical instant for

global FP scheduling is not known.
6The density of a task is the execution time required per unit of time within the relative deadline of the

task. The total density of a task set is the sum of densities of all the tasks in that task set. The utilization of a

task is the execution time required per unit of time within the period of the task. Formal definitions of these

concepts will be presented shortly.

1.2. CONTRIBUTION AREAS 9

ity. Consequently, a density-bound-based test can be used not only to verify the timing

constraints for some given processing capacity but can also be used to determine the

sufficient processing capacity needed for satisfying a given set of timing constraints.

A new fixed-priority assignment policy, called Improved Slack-Monotonic Density

Separation (ISM-DS), is proposed in this thesis and the corresponding density bound for

global FP scheduling is derived. This thesis will show that the proposed density-bound-

based test dominates the state-of-the-art density-bound test for global FP scheduling of

sporadic tasks where the relative deadline of each task is not greater than its period. By

domination it means that there are schedulable task sets that satisfy the proposed density-

bound test for ISM-DS but do not satisfy the state-of-the-art density-based test, and that

the converse does not apply. The density-bound test becomes the utilization-bound test

when the relative deadline of each task is equal to its period.

Unlike the density-bound test, an iterative schedulability test requires one condi-

tion to be tested for each task: if the schedulability condition is satisfied for each task

(checked iteratively), then the entire task set is schedulable. In this thesis, a new iterative

test, called Interference-Aware Response-Time (IA-RT) test, is proposed. The deriva-

tion of this iterative test is based on reducing different sources of pessimism identified

in the state-of-the-art schedulability analysis of global FP scheduling. As shown in this

thesis, the IA-RT test dominates the state-of-the-art iterative test for global FP schedul-

ing. In addition, empirical investigation using randomly generated task sets shows that

the IA-RT test significantly outperforms the state-of-the-art iterative test.

Determining the fixed-priority assignment of the tasks for global FP scheduling is

a challenging problem and the optimal priority ordering in such case is not known. An

important property of the IA-RT test is that it checks the schedulability of each task

while assigning the fixed priorities to the tasks. If all the tasks are assigned priorities

based on the IA-RT test, then it is also true that the task set is schedulable using global

FP scheduling according to the assigned priorities. This is a very important property

since determining the fixed-priority assignment of the tasks for global FP scheduling

is a challenging problem and the optimal priority ordering in such case is not known.

Notice that this result does not imply that priority ordering found using the IA-RT test

is also the optimal priority ordering for global FP scheduling. Optimality can only be

claimed with respect to the IA-RT test.

Apart from being able to verify the timing constraints, the proposed density-bound-

based and iterative schedulability tests for global FP scheduling approximate the worst-

case behavior by reducing the pessimism in comparison to that present in the state-of-

the-art iterative schedulability tests. Reducing such pessimism has several advantages.

First, it reduces the demand on computing resources which in turn reduces the cost of

the system for mass production. Second, lower computing resource means less space,

weight and power consumption which are desirable in many resource-constrained em-

bedded systems. Finally, efficient use of system resources enables incorporating more

functionalities on the same computing platform without buying additional hardware. All

these advantages provide better competitiveness of a product in the market.

10 CHAPTER 1. INTRODUCTION

1.2.2 Timeliness vs. Fault-Tolerance

Real-time systems with fault-tolerance requirements must provide correct service even

in the presence of faults. In addition to satisfying the timing constraints, the functional

correctness of the application must be guaranteed; otherwise, the consequence may be

disastrous. For example, after the computer system failed in the London Stock Exchange

on September 8, 2008, the stock trading halted for several hours; upsetting clients who

trade an average $17.5 billion a day. The cause of such incorrect behavior of com-

puter system is the occurrences of faults in the system. Both permanent and transient

faults in hardware may occur due to, for example, hardware defects, electromagnetic

interferences, or cosmic ray radiation. In addition, software faults (bugs) may remain

undetected even after months of software testing and debugging.

A system failure occurs when a system deviates from the correct specified service.

Such deviation from correct service is due to some incorrect state in the system which

is called an error, i.e., an error is liable for a failure. The source or cause of an error is a

fault. To better understand these concepts, consider the following example.

Example 1.1 (Faults, Errors, Failures). Consider a safety-critical system that must

invoke a function, called action(), to avoid catastrophic consequence (failure) if the

temperature of the system’s environment, measured using a temperature sensor, is 0o

Celsius(C). Assume that the sensor only reads temperature in units of Fahrenheit(F).

The conversion rule C = (F − 32) ∗ 1.8 can be used to convert F to C. Therefore, when

the sensor reading is 32oF, which is equivalent to 0oC, then action() must be invoked to

avoid system failure.

Algorithm some_control_function()

// The system fails if action() is not invoked when temperature is 0oC

1. F ← <read from temperature sensor>

2. C = (F − 3.2) ∗ 1.8; // instead of 32 in the rule, 3.2 is used (a fault)

3. If C == 0 Then

4. action();
5. End If

Figure 1.1: A simple program to understand fault, error, and failure

This service of the system is implemented in Figure 1.1 where the constant 3.2 in line 2

is mistakenly used instead of constant 32 for the conversion rule. Coding the rule using

constant 3.2 is an example of a fault. This fault causes incorrect computation of C in

line 2 (an incorrect state of the system), which is an error. When the read (input) value

from the sensor is F = 32, the converted value C = (32− 3.2) ∗ 1.8 = 51.84 in line 2

is erroneous which results in a system failure because action() in line 4 is not invoked

although the actual temperature of the environment is 32oF= 0oC.

Not every error leads to a system failure. When the input from the sensor is not 32oF

(i.e., actual temperature of the environment is not 0oC), the converted value in line 2 is

erroneous; however, the system does not fail because function action() is not needed to

be invoked in such case anyway.

1.2. CONTRIBUTION AREAS 11

Similarly, every fault does not cause an error. To see why, consider that the sensor is

not working properly and reads 3.2oF when the “true” temperature of the environment

is 32oF. Although the conversion rule in line 2 is faulty, the state of the system is not

incorrect (no error) since the converted value 00C is correct for the actual temperature

of 32oF. In such case, the fault in the conversion rule is masked, there is no error, and

function action() is invoked.

The faults that are manifested as errors must be tolerated to prevent system failures with-

out its effect being adversely perceived by the end-users (an acceptable non-functional

behavior). However, no fault-tolerant system can tolerate an infinite numbers and ar-

bitrary types of faults. The nature and frequency of faults considered for the design

of a particular fault-tolerant system are specified using a fault model. The fault model

used for analyzing the predictability of different computer systems varies. For example,

the fault model considered during the design of a space shuttle is different from that of

personal computers.

The level of protection needed against failures is modeled as reliability constraints.

For example, the reliability constraint for the design of a fault-tolerant system may be to

withstand a total of f transient errors (as caused by hardware transient faults). Satisfying

the reliability constraints ensures that the functional behavior of the system is acceptable

even in the presence of faults. Acceptable timeliness and fault-tolerance behaviors can

be achieved by means of fault-tolerant scheduling, which is the focus of this thesis.

Research Challenges. Achieving fault-tolerance in computer systems requires employ-

ing redundancy either in space or in time. Space redundancy is provided by additional

hardware, for example, using extra processors. Space redundancy is used to achieve tol-

erance against permanent hardware failure. For example, when a processor chip ceases

functioning, the tasks can be executed on redundant processors. However, due to cost,

volume and weight considerations implementing space redundancy for all the function-

alities may not be always viable, for example, in space, automotive or avionics applica-

tions. To achieve fault-tolerance in such systems, time redundancy is used in the form

of executing backup tasks.

Fault-tolerance using time redundancy in real-time systems can not be addressed in-

dependently of the task-scheduling issues. This is because time-redundant execution as

a means for tolerating faults may have a negative impact on the schedule of the tasks

in the sense that it might lead to missed deadlines for one or more of the tasks. Con-

sequently, there is a need for fault-tolerant scheduling algorithms that minimize such

intrusive impact resulting from time-redundant execution to tolerate faults.

Contributions. This thesis presents fault-tolerant FP scheduling algorithms for both

uni- and multiprocessor platforms considering a certain fault model. The proposed fault

model is very powerful in the sense that multiple faults can occur in any task and at any

time, even during the execution of a recovery operation. Transient hardware faults that

cause transient task errors is considered in the fault model. Transient hardware faults

are short lived and generally cause no permanent error to the hardware. Therefore, re-

executing the original task as backup is a cost-efficient and simple means for tolerating

12 CHAPTER 1. INTRODUCTION

such faults. Although software faults are permanent, their manifestation (i.e., the cor-

responding error) might be of transient nature due to, for example, changes in input or

executing a different path during re-execution. Such software faults which result in tran-

sient errors are considered in the fault model and can be tolerated through re-execution.

Software faults, which result in permanent task errors (and therefore can not be tolerated

using re-execution), are also considered in the fault model. A diverse implementation

of the task needs to be executed as backup to recover from such permanent error due

to software faults. A diverse implementation of the same task is expected not to have

the same software fault, and therefore, does not cause the same permanent error upon

execution of the backup.

The types of faults considered in the fault model can cause task error (i.e., incorrect

output generated by the task) or permanent processor failure (i.e., some processors in

the multiprocessor platform are not working). The concepts of task error and processor

failure are distinguished in this thesis. A task error corresponds to a situation where

the output of a task is not correct but the processor on which the task is executing is

non-faulty. A processor failure is caused by a fault that is permanent in hardware and

the output of the task executing on that faulty processor is considered as erroneous. Mit-

igating the effect of a processor failure does not mean that the failed processor becomes

functional again; instead, it means the task that was executing on the failed processor

still meets its deadline by executing its backup on a non-faulty processor. The fault-

tolerant scheduling algorithms proposed in this thesis consider original-task re-execution

or diverse-implementation execution as backup in order to tolerate both task errors and

processor failures. Any instance of a task when first executes is called the primary while

the original-task re-execution or diverse-implementation execution is called the backup.

This thesis proposes a preemptive FP uniprocessor fault-tolerant algorithm, called

Fault-Tolerant Deadline-Monotonic (FTDM) scheduling, where at most f task errors can

be tolerated within all possible time intervals, each of which is not longer than the max-

imum relative deadline of any task in the task set. The FTDM algorithm is designed not

to consider permanent processor failure in its fault model.7 The FTDM scheduling con-

siders tolerating task errors caused by hardware or software faults. The errors affecting

the tasks are tolerated using time redundancy where both original-task re-execution or

diverse-implementation execution as backup is possible. When an error is detected, the

backup of the task becomes ready for execution. An exact schedulability condition of

the FTDM algorithm is derived, for which it applies that all task deadlines are met if, and

only if, this condition is satisfied.

While processor chip failures requires that redundant chips are available to tolerate

permanent hardware failures, permanent core failure in CMPs may be tolerated without

having additional backup processor chip. The task that was executing on a faulty core

can be migrated to a non-faulty core on the same chip and its backup can be executed

on this non-faulty core. Such time-redundant execution on the same chip is possible

if the task set is still schedulable on the remaining available (non-faulty) processing

7However, the exact schedulability condition for the FTDM algorithm is directly applicable to partitioned

multiprocessor scheduling where tasks are preassigned to processors and never migrate.

1.2. CONTRIBUTION AREAS 13

cores. Luckily, contemporary CMPs offer such high processing capacity that they may

be exploited to tolerate core failures. Therefore, time redundancy in combination with

space redundancy can mitigate the effect of permanent core failures in CMPs where the

scheduling algorithm allows task migration.

Most of the previous work on fault-tolerant scheduling for multiprocessors, based

on partitioned method, do not distinguish between tolerating task error and processor

failure. Previous work considered tolerating task error by pessimistically assuming that

the processor on which the faulty task was executing has crashed and execute the backup

task on a different processor to which the backup is preassigned. Such pessimism unnec-

essarily increases the number of processors required to tolerate task errors even though

it could be possible to execute the backup on the same (non-faulty) processor on which

the task error is detected. Moreover, increasing the number of processors is costly in

terms of SWaP for many embedded real-time systems and also increases the probability

of having more faults as more chips are deployed.

To this end, this thesis proposes a multiprocessor FP fault-tolerant scheduling algo-

rithm, called Fault-Tolerant Global Scheduling (FTGS), which tolerates both task errors

and processor failures. The design of the FTGS algorithm is based on two crucial ob-

servations: (i) in case of task error, the global scheduler can simply dispatch the backup

of a faulty task to any processor (even to the processor on which the task encountered

the error), and (ii) mitigating the effect of processor failure is same as tolerating a task

error by dispatching the backup of the task to a non-faulty processor. The FTGS algo-

rithm considers tolerating f task errors within all possible intervals not larger than the

maximum relative deadline of any task and tolerates (i.e., mitigate the effect of) total

ρ permanent processor failures during the entire lifetime of the system.

The schedulability analysis for the FTGS algorithm derives a schedulability test that,

when satisfied, guarantees that all the deadlines of the tasks are met even in the presence

of task errors and processor failures. The novelty of the proposed schedulability test

is that the resilience in terms of tolerating different combinations of task errors and

processor failures can be efficiently determined for resource-constrained embedded real-

time systems. Moreover, if the given priority ordering of the task set does not satisfy the

proposed test, then a priority ordering for which the task set may satisfy the proposed

test can be searched efficiently. Finding such a priority ordering is important since it

avoids unnecessary upgrading of the hardware or even re-specification of the software.

The proposed schedulability tests for the FTDM and FTGS scheduling algorithms

can be used to verify the reliability and timing constraints (under the assumed task and

fault models) for uni- and multiprocessors, respectively. The mathematical expressions

of these schedulability tests include parameters related to the task, fault and resource

models. The system designer can play around with these parameters to determine, for

example, the resource requirement for a given task set and fault model, or the maximum

number of task errors that can be tolerated on a given processing platform. Such ca-

pability enables the designer to make a trade-off between resource requirement and the

level of redundancy necessary for an acceptable fault-tolerant behavior of the system.

14 CHAPTER 1. INTRODUCTION

1.2.3 Timeliness vs. Mixed-Criticality

SWaP concerns drive the design of safety-critical systems towards integrating multiple

functionalities having multiple criticality levels on the same computing platform. The

computation power of CMPs also encourages such integration so as to incorporate more

functionalities on the same platform. For example, aviation industry is contemplating

“Integrated Modular Avionics” (IMA) to achieve economic advantage by hosting multi-

ple avionics functions on a single platform.

Traditionally real-time scheduling of safety-critical systems assumes that all the

tasks in the system have the same level of criticality (or importance). In contrast, an

MC system is one in which the criticality levels of different real-time tasks may be dif-

ferent. For example, in the RTCA DO-178B standard, there are five different Design

Assurance Levels (DAL A to DAL E) for software in avionics systems, and in ISO

26262 standard, safety functions in automotive systems can have four different Auto-

motive Safety Integrity Levels (ASIL A to ASIL D). In this thesis, it is assumed that

assigning a criticality level to a task in an MC system means the degree of assurance

required for the correct behavior (i.e., meeting deadline) of that task.

In order to certify an MC system as being correct, the CAs make certain assump-

tions about the worst-case run-time behavior of the system. However, the assumptions

made by the system designers may be different from that of the CAs. For example,

the CA generally makes very conservative assumptions regarding the WCET of a task

in comparison to the assumptions made by the system designers. It is well-known that

the accuracy in estimating the WCET of a particular piece of code is problematic: the

WCET used for the schedulability analysis of each task is generally a conservative upper

bound that exceeds the true WCET. The higher level of assurance or confidence needed

in estimating the WCET of a piece of code, the larger the WCET tends to be in practice.

Different upper bounds on WCET for a piece of code can be considered based on

the level of assurance needed for certification at different criticality levels. Whether the

deadline of a task is met depends on the WCET of the task, and therefore, the level

of assurance needed for certification in meeting the deadlines depends on the level of

assurance used in deriving the WCET of that task. When certifying the system at a

lower criticality level than the criticality assigned to some task, the WCET of that task

estimated according to the level of assurance required at that lower criticality level can

be considered during the schedulability analysis of MC system.

Research Challenges. One of the challenges regarding the design of MC systems is to

ensure the isolation property, i.e., that functions, tasks or components at a lower critical-

ity level do not interfere adversely with those at a higher criticality level. Such level of

isolations can be provided by dedicating the system resources for each criticality level.

For example, all the high critical functions may be integrated on a separate processor.

However, providing a dedicated resource at each criticality level may not be cost- and

resource-efficient. Therefore, sharing the computing resources among the tasks having

multiple criticality levels has to be considered. Unfortunately, such sharing requires

special design considerations to avoid issues such as, the criticality inversion problem,

1.2. CONTRIBUTION AREAS 15

where a high critical task may miss its deadline when the scheduler assigns CPU time

to meet the deadline of a low criticality task.

Although the isolation property is not explicitly addressed in this thesis, global

FP scheduling can achieve this property as follows. When multiple tasks having dif-

ferent criticality levels are integrated on the same multicore chip, all the tasks having

the same criticality can be globally FP scheduled on a (dedicated) subset of the pro-

cessing cores. This scheduling approach requires no explicit task assignment algorithm,

and more importantly, the temporal behavior of each function can be restricted only to

its dedicated cores to ensure isolation. Such restriction is necessary and beneficial for

function/component upgrade, modification and incremental certification.

Another challenge in the design of mixed-criticality scheduling is the priority assign-

ment problem for the MC tasks. The priority and criticality of a task are not necessarily

positively correlated in the sense that always assigning higher priority to a higher criti-

cality task may not yield the best performance. The criticality level of a task is statically

assigned based on the degree of assurance needed regarding its correct behavior (which

in this thesis is about meeting its deadline). In case of FP scheduling, a task with higher

criticality level may sometimes be assigned higher fixed priority to ensure, for example,

the isolation property or to avoid the criticality inversion problem. However, a task with

higher criticality level may sometimes need to be assigned a relatively lower fixed pri-

ority to allow the deadlines of all the tasks to be met. Assigning higher fixed priority to

higher criticality task is known as the Criticality-As-Priority-Assignment (CAPA) pol-

icy. It will be evident later that CAPA is not an optimal priority assignment policy for

FP scheduling of MC tasks. In fact, the optimal FP ordering of MC tasks is still unknown

for multiprocessors. Therefore, determining a good FP priority assignment policy is

very important for MC systems and this problem is addressed in this thesis.

A third aspect in the design of MC systems is static verification, which is related to

the certification of safety-critical systems. The design of MC systems is often subject

to certification at each criticality level by a certification authority (CA), for example, by

Federal Aviation Authority in the US or the European Aviation Safety Agency in Europe

for avionics systems. Certification is about verifying that an appropriate level of assur-

ance in meeting the deadlines of the tasks at each criticality level is guaranteed. The

level of assurance needed in meeting the deadlines of the tasks may be different at each

criticality level. Conventional scheduling strategies, that address both the “criticality”

(i.e., multiple WCET of the same task) and “deadline” aspects of MC systems, are not

cost- and resource-efficient. Yet another major challenge in the design of MC system

is devising a multiprocessors FP scheduling strategy that addresses both the criticality

and deadline aspects of the tasks while facilitating certification and efficient resource

usage. This challenge is addressed in this thesis along with the challenge of assigning

fixed-priorities to the tasks.

Contribution. This thesis proposes a preemptive FP multiprocessor scheduling algo-

rithm, called Mixed-criticality Scheduling algorithm on Multiprocessors (MSM). The

MSM algorithm is based on traditional global FP scheduling but with the additional fea-

ture of runtime monitoring of the mixed-criticality behavior of the system. The actual

16 CHAPTER 1. INTRODUCTION

execution time of the tasks at any time instant defines the mixed-criticality behavior of

the system at that time instant. When the actual execution time of any task exceeds the

WCET estimated for certain criticality level, the system switches to a higher critical-

ity behavior. The system monitors the mixed-criticality behavior at each time instant

and dispatches tasks relevant to that criticality behavior based on global FP schedul-

ing strategy. The schedulability analysis of the MSM algorithm derives response-time

based schedulability tests to verify the timing constraints at each criticality level. The

response-time test of the tasks at each criticality level can be used by the system de-

signers to ensure that the timing constraints for different mixed-criticality behaviors are

guaranteed, which facilitates certification.

The proposed response-time based tests are not only applicable to any given fixed-

priority ordering of the tasks, they can also be used to find the priority ordering of a given

task set. Finding such a priority ordering is required if the test fails for the given priority

ordering of the tasks. Simulation results show significant improvement in guaranteeing

schedulability of randomly-generated task sets using the proposed searching mechanism

for priority assignment over that of using simple8 priority assignment policy. In contrast

to other works on mixed-criticality scheduling, where only two criticality levels are con-

sidered, the proposed MSM algorithm and its analysis is applicable for arbitrary criticality

levels. This makes the MSM algorithm relevant since many safety-critical systems typi-

cally have more than two criticality levels. While a majority of the earlier work consider

uniprocessors and dynamic-priority scheduling of MC tasks, the MSM algorithm consid-

ers a multiprocessor platform, making it applicable for the emerging CMP technology

and the industry-preferred FP scheduling policy.

1.3 Applicability of this Research

The non-functional properties — timeliness, fault-tolerance and mixed-criticality —

considered in this thesis are common to many safety-critical real-time systems. While

the functional behaviors of different systems are generally different, the modeling and

analysis principle of common non-functional behaviors of different systems can be the

same. Consequently, the research results presented in this thesis are applicable to a

variety of safety-critical real-time systems. For example, the braking function in an au-

tomotive system and adjusting the trajectory of a shuttle in the space are completely two

different functional behaviors. However, the same scheduling principle might be used

for dispatching the control tasks of both functions if the offline analysis and verification

of the scheduling algorithm guarantees the timeliness requirement for both functions.

The real-time scheduling algorithms and their analysis presented in this thesis can be

used to ensure predictability (in terms of timeliness, fault tolerance and mixed critical-

ity) for safety-critical systems. The approaches proposed in this thesis can help the sys-

tem designers to efficiently determine offline whether the design constraints needed for

8By simple priority assignment it means that the priorities are determined based on heuristics, for example,

decreasing periods or decreasing deadlines of the tasks.

1.3. APPLICABILITY OF THIS RESEARCH 17

acceptable non-functional behaviors of the system are met or not. The proposed schedu-

lability tests can also be used to estimate the resource requirements to satisfy a given

set of design constraints. The designers can change the parameters of the mathematical

expressions used to represent the schedulability tests to experiment with “what-if” sce-

narios. This capability enables the designer to make a trade-off between the resource

requirement and the rigidity of the design constraints.

All iterative schedulability tests proposed in this thesis assume an arbitrary fixed-

priority ordering of the tasks. However, when a task set does not satisfy the schedulabil-

ity test for a given priority ordering of the tasks, finding another priority ordering (which

could make the task set to satisfy the schedulability test) is important since it would not

require any changes in hardware, software or specification. The iterative schedulability

tests proposed in this thesis can be used to search for such a priority ordering in case

the given priority ordering is deemed to be infeasible. This is particularly important for

multiprocessors where the optimal priority ordering is currently not known. In sum-

mary, the scheduling algorithms and their analysis presented in this thesis have wide

applicability for verifying the timing, reliability and mixed-criticality constraints for a

variety of safety-critical systems.

Organization of the thesis. The rest of the thesis is organized as follows: Chapter 2

presents the necessary background for real-time computing, fault-tolerance, and mixed-

criticality. Chapter 3 presents the system (i.e., task, resource, and fault) model. Chap-

ter 4 outlines the major contributions of the thesis in details. The density-bound-based

test and the iterative test for global FP scheduling are presented in Chapter 5 and Chap-

ter 6, respectively. The fault-tolerant scheduling algorithms for uni- and multiprocessors

are presented in Chapter 7 and Chapter 8, respectively. Then, Chapter 9 presents the

multiprocessor schedulability analysis and response-time test for MC systems. Finally,

Chapter 10 concludes the thesis.

2
Preliminaries

In this chapter, the related background and basic concepts of real-time scheduling, fault-

tolerance, and mixed-criticality systems are presented.

2.1 Real-Time Systems

Real-time systems are computerized systems with timing constraints. Real-time systems

can be classified as hard real-time systems and soft real-time systems. In hard real-time

systems, the consequences of missing a task’s deadline may be catastrophic. In soft real-

time systems, the consequences of missing a deadline are relatively milder. Examples

of hard real-time systems are space applications, fly-by-wire aircraft, radar for track-

ing missiles, etc. Examples of soft real-time systems are on-line transactions used in

airline reservation systems, multimedia systems, etc. This thesis deals with scheduling

algorithms and their analysis for hard real-time systems. The most relevant real-time

scheduling concepts are: sporadic task system, task priority, preemptive scheduling al-

gorithm, schedulability test, density bound, and so on.

2.1.1 Sporadic Task Systems

The basic component of real-time scheduling is a task. The functional behavior of an

application is implemented by executing a collection of tasks. The model of a task set

captures the workload requirement of an application and the real-time constraints that

need to be satisfied for acceptable non-functional behavior. A sporadic task system is

19

20 CHAPTER 2. PRELIMINARIES

a set of tasks in which each task is characterized by three parameters: minimum inter-

arrival time, relative deadline and worst-case execution time (WCET).

Minimum inter-arrival time: Each task in a sporadic task system has a minimum inter-

arrival time of occurrence, called the period, of the task. The release time of any two

consecutive instances, called jobs, of a task are separated by at least the period of the

task. The release time of a job is the instant in time when the job becomes available for

execution. A job of a task is ready to execute when it is released and remains active until

it completes its execution. A job of a task is released no earlier than the period plus the

release time of the previous job.

Relative Deadline: Each job of a task has a relative deadline that is the time by which

the job must finish its execution relative to its release time. The relative deadlines of

all the jobs of a particular task are the same. The absolute deadline of a job is the time

instant equal to release time plus the relative deadline.

WCET: Each sporadic task has a worst-case execution time (WCET), which is the

maximum CPU time that each job of the task requires in order to complete its execution

between its release time and absolute deadline. Determining the exact WCET of a piece

of code is challenging and also an active research area [BEL11, GLYY12, LNBCG11,

CKR+12, YKS11]. The methodology used to determine the WCET of a piece of code

is outside the scope of this thesis. It is assumed that the WCET of each task is known.

If the relative deadline of each task in a task set is less than or equal to its period, then

the task set is called a constrained-deadline task system. If the relative deadline of each

task is exactly equal to its period, then the task set is called an implicit-deadline task

system. If a sporadic task system is neither constrained nor implicit, then it is called an

arbitrary-deadline task system. In this thesis, scheduling of constrained-deadline spo-

radic task system is considered. Since the relative deadline of each task in a constrained-

deadline task set is also allowed to be equal to its period, the results presented in this

thesis for constrained-deadline task system are also applicable to implicit-deadline spo-

radic task systems. And, because the jobs of a sporadic task are allowed to be released

as quickly as possible, i.e., strictly periodically, the results of this thesis for sporadic task

system are also applicable to periodic task systems where successive releases of the jobs

are exactly separated by its period.

Task Independence. The execution of the tasks of a real-time application may be depen-

dent on one another, for example, due to resource or precedence constraints. If a resource

is shared among multiple tasks, then some tasks may be blocked from being executed

until the shared resource is free. Designing better resource sharing protocol for both uni-

and multiprocessors is an ongoing research area [BA10, BCB+08, GESY11a, NSBS09].

Similarly, if tasks have precedence constraints, then one task may need to wait until

another task finishes its execution. There are many work that consider precedence con-

straints [SEGY11, SS94, BCGM99]. In this thesis, all tasks are assumed to be indepen-

dent, that is, there exists no dependency of one tasks on another. The only resource the

tasks share is the processor platform.

2.1. REAL-TIME SYSTEMS 21

2.1.2 Task Priority

When two or more ready tasks compete for the use of the processor(s), some rules must

be applied to allocate the use of processor(s). This set of rules is often governed by the

priority discipline for many real-time scheduling algorithms. The selection of the ready

task for execution is determined based on the priorities of the tasks. The priority of a

task can be static or dynamic.

Static Priority: In static (fixed) priority discipline, each task has a priority that never

changes during run time. The different jobs of the same task have the same prior-

ity relative to any other tasks. For example, according to Liu and Layland, the well

known Rate-Monotonic (RM) scheduling algorithm assigns static priorities to tasks such

that the shorter the period of the task, the higher the priority [LL73]. In preemptive

RM scheduling, the task with the shortest period is always dispatched for execution.

This thesis considers fixed task priority for all the scheduling algorithms.

Dynamic Priority: In dynamic priority discipline, different jobs of a task may have

different priorities relative to the priorities of other tasks in the system. In other words,

if the priorities of different jobs of the same task change from one execution to another,

then the priority discipline is dynamic1. For example, the well known Earliest-Deadline-

First (EDF) scheduling algorithm assigns dynamic priorities to tasks such that a ready

job whose absolute deadline is the nearest has the highest priority [LL73]. In preemptive

EDF scheduling, the ready job with the shortest absolute deadline is always dispatched

for execution. While EDF is a job-level static priority scheme, the priority assignment

scheme governed by pFair scheduling, proposed by Baruah et al. [BCPV96], is a non

job-level static priority scheme.

2.1.3 Preemptive Scheduling

A scheduling algorithm is preemptive if the release of a new job of a higher priority task

can preempt the currently running job of a lower priority task. During runtime, task

scheduling is essentially determining the highest priority active job(s) and executing

them on the processor(s), possibly by preempting some lower priority job(s).

Under non-preemptive scheme, the job of a currently executing task always com-

pletes its execution before another ready job starts execution. A higher priority ready

job may need to wait in the ready queue until the currently executing job (may be of

lower priority) completes its execution. This will result in worse schedulability perfor-

mance than for the preemptive case. In this thesis, preemptive scheduling is considered.

2.1.4 Work-Conserving Scheduling

A scheduling algorithm is work conserving if it never idles a processor whenever there is

a ready task awaiting execution on that processor. A work conserving scheduler guaran-

1In this thesis, static priority means task-level static priority and dynamic priority means job-level static

priority. In non job-level static-priority, the same job may have different priorities at different time instants.

22 CHAPTER 2. PRELIMINARIES

tees that whenever a job is ready and the processor for executing the job is free, the job

will be dispatched for execution. For example, scheduling algorithms RM and EDF are

work-conserving by definition. A non work-conserving algorithm may decide not to

execute any task even if there is a ready task awaiting execution. In this thesis, the

work-conserving scheduling algorithms are considered.

2.1.5 Schedulability and Optimality

If scheduling algorithm A can generate a schedule for a given set of tasks such that

all the tasks meet their deadlines, then the task set is said to be schedulable using that

scheduling algorithm A. If a task set is schedulable using scheduling algorithm A, then

the task set is A-schedulable.

A scheduling algorithm is said to be optimal, if it can successfully schedule a task set

whenever some other algorithm can schedule the same task set under the same schedul-

ing policy (with respect to, for example, priority assignment discipline, preemptivity,

etc.). For example, Liu and Layland [LL73] showed that the RM and EDF are the opti-

mal uniprocessor scheduling algorithms for implicit-deadline tasks under the static and

dynamic priority assignment policy, respectively.

While the optimal scheduling algorithm on uniprocessor is known for sporadic task

sets, the optimal static or dynamic priority scheduling algorithm for multiprocessors is

currently unknown [DB11a]. Optimal multiprocessor scheduling are only known for

non-job level static priority discipline (known as pFair family of algorithms [BCPV96,

AS04, ZMM03, CRD06]). However, such algorithms suffers from significant number

of context-switch and scheduling overheads which make these algorithms impractical to

implement without sacrificing some schedulability [HA05].

The notion of optimality is also applicable to a priority-assignment policy under

specific scheduling algorithm and processor platform. A fixed-priority assignment pol-

icy is said to be optimal if given some fixed-priority assignment policy using which

a task set is fixed-priority schedulable on a given platform, then the optimal priority

assignment also guarantees the same. For example, the RM and DM are the optimal

fixed-priority assignment policies for uniprocessor fixed-priority scheduling of implicit-

and constrained-deadline tasks, respectively [LL73].

2.1.6 Schedulability Test

For a given task set, it is computationally impractical to simulate the execution of the

tasks at all time instants to see offline whether the task set will be schedulable during

runtime. However, the designers of hard real-time systems need to ensure a priori that all

the timing constraints are met. To address this problem, schedulability tests for schedul-

ing algorithms are used. A schedulability test of a scheduling algorithm A is a (set of)

condition(s) that is (are) used to determine whether a task set isA-schedulable on a par-

ticular platform. A schedulability test can be necessary and sufficient (exact) or it can

be sufficient only.

2.1. REAL-TIME SYSTEMS 23

Necessary and Sufficient (Exact) Schedulability Test: A task set will meet all its

deadlines if, and only if, it passes the exact test. If the exact schedulability test of a

scheduling algorithm A is satisfied, then the task set is A-schedulable. Conversely, if

the task set is A-schedulable, then the exact schedulability condition of algorithm A is

satisfied. Therefore, if the exact schedulability test of a task set is not satisfied, then it is

also true that the scheduling algorithm can not successfully schedule the task set.

Deriving an exact test for a scheduling algorithm is always tempting as it guarantees

either schedulability or unschedulability of a task set using the corresponding scheduling

algorithm. However, deriving an exact test requires precise schedulability analysis con-

sidering the worst-case behavior of the algorithm in scheduling a task set. Determining

the actual worst case, and then performing precise schedulability analysis, may not be

always possible due to lack of time or complexity of the analysis. Therefore, the worst

case may need to be safely approximated by introducing some degree of pessimism

when analyzing a scheduling algorithm. Introducing such pessimism often results in

simpler but sufficient schedulability test.

Sufficient Schedulability Test: A task set will meet all its deadlines if it passes the

sufficient test. If the sufficient test of a scheduling algorithm A is satisfied, then the

task set is A-schedulable. However, the converse is not necessarily true. Therefore,

if the sufficient schedulability condition of a task set is not satisfied, then the task set

may or may not be schedulable using the scheduling algorithm.

Domination. To compare different scheduling algorithms and schedulability tests, the

concept of domination is useful. Scheduling algorithm A dominates scheduling algo-

rithm B, if any task set schedulable using algorithm B is also schedulable using al-

gorithm A, and not conversely. In other words, if scheduling algorithm A dominates

scheduling algorithm B, then all the task sets schedulable using algorithm B are also

schedulable using algorithm A and there is at least one task set that is not schedulable

using algorithm B but schedulable using algorithm A. Similarly, a schedulability test

P dominates schedulability test Q, if any task set that satisfies test Q also satisfies test

P , and not conversely. In other words, if schedulability test P dominates schedulability

testQ, then all the task sets that satisfy testQ also satisfy test P and there is at least one

task set that does not satisfy test Q but satisfies test P .

2.1.7 Minimum Achievable Density

A processor platform is said to be fully utilized when an increase in the density of any of

the tasks in an arbitrary constrained-deadline task set will make the task set unschedu-

lable on the platform. The minimum achievable density of a scheduling algorithm is the

minimum over all total densities of all task sets that fully utilize the processor platform.

A scheduling algorithm can successfully schedule any set of constrained-deadline

tasks on a processor platform if the total density of the task set is less than or equal to

the minimum achievable density of the scheduling algorithm. The higher the minimum

achievable density of a scheduling algorithm, the better is the scheduling algorithm in

terms of utilizing the processing resources while meeting the deadlines of the tasks.

24 CHAPTER 2. PRELIMINARIES

Deriving the minimum achievable density may not be always possible due to the pes-

simism introduced during the schedulability analysis of a scheduling algorithm. How-

ever, a bound that is lower than the actual minimum achievable density of a scheduling

algorithm can be derived. Such a lower bound on the actual minimum achievable den-

sity is simply called a density bound of the scheduling algorithm. Since the density

bound of a scheduling algorithm is not greater than the minimum achievable density,

any task set having total density not greater than the density bound is schedulable using

that scheduling algorithm.

Schedulability tests using density bound is called the density-bound-based test. The

density-bound-based test compares the total density of a constrained-deadline task set

with the density bound to determine whether all the deadlines are met. If the density

bound of scheduling algorithm A is greater than the density bound of scheduling algo-

rithm B, then the density-bound test for scheduling algorithm A dominates the density-

bound test for scheduling algorithm B. In this thesis, a density bound for global FP mul-

tiprocessor scheduling is proposed. This proposed test dominates the state-of-the-art

density bound for FP scheduling of constrained-deadline sporadic tasks.

If the deadline of each task is equal to its period, then the density bound is called

the utilization bound and the corresponding schedulability test is given as follow: if the

total utilization of a task set is not greater than the utilization bound of a scheduling

algorithm, then all the deadlines are met using that scheduling algorithm.

Iterative Schedulability Tests: The density bound test requires exactly one condition

to be tested for the entire task set: the total density of a task set is compared with the

density bound. On the other hand, an iterative test requires one condition to be tested for

each task in a task set. The well known response-time test [ABR+93, LSD89, JP86] for

uniprocessor fixed-priority scheduling is an example of iterative test where the response

time of each task is computed and compared against its relative deadline. The response

time of a task is the largest time interval between the completion time and release time

of any job of the task. Therefore, if the response time of a task is smaller than its

relative deadline, then all the jobs of the task meet their deadlines. This thesis proposes

new iterative schedulability tests which dominate the state-of-the-art iterative test for

constrained-deadline sporadic task sets for global FP scheduling.

2.1.8 Scheduling Algorithms

Scheduling algorithm is a method / policy used to dispatch the jobs of tasks that share

some resource, for instance, CPU time on a particular platform. In this thesis, the only

resource assumed to be shared among the tasks is the processing platform. Depending

on the computing platform, a scheduling algorithms can be categorized as either unipro-

cessor scheduling or multiprocessor scheduling. In this subsection, the basic principle

of preemptive FP scheduling is presented.

Uniprocessor Scheduling. Uniprocessor scheduling algorithm dispatches tasks on a

single processor. A uniprocessor FP scheduling algorithm always executes the highest

priority active task. If a new job of some task arrives such that its priority is higher than

2.1. REAL-TIME SYSTEMS 25

that of the task currently executing on the processor, then the lower priority (executing)

task is preempted and the job of the higher priority task is dispatched for execution.

The preempted job may later resume its execution when it becomes the highest priority

active job.

Whether the deadlines of a task are met or not depends on the interference caused by

the higher priority tasks. The interference on a job of a particular task is the cumulative

length of intervals during which the job is ready but can not be executed due to the ex-

ecution of its higher priority tasks. Evidently, the set of higher priority tasks determines

the amount of interference on a lower priority task. Consequently, the fixed-priority or-

dering of the tasks plays an important role in determining the schedulability of each task

in a task set. Whether a task set is schedulable under a certain FP assignment can be

determined using appropriate schedulability test. Liu and Layland in [LL73] derived a

sufficient utilization-bound test for RM scheduling of implicit-deadline tasks on unipro-

cessors: if the total utilization of a task set is not greater than n(2
1
n − 1), then all the

tasks meets their deadlines, where n is the number of tasks in a task set. Necessary

and sufficient (exact) schedulability test for uniprocessor FP scheduling have been de-

rived in [LSD89, JP86, ABR+93, ABRW91]. The exact test proposed in [ABR+93] for

uniprocessor DM scheduling is presented in Subsection 7.2.1 (page 117).

Multiprocessor Scheduling. In multiprocessor scheduling, tasks can be scheduled us-

ing one of the two basic multiprocessor scheduling principles: the global scheduling

and the partitioned scheduling. In global scheduling, a task is allowed to execute on any

processor (even when it is resumed after preemption). This is done by keeping all the

ready tasks in a global queue from which the highest priority tasks are dispatched to the

processors, possibly by preempting some lower priority tasks, based on fixed priority

assigned to each task.

In partitioned scheduling, the task set is grouped in different task partitions and each

partition has a fixed processor onto which all the tasks of that partition are assigned.

A task assignment algorithm partitions the task set and decides the mapping of each

task to a particular processor. In partitioned scheduling, ready tasks assigned in one

processor are not allowed to execute in another processor even if the other processor is

idle. Evidently, tasks can migrate in global scheduling while no migration is allowed in

partitioned scheduling. The advantage of partitioned scheduling is that once tasks are

assigned to processors, each processor can execute tasks based on mature uniprocessor

scheduling algorithms. Many static-priority scheduling policies for both global [ABJ01,

Lun02, Bak06, BG03b, BCL05, And08a, DB11b, DB09] and partitioned [DL78, AJ03,

FBB06, LMM98a, LBOS95, LDG04, LGDG03, OB98, OS95b] approaches have been

studied to derive appropriate schedulability tests.

The main goal of schedulability analysis for many global and partitioned FP schedul-

ing algorithms is to derive a schedulability test that — when satisfied for a given task set

— implies that all the deadlines are met. It has already been proved that there exists some

implicit-deadline task set with utilization slightly greater than 50% of the capacity of a

multiprocessor platform on which a deadline miss must occur for both global and par-

titioned static-priority scheduling [ABJ01, OB98]. Therefore, the minimum achievable

26 CHAPTER 2. PRELIMINARIES

utilization for both global and partitioned multiprocessor scheduling can not be greater

than 50%. Moreover, it is also well-known that applying the uniprocessor RM scheme

to multiprocessor global scheduling can lead to missed deadlines of tasks even when the

utilization of a task set is close to 0% of the capacity of the multiprocessor platform.

This effect is known as Dhall’s effect [DL78, Dha77]: some task with large utilization

is assigned lower RM priority and misses its deadline.

Technique to avoid Dhall’s effect for static-priority is first proposed in [ABJ01]

which is further improved in [Lun02, BCL05, And08a]. Luckily, Dhall’s effect is ab-

sent in partitioned scheduling. The main challenge for partitioned scheduling is instead

to develop an efficient task assignment algorithm for partitioning a task set. However,

since the problem of determining whether a schedulable partition exists is an NP-hard

problem [GJ79], different heuristics have been proposed for assigning tasks to multi-

processors using partitioned scheduling. The majority of the heuristics for partitioned

scheduling are based on different bin-packing algorithms (such as First-Fit or Next-

Fit [LDG04]). One such bin-packing heuristic is First-Fit (FF), which is described next.

First-Fit (FF) Heuristic. With the FF heuristic, all the processors (e.g. processor one,

processor two, and so on) and tasks (task one, task two and so on) are indexed. Tasks

may be indexed based on some ordering of the task parameters (for example, sort the

task set based on increasing/decreasing periods or utilizations) or can simply follow

any arbitrary ordering for indexing. For example, Dhall and Liu in [DL78] proposed

FF partitioned scheduling using the sufficient RM schedulability test where tasks are

first sorted based on increasing periods. Starting with the task with lowest index, tasks

are assigned to the lowest-indexed processor, always starting with the first processor

(processor one). To determine if an unassigned task will be schedulable on a particu-

lar processor, when assigned along with the already-assigned tasks on that processor, a

uniprocessor schedulability test is used. If a task can not be assigned to the first proces-

sor based on that schedulability test, then the task is considered to assign in the second

processor, and so on. If all the tasks are assigned, then the partitioning of the task set is

successful. If some task can not be assigned to any processor, then the task set can not

be partitioned using FF.

Task-Splitting Algorithms. The different degrees of migration freedom for tasks in

the global and partitioned scheduling can be considered as two extremes of multipro-

cessor scheduling. While in global scheduling no restriction is placed for task migra-

tion from one processor to another, partitioned scheduling disallows migration com-

pletely. This strict non-migratory characteristic of partitioned multiprocessor schedul-

ing is relaxed using a promising concept called task-splitting in which some tasks,

called split-tasks, are allowed to migrate to a different processor. Task splitting does

not mean dividing the code of the tasks; rather it is migration of execution of the

split tasks from one processor to another. Recent research has shown that task split-

ting can provide better performance in terms of schedulability and can overcome the

limitations of minimum achievable utilization of 50% for pure partitioned schedul-

ing [AT06, AB08, ABB08, KY08, KY09, GSYY10, LRL09, BBA11, PJ10].

2.2. FAULT-TOLERANT SYSTEMS 27

2.2 Fault-Tolerant Systems

A fault-tolerant system is one that continues to perform its specified service in the pres-

ence of hardware and/or software faults. In designing fault-tolerant systems, mecha-

nisms must be provided to ensure the correctness of the expected service even in the

presence of faults. Due to the real-time nature of many fault-tolerant systems, it is es-

sential that the fault-tolerance mechanisms provided in such systems do not compromise

the timing constraints of the real-time applications. In this section, the basic concepts of

fault-tolerant systems under the umbrella of real-time systems are discussed.

2.2.1 Failure, Error, and Fault

Avižienis and others define the terms failure, error and faults in [ALRL04].

Failure A system failure occurs when the service provided by the system deviates from

the specified service. For example, when a user can not read his stored file from

computer memory, then the expected service is not provided by the system.

Error An error is a perturbation of internal state of the system that may lead to failure.

A failure occurs when the erroneous state causes an incorrect service to be deliv-

ered, for example, when certain portion of the computer memory is corrupted or

broken and the stored files therefore can not be read by the user.

Fault The cause of the error is called a fault. An active fault leads to an error; otherwise

the fault is dormant. For example, impurities in the semiconductor devices may

cause computer memory in the long run to behave unpredictably.

If a fault remains dormant during system operation, then there is no error. If the fault

leads to an error, then it must be tolerated so that the error does not lead to system

failure2. Identifying the characteristics of the faults and the corresponding errors is an

important issue for the design of an effective fault-tolerant system. Faults in systems

may be introduced during development (for example, design and production faults) or

due to the interaction with the external environment (for example, faults entering via

user interface or due to natural process such as radiation). Based on persistence, faults

can further be classified as permanent, intermittent, and transient [Joh88]. Faults can

occur in hardware or/and software.

Hardware Faults: A permanent failure of the hardware is an erroneous state that is

continuous and stable. Such erroneous state is caused by some permanent fault in the

hardware. On the other hand, transient hardware faults are temporary malfunctioning

of the computing unit or any other associated components which causes incorrect state

in the system. Intermittent faults are repeated occurrences of transient faults. Transient

faults and intermittent faults manifest themselves in a similar manner. They happen for

a short time and then disappear without causing a permanent damage. If the error caused

2Example 1.1 (page 10) demonstrates the terms — faults, errors and failures — using an example.

28 CHAPTER 2. PRELIMINARIES

by such transient faults are recovered, then it is expected that the same error will not re-

appear since transient faults are short lived. To tolerate a permanent processor failure,

either the processor is repaired / replaced or its effect is mitigated by executing the task

on a redundant processor.

• Sources of Hardware Transient Faults: The main sources of transient faults in

hardware are environmental disturbances like power fluctuations, electromagnetic

interference and ionization particles. Transient faults are the most common, and

their number is continuously increasing due to high complexity, smaller transistor

sizes and low operating voltage for computer electronics [Bau05].

• Rate of Transient Faults: It has been shown that transient faults are significantly

more frequent than permanent faults [SKM+78, CMS82, IRH86, CMR92, Bau05,

SABR04]. Siewiorek and others in [SKM+78] observed that transient faults are

30 times more frequent than permanent faults. Similar result is also observed

by Castillo, McConnel and Siewiorek in [CMS82]. In an experiment, Iyer and

others found that 83% of all faults were determined to be transient or intermittent

[IRH86]. The results of these studies show the need to design fault-tolerant system

to tolerate transient faults.

Experiments by Campbell, McDonald, and Ray using an orbiting satellite con-

taining a microelectronics test system found that, within a small time interval (∼
15 minutes), the number of errors due to transient faults is quite high [CMR92].

The result of this study shows that in space applications, the rate of transient faults

could be quite high and a mechanism is needed to tolerate multiple transient faults

within a particular time interval. It was shown in [SKK+02] that the error rate in

processors due to transient faults is likely to increase by as much as eight orders

of magnitude in the next decade. Moreover, given the fact that transistor size and

operating voltage are shrinking for recent computer electronics, the number of

transient faults is expected to rise in future within a given time interval.

Software Faults: All software faults, known as software bugs, are permanent. How-

ever, the way software faults are manifested as errors leads to categorize the effect as:

permanent and transient errors. If the effect of a software fault is always manifested,

then the error is categorized as permanent. For example, initializing some global vari-

able with incorrect value which is always used to compute the output is an example of

a permanent software error. On the other hand, if the effect of a software fault is not

always manifested, then the error is categorized as transient. Such transient error may

be manifested in one particular execution of the software and may not manifest at all

in another execution. For example, when the execution path of a software varies based

on the input (for example, sensor values) or the environment, a fault that is present in

one particular execution path may manifest itself as an transient error only when certain

input values are used. This fault may remain dormant when a different execution path is

taken, for example, due to a change in the input values or environment.

2.2. FAULT-TOLERANT SYSTEMS 29

The fault-tolerant scheduling algorithms proposed in this thesis considers tolerat-

ing multiple task errors within a time interval equal to the largest relative deadline of

the tasks in a sporadic task set. Such task errors may be caused by software faults or

transient hardware faults. In addition, the fault-tolerant scheduling algorithm proposed

for multiprocessors also considers tolerating3 permanent processor failures. The fault

model considered for processor failures is permanent hardware faults that are contin-

uous and stable. Processors are assumed to be fail-stop processors: each processor is

either working correctly or ceases functioning [SS83, Sch84].

2.2.2 Error Detection Techniques

In order to tolerate a fault that leads to an error, fault-tolerant systems rely on effective

error detection mechanisms. The design of many fault-tolerant scheduling algorithm

relies on effective mechanisms to detect errors. Error detection mechanisms and their

coverage (e.g., percentage of errors that are detected) determine the effectiveness of the

fault-tolerant scheduling algorithms.

Error detection can be implemented in hardware or software. Hardware imple-

mented error detection can be achieved by executing the same task on two processors

and compare their outputs for discrepancies (duplication and comparison technique us-

ing hardware redundancy). Another cost-efficient approach based on hardware is to use

a watchdog processor that monitors the control flow or performs reasonableness checks

on the output of the main processor [MCS91]. Control flow checks are done by verify-

ing the stored signature of the program control flow with the actual program control flow

during runtime. In addition, today’s modern microprocessors have many built-in error

detection capabilities like, error detection in memory, cache, registers, illegal op-code

detection, and so on [MBS07, WEMR04, SKK+08, KSSF10].

There are many software-implemented error-detection mechanisms: for example,

executable assertions, time or information redundancy-based checks, timing and control

flow checks, and etc. Executable assertions are small code in the program that checks the

reasonableness of the output or value of the variables during program execution based

on the system specification [JHCS02]. In time redundancy, an instruction, a function

or a task is executed twice and the results are compared to allow errors to be detected

(duplication and comparison technique used in software) [AFK05]. Additional data (for

example, error-detecting codes or duplicated variables) are used to detect occurrences

of an error using information redundancy [Pra07].

In summary, there are numerous ways to detect the errors and a complete discussion

is beyond the scope of this thesis. The fault-tolerant scheduling algorithms proposed in

this thesis rely on effective error-detection mechanisms.

3By “tolerating” it does not mean preventing/stopping the failure in some way; rather, it means that the

effect of permanent processor failure is mitigated by executing the tasks on other non-faulty processors.

30 CHAPTER 2. PRELIMINARIES

2.3 Mixed-Criticality Systems

An MC system is defined as follows in [BBB+]:

“A mixed-critical system is an integrated suite of hardware, operating sys-

tem and middleware services and application software that supports the ex-

ecution of safety-critical, mission-critical, and non-critical software within

a single, secure compute platform.”

In short, an MC system is one in which the functionalities hosted on a common platform

have different criticality levels. For example, in the RTCA DO-178B standard, there

are five different Design Assurance Levels (DAL A to DAL E) for software in avionics

systems (please see Table 2.1). The “criticality” of a function or task specifies its “im-

portance”. The consequence for not meeting the specification of a high critical function

could be severe. The criticality assigned to a function specifies the level of assurance or

confidence needed regarding the correct behavior of the function.

Level Failure Condition Interpretation

A Catastrophic Software that could cause or contribute to the

failure of the system resulting in the loss of abil-

ity to continue safe flight and landing. Failures

may cause a crash. An example of such system

is an engine controller software.

B Hazardous Software that could cause or contribute to the

failure of the system resulting in serious or fa-

tal injuries to the aircraft occupants. Examples

is pressurization system software.

C Major Software that could result in a major failure

condition or discomfort to the occupants of the

aircraft.

D Minor Failures results in some inconvenience to the oc-

cupants of the aircraft. Example is failure caus-

ing a routine flight plan change.

E No Effect Software that could cause or contribute to the

failure of the system resulting in no effect on the

system. Examples are entertainment system, In-

ternet access.

Table 2.1: RTCA published the DO-178B software development process standard “Software Con-

siderations in Airborne Systems and Equipment Certification”. The United States Federal Avia-

tion Authority (FAA) accepts the use of DO-178B as a means of certifying software in avionics

application. The five DO-178B levels describe the consequences of a potential failure of the soft-

ware: catastrophic, hazardous, major, minor, or no-effect.

2.3. MIXED-CRITICALITY SYSTEMS 31

The need for research in the domain of MC systems is motivated in [BBB+] using an

example of Unmanned Aerial Vehicle (UAV) which is expected to operate over or close

to civilian airspace. Such a system has both flight-critical and mission-critical function-

alities that require safety, reliability and timeliness guarantee. In addition, such a system

must pass the mandatory certification from standard civil aviation authority. Certifica-

tion of MC system is challenging and costly approach since such system is relatively

complex due to the integration of functionalities with different criticality levels.

The objective of designing an MC systems is to combine previously independent sys-

tem applications into a single computation platform while also ensuring that the system

is predictable. In other words, the integration of mixed-critical functions on a common

computing platform aims to save cost while at the same time hope to improve the overall

performance in terms of, for example, safety, reliability and timeliness. Research in the

real-time community has recently received considerable attention considering two im-

portant factors of MC systems: (i) run-time robustness, and (ii) design-for-certification.

Run-time Robustness. One of the most important requirement for designing mixed-

criticality systems is in ensuring the non-interference or isolation property among func-

tions of different criticality levels. In particular, a high-critical function must not be

adversely affected by a low-critical function. In the context of real-time scheduling,

temporal isolation is achieved by ensuring that if the system is not capable of meeting

some deadline (e.g., due to overload situation), then no deadline of a high-criticality task

is missed before all the low-critical tasks.

Physical separation of resources is one option to achieve the isolation property where

the functionalities including all logic and processor are physically separated. For exam-

ple, the safety-critical functions, e.g., flight control, engine control, electrical power sys-

tem control in an UAV may have their own hardware, software, and standard interfaces

to communicate with other functions.

Due to the space, weight, and power considerations, providing such dedicated re-

sources is costly or may even impractical for many resource-constrained systems. To

solve this problem, integration of multiple functionalities on the same platform is con-

sidered where the isolation property is achieved by partitioning the system resources.

For example, according to ARINC 653 standard, the system must provide space and

temporal partitioning of all resources — e.g., memory, processing time, communica-

tion bus — for all the hosted functionalities. In such an approach, a partition allo-

cated to a low-critical function can not be used by a high-critical function. Therefore,

a high-critical task may miss the deadline in its time partition while a low-critical task

meet the deadline in another time partition (known as criticality inversion [NLR09]).

Moreover, resources are not utilized efficiently since function in one partition is not

allowed to execute on a different partition. To avoid the criticality inversion prob-

lem and to efficiently use the processing resources, “true” sharing of the platform is

considered while providing run-time robustness. New resource allocation and schedul-

ing algorithms are being designed such that the system provides run-time robustness

[NLR09, LdNRM10, TSP11, YYP+12].

32 CHAPTER 2. PRELIMINARIES

Design-for-Certification: Another important aspect of MC system, which is addressed

in this thesis, is design-for-certification. For example, the design and development of an

UAV needs to be certified by standard statutory certification authority (CA), for example,

by Federal Aviation Authority in the US or the European Aviation Safety Agency in

Europe for avionics systems. The CA certifies a system as correct if the assumptions of

the CA regarding the system behavior hold at run-time.

Traditionally, when functions having different criticality levels are hosted on the

same computing platform, then the system is certified by assuming the highest criti-

cality level for all the functions. Such assumption is pessimistic because certifying at

the highest criticality level implies the highest degree of assurance regarding the correct

behavior of all the functions which in turn could be guaranteed by over-provisioning

the required resources. Therefore, it is necessary to develop new design and analysis

techniques that addresses certification of MC systems while efficiently utilizing the pro-

cessing resources. This thesis proposes fixed-priority scheduling algorithms considering

this design-for-certification issue of MC systems.

3
Models

The design and analysis of hard real-time scheduling algorithms is based on appropriate

modeling of the target system. This is because a priori knowledge of the workload and

available resources is necessary to analyze and ensure predictability of the system. The

task, resource and fault models are presented in this chapter. A task model specifies

the workload and timing constraints of the real-time application. A resource model

specifies the type and capacity of the available resources (e.g., processors) for executing

the tasks. A fault model specifies the nature and frequency of faults that the system

needs to tolerate.

3.1 Task Model

The formal notations and important concepts of sporadic tasks are now presented.

Sporadic task set. In this thesis, real-time scheduling of n constrained-deadline spo-

radic tasks in set Γ = {τ1 . . . τn} is considered. Each of the tasks τi ∈ Γ is characterized

by a triple (Ci, Di, Ti), where

• Ci represents the worst-case execution time (WCET) of each job of the task;

• Di is the relative deadline;

• Ti is the period which is minimum inter-arrival time of the jobs of the task.

Jobs of Tasks. Successive arrivals of the instances or jobs of task τi are separated by

at least Ti time units. The jth job of task τi is denoted by Jji . The release time of job

33

34 CHAPTER 3. MODELS

Jji is denoted by rji . A job of a task τi is released no earlier than the release time of the

previous job plus the period Ti, i.e., rj+1
i ≥ (rji + Ti). The absolute deadline of job

Jji is denoted by dji and given as follows:

dji = rji + Di (3.1)

A job Jji requires at most Ci units of execution time between its release time rji and

deadline dji . If task τi is periodic and first released at time 0, then rji = (j − 1) · Ti.
Density and Utilization. The density δi and utilization ui of a task τi are denoted by

δi = Ci/Di

ui = Ci/Ti

The total density (resp. utilization) of task set A is
∑

τi∈A δi (resp.
∑

τi∈A ui).

Fixed-Priority. For a given fixed-priority ordering of the tasks, the set of tasks with a

priority higher than the priority of task τi is denoted by HPi. There are many policies

for assigning the fixed-priorities to the tasks. Some example fixed-priority assignment

policies are the following:

• Rate-Monotonic (RM) priority: The priority of task τi is greater than the pri-

ority of task τj if Ti < Tj . This is the priority assignment governed by the

RM scheduling policy: a task with smaller period has higher priority.

• Deadline-Monotonic (DM) priority: The priority of task τi is greater than the

priority of task τj if Di < Dj . This is the priority assignment governed by the

DM scheduling policy: a task with smaller relative deadline has higher priority.

• Slack-Monotonic (SM) priority: The priority of task τi is greater than the prior-

ity of task τj if (Di−Ci) < (Dj −Cj). This is the priority assignment governed

by the SM scheduling policy: a task with smaller slack has higher priority.

• Audsley’s Optimal Priority Assignment Algorithm: While the optimal fixed-

priority ordering for some system model1 can be given using simple heuristic

(e.g., the DM priority ordering is the optimal for constrained-deadline tasks on

uniprocessor [LW82]), the optimal priority ordering for other system model is not

necessarily based on simple heuristic. For example, the optimal priority ordering

of constrained-deadline tasks having arbitrary start times (offsets) is not neces-

sarily the DM priority assignment policy for uniprocessor. To assign the fixed

priorities to such task sets with offsets, an optimal priority assignment (OPA) al-

gorithm, known as Audsley’s OPA algorithm, is proposed in [Aud01, Aud91]. Al-

though the OPA algorithm is first proposed for uniprocessors, it has been adapted

by Davis and Burns [DB09] for priority assignment on multiprocessors. The basic

1The system model consists of the task, resource, and scheduler models.

3.1. TASK MODEL 35

idea of Audsley’s OPA algorithm to assign the priorities is based on a schedula-

bility test S and involves the following steps:

– Initially, no task is assigned any priority (each task is called a priority-

unassigned task);

– The fixed priorities are assigned starting from the lowest priority level to the

highest priority level, i.e., the task which is first assigned a priority is the

lowest priority task and the task which is assigned the final priority is the

highest priority task;

– For a particular priority level (staring from the lowest), if any one of the

priority-unassigned tasks, sat task τ , is deemed schedulable using the schedu-

lability test S at that priority level, by assuming all other priority-unassigned

tasks having higher priorities, then task τ is assigned that priority level;

– If no priority-unassigned task can be assigned the priority level then priority

assignment fails. If each task is assigned one priority level, then the priority

assignment succeeds.

While many work consider the priority assignment problem and schedulability

testing problem as two independent problems, the Audsley’s OPA algorithm com-

bines the problem of finding the priority assignment with the schedulability test

of each task. Consequently, if all the tasks are assigned priorities according to the

OPA algorithm using schedulability test S, then the task set is also schedulable.

In order to find a priority ordering for which a task set passes the schedulability

test S, a naive and exhaustive approach is to consider all the n! different priority

orderings of the tasks. In contrast, Audsley’s OPA algorithm needs to check at

most (n2 + n)/2 different priority orderings. Details on OPA algorithm and its

applicability to multiprocessor scheduling are presented in Chapter 6.

Time Division. Even though length of time intervals, time instants are often modeled

using real numbers, time is not infinitely divisible in actual implementation of a system.

The difference in time between occurrence of different events can not be determined

more precisely than one tick of the system clock. In this thesis, all time values (e.g,

WCET, deadline, and interval length) are assumed to be positive integers.

Critical Instant. The critical instant of a task is the release time at which the inter-

ference on the task from the higher priority tasks is maximized. Consequently, the re-

sponse time of the job released at critical instant is the worst-case response time of the

task. Therefore, a job released at a critical instant is schedulable if and only if the task

set is schedulable. Liu and Layland have proved that the critical instant for uniproces-

sor FP scheduling of any task occurs when the task is released simultaneously with the

release of all its higher priority tasks [LL73].

The analysis of the proposed fault-tolerant scheduling algorithm FTDM in this thesis

for uniprocessor platform also considers the critical instant of each task to derive an

36 CHAPTER 3. MODELS

exact schedulability test. Under fault-tolerant FP scheduling on uniprocessors, where

time redundancy is used to recover from task error, there is one job of each task during

execution of which the occurrence of faults have the greatest impact. In such case, the

errors may occur in that particular job of the task and/or in any job of its higher priority

tasks. To recover from the errors in such situation, the execution of the backups causes

the response-time of that particular job to be the maximum.

Ghosh et al. showed that, when faults occur and time redundancy is used to tolerate

faults in uniprocessor RM scheduling, the critical instant is when all tasks are released

simultaneously [GMMS98]. This result can be easily extended for FTDM scheduling

(i.e., DM fault-tolerant scheduling on uniprocessor) as follows: if the completion of job

J of a task is delayed by ∆ time units due to the occurrence of some faults in J or in

its higher-priority jobs, then some other lower priority job J ′ of some other task will be

delayed by at most ∆ time unit if both J and J ′ are released simultaneously. Therefore,

the exact schedulability test for the proposed FTDM scheduling considers that all the

tasks are released at the same time and without loss of generality it is assumed that all

the tasks are released at time zero.

Unfortunately, the critical instant which is known for uniprocessor FP scheduling is

not applicable to global FP scheduling. Lauzac et. al showed that a task does not have

its worst-case response time when released simultaneously with all the higher priority

tasks under the global FP scheduling [LMM98b]. In multiprocessor scheduling, the

response time of a job that is released simultaneously with all other higher priority tasks

may not be the largest because this scenario may not cause all the processors to be

busy executing the higher priority tasks for the largest time interval (i.e., interference)

over which a lower priority task is awaiting execution. This is demonstrated using the

following example.

Example 3.1. Consider four sporadic tasks with parameters (Ci, Di, Ti) as follows:

τ1(1, 1, 4), τ2(1, 2, 5), τ3(2, 3, 4), and τ4(1, 4, 4). Assume that tasks are given deadline-

monotonic priorities and scheduled on m = 2 processors using global FP scheduling.

Also assume that all tasks are simultaneously released at time zero and all jobs arrive as

quickly as possible (i.e., strictly periodically). The global FP scheduling of these tasks

is shown in Figure 3.1.

The first job J1
4 of the lowest priority task τ4 completes its execution at time t = 2

(response-time is 2 time units). However, the second job J2
4 of task τ4 is released at time

t = 4 and completes its execution at t = 7 (response-time is 3 time units). Consequently,

the worst-case response time of task τ4 is not necessarily equal to the response time of

its first job. In other words, the critical instant of a task is not the time instant when all

the higher priority tasks are released at the same time in global FP scheduling.

Given the sporadic nature of the tasks, finding the job that suffers the maximum inter-

ference due to the execution of the higher priority jobs can not be determined easily for

global FP scheduling. Not knowing the critical instant for analyzing global FP schedu-

lability of a task requires some pessimism to be introduced in the schedulability analysis.

As will be evident later, introduction of such pessimism during schedulability analysis

results in sufficient schedulability test for global FP scheduling.

3.2. RESOURCE MODEL 37

Figure 3.1: The release time and deadline of each job is shown using upward and downward

arrow, respectively. The second job of task τ4 has larger response time than its first job. Critical

instant for global FP scheduling is not the instant when all the tasks are released at the same time.

3.2 Resource Model

In this thesis, the only resource the tasks are assumed to share is the computing platform.

Scheduling on multiprocessors considers the availability of m identical unit-capacity

processors. In this thesis, multiprocessors and multicores are synonymous since the

proposed schedulability analysis and theory for multiprocessors is also applicable to

multicores having m identical cores hosted on the same chip.

Task preemptions, migrations, context-switches, scheduling decisions incurs over-

head and are extrinsic to the task model at hand. The costs of such different kinds of

overhead are assumed to be included in the WCET of each task. This is because, at

least for now, there is no analytical method available to calculate the cost of such over-

heads for sporadic task systems considering different processor architectures, operating

systems, and so on. There have been effort to calculate such overheads for specific ar-

chitecture and operating system based on empirical study using strictly periodic task

systems [BCA08, BBA10]. Moreover, the preemption and migration overhead due to

the loss of cache affinity is dependent on the working set size of individual task. And,

the working set size of different tasks of different applications are different. Although

such issues are not addressed in this thesis, one can rely on experimental studies (sim-

ilar to [BCA08, BBA10]) to measure these overhead costs considering the application,

operating system, and the target hardware platform. The designer of a real-time system

can inflate the WCET of each task after experimentally measuring the cost of different

overheads by executing the tasks on the target platform.

38 CHAPTER 3. MODELS

3.3 Fault Model

Designing fault-tolerant scheduling algorithm needs to guarantee that all the tasks dead-

lines are met when faults occur even under the worst-case load condition. No fault-

tolerant system, however, can tolerate an infinite number and arbitrary types of faults

within a particular time interval based on time redundancy. The scheduling guarantee in

fault-tolerant system is thus given under the assumption of a certain fault model.

This thesis considers (i) tolerating task errors for uniprocessor scheduling, and (ii)

tolerating both task errors and processor failures for multiprocessor scheduling. The pro-

posed uniprocessor fault-tolerant scheduling algorithm FTDM considers tolerating f task

errors within all possible time intervals of length Dmax where Dmax is the maximum

relative deadline of any task in the task set. The proposed multiprocessor fault-tolerant

scheduling algorithm FTGS considers tolerating f task errors within all possible time

intervals of length Dmax and also considers tolerating at most ρ permanent processor

failures during the lifetime of the system.

In this thesis, the fault model considered is very strong in the sense that multiple

faults (that cause errors) can occur at any time, in any task, and even during the execution

of the backups. The faults can also occur in bursts; however, the number of task errors

that can be recovered is bounded by f within any possible interval of length Dmax.

The fault model considers tolerating transient hardware faults due to which the task

error is also transient. Transient errors are short lived and would not reappear upon re-

executing the task. This is a reasonable assumption since it can be implemented simply

by resetting the processor before re-execution. The fault model also considers software

fault due to which the task error is transient. When a software fault is manifested as

a transient error, then such error can be recovered using simple re-execution. In such

case, it is expected that the same error would not occur if the software (task) is simply

re-executed. Software faults that result in permanent task errors are also considered in

the fault model. If the effect of a software fault is manifested as a permanent error,

then simple re-execution of the same task can not mitigate such permanent erroneous

behavior. In such case, a diverse implementation of the task has to be executed as backup

to recover from the error and such backup may have different WCET than the primary.

Tolerating permanent processor failure is also considered in the fault model for the

proposed fault-tolerant scheduling on multiprocessors. The effect of such failures is

mitigated by executing the backup of the task that was executing on the faulty processor

on a different (non-faulty) processor. The fault model for permanent processor failures

covers those hardware faults that are continuous/stable and causes permanent error. Each

of the processors in a multiprocessor system is assumed to be fail-stop processors: it is

either working correctly or ceases functioning.

If a system is designed to tolerate transient error or permanent processor failures,

then either re-execution or diverse backup is effective. However, if the system also

needs to tolerate permanent error due to software faults, then all the backups must be

different (i.e., implemented diversely) and we have to pay for this costly approach for

tolerating such software faults using time redundancy.

3.3. FAULT MODEL 39

Time redundancy is considered for tolerating multiple faults. When fault occurs

during execution of a task and an error is detected, either the faulty task is simply re-

executed or a diverse implementation of the same task is executed. The diverse imple-

mentation of the same task is considered to achieve diversity as is used in N-version pro-

gramming [Avi85]. A backup of a task, which is a diverse implementation, has the same

period, priority, and deadline as the original task but may have a different WCET than

the primary. The schedulability analysis of the fault-tolerant algorithms has to consider

such different WCETs for different backups of the same task.

In order to tolerate task errors even during the recovery operations (i.e., when a

backup is executing) multiple backups are considered for each task. The multiple back-

ups of the same task are ordered based on some design decision (i.e., the first backup is

executed whenever the primary fails, the second backup is executed whenever the first

backup fails, and so on). For example, the system designer may prefer to run a partic-

ular implementation of a task as the primary, and then another implementation (e.g., an

exception handler) as the backup if an error is detected in the primary, and so on.

An error is assumed to be detected at the end of execution of a task’s primary or

backup. This is required for the worst-case schedulability analysis since the detection of

an error at the end of execution corresponds to larger wasted CPU time in comparison

to the situation when the error is detected in the middle of the execution. There is no

fault propagation: one fault is assumed to affect at most one job, either its primary or

one of its backups. It is also assumed that, during the execution of each primary or

backup of a task, at most one fault could affect this execution. This assumption is also

essential for the worst-case schedulability analysis because the overhead for executing

the backup, after an error is detected, does not depend on the number of errors affecting

that particular primary or backup. If more than one error affect a task’s primary or

backup, then only one additional backup is activated to recover from those task errors.

Both the proposed FTDM and FTGS scheduling algorithms consider tolerating f task

errors in each of the all possible intervals of length Dmax. Within any time interval of

length Dmax, the f task errors may occur in the same job of a task — affecting that

job’s primary and backups. Therefore, the task model is extended to consider f different

backups for each task. The WCET of the primary copy of task τi is Ci and the WCET of

each of the f backup copies of task τi is denoted by Eki for k = 1, 2, . . . f . All the

jobs of the same task have the same WCET for the primary copies and the WCET of

the kth backup copy of different jobs of the same task are equal for k = 1, 2, . . . f . If a
task errors are detected in job Jji (one error in the primary copy and (a−1) errors in the

backup copies), the total execution requirement for job Jji is Ci+
∑a

k=1E
k
i . Note that

for a maximum of a task errors affecting a particular job Jji , the ath backup copy is the

non-faulty execution of job Jji under the assumed fault model. Moreover, the following

must hold for each constrained-deadline task τi ∈ Γ for all i = 1, 2, . . . n:

Ci +

f
∑

k=1

Eki ≤ Di (3.2)

40 CHAPTER 3. MODELS

It is assumed that a combination of software and hardware error-detection mechanisms

are available to detect task error. There are many software and hardware based error-

detection mechanisms as is discussed in Section 2.2.2. Perfect error detection coverage

is assumed for simplicity of the schedulability analysis. However, a probabilistic anal-

ysis of fault-tolerant schedulability with imperfect error detection coverage can be ad-

dressed similar to [BPSW99] and such an analysis is not the addressed in this thesis. It

is also assumed that the error-detection and fault-tolerance mechanisms are themselves

fault-tolerant. The error detection overhead is considered as part of the WCET of the

task. In summary, the fault model considered in this thesis has reasonable representativ-

ity and very general to tolerate a variety of faults in hardware/software.

4
Goals and Contributions

The complexity of hardware and software in computerized system is increasing due to

the “push-pull” effect between the development of new software for existing hardware

and the advancement in hardware technology for forthcoming software. On one hand,

high-speed processors pull the development of new software with more functionalities

(possibly with added complexities), and on the other hand, application software with

new functionalities push the industry to come up with more powerful processors (with

added complexities).

Due to the increased complexity of real-time systems both in terms of hardware and

software, the design of such systems is becoming more challenging. One of the main

challenges is to utilize the processing platform efficiently while satisfying all the timing

constraints of real-time systems. The increasing frequency of the occurrences of tran-

sient faults in increasingly-complex hardware and the increasing likelihood of having

more bugs in complex software require effective and cost-efficient fault-tolerant mecha-

nisms in today’s computerized systems. Due to the size, weight and power constraints in

many safety-critical embedded systems, the integration of multiple functionalities hav-

ing different criticality levels on the same hardware platform requires developing new

criticality- and certification-cognizant scheduling algorithms. In order to ensure that the

non-functional behaviors of real-time systems are acceptable, the design of the system

requires appropriate modeling, effective analysis, and proper verification.

The overall goal of this thesis, considering the research questions Q1, Q2 and Q3 in

Section 1.1 (page 3), is to design and analyze resource-efficient scheduling algorithms

that can be used to satisfy the timing, reliability and criticality constraints. The major

contributions to achieve this goal in this thesis are listed below (contributions C1 and C2

address Q1; contributions C3 and C4 address Q2, and contribution C5 addresses Q3):

41

42 CHAPTER 4. GOALS AND CONTRIBUTIONS

C1 Density-Bound-Based Test (Chapter 5) – A new fixed-priority assignment pol-

icy, called ISM-DS, for constrained-deadline sporadic tasks is proposed. The proposed

priority assignment policy addresses the problem of determining the fixed-priority or-

dering of the sporadic tasks to be scheduled using global FP scheduling. According to

the ISM-DS policy, a subset of the tasks (referred to as heavy tasks) is assigned the

highest fixed priority and the remaining tasks (referred to as light tasks) are assigned

slack-monotonic priorities. The density threshold, based on which a task is classified as

being either heavy or light, is calculated based on the number of processors. In order

to address the schedulability testing problem, a sufficient density-bound-based schedu-

lability test is derived by analyzing global FP scheduling using the ISM-DS priority

assignment policy. This test is shown to dominate the density-bound-based state-of-the-

art schedulability test for global FP scheduling of constrained-deadline tasks.

Based on schedulability analysis of the ISM-DS policy, another priority assignment

policy, called ISM-DS[ξ], is proposed. Policy ISM-DS[ξ] assigns fixed-priorities to the

tasks in a way that is similar to the ISM-DS policy, but using a threshold density ξ which

is selected from the set of all the densities of the tasks. To address the schedulability

testing problem, the threshold density ξ is selected in such a way that the task set become

schedulable using global FP scheduling. It is also proved that the schedulability test for

global FP scheduling based on the ISM-DS[ξ] priority assignment policy dominates

the density-bound test for the ISM-DS priority assignment policy. Simulation results

show that the fraction of randomly-generated task sets deemed schedulable using the

schedulability test for the ISM-DS[ξ] priority-assignment policy is significantly higher

than that of the density-bound test for the ISM-DS priority assignment policy.

C2 Iterative Test (Chapter 6) – A new response-time-based iterative test, called the

IA-RT test, is proposed for global FP scheduling of constrained-deadline sporadic

tasks. The IA-RT test addresses the schedulability testing problem while determin-

ing the priorities of the tasks using a multiprocessor extension of the Audsley’s optimal

priority assignment scheme. Finding such a priority ordering is important since many

of the traditional priority-assignment policies (e.g., the deadline-monotonic policy) per-

form poorly for global FP scheduling of constrained-deadline tasks, and also because

the optimal priority assignment for such task systems is not known at present time.

The IA-RT test also deals with the challenge of reducing the pessimism in approx-

imating the worst-case (i.e., critical instant) for global FP scheduling. The IA-RT test

is derived based on a crucial observation (regarding the schedulability analysis) which

is used to derive an improvement in order to reduce the pessimism in the interference

computation as caused by the higher priority tasks on each lower priority task. The

observation is that, if a number of m′ tasks and m′ processors, 0 ≤ m′ < m, are not

considered during the schedulability analysis of a lower priority task τi, then the pes-

simism of the interference computation due to the higher priority tasks can be reduced.

Based on this observation, a novel criterion is proposed which finds a set ofm′ tasks and

m′ processors that will not be considered during the global FP schedulability analysis of

a lower priority task τi. By computing an upper bound on the interference of each lower

priority task τi ∈ Γ, the response-time-based IA-RT test is derived. The IA-RT test

43

does not only dominates but also empirically outperforms the state-of-the-art iterative

test for global FP scheduling of constrained-deadline sporadic tasks.

C3 Uniprocessor Fault-Tolerant Scheduling (Chapter 7) – A fault-tolerant schedul-

ing algorithm for uniprocessors, called FTDM, based on the DM priority assignment

policy is proposed. The proposed scheduling algorithm considers a very general fault

model such that multiple faults can occur in any task and at any time (even during recov-

ery). The FTDM algorithm considers time-redundant execution of the tasks as backup to

recover from occurrences of maximum f task errors within each of all possible time in-

tervals of lengthDmax. In order to resolve the interdependency between meeting timing

constraints and achieving fault-tolerance using time redundancy, precise schedulability

analysis of FTDM algorithm is conducted. An exact schedulability test is derived based

on the maximum total workload requested within the release time and absolute deadline

of the job of each task released at the critical instant. To calculate this maximum total

workload, assuming occurrences of multiple faults, a novel technique to compose the

execution time of the higher priority jobs is used.

The only work that deals with a similar fault model as the FTDM algorithm is pro-

posed by Aydin [Ayd07], but considers EDF priority and the exact test in [Ayd07] has

an exponential run-time complexity. On the other hand, the run time-complexity to

evaluate the exact schedulability test of the proposed FTDM algorithm is O(n · N̂ · f2),

where N̂ is the maximum number of jobs (generated by the n periodic tasks) released

within any time interval of length Dmax. No previous work has derived an exact fault-

tolerant uniprocessor schedulability test that has a lower time complexity than that is

presented in this thesis for the assumed fault model. The proposed schedulability test

can be applied to partitioned multiprocessor scheduling during assignment of the tasks

to the processors so that a maximum of f task errors can be tolerated on each processor.

C4 Multiprocessor Fault-Tolerant Scheduling (Chapter 8) – A fault-tolerant FP sche-

duling algorithm for multiprocessors, called FTGS, based on global scheduling paradigm

assuming an arbitrary fixed-priority ordering of the tasks is proposed. The fault model

of FTGS algorithm is as general as the FTDM algorithm. In addition, the FTGS algo-

rithm also considers tolerating permanent processor failures in its fault model. More

specifically, the FTGS scheduling considers tolerating ρ permanent processor failures

within the lifetime of the system, in addition to tolerating a maximum of f task errors

that can occur within any interval equal to Dmax. No other work considers a powerful

fault model for multiprocessor scheduling as is assumed for the FTGS algorithm.

The schedulability analysis of the FTGS algorithm does not only resolve the interde-

pendency between timeliness and achieving fault tolerance using time redundancy, but

also addresses the priority assignment problem, which is common even for traditional

(non-fault-tolerant) global FP scheduling. To that end, a sufficient schedulability test

for FTGS scheduling with a time-complexity of O(n2 · f2 ·max{N̂ ,m · f, f2}) is de-

rived. The schedulability test for the FTGS algorithm can be combined with Audsley’s

optimal priority assignment algorithm to search for a priority ordering in case the test is

not satisfied for the given priority ordering of the tasks.

44 CHAPTER 4. GOALS AND CONTRIBUTIONS

The mathematical expression of the FTGS schedulability test incorporates different

parameters from the system models: f (number of task errors), ρ (number of processor

failures) and m (number of available processors) along with the parameters of the task

set. The system designers can play around with different values of these parameters to

make trade-off between fault resilience and resource requirement of the system. While

most of the previous work consider tolerating a task error using techniques intended for

tolerating processor failures (a wasteful approach in terms of resources), the FTGS algo-

rithm distinguishes between task errors and processors failures to efficiently utilize the

computing resources while at the same time achieving fault-tolerance.

C5 Multiprocessor Scheduling of Mixed-Criticality Systems (Chapter 9) – A certifi-

cation-cognizant FP multiprocessor scheduling algorithm, called MSM, for constrained-

deadline sporadic tasks having different criticality levels is proposed. The proposed

MSM scheduling algorithm is based on a global FP scheduling paradigm with an addi-

tional feature — runtime monitoring of the criticality behavior — that determines when

the system switches to a higher criticality behavior1. Upon detection of criticality switch

to a higher criticality behavior, tasks relevant only to that criticality behavior are dis-

patched for execution. The run-time monitoring capability enables the MSM algorithm to

address both the deadline and criticality aspects of MC tasks. A sufficient response-time-

based schedulability test of the MSM algorithm is proposed. This schedulability test can

be used to verify whether the timing constraints of the tasks at each criticality levels are

met, or not, thereby facilitating certification.

The main objective for deriving the schedulability test for the MSM scheduling is

to make the test applicable with Audsley’s OPA algorithm so that the fixed priority as-

signment of the MC tasks can be determined. Finding such a priority ordering is impor-

tant because many of the heuristic priority-assignment policies, for example, criticality-

as-priority-assignment (CAPA), perform poorly for FP scheduling of mixed criticality

tasks. While many other earlier work consider only two different criticality levels, the

MSM algorithm considers an arbitrary number of criticality levels (which is important

since the tasks in many practical systems have more than two criticality levels). This

is the first published work, on global FP scheduling of MC tasks on multiprocessors.

Although this work considers FP scheduling, it can be easily extended for any other

work-conserving scheduling algorithm. The time complexity to evaluate the schedu-

lability test for MSM algorithm, combined with the OPA algorithm for a task set with

L criticality levels, is O(n2 · L ·TL
max), which is pseudo-polynomial for any fixed value

of L that is reasonable for practical mixed-criticality systems. For example, the time

complexity for dual-criticality system (i.e., MC system with only two criticality levels) is

O(n2 · T 2
max) which is pseudo-polynomial in the representation of the task set. Simula-

tion result shows that the schedulability test for MSM algorithm combined with Audsley’s

OPA algorithm significantly outperforms the schedulability test for MSM scheduling us-

ing other traditional priority assignment (e.g., deadline-monotonic, CAPA) policies.

1The criticality behavior of the system at each time instant is determined based on the actual execution

time of the active job of each task at that time instant.

5
Density-Bound-Based Test

A new fixed-priority assignment policy, called Improved Slack-Monotonic Density Sep-

aration (ISM-DS), for global FP scheduling of a set of constrained-deadline sporadic

tasks is presented in this chapter. Based on a threshold density, that only depends on the

number of processors, the priority assignment policy ISM-DS assigns slack-monotonic

priority to a subset of the tasks while each of the other tasks is assigned the highest

fixed-priority. A sufficient density-bound-based schedulability test is derived for global

FP scheduling where the priorities are assigned according to policy ISM-DS. The

derived density-bound test dominates the state-of-the-art density-bound test for global

FP scheduling of constrained-deadline sporadic tasks.

Based on the schedulability analysis of priority assignment policy ISM-DS, another

priority assignment policy, called ISM-DS[ξ], is proposed. Policy ISM-DS[ξ] assigns

the priorities similar to policy ISM-DS except that the threshold density ξ is searched

from the set of densities of all the tasks. Considering the schedulability testing prob-

lem, the aim for searching the threshold density ξ is to guarantee the schedulability of

the tasks for the ISM-DS[ξ] priority assignment policy. It is proved that the schedula-

bility test of global FP scheduling using ISM-DS[ξ] as the priority assignment policy

dominates that of using the ISM-DS priority assignment policy. Empirical investigation

using randomly generated task sets shows surprising improvement of the schedulability

test for policy ISM-DS[ξ] over that of using policy ISM-DS.

45

46 CHAPTER 5. DENSITY-BOUND-BASED TEST

5.1 Introduction

It has become obvious that continuously increasing the clock speeds of uniprocessors

to provide more performance is impossible due to power consumption and heat dissipa-

tion limits. The processor industry has adopted multicore architectures to provide the

growing demand of computation power. While real-time scheduling of sporadic tasks

on uniprocessors is considered to be mature enough, real-time scheduling theory for

multiprocessors is still young and has recently received considerable attention.

The main design goal of many global [ABJ01, Bak06, BCL05, And08a, BCL09,

BC07, GSYY09, DB11b] and partitioned [DL78, LBOS95, LDG04, AJ03, FBB06,

LMM98a, LGDG03, OB98, OS95b] fixed-priority scheduling algorithms is to derive

a schedulability test that when satisfied implies that all the deadlines are met. The

global scheduling approach is being seriously considered for many practical systems

since different techniques, e.g., inter-core prefetching [KST11], locked-cache [SMR11],

push-assisted migration [SMRM09], have been proposed to reduce the overhead due to

migration. The FP scheduling policy is the preferred scheduling policy in the industry

due to its flexibility, ease of implementation and debugging [ABB96, SG90, SLR86,

XP00, AS06]. Almost all commercial real-time kernel / operating systems (e.g. Vx-

Works, RT-Linux, RT-Mach), languages (e.g. Ada95) support fixed-priority scheduling.

These observations motivate the design and analysis of global FP scheduling algorithms

in this thesis. The following real-time scheduling problem is addressed in this chapter:

Given a collection of n constrained-deadline sporadic tasks, is it possi-

ble to meet all the task deadlines when the tasks are FP scheduled on

m identical, unit-capacity processors?

Challenges. As already pointed out in Chapter 1 that there are two major research chal-

lenges in the context of global FP scheduling: (i) priority assignment problem, and (ii)

schedulability testing problem. The optimal FP ordering for constrained-deadline tasks

scheduled on uniprocessors is known [LW82]: deadline-monotonic priority ordering is

the optimal FP ordering in such case. However, the optimal FP ordering of global mul-

tiprocessor scheduling of constrained-deadline tasks is still unknown [DB11a]. More-

over, it has already been shown by Dhall and Liu [DL78] that the utilization bound of

global FP scheduling of implicit-deadline task based on rate-monotonic priority order-

ing is 0%. This result can easily be extended to show that the density bound of global

FP scheduling of constrained-deadline tasks according to deadline-monotonic priority

assignment policy is also 0%. To achieve higher utilization/density bound, researchers

have proposed new fixed-priority assignment policy with non-zero utilization/density

bound [ABJ01, Bak06, BCL05, And08a, Lun02].

Deriving an effective schedulability test is equally important as deriving a “good”

fixed-priority ordering since hard real-time system needs to apply schedulability test be-

fore the system is in mission. The challenge during the schedulability analysis of global

FP scheduling in order to derive a schedulability test involves correctly predicting the

worst-case runtime behavior and analyzing this worst-case behavior. Unfortunately, the

5.1. INTRODUCTION 47

worst-case (known as critical instant, see Section 3.1) for global FP scheduling of spo-

radic tasks is not known [LMM98b]. However, several interesting schedulability anal-

ysis techniques have been proposed by researchers to analyze global FP scheduling to

derive sufficient schedulability test. The amount of pessimism used during such schedu-

lability analysis determines the utilization/density bound for different fixed-priority as-

signment policies proposed in [ABJ01, Lun02, BCL05, Bak06, And08a].

Contributions. One of the most expressive ways to derive a schedulability test for

implicit- and constrained-deadline tasks is in terms of its utilization bound and den-

sity bound, respectively. It has already been proved that neither global nor partitioned

FP scheduling can have a utilization bound greater than 0.5m on m processors for

implicit-deadline task systems [ABJ01, CFH+04]. There exists a partitioned FP schedul-

ing algorithm, called R-BOUND-MP-NFR, having utilization bound of 0.5m [AJ03].

However, the state-of-the-art utilization bound of global FP scheduling is m+1
3 for

m ≤ 6 (RM-US[13] scheduling [BCL05]) and 2m
3+

√
5

form > 6 (SM-US[2
3+

√
5
] schedul-

ing [And08a]) for implicit-deadline sporadic task systems. The state-of-the-art density

bound of global FP multiprocessor scheduling of constrained-deadline tasks is m+1
3

where priorities are assigned based on DM-DS[1
3] priority assignment policy [BCL05].

This chapter presents a new priority assignment policy, called ISM-DS, and de-

rives a corresponding density bound for global FP scheduling. It is also proved that

the density bound of global FP scheduling using policy ISM-DS is higher than that

of DM-DS[1
3] for constrained-deadline task sets. The density bound of the proposed

priority assignment policy ISM-DS becomes the utilization bound for implicit-deadline

task sets. It will be shown that the utilization bound using priority assignment pol-

icy ISM-DS is higher than that of both RM-US[13] and SM-US[2
3+

√
5
] for implicit-

deadline task systems for any finite m ≥ 2.

The ISM-DS priority assignment policy assigns priorities to the tasks based on some

threshold density: each task having density greater than the threshold density is assigned

the highest fixed-priority and the remaining tasks are assigned lower, slack-monotonic

priorities. The threshold density for policy ISM-DS depends only on the number of pro-

cessors and does not consider the parameters (e.g. density) of the tasks in a task set. By

considering density of the tasks in addition to the number of processors, the threshold

density can be searched from the set of densities of all the tasks. To this end, another

priority assignment policy, called ISM-DS[ξ], is proposed where the threshold density

ξ is searched from the set of densities of the tasks in a given task set. If such a threshold

density ξ can be found, then the task set is schedulable using global FP scheduling based

on priority assignment policy ISM-DS[ξ]. It is shown that, the schedulability test for

global FP scheduling using priority assignment policy ISM-DS[ξ] dominates that of the

density-bound test derived for ISM-DS policy.

Organization. Section 5.2 presents related work. Then, some important parameters of

the task model is presented in Section 5.3. The priority assignment policy ISM-DS and

its corresponding density bound for global FP scheduling of constrained-deadline spo-

radic tasks is proposed in Section 5.4. Then, the priority assignment policy ISM-DS[ξ]

48 CHAPTER 5. DENSITY-BOUND-BASED TEST

is proposed in Section 5.5. Empirical investigation using randomly generated task sets

to compare the derived schedulability tests for priority assignment policy ISM-DS[ξ]
and ISM-DS is presented in Section 5.6. Then, a utilization based test for implicit-

deadline tasks based on priority assignment policy ISM-DS is presented in Section 5.7.

The schedulability analysis of global FP scheduling using ISM-DS priority assignment

policy enables the derivation of a utilization bound for uniprocessor slack-monotonic

scheduling in Section 5.8. Finally, Section 5.9 summarizes this chapter.

5.2 Related Work

While the well-known RM priority assignment is optimal for uniprocessor FP schedul-

ing of implicit-deadline tasks [LL73], it is is not optimal for global FP scheduling on

multiprocessors due to so called the “Dhall’s effect” [DL78]. Dhall and Liu showed that

global multiprocessor scheduling of implicit-deadline tasks under RM priority assign-

ment has system utilization 0% as m → ∞. The problem due to Dhall’s effect is the

existence of a task with high utilization but having a relatively lower RM priority.

In order to circumvent Dhall’s effect, many of the work around global scheduling

have considered intelligent fixed-priority assignment policy based on hybrid-priority as-

signment (HPA) scheme. In HPA scheme, each task in a subset of the tasks is given

the highest fixed priorities while the remaining tasks are assigned some other, lower

fixed priorities. The HPA policy has been used in the development of numerous global

FP scheduling algorithms and their corresponding schedulability tests, the first being the

RM-US[m
3m−2] algorithm proposed by Andersson, Baruah and Jonsson [ABJ01]. That

algorithm was shown to have a utilization bound of m2

3m−2 on m processors for implicit-

deadline tasks. The RM-US[m
3m−2] algorithm manages to avoid the Dhall’s effect by

assigning the highest fixed priority to the tasks having utilization greater than m
3m−2

while the rest of the tasks are assigned priorities according to the traditional RM pol-

icy. Lundberg [Lun02] later showed that using RM hybrid priority assignment scheme,

RM-US can achieve a utilization bound of approximately 0.374m.

In [Bak06], Baker presented an analysis of global FP scheduling. Baker’s analysis

is general for any fixed-priority scheduling and arbitrary-deadline task systems. Based

on a derivation of the minimum amount of interference in an interval that can cause a

task’s deadline to be missed, Baker showed that, for implicit-deadline sporadic task sets,

the utilization bound of RM scheduling is
m(1−umax)

2 + umin, where umax and umin
are the maximum and minimum utilization of any task in the task set, respectively. The

RM scheduling is studied for uniform multiprocessors (i.e., processors having different

speeds) by Baruah and Goossens in [BG03a], and it is shown that the utilization bound

is m
3 for implicit-deadline tasks on m unit-capacity processors if no task has utilization

greater than 1/3.

Bertogna et al. [BCL05] proposed an algorithm, called RM-US[1
3], which is an

improvement of the algorithm RM-US[m
3m−2] in [ABJ01] for implicit-deadline spo-

radic task systems. Based on schedulability analysis of the deadline-monotonic pri-

5.3. PARAMETERS OF TASK MODEL 49

ority assignment, Bertogna et al. proved that the utilization bound of the a HPA-based

RM-US[1
3] algorithm is m+1

3 for implicit-deadline tasks. The RM-US[13] algorithm as-

signs the highest priority to the tasks having utilization greater than 1/3 while the rest of

the tasks are given the traditional RM priority. The authors also showed that if the total

density of a constrained-deadline task set is not greater than m+1
3 (i.e., density-bound),

then all deadlines are met using DM-DS[13] priority assignment policy. According to

DM-DS[13], if a task’s density is greater than 1
3 , then it is given the highest fixed-priority,

otherwise, it is given the traditional DM priority.

Andersson [And08a] proposed the SM-US[2
3+

√
5
] priority assignment policy based

on a slack-monotonic HPA scheme that has a utilization bound of 2m
3+

√
5

for global

FP scheduling of implicit-deadline sporadic task systems. According to SM-US[2
3+

√
5
],

each task having utilization greater than 2
3+

√
5

is given the highest fixed priority while

the rest of the tasks are assigned slack-monotonic priorities.

The state-of-the-art utilization bound for global FP multiprocessor scheduling of

implicit-deadline sporadic tasks is m+1
3 for m ≤ 6 (RM-US[13] scheduling [BCL05])

and 2m
3+

√
5

for m > 6 (SM-US[2
3+

√
5
] scheduling [And08a]). The state-of-the-art den-

sity bound for global FP multiprocessor scheduling of constrained-deadline sporadic

tasks is m+1
3 (DM-DS[1

3] scheduling [BCL05]). In this thesis, a new slack-monotonic

HPA policy, called ISM-DS, for constrained-deadline sporadic task sets is proposed.

It is proved that the density bound for global FP scheduling of constrained-deadline

sporadic tasks using policy ISM-DS is m·min{ 12 , 3m−2−
√
5m2−8m+4

2m−2 }, which is higher

than the density bound of DM-DS[1
3] scheduling for constrained-deadline sporadic task

sets. The density bound of global FP scheduling using policy ISM-DS becomes the uti-

lization bound for implicit-deadline task sets. The boundm·min{ 12 , 3m−2−
√
5m2−8m+4

2m−2 }
for global FP scheduling of implicit-deadline task systems is higher than that of both the

RM-US[13] and SM-US[2
3+

√
5
] scheduling for any finite m ≥ 2.

5.3 Parameters of Task Model

The task model considered in this chapter is constrained-deadline sporadic task system

where each task τi ∈ Γ is characterized by a triple (Ci, Di, Ti). Please see Section 3.1

(page 33) for details of the task model.

The slack of each task τi is defined to be equal to (Di − Ci). Note that slack of an

implicit-deadline task τi is (Ti−Ci). Task τi has higher Slack-Monotonic (SM) priority

than task τj only if the following condition1 is satisfied:

(Di − Ci) < (Dj − Cj)

Without any loss of generality, the tasks in set Γ are assumed to be sorted based on

decreasing priority order (i.e., τ1 is the highest priority task and τn is the lowest priority

1Ties, i.e., (Di − Ci) = (Dj − Cj), can be broken arbitrarily.

50 CHAPTER 5. DENSITY-BOUND-BASED TEST

task). For a given priority ordering of the tasks, the execution of a task τk can only be

interfered by the higher-priority tasks in global FP scheduling. In other words, whether

task τk meets its deadline or not depends only on the tasks in set HPk ∪ {τk}. The task

set Γk is defined as follows:

Γk
def
= HPk ∪ {τk}

where τk is the lowest priority task in Γk and HPk = {τ1, . . . , τk−1} for k = 1, 2 . . . n.

Note that Γj ⊆ Γk for 1 ≤ j ≤ k ≤ n. The total density δksum of the task set Γk is

defined as follows:

δksum =
∑

τi∈Γk

δi =
∑

τi∈Γk

Ci
Di

for k = 1, 2 . . . n. The maximum density and minimum density of a sporadic task system

Γk are denoted respectively as δkmax and δkmin such that δkmin ≤ δi ≤ δkmax for all

τi ∈ Γk. Formally,

δkmax = max
τi ∈Γk

{δi}

δkmin = min
τi ∈Γk

{δi}

The total utilization Ukof the task set Γk is given as follows:

Uk =
∑

τi∈Γk

ui =
∑

τi∈Γk

Ci
Ti

for k = 1, 2 . . . n. The maximum density and minimum density of a sporadic task system

Γk are denoted respectively as ukmax and ukmin such that ukmin ≤ δi ≤ ukmax for all

τi ∈ Γk. Formally,

ukmax = max
τi ∈Γk

{ui}

ukmin = min
τi ∈Γk

{ui}

5.4 Constrained-Deadline Tasks: Density-Bound

In this section, the priority assignment policy ISM-DS and a corresponding density-

bound-based schedulability test for constrained-deadline task systems are presented.

The proposed priority-assignment policy ISM-DS is based on a slack-monotonic HPA

policy that works as follows: if the density of a task is not greater than a threshold den-

sity, say δts, then the task is assigned a priority according to the slack-monotonic policy;

otherwise, the task is given the highest fixed priority.

The main challenge for such HPA policy is to find the threshold density δts which

determines the two subsets of the task set such that tasks in one subset are given the

slack-monotonic priorities and each of the tasks in the other subset is given the highest

fixed-priority, where ties are broken arbitrarily at runtime. The threshold density δts for

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 51

policy ISM-DS is determined based on the schedulability analysis of a class of task sets,

called “special” task sets. A task set is said to be “special on m processors” based on

two particular properties (defined shortly in subsection 5.4.2).

The threshold density used for policy ISM-DS is 3m−2−
√
5m2−8m+4

2m−2 where m is

the number of processors, m ≥ 2. Thus, given the number of processors m, the thresh-

old density for ISM-DS is computed and all the tasks are assigned the fixed priorities

according to the slack-monotonic HPA policy. It is proved that the density bound of

global FP scheduling of constrained-deadline sporadic tasks using policy ISM-DS is

m·min{ 12 , 3m−2−
√
5m2−8m+4

2m−2 }. It is easy to see that this density bound is larger than

that of the state-of-the-art DM-DS[1
3] scheduling proposed in [BCL05].

The proof strategy to derive the density bound is as follows. First, it will be shown

that a “special” task set Γk (which is a subset of the original task set Γ) is schedulable by

global FP scheduling based on slack-monotonic priority assignment (subsection 5.4.2).

Second, two general conditions are derived when satisfied imply that the entire task set

Γ is schedulable using a slack-monotonic HPA policy using some threshold density δts
(subsection 5.4.3). Finally, the value of the threshold density δts for policy ISM-DS and

the corresponding density bound for global FP scheduling of the entire task set is derived

(subsection 5.4.4). The following results and definitions in subsection 5.4.1 will be used

in the remainder of this section.

5.4.1 Prior Results and Useful Definitions

When analyzing the schedulability of a lower priority task τj using any global FP schedul-

ing within the interval [t1, t2), its schedulability depends on the amount of work done by

the higher priority tasks within [t1, t2). By assuming that a job of an implicit-deadline

sporadic task τj arrives at t1 and misses its deadline (which is the first missed deadline

in the schedule) at t2 such that t2 = t1 + Tj , the analysis by Andersson in [And08a]

proved that the maximum amount of execution required within [t1, t2) by a higher pri-

ority task τi ∈ HPj is Ci + (Tj − Ci)Ci

Ti
, whenever ujmax ≤ m

2m−1 and U j ≤ m2

2m−1 .

This result by Andersson [And08a] is given in Lemma 5.1.

Lemma 5.1 (Based on [And08a]). Consider global FP scheduling of an implicit-deadline

sporadic task system Γj on m processors by assuming that ujmax ≤ m
2m−1 , U j ≤ m2

2m−1
and that all the tasks in HPj are schedulable. When analyzing the schedulability of the

lowest priority task τj within [t1, t2), the maximum amount of execution by all the higher

priority tasks during [t1, t2) is at most:

∑

τi∈HPj

Ci + (L− Ci)
Ci
Ti

(5.1)

where L = t2 − t1 = Tj .

Proof. Eq. (5.1) is derived by Andersson in [And08a] (please see Eq. (16) in reference

[And08a] for this derivation).

52 CHAPTER 5. DENSITY-BOUND-BASED TEST

By considering the constrained relative deadline instead of implicit relative deadline

and considering density instead of utilization, the proof and result of Lemma 5.1 are

directly applicable to constrained-deadline task systems. Corollary 5.2 is the adaptation

of Lemma 5.1 for constrained-deadline task systems and will be used later in this section

to upper bound the work of the tasks in HPj within an interval [t1, t2).

Corollary 5.2 (Based on Lemma 5.1). Consider global FP scheduling of a constrained-

deadline sporadic task system Γj on m processors by assuming that δjmax ≤ m
2m−1 ,

δjsum ≤ m2

2m−1 and that all the tasks in HPj are schedulable. When analyzing the schedu-

lability of the lowest priority task τj within [t1, t2), the maximum amount of execution

by all the higher priority tasks during [t1, t2) is at most:

∑

τi∈HPj

Ci + (L− Ci)
Ci
Di

(5.2)

where L = t2 − t1 = Dj .

Proof. Eq. (5.2) can be derived similar to the derivation of Eq. (5.1) by considering

constrained relative deadline instead of implicit relative deadline.

Function Fm(x) : The following function in Eq. (5.3) is used in the remainder of this

chapter:

Fm(x) =
m(1− x)
2− x + x (5.3)

where m ∈ Z
+ and 0 ≤ x ≤ m

2m−1 . Two important features of the function in Eq. (5.3)

are given in Lemma 5.3.

Lemma 5.3. Consider a, b, x, c and d such that 0 ≤ a ≤ b ≤ x ≤ c ≤ d ≤ m
2m−1 for

any integer m > 0. The following two inequalities hold:

min{Fm(b),Fm(c)} ≤ Fm(x) (5.4)

min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} (5.5)

Proof. Proof is given in Appendix A (page 219).

Corollary 5.2 and Lemma 5.3 are used in the remainder of this chapter. The global

FP schedulability analysis of task set Γ presented in this section is based on the schedu-

lability analysis of a class of task sets called “special” task sets. A task set is said to be

“special on m processors” based on two particular properties defined in Definition 5.1.

It will be shown in Theorem 5.1 that a task set that is special on m processors is schedu-

lable using global slack-monotonic scheduling, denoted by GSSM, on m processors. The

GSSM scheduling is global FP scheduling where all the tasks are assigned fixed priorities

based on slack-monotonic priority assignment policy.

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 53

5.4.2 “Special” Task Set and its Schedulability

In this subsection, the two properties of a sporadic task system Γk that is “special” on m
processors are formally presented. It will be proved that all the deadlines of the special

task system Γk are met using algorithm GSSM on m processors.

Definition 5.1 (Special Task System). A constrained-deadline sporadic task system

Γk is special on m processor if it satisfies the following two properties:

Property 1: δkmax ≤ m
2m−1

Property 2: δksum ≤ min{Fm(δkmin) , Fm(δkmax)}

According to Property 1, the maximum density of any task in Γk, that is special on m
processors, is not greater than m

2m−1 . According to Property 2, the total density of the

special task system Γk is not greater than the minimum of Fm(δkmin) and Fm(δkmax).
Before the global slack-monotonic schedulability analysis of a special task set Γk is

presented, the following Lemma 5.4 (proof is in Appendix A, page 220) is required.

Lemma 5.4. Consider sporadic task system Γk that is special on m processors. The

following inequality holds for m ≥ 1

min{Fm(δkmin) , Fm(δkmax)} ≤
m2

2m− 1
(5.6)

Slack-Monotonic Global Schedulability Analysis of Special Task System

It will be proved that a sporadic task system Γk that is special onm processors is schedu-

lable using GSSM on m processors. First, by assuming that all the tasks in HPj meet

their deadlines, it is shown in Lemma 5.5 that all the jobs of the lowest priority task

τj of task set Γj , which is special on m processors, complete by their deadlines using

GSSM scheduling of Γj on m processors. Then, by inductively applying Lemma 5.5 on

special task set Γj for j = 1, 2, . . . k, it is proved that special task system Γk is also

schedulable on m processors using global scheduling algorithm GSSM.

Lemma 5.5. Consider sporadic task set Γj that is special on m processors. If all the

tasks in HPj meet deadlines using GSSM onm processors, then all the jobs of task τj also

meet their deadlines when Γj = HPj ∪ {τj} is scheduled using GSSM on m processors.

Proof. This Lemma is proved using induction. Let’s assume that all the (l − 1) jobs

of τj have met their deadlines using GSSM scheduling algorithm. It will be proved that

the lth job of τj also meets the deadline. Using induction on l ≥ 1, the correctness of

Lemma 5.5 then immediately follows. For a special task set Γj , we have δjmax ≤ m
2m−1

(from Property 1 of Definition 5.1) and δjsum ≤ m2

2m−1 (from Property 2 of Definition 5.1

and Eq. (5.6) of Lemma 5.4). Remember that all the tasks in HPj are schedulable using

GSSM on m processors (premise of this lemma).

54 CHAPTER 5. DENSITY-BOUND-BASED TEST

Let the lth job of task τj be released at time r. This job requiresCj units of execution

time before its deadline (r +Dj). Therefore, when considering the schedulability of the

lth job within the interval [r, r +Dj), Corollary 5.2 can be applied by setting L =
(r+Dj)− r = Dj . And, according to Eq. (5.2) of Corollary 5.2, the maximum amount

of execution required by the higher priority tasks in HPj during [r, r +Dj) is at most:

∑

τi∈HPj

Ci + (Dj − Ci)
Ci
Di

(5.7)

The amount of processor capacity left unused by the tasks in HPj during the interval

[r, r +Dj) on m processors is therefore at least

m ·Dj −
∑

τi∈HPj

(Ci + (Dj − Ci)δi) (5.8)

In the worst case (i.e., all the m processors are available at the same time) 1
m

of this

unused capacity can be used by τj . Consequently, the amount of processing capacity

available to the lth job of τj during the interval [r, r +Dj) on m processors is at least

1

m

[

m ·Dj −
∑

τi∈HPj

(Ci + (Dj − Ci)δi)
]

To guarantee that the lth job of τj meets its deadline, this capacity needs to be at least

as large as the execution time of τj ; that is, we must have,

Cj ≤
1

m

[

m ·Dj −
∑

τi∈HPj

(Ci + (Dj − Ci)δi)
]

(5.9)

In the remaining part of this proof, it is shown that Eq. (5.9) holds; which guarantees

that the lth job of τj meets its deadline. Since task set Γj is special on m processors,

according to Property 2 of special task set we have

δjsum ≤ min{Fm(δjmin) , Fm(δjmax)} (5.10)

For task τj ∈ Γj , we have δjmin ≤ δj ≤ δjmax. Thus, according to Property 1 of special

task system Γj , we also have 0 ≤ δjmin ≤ δj ≤ δjmax ≤ m
2m−1 . And using Eq. (5.4) of

Lemma 5.3, it follows that

min{Fm(δjmin) , Fm(δjmax)} ≤ Fm(δj) (5.11)

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 55

From Eq. (5.10) and Eq. (5.11), we have δjsum ≤ Fm(δj) which is equivalent to

≡
∑

τi∈HPj∪{τj}
δi ≤

m(1− δj)
2− δj

+ δj [from Eq. (5.3)]

≡
∑

τi∈HPj

δi ≤
m(1− δj)
2− δj

≡
∑

τi∈HPj

δi(2− δj) ≤ m(1− δj)

≡ δj ≤ 1− 1

m

∑

τi∈HPj

δi(2− δj)

≡ δj ≤
1

m

[

m−
∑

τi∈HPj

[

δi + δi(1− δj)
]

]

≡ Cj
Dj

≤ 1

m

[

m−
∑

τi∈HPj

[Ci
Di

+
Ci
Di

(
Dj − Cj
Dj

)
]

]

⇒ (According to slack-monotonic priorities

∀i ∈ HPj : (Di − Ci) ≤ (Dj − Cj))

Cj
Dj

≤ 1

m

[

m−
∑

τi∈HPj

[Ci
Di

+
Ci
Di

(
Di − Ci
Dj

)
]

]

≡ Cj ≤
1

m

[

m ·Dj −
∑

τi∈HPj

[CiDj

Di

+ Ci −
C2
i

Di

]

]

≡ Cj ≤
1

m

[

m ·Dj −
∑

τi∈HPj

[

Ci + (Dj − Ci)δi
]

]

≡ Eq. (5.9)

Since the inequality in Eq. (5.9) is true, it can be concluded that the lth job of task τj
meets its deadline using GSSM.

Based on Lemma 5.5, now it will be proved in Theorem 5.1 that the constrained-deadline

sporadic task set Γk that is special on m processors is schedulable using GSSM on

m processors.

Theorem 5.1. A constrained-deadline sporadic task system Γk that is special on total

m processors is schedulable using GSSM scheduling on m processors.

Proof. Remember that Γj ⊆ Γk for j ≤ k. Thus, it follows that δjsum ≤ δksum and

δjmax ≤ δkmax. Therefore, from Property 1 and Property 2 of special task set in Defini-

tion 5.1, it is evident that if Γk is special on m processors, then Γj is also special on m

56 CHAPTER 5. DENSITY-BOUND-BASED TEST

processors for j ≤ k. Therefore, using induction on j = 1, 2, . . . k and applying Lemma

5.5 to special task set Γj , it is easy to see that the special task system Γk is schedulable

on m processors using GSSM scheduling.

According to Theorem 5.1, a special task set is schedulable using GSSM algorithm on

m processors. The ultimate objective is to find the threshold density for slack-monotonic

HPA policy for an arbitrary task set to be scheduled on m processors based on global

FP scheduling algorithm. Two general conditions that can imply the global FP schedu-

lability of an arbitrary constrained-deadline sporadic task set Γ for slack-monotonic

HPA policy ISM-US, based on some threshold density δts, are now proposed.

5.4.3 Slack-Monotonic Hybrid Priority Assignment

According to the slack-monotonic HPA policy ISM-DS, the priorities to the tasks are

assigned based on some threshold density δts such that each of the tasks having density

not greater than δts are given the slack-monotonic priorities and each task having density

greater than δts is given the highest fixed priority. Using such hybrid policy, the sporadic

task set Γ is visualized as the union of two sets Γ = ΓL ∪ ΓH such that the tasks in set

ΓL have the slack-monotonic priorities and each task in set ΓH has the highest fixed

priority2. No task in set ΓL has higher priority than that of any task in set ΓH .

The main challenge for slack-monotonic HPA policy is to find the value of δts to

determine the sets ΓL and ΓH . It will be evident shortly that the value of δts for pri-

ority assignment policy ISM-DS depends only on the number of processors. Before

the threshold density δts for the priority assignment policy ISM-DS is determined, two

general conditions, denoted as C1 and C2, in Lemma 5.6 that can imply the schedulabil-

ity of a task set based on HPA-based priority assignment policy ISM-DS are presented.

The proof strategy in Lemma 5.6 is based on the notion of predictable scheduling algo-

rithm proposed by Ha and Liu in [HL94] and used in [And08a] as follows.

Predictability (from [HL94, And08a]): A job is characterized by its arrival time, its

deadline, its minimum execution time and its maximum execution time. The execution

time of a job is unknown but it is no less than and greater than its minimum and maxi-

mum execution time, respectively. A scheduling algorithm A is predictable if for every

set J of jobs, the following fact

scheduling all jobs in J by A with execution times equal to their maximum

execution times causes all the deadlines to be met

implies that

scheduling all jobs in J by A with execution times being within at least

their minimum execution times and at most their maximum execution times

causes all the deadlines to be met.

2The subscripts ‘L’ and ‘H’ are used to refer to light and heavy tasks, respectively.

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 57

This notion of predictable scheduling algorithm implies that it is only needed to analyze

the schedulability of the jobs considering the WCET of the jobs. Since a sporadic task

set generates a set of jobs, the notion of predictability can be extended in a straightfor-

ward manner to algorithms for scheduling sporadic task systems. Ha and Liu’s work

also implies that global static-priority scheduling of sporadic tasks on multiprocessors

is predictable [And08a].

Lemma 5.6. Let δts be the threshold density that is used to determine the sets ΓL and

ΓH such that Γ = ΓL ∪ ΓH for the HPA policy ISM-DS. The sporadic task set Γ is

schedulable using global FP scheduling if the following two conditions C1 and C2 are

satisfied

(C1) |ΓH | < m

(C2) ΓL is special on (m− |ΓH |) processors

Proof. It will be shown that if conditions C1 and C2 are true for HPA policy ISM-DS that

uses δts as the threshold density, then the task set Γ is schedulable using global FP schedul-

ing. Consider the following task set Γ′
H such that

Γ′
H = {τ ′i | τi ∈ ΓH , C

′
i = Di, D

′
i = Di and T ′

i = Ti}

Note that each task τ ′i ∈ Γ′
H has density 1 and |Γ′

H | = |ΓH |. We let k = |Γ′
H | = |ΓH |.

Now consider the task set Γ′ = ΓL ∪ Γ′
H that is to be scheduled on m processors

using global FP scheduling where ISM-DS is used for priority assignment. According

to policy ISM-DS that uses the threshold density δts, each of the tasks in Γ′
H is given

the highest priority and the tasks in ΓL are given the slack-monotonic priorities.

When scheduling the task set Γ′, then at most k = |Γ′
H | processors are busy to

execute the tasks in set Γ′
H at any time instant since these are the highest priority tasks

each with density 1. All these tasks in Γ′
H are schedulable on k processors (one task will

get one processor whenever it arrives) since |Γ′
H | = |ΓH | = k < m according to C1.

Therefore, the number of processors that are always available for executing the tasks in

set ΓL is at least (m− k) = (m− |ΓH |).
According to C2, the tasks in set ΓL are special on (m − |ΓH |) processors. Since

|ΓH | = k and at least (m − k) processor are always available for executing the tasks

in set ΓL, the task set ΓL is schedulable using GSSM on (m − k) processors according

to Theorem 5.1. Consequently, the task set Γ′ is schedulable on total m processors

using global FP scheduling where priorities are assigned based on policy ISM-DS if

conditions C1 and C2 are satisfied.

The predictability of global FP scheduling has the following consequence: if the jobs

of a task τi in a constrained-deadline task set are schedulable using global FP scheduling

algorithm A on m processors considering WCET equal to C ′
i such that C ′

i = Di, then

the jobs of τi are also schedulable considering its WCET equal to Ci using algorithm A
on m processors. Since the jobs of the tasks in Γ′ = ΓL∪Γ′

H (where each task τ ′i ∈ Γ′
H

has C ′
i = Di) is global FP schedulable on m processors using priority assignment

58 CHAPTER 5. DENSITY-BOUND-BASED TEST

policy ISM-DS, the predictability of global FP scheduling implies that the jobs of the

tasks in Γ = ΓL ∪ ΓH are also global FP scheduling using priority assignment policy

ISM-DS whenever C1 and C2 are true.

Guided by the two conditions (C1 and C2) of Lemma 5.6, the following general and an

important observation regarding the HPA policy can be made.

Observation 5.1. The HPA policy can guarantee the schedulability of a task set using

global FP scheduling if k tasks are given the highest fixed priority and the remaining

(n−k) tasks are global FP schedulable on at most (m−k) processors using some other

fixed-priority assignment, for some k, 0 ≤ k < m.

This observation will be used in this and other chapters. Now, based on the two

general conditions (C1 and C2) of Lemma 5.6, the threshold density δts for priority as-

signment policy ISM-DS and its corresponding density bound of global FP scheduling

of an constrained-deadline sporadic task set Γ is presented in subsection 5.4.4.

5.4.4 Density Bound for Policy ISM-DS

In this section, the threshold density used for ISM-DS priority assignment policy is

proposed and the corresponding density bound for global FP scheduling of constrained-

deadline sporadic tasks is derived. The value of δts is defined based on the solution of

the equation Fm(δts)= m · δts where m is some integer constant, m > 1. One of the

solutions of Fm(δts)= m · δts is δts =
3m−2−

√
5m2−8m+4

2m−2 for m > 1. The value of δts
for policy ISM-DS, where m > 0, is δts = B(m) and B(m) is defined as follows:

B(m) =

{

1 if m = 1
3m−2−

√
5m2−8m+4

2m−2 if m > 1
(5.12)

Note that the threshold density B(m) can be determined based on the number of pro-

cessors m. The two following inequalities in Eq. (5.13) and Eq. (5.14) hold for B(m)
and B(m′) where 1 ≤ m′ ≤ m:

B(m) ≤ m

2m− 1
≤ m′

2m′ − 1
(5.13)

B(m) ≤ B(m′) (5.14)

The proofs that Eq. (5.13) and Eq. (5.14) hold are given in Lemma A.1 and Lemma A.2

in the Appendix A (page 221, 222). Based on the threshold density B(m), the priority

assignment policy ISM-DS is given as follows:

ISM-DS Priority Assignment Policy: Given the number of processorsm, the threshold

density δts = B(m) is calculated based on Eq. (5.12). The priorities to the tasks in set

Γ are assigned as follows:

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 59

If δi > B(m), then task τi has the highest fixed priority (ties broken ar-

bitrarily), otherwise, if δi ≤ B(m), then task τi is given slack-monotonic

priority.

Example 5.1. As an example of the way fixed priorities are assigned using the priority

assignment policy ISM-DS, consider the following constrained-deadline task system to

be scheduled on m = 3 processors based on global FP scheduling where the parameters

of each task τi(Ci, Di, Ti) are as follows:

Γ
def
= {τ1 = (1, 2, 3) τ2 = (2, 3, 5) τ3 = (7, 100, 100)

τ4 = (1, 25, 50) τ5 = (2, 9, 10)}

The threshold density δts is equal to B(3) = 0.5 for m = 3. The densities of the five

tasks are δ1 = 0.5, δ2 ≈ 0.67, δ3 = 0.07, δ4 = 0.04, and δ5 ≈ 0.23. Since δ2 > B(3),
task τ2 is assigned the highest fixed priority and each of the remaining tasks having

density not greater than B(3) is assigned the slack-monotonic priorities. The slack, i.e.,

(Di − Ci), of the remaining tasks τ1, τ3, τ4 and τ5 are respectively 1, 93, 24, and 7.

Therefore, the final fixed priority ordering of all the tasks according to ISM-DS is given

as (highest-priority task listed first): τ2, τ1, τ5, τ4, τ3

The global FP scheduler dispatches the tasks based on the priority assignment given

by policy ISM-DS. Now the schedulability test in terms of density bound of global

FP scheduling for the priority assignment policy ISM-DS is given in Theorem 5.2.

Theorem 5.2 (Density-Bound-Based Test). An constrained-deadline sporadic task set

Γ is schedulable using global FP scheduling that assigns the priorities based on policy

ISM-DS if the following condition, for m ≥ 2, holds:

δnsum ≤ m ·min{1/2, B(m)}

where δnsumis the total density of the task set Γ.

Proof. Given the task set Γ and the number of processors m, the two subsets ΓL and

ΓH based on the threshold density δts = B(m) are determined such that Γ = ΓL ∪ΓH .

Remember that based on policy ISM-DS the tasks in set ΓL and ΓH are given the slack-

monotonic and the highest fixed priorities, respectively. It will be shown that if the total

density δnsum ≤ m ·min{1/2, B(m)}, then the two general conditions C1 and C2 of

Lemma 5.6 hold; which guarantee the schedulability of Γ using global FP scheduling.

(C1 holds) It is easy to see that B(m) ≥ min{1/2, B(m)}. Then it follows that each

task in ΓH has density greater than min{1/2, B(m)} since each task in ΓH has density

greater than δts = B(m) for priority assignment policy ISM-DS. Since the total density

(i.e., δnsum) of task set Γ is not greater than m · min{1/2, B(m)} according to the

premise, the number of tasks that are given the highest priority is less thanm (C1 holds).

(C2 holds) To show that C2 of Lemma 5.6 holds, it will be shown that ΓL is special

on m′ processors where m′ = (m − |ΓH |). Let DL be the total density of all the tasks

60 CHAPTER 5. DENSITY-BOUND-BASED TEST

in ΓL. Also let δmaxL and δminL be the maximum and minimum density of any task

in set ΓL, respectively. To show that ΓL is special on m′ processors, it will be shown

that Property 1 and Property 2 (given in Definition 5.1, page 53) of special task set are

satisfied. In other words, we have to show that the following two inequalities hold:

Property 1 δmaxL ≤
m′

2m′ − 1

Property 2 DL ≤ min{Fm′(δminL), Fm′(δmaxL)}

(Property 1 holds for ΓL) According to the priority assignment policy ISM-DS, no

task in ΓL has density greater than the threshold density δts = B(m). So, we have

δmaxL ≤ B(m). Moreover, from Eq. (5.13), we have B(m) ≤ m′

2m′−1 . Consequently,

δmaxL ≤ m′

2m′−1 , and thus, Property 1 is satisfied for ΓL.

(Property 2 holds for ΓL) The total density of the tasks in ΓH is greater than (|ΓH | ·
min{1/2, B(m)}) because each task in ΓH has density greater than δts = B(m) and

B(m) ≥ min{1/2, B(m)}. Since the total density of task set Γ is not greater than

m ·min{1/2, B(m)} according to the premise, the total density of the tasks in set ΓL
is at most m′ ·min{1/2, B(m)} where m′ = (m− |ΓH |). Therefore, Eq. (5.15) holds.

DL ≤ m′ ·min{1/2, B(m)} (5.15)

Based on the threshold density δts = B(m) of priority assignment policy ISM-DS, we

have δmaxL ≤ B(m) since the density of any task in set ΓL is not greater than B(m).
Moreover, from Eq. (5.14), we have B(m) ≤ B(m′). Thus, δmaxL ≤ B(m′).

It follows from Eq. (5.13) that B(m′) ≤ m′

2m′−1 (by replacing m by m′ in the left-

hand side inequality in Eq. (5.13)). Therefore, δmaxL ≤ B(m′) ≤ m′

2m′−1 . Because

0 ≤ δminL ≤ δmaxL, the inequality in Eq. (5.16) holds.

0 ≤ δminL ≤ δmaxL ≤ B(m′) ≤ m′

2m′ − 1
(5.16)

Based on Eq. (5.16) and from Eq. (5.5) of Lemma 5.3, the following inequality holds:

min{Fm′(0) , Fm′(B(m′))} ≤ min{Fm′(δminL) , Fm′(δmaxL)} (5.17)

From the function definition given in Eq. (5.3), we have

Fm′(0) =
m′(1− 0)

2− 0
+ 0 = m′/2 = m′ · 1/2 (5.18)

It follows from Eq. (5.12) that B(m′) = 1 when m′ = 1. Thus, by setting x = B(m′)
in Eq. (5.3) when m′ = 1, we have Fm′(B(m′))=F1(1)= 1 = m′.

And for m′ > 1, we have Fm′(B(m′)) = m′ ·B(m′) because one of the solutions

5.4. CONSTRAINED-DEADLINE TASKS: DENSITY-BOUND 61

of function Fm′(x) = m′x in terms of x is x = B(m′). Thus, for any m′ ≥ 1, the

following inequality holds:

Fm′(B(m′)) ≥ m′ ·min{1, B(m′)} (5.19)

It follows from Eq. (5.18) and Eq. (5.19) that

min{Fm′(0), Fm′(B(m′))} ≥ m′ ·min{1/2, B(m′)} (5.20)

Then it follows from Eq. (5.20) and the fact that B(m) ≤ B(m′) in Eq. (5.14) that

m′ ·min{1/2, B(m)} ≤ min{Fm′(0), Fm′(B(m′))} (5.21)

Thus, it now follows from Eq. (5.15) and Eq. (5.21) that

DL ≤ min{Fm′(0), Fm′(B(m′)) } (5.22)

Finally, from Eq. (5.17) and Eq. (5.22), we have

DL ≤ min{Fm′(δminL), Fm′(δmaxL) } (5.23)

Therefore, Property 2 is satisfied for task set ΓL (i.e., C2 holds). Consequently, if

δnsum ≤ m ·min{1/2, B(m)}, then the task set Γ is schedulable using global FP schedul-

ing where priorities are assigned based on ISM-DS policy.

The density boundm ·min{1/2, B(m)} of global FP scheduling of constrained-deadline

sporadic tasks, for any finitem ≥ 2, using policy ISM-DS is greater than or equal to the

state-of-the-art density bound m+1
3 for DM-DS[1

3] scheduling. Figure 5.1 illustrates

the density bounds of DM-DS[1
3] and ISM-DS for m = 2, . . . 16. The x-axis in Fig-

ure 5.1 represents the number of processors and the y-axis represents the density bound

normalized by number of processors.

30 %

40 %

50 %

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D
en

si
ty

 b
ou

nd
 /

m

Number of processors (m)

ISM-DS
DM-DS

Figure 5.1: Density bounds of DM-DS[1
3
] and ISM-DS.

62 CHAPTER 5. DENSITY-BOUND-BASED TEST

The total density of the task set in Example 5.1 (page 59) is ≈ 1.499. The density

bound m ·min{1/2, B(m)} using ISM-DS policy for m = 3 is 1.5. Therefore, the

task set in Example 5.1 is global FP schedulable using ISM-DS priority assignment

policy. The DM-DS[1
3] scheduling can not guarantee the schedulability of the task set

in Example 5.1 since the density bound m+1
3 for DM-DS[1

3] is ≈ 1.33.

5.5 Policy ISM-DS[ξ]: Searching the Threshold

The threshold density used for priority assignment policy ISM-DS depends only on

the number of processors and does not use any information (e.g., density) of individual

task of the given task set. Using the density information of individual task in addition

to the information about the number of processors, a better threshold density can be

searched from the set of densities of the tasks for assigning the priorities based on slack-

monotonic HPA policy. This new priority assignment policy is called ISM-DS[ξ] where

the threshold density ξ is searched among the densities of the tasks in a task set. It will

be shown that the schedulability test of global FP scheduling using policy ISM-DS[ξ]
dominates and empirically performs much better than that of using ISM-DS.

Remember that based on the Observation 5.1 (page 58), the HPA policy can guar-

antee the schedulability of a task set using global FP scheduling if k tasks are given the

highest fixed priorities and the remaining (n − k) tasks are global FP schedulable on

(m−k) processors using some other fixed priority assignment, for some k, 0 ≤ k < m.

The proposed priority assignment policy ISM-DS[ξ] is based on a similar technique

used for priority assignment in priority-driven scheduling, called EDF(k), proposed by

Goossens et al. [GFB03] for implicit-deadline tasks. In EDF(k) scheduling, the jobs of

the k highest utilization tasks are given the highest priority and the jobs of the remain-

ing (n − k) lowest utilization tasks are given the EDF priorities for some appropriate

selection of k, 0 ≤ k < m. Inspired by the priority assignment scheme for EDF(k)

scheduling, the slack-monotonic HPA policy ISM-DS[ξ] for constrained-deadline spo-

radic tasks is defined as follows:

1. Each of the k highest density tasks is given the highest fixed priority,

and

2. the remaining (n−k) lowest density tasks are given the slack-monotonic

priorities for some k such that 0 ≤ k < m.

The challenge for ISM-DS[ξ] priority assignment policy is to find an appropriate k,

where 0 ≤ k < m, to guarantee the schedulability. Note that after the value of k is

known, the density of the (k + 1)th highest density task is the threshold density ξ for

priority assignment policy ISM-DS[ξ]. For example, if k = 0, then the largest den-

sity of any tasks in the task set is used as the threshold density (i.e., all tasks are given

SM priority). If k = 1, then the second largest density of the tasks in a task set is used

as the threshold density (i.e., only the largest density task is assigned the highest-fixed

5.5. POLICY ISM-DS[ξ]: SEARCHING THE THRESHOLD 63

priority and the remaining tasks are given the slack-monotonic priorities). The chal-

lenge is how to find such k, if exists, that would guarantee the schedulability of the

entire task set. The pseudocode to search such k, where k < m, for the priority assign-

ment policy ISM-DS[ξ] is presented in algorithm Find(ξ)in Figure 5.2. Algorithm

Find(ξ)determines if there is some k, 0 ≤ k < m, such that entire task set is schedu-

lable using the priority assignment policy ISM-DS[ξ]. The search for the k in algorithm

Find(ξ)is guided by the following schedulability condition given in Theorem 5.3.

Theorem 5.3. A constrained-deadline sporadic task set Γ is schedulable using global

FP scheduling algorithm according to the priority assignment policy ISM-DS[ξ] if the

set of (n − k) lowest density tasks of task set Γ is special on (m − k) processors for

some k, where 0 ≤ k < m.

Proof. Using policy ISM-DS[ξ], the (k + 1)
th

highest density task in task set Γ is used

as the threshold density δts for some k, 0 ≤ k < m. The threshold density δts decides

the tasks in set ΓL and ΓH that are respectively given the slack-monotonic and the

highest fixed priorities such that Γ = ΓL ∪ ΓH .

Note that, using policy ISM-DS[ξ], the number of tasks having the highest fixed

priority is |ΓH | = k for some k where 0 ≤ k < m. Consequently, condition C1

of Lemma 5.6 is satisfied for policy ISM-DS[ξ]. According to Lemma 5.6, the value

of k has to be chosen such that the condition C2 of Lemma 5.6 holds to guarantee the

schedulability of task set Γ using global FP scheduling. In other words, task set Γ can be

guaranteed to be schedulable using global FP scheduling according to policy ISM-DS[ξ]
whenever ΓL is special on (m−k) processors, where ΓL contains all the (n−k) lowest

density tasks from set Γ.

Deriving a k, if one exists, that satisfies Theorem 5.3 is straightforward. One such

example algorithm (called Find(ξ)) that searches (if exists) the value of k is presented

in Figure 5.2. The algorithm Find(ξ)returns True if it can find some k such that the

set of (n− k) lowest density tasks from set Γ is special on (m− k) processors such that

0 ≤ k < m, otherwise, it returns False.

In line 1–2, algorithm Find(ξ)in Figure 5.2 initializes local variables ΓL and ΓH
as ΓL = Γ and ΓH = ∅ to consider first whether all the tasks in Γ are special on

m processors (checked during the first iteration of the For loop in line 3–12).

The For loop in line 3–12 iterates at most m times for the iterative variable k that

iterates form 0 to (m − 1). In each iteration of the For loop, it is checked that whether

the (n− k) lowest density tasks in set ΓL are special on (m− k) processors. Note that

in order to determine whether ΓL is special on (m− k) processors, both Property 1 and

Property 2 (Definition 5.1, page 53) of special task system have to be satisfied. If the

task set ΓL is special on (m − k) processors (condition at line 4 is true), then slack-

monotonic priorities are assigned to the tasks in ΓL (line 5), each of the tasks in ΓH is

assigned the highest fixed priority (line 6) and the algorithm returns True (line 7).

During a particular iteration of the For loop, if the task set ΓL is not special on

(m − k) processors (condition at line 4 is false), then the highest density task, say

τts ∈ ΓL, is extracted from ΓL (line 9) and is included in set ΓH (line 10). Note that at

64 CHAPTER 5. DENSITY-BOUND-BASED TEST

Algorithm Find(ξ)

1. ΓH = ∅
2. ΓL = Γ
3. For k = 0 to (m− 1)
4. If ΓL is special on (m− k) processors Then

5. Print “All tasks in ΓL are assigned slack-monotonic priority”

6. Print “All tasks in ΓH are assigned the highest fixed priority”

7. Return True

8. End If

9. Find τts such that δts is the largest density in set ΓL
10. ΓH = ΓH ∪ {τts}
11. ΓL = Γ− ΓH
12. End For

13. Print “Priority Assignment Fails”

14. Return False

Figure 5.2: Slack-monotonic HPA by searching the threshold

the beginning of the kth iteration of the For loop, the largest density of the tasks in ΓL is

the (k+1)th largest density of the tasks in the entire task set Γ. At the beginning of each

iteration of the For loop, total k largest density tasks are in set ΓH and the remaining

(n − k) lowest density tasks are in set ΓL. If the task set ΓL is not special on (m − k)
processors for any k, such that 0 ≤ k < m, then policy ISM-DS[ξ] fails to assign the

fixed priorities to the tasks in Γ (line 13) and the algorithm returns False (line 14). By

sorting the tasks in set Γ in order of increasing densities of the tasks, it is not difficult to

see that algorithm Find(ξ)can be implemented using at most O(n · log n) operations.

The schedulability test in Theorem 5.3 for global FP scheduling using priority as-

signment policy ISM-DS[ξ] dominates that of the density-bound test in Theorem 5.2.

Now it will be shown that any task set deemed schedulable based on Theorem 5.2 is also

deemed schedulable using Theorem 5.3, and not conversely.

Assume a contradiction where a task set Γ is not guaranteed schedulable based on

Theorem 5.3 for priority assignment policy ISM-DS[ξ] but schedulable using Theorem

5.2 for ISM-DS priority assignment policy. If Γ is not guaranteed to be schedulable

under ISM-DS[ξ] based on schedulability test in Theorem 5.3, then there exist no k
such that the set of (n−k) lowest density tasks is special on (m−k) processors for any

k < m (according to the contrapositive of Theorem 5.3).

When Γ is schedulable under ISM-DS based on Theorem 5.2, the proof of the

schedulability condition in Theorem 5.2 guarantees that there exists a task set ΓL that is

special on (m− |ΓH |) processors and |ΓH | < m. So, there exists some k such that the

set of (n − k) lowest density tasks is special on (m − k) processors for some k < m
(contradiction!). Therefore, any task set schedulable using ISM-DS based on Theorem

5.2 is also schedulable using ISM-DS[ξ] based on Theorem 5.3.

It will be shown using the following Example 5.2 that the converse is not true; that

5.6. EMPIRICAL INVESTIGATION 65

is, there is a task set that is global FP schedulable based on the schedulability test in

Theorem 5.3 for ISM-DS[ξ] policy but is not guaranteed to be schedulable based on the

density-bound test in Theorem 5.2 for ISM-DS priority assignment policy.

Example 5.2. Consider n = 11 tasks in set Γ = {τ1, . . . τ11} such that δ1 = . . . =
δ10 = 0.40 and δ11 = 0.15. Thus, the total density of task set Γ is δnsum = 4.15. The

task set Γ is to be scheduled using global FP scheduling on m = 10 processors.

Notice that Property 1 of special task system is satisfied for task set Γ because

δnmax = 0.4 < m/(2m − 1) for m = 10. Since m = 10, δnmax=0.40 and δnmin=0.15,

we have Fm(δnmin) ≈ 4.745 and Fm(δnmax) = 4.150. Consequently, it is true that

min{Fm(δnmin), Fm(δnmax)} = 4.150 and δnsum ≤ min{Fm(δnmin), Fm(δnmax)} holds.

So, the entire task set Γ is special on m = 10 processors and global FP schedulable

based on Theorem 5.3 for ISM-DS[ξ] priority assignment policy.

However, the schedulability test in Theorem 5.2 is not satisfied for Γ (i.e., den-

sity bound m ·min{1/2, B(m)} = 4.116 < δnsum). Consequently, the schedulability

of Γ using ISM-DS policy can not be guaranteed. So, the schedulability test for policy

ISM-DS[ξ] in Theorem 5.3 dominates that of in Theorem 5.2 for ISM-DS.

5.6 Empirical Investigation

In this section, empirical investigation into the two proposed schedulability tests for pri-

ority assignment policies ISM-DS and ISM-DS[ξ] is presented. In order to measure the

improvement of these proposed tests over the state-of-the-art DM-DS[1
3] test, simula-

tion using randomly generated task sets is conducted. The well-known metric, called

acceptance ratio, is used to evaluate the effectiveness (in terms of determining schedu-

lability of randomly generated task sets) of the three priority assignment policies and

schedulability tests given in Table 5.1.

Priority Assignment Policy Schedulability Test Used

DM-DS[1
3] The density bound m+1

3 (proved in [BCL05]) is

used as the schedulability test.

ISM-DS The density bound m · min{1/2, B(m)} proved

in Theorem 5.2 is used as the schedulability test.

ISM-DS[ξ] Algorithm Find(ξ)in Figure 5.2 is used as the

schedulability test.

Table 5.1: Different priority assignment policies and the associated schedulability tests.

The acceptance ratio of a schedulability test is the percentage of the randomly generated

task sets that are deemed schedulable using that schedulability test at a particular uti-

lization level. All the randomly generated task sets generated at a particular utilization

level have the same total utilization. The acceptance ratios of the three priority assign-

ment policies and schedulability tests in Table 5.1 are presented in this section. Before

presenting the experimental results, the task set generation algorithm is presented next.

66 CHAPTER 5. DENSITY-BOUND-BASED TEST

5.6.1 Task Sets Generation Algorithm

The UUnifast algorithm (given in Figure 5.3), which was originally proposed by Bini

and Buttazzo [BB05] to generate utilizations of a task set to study uniprocessor schedul-

ing, is adapted by Davis and Burns in [DB09] to generate utilizations of a task set to

study multiprocessor scheduling.

Algorithm UUnifast(n, U)

1. SumU= U
2. For (i=0 to n-1)
3. nextSumU = SumU * pow(rand(),1/(n-i));
4. U[i]=SumU-nextSumU;
5. SumU=nextSumU;
6. End For
7. U[n]=SumU;

Figure 5.3: The UUnifast algorithm [BB05]. The function pow(x,y) returns xy and

rand() returns a random number in the range [0,1].

Based on the UUnifast algorithm, Davis and Burns proposed the following three steps

(called the UUnifast-Discard algorithm) to generate a task set with cardinality n
and total utilization U to study scheduling on multiprocessors:

• Step 1: The UUnifast algorithm with parameters n and U is used to generate

task utilization values in the range [0, U].

• Step 2: If the utilization of a task is greater than 1, then the utilization values

produced so far are discarded. If the total number of such discarded partial task

sets exceeds some limit, say DISCARDlim, then the algorithm exits by reporting

failure, otherwise, Step 1 is re-executed.

• Step 3: If the utilization of no task is greater than 1, then a set of n valid utilization

values are generated and the algorithm exits by reporting success.

The derivation of this task set generation algorithm to study multiprocessor scheduling

is motived by the following reason as pointed out by Davis and Burns in [DB11b]:

“A task set generation algorithm should be unbiased . . . and . . . should

allow task sets to be generated that comply with a specified parameter set-

ting. That way the dependency of priority assignment policy / schedulability

test effectiveness on each task set parameter can be examined by varying

that parameter, while holding all other parameters constant, avoiding any

confounding effects.”

It is proved in [DB09, DB11b] that the UUnifast-Discard algorithm generates an

unbiased (i.e., uniformly distributed [BB05]) task set with cardinality n where each

task’s utilization is in the range [0,min{U, 1}] and total utilization of the task set is U .

5.6. EMPIRICAL INVESTIGATION 67

In this thesis, the UUnifast-Discard algorithm is used to generate n utiliza-

tion values of a task set using DISCARDlim = 1000. Once a set of n utilizations

{u1, u2, . . . un} of a task set is generated, the other parameters of each task τi in the

task set are generated as follows:

• The minimum inter-arrival time Ti of each task τi is generated from the uniform

random distribution within the range [10ms, 1000ms].

• The WCET of task τi is set to Ci = ui · Ti.

• The relative deadline Di of task τi is generated from the uniform random distri-

bution within the range [Ci, Ti].

Each of the experiments is characterized by a pair (m,n) where m is the number of

processors and n is the cardinality of task set. For each experiment (m,n), task sets

are generated at 40 different utilization levels: {0.025m, 0.5m, . . . 0.975m,m}. A total

of 1000 task sets at each of the 40 utilization levels using the UUnifast-Discard
algorithm with parameters n and U are generated. Each of the 1000 task sets generated

at a particular utilization level, say U , has cardinality n and total utilization equal to

U . The schedulability of each of the 1000 task sets generated at each utilization level

are determined based on the schedulability test for each of the three priority assignment

policies in Table 5.1 and the acceptance ratio for each test is computed.

5.6.2 Result Analysis

A series of experiments are conducted using randomly generated task sets for different

pairs of (m,n) where m ∈ {2, 4, 8, 16} and n ∈ {2.5m, 5m, 10m}. The acceptance

ratios of three experiments with parameters (m = 4, n = 10), (m = 4, n = 20), and

(m = 4, n = 40) are given in Figure 5.4–5.6. And, the acceptance ratios of three

experiments (m = 8, n = 20), (m = 8, n = 40), and (m = 8, n = 80) are given in

Figure 5.7–5.9. The important trends and observations based on these experiments are

presented in this section; and the results of other experiments follow a similar trend.

Observation 1: The schedulability test of the ISM-DS[ξ] priority assignment policy

significantly outperforms that of both DM-DS[1
3] and ISM-DS priority assignment

policies. In the experiment (m = 4, n = 20) in Figure 5.5, the acceptance ratio at

utilization level 0.275m is approximately 0% using the schedulability tests for both

DM-DS[1
3] and ISM-DS priority assignment policies while the acceptance ratio of the

schedulebality test for ISM-DS[ξ] poiority assignment policy is more than 70%. This

is due to the improved priority assignment policy ISM-DS[ξ] that searches the thresh-

old density by taking into consideration of the densities of the tasks in addition to the

number of processors.

Observation 2: The acceptance ratios for all the tests decreases as the number of tasks

in a task set increases where m is constant. This is because the total density of the

task set at each utilization level generally increases as the number of tasks in a task set

68 CHAPTER 5. DENSITY-BOUND-BASED TEST

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=10 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.4: Acceptance ratios for experiments with (m = 4, n = 10).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=20 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.5: Acceptance ratios for experiments with (m = 4, n = 20).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=40 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.6: Acceptance ratios for experiments with (m = 4, n = 40).

5.6. EMPIRICAL INVESTIGATION 69

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=8, n=20 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.7: Acceptance ratios for experiments with (m = 8, n = 20).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=8, n=40 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.8: Acceptance ratios for experiments with (m = 8, n = 40).

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=8, n=80 (Constrained-Deadline)

ISMDS[ξ]
ISMDS
DMDS

Figure 5.9: Acceptance ratios for experiments with (m = 8, n = 80).

70 CHAPTER 5. DENSITY-BOUND-BASED TEST

increases. This conclusion is made based on another set of experiments that verifies that

the fact the total density of task set at each utilization level generally increases due to the

increase in cardinality of the task set. The normalized average density of 1000 task sets

at each utilization level is computed for experiments (m = 8, n) for five different values

of n = 10, 20, 40, 60, 80. The normalized average density is calculated as follows: the

total density of 1000 task sets at each utilization level is first divided by 1000 to compute

the average density which is then divided by m.

Figure 5.10 plots the normalized average density on the y-axis and the normalized

utilization level on the x-axis for experiments with m = 8 and n = 10, 20, 40, 60, 80.

Similar result is also shown in Figure 5.11 for experiments with m = 4 and n =
8, 10, 20, 30, 40.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
en

si
ty

/m

Utilization / m

m=8 (Constrained-Deadline)

n=80
n=60
n=40
n=20
n=10

Figure 5.10: Increase in normalized average density with the increase in task set cardinality for

experiments with m = 8 and n = 10, 20, 40, 60, 80.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
en

si
ty

/m

Utilization / m

m=4 (Constrained-Deadline)

n=40
n=30
n=20
n=10

n=8

Figure 5.11: Increase in normalized average density with the increase in task set cardinality for

experiments with m = 4 and n = 8, 10, 20, 30, 40.

5.6. EMPIRICAL INVESTIGATION 71

It is evident that the average density of a task set increases as the number of tasks

in a task set increases for each utilization level and fixed number of processors. Since

the three schedulability tests in Table 5.1 highly depend on the total density of a task

set and because a constrained-deadline task set with relatively higher density is more

difficult to schedule, the acceptance ratio decreases as the number of tasks in a task set

increases for a given number of processors.

Observation 3: The acceptance ratios of the two schedulability tests for DM-DS[1
3] and

ISM-DS priority assignment policies increase slightly due to the increase in number of

processors while the task set cardinality does not change (compare the acceptance ratios

for experiments (m = 4, n = 20) and (m = 8, n = 20) in Figure 5.5 and Figure 5.7,

respectively). This is because the normalized average density of a task set decreases as

the number of processors increases while keeping the task set cardinality constant. Fig-

ure 5.12 plots the normalized average density against the normalized utilization level for

experiments with n = 40 and m = 2, 4, 8, 16. It is evident that for a given cardinality

of the task set, the normalized average density of a task set decreases at each utilization

level with the increase in number of processors. Consequently, the acceptance ratio of

the density-based tests for policies DM-DS[1
3] and ISM-DS increases with the increase

in number of processors for some fixed cardinality of the task sets.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 D
en

si
ty

/m

Utilization / m

n=40 (Constrained-Deadline)

m=2
m=4
m=8

m=16

Figure 5.12: Decrease in normalized average density with the increase in number of processors

for experiments with task set cardinality n = 40 and m = 2, 4, 8, 16.

Observation 4: The acceptance ratios of schedulability test for ISM-DS[ξ] priority as-

signment policy decreases noticeably with the increase in number of processors while

keeping the task set cardinality constant (compare the acceptance ratios of ISM-DS[ξ] pri-

ority assignment policy for experiments (m = 4, n = 40) and (m = 8, n = 40) in

Figure 5.6 and Figure 5.8, respectively). If the number of processors increases from one

experiment to another, the total utilization of the task sets generated at each normalized

utilization level also increases. Task set with relatively larger total utilization also has

relatively larger total density. Consequently, the number of tasks with relatively larger

72 CHAPTER 5. DENSITY-BOUND-BASED TEST

individual density in a task set increases as the total density of the task set increases

while the task set cardinality remains constant. If the individual density of each task in

a task set is relatively larger, then the algorithm Find(ξ)in Figure 5.2 often fail to find

any k, 0 ≤ k < m, such that the set of (n−k) lowest density tasks is special on (m−k)
processors. In other words, task set having higher number of high density tasks suffers

from Dhall’s effect and can not be guaranteed schedulable using the schedulability test

for ISM-DS[ξ] priority assignment policy.

5.7 Implicit-Deadline Tasks: Utilization Bound

The priority assignment policy ISM-DS is also applicable to implicit-deadline task sets.

Note that the density and utilization of implicit-deadline task systems are the same. The

schedulability test for implicit-deadline tasks is called the utilization-bound test which

is given in Theorem 5.4 (proof is obvious by considering Di = Ti in Theorem 5.3).

Theorem 5.4. An implicit-deadline sporadic task system Γ is schedulable using global

FP scheduling that assigns the priorities based on policy ISM-DS if the following con-

dition, for m ≥ 2, holds:

Un ≤ m ·min{1/2, B(m)}

where Unis the total utilization of the task set Γ.

Example 5.3. As an example of the way fixed priorities are assigned using the priority

assignment policy ISM-DS, consider the following implicit-deadline task system to be

scheduled on m = 3 processors based on global FP scheduling where the parameters of

each task τi(Ci, Ti) are as follows:

Γ
def
= {τ1 = (1, 2) τ2 = (2, 3) τ3 = (7, 100)

τ4 = (1, 25) τ5 = (2, 9)}

The threshold density or utilization δts is equal to B(3) = 0.5. The utilizations of the

five tasks are u1 = 0.5, u2 ≈ 0.67, u3 = 0.07, u4 = 0.04, and u5 ≈ 0.23. Since

u2 > B(3), task τ2 is assigned the highest fixed priority. The slack of tasks τ1, τ3, τ4
and τ5 are respectively 1, 93, 24, and 7. Therefore, the final fixed priority ordering of all

the tasks are as follows (highest-priority task listed first): τ2, τ1, τ5, τ4, τ3.

The utilization bound m ·min{1/2, B(m)} of global FP scheduling, for any finite

m ≥ 2, using policy ISM-DS is higher than the state-of-the-art utilization bounds m+1
3

and 2m
3+

√
5

of RM-US [13] and SM-US[2
3+

√
5
] scheduling, respectively. Figure 5.13

illustrates the utilization bounds of RM-US[13], SM-US[2
3+

√
5
] and ISM-DS for m =

2, . . . 16. The x-axis in Figure 5.13 represents the number of processors and the y-

axis represents the utilization bound normalized by number of processors for different

5.7. IMPLICIT-DEADLINE TASKS: UTILIZATION BOUND 73

30 %

40 %

50 %

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
til

iz
at

io
n

bo
un

d
/ m

Number of processors (m)

ISM-DS
SM-US
RM-US

Figure 5.13: Utilization bounds of RM-US[1
3

], SM-US[2

3+
√
5
] and ISM-DS.

priority assignments. Notice that the proposed bound is same as for RM-US [13] when

m = 2 and the same as for SM-US[2
3+

√
5
] when m =∞.

The total utilization of the task set in Example 5.3 is ≈ 1.499. The utilization bound

m ·min{1/2, B(m)} using ISM-DS policy for m = 3 is 1.5. Therefore, the task

set in Example 5.3 is global FP schedulable using ISM-DS priority assignment policy.

Neither RM-US [13] nor SM-US[2
3+

√
5
] can guarantee the schedulability of this task set

since the utilization bound for these policies are ≈ 1.33 and 1.14, respectively.

5.7.1 Independent and Scale Invariant Priority Assignment

In this subsection, the best achievable utilization bound of global FP scheduling of

implicit-deadline task sets, where no task’s utilization is in the range (1− 1√
2
,
√
2−1] ≈

(0.293, 0.414], is proposed for the class of fixed-priority assignment policies that are in-

dependent and scale invariant. A priority assignment scheme is independent [AJ03] if

the priority of a task τi depends only on its own parameters, i.e., the priorities of tasks

are assigned according to the function prioi = f(Ti, Ci). A priority assignment scheme

is scale-invariant [AJ03] if the relative priority order of the tasks does not change when

the Ti and Ci of all the tasks are multiplied by the same positive constant. In other

words, f(Ti, Ci) is scale invariant if and only if the following holds for all A > 0:

f(Ti, Ci) < f(Tj , Cj)⇔ f(A · Ti, A · Ci) < f(A · Tj , A · Cj)

Andersson and Jonsson showed in [AJ03] that the utilization bound for global FP schedul-

ing of implicit-deadline task set using an independent and scale-invariant priority assign-

ment scheme can not be greater than (
√
2−1)m ≈ 0.414m. The problem of determining

such an independent and scale-invariant priority assignment scheme with a utilization

bound of (
√
2− 1)m for global FP scheduling is still open.

In the First International Real-Time Scheduling Open Problems Seminar held in

conjunction with the 22nd Euromicro Conference on Real-Time Systems (ECRTS) in

Belgium, 2010, Andersson presented a conjecture regarding this open problem [And10]:

74 CHAPTER 5. DENSITY-BOUND-BASED TEST

the utilization bound of slack-monotonic HPA policy using (
√
2 − 1) as the threshold

utilization is (
√
2− 1)m for implicit-deadline task systems (called, the SM-US[

√
2− 1]

priority assignment scheme). The SM-US[
√
2 − 1] priority assignment policy assigns

the highest fixed priority to each task having utilization greater than (
√
2− 1) and each

of the remaining tasks is assigned lower, slack-monotonic priorities. While the problem

of proving this conjecture is still open for arbitrary task sets, this problem is closed in

this thesis for task sets in which no task has utilization within the range (1− 1√
2
,
√
2−1].

Theorem 5.5. An implicit-deadline sporadic task set Γ is schedulable using global

FP scheduling under SM-US[
√
2− 1] priority assignment policy, if the following condi-

tion, for m ≥ 2, holds:

Un ≤ m · (
√
2− 1)

where ui ≤ (1− 1√
2
) or ui > (

√
2− 1) for each τi ∈ Γ.

Proof. The proof is given in Appendix A (page 223).

If the utilization-bound test in Theorem 5.4 can not guarantee the global FP schedula-

bility of an implicit-deadline task set where no task’s utilization is in the range (1 −
1√
2
,
√
2 − 1] ≈ (0.293, 0.414], then Theorem 5.5 can be used to test the schedula-

bility of the task set. For such task sets, where no task’s utilization is in the range

(1 − 1√
2
,
√
2 − 1], we have at our disposal a priority-assignment scheme that attains

the best utilization bound possible for the class of independent and scale invariant fixed-

priority assignment schemes for global FP scheduling.

The utilization bound of ISM-DS priority assignment policy for arbitrary task sets is

greater thanm·(
√
2−1) wheneverm ≤ 9. Therefore, the utilization bound ofm·(

√
2−

1) for SM-US[
√
2−1] priority assignment policy is useful to test the schedulability only

for task set where no task’s utilization is in the range (1− 1√
2
,
√
2− 1] and m ≥ 10. No

task sets with total utilization m · (
√
2− 1) for m ≥ 10 passes the utilization bound test

for the ISM-DS priority assignment policy. However, such task set with total utilization

m · (
√
2−1) passes the utilization bound test of the SM-US[

√
2−1] priority assignment

policy if no task’s utilization is in the range (1− 1√
2
,
√
2− 1].

m = 16 m = 32

n = 3m 2.8% 0%

n = 5m 13.1% 1.9%

n = 8m 67.6% 43.4%

n = 10m 89.5% 79.4%

n = 15m 99.6% 98.4%

Table 5.2: Acceptance ratios, based on the schedulability test in Theorem 5.5, of the 1000 ran-

domly generated task sets each with total utilization m(
√
2− 1).

The acceptance ratios using the schedulability test in Theorem 5.5 of 1000 randomly

generated task sets, each with total utilization m · (
√
2 − 1) for m = 16, 32 and n =

5.8. UNIPROCESSOR SLACK-MONOTONIC SCHEDULING 75

3m, 5m, 8m, 10m, 15m, are computed and presented in Table 5.2. As the number of

tasks in a task set, each having a total utilization m(
√
2 − 1) increases, the possibility

of having a task with utilization greater than 1− 1√
2

decreases and the acceptance ratio

increases.

5.8 Uniprocessor Slack-Monotonic Scheduling

It has been proved by Andersson in [And08b] that the utilization bound for uniprocessor

slack-monotonic scheduling of implicit-deadline task set is 50%. The schedulability

analysis of “special” task system on multiprocessors proposed in this thesis (Section

5.4.2, page 53) enables the derivation of a higher utilization bound for uniprocessor

slack-monotonic scheduling compared to that of the state-of-the-art result in [And08b].

First, it will be shown below that the density bound for slack-monotonic scheduling

of constrained-deadline tasks on uniprocessor is F1(δ
n
min). Then, the corresponding

utilization bound F1(u
n
min) for implicit-deadline tasks is shown to dominate the state-

of-the-art bound of 50% for slack-monotonic uniprocessor scheduling.

Consider a task system Γ that is special on uniprocessor (i.e. m = 1). According

to Property 1 of special task system Γ (Definition 5.1, page 53), we have δnmax ≤ 1
because m/(2m − 1) = 1 for m = 1. Therefore, special task system Γ is in fact an

arbitrary task system for uniprocessor slack-monotonic scheduling whenever m = 1
since there is no restriction on the maximum density of individual task. Note that we

have 0 < δnmin ≤ δnmax ≤ 1 where δnmin and δnmax are the minimum and maximum

density of any task in Γ, respectively.

For m = 1, the function F1(x) is increasing within [0, 1] since F ′
1(x) = 1 −

1
(2−x)2 > 0 within (0, 1). Consequently, min{F1(δ

n
min),F1(δ

n
max)} = F1(δ

n
min) since

δnmin ≤ δnmax. It is obvious from Property 2 of special task system Γ that for m = 1 that

δnsum ≤ min{F1(δ
n
min),F1(δ

n
max)} = F1(δ

n
min) (5.24)

Using Theorem 5.1, the special task set Γ is schedulable using GSSM (i.e., uniproces-

sor slack-monotonic scheduling when m = 1). Therefore, the density bound for unipro-

cessor slack-monotonic scheduling of constrained-deadline task is F1(δ
n
min). Evidently,

the utilization bound for uniprocessor slack-monotonic scheduling of implicit-deadline

task sets is F1(u
n
min).

The current state-of-the-art utilization bound for SM uniprocessor scheduling of

implicit-deadline tasks is 50% which is proposed in [And08b]. It will now be shown

that F1(u
n
min) > 50%. Since the function F1(x) is increasing within [0, 1], we have

F1(u
n
min) > F1(0) since unmin > 0. Note that F1(0) =

1(1−0)
2−0 + 0 = 1/2 = 50%.

Therefore, F1(u
n
min) > 50%. The proposed utilization bound F1(u

n
min) for the unipro-

cessor slack-monotonic scheduling is higher than that of the state-of-the-art result in

[And08b].

76 CHAPTER 5. DENSITY-BOUND-BASED TEST

5.9 Summary

The preciseness of schedulability analysis for global FP scheduling is important in order

to reduce the resource requirement by applying the corresponding schedulability test.

Moreover, the efficiency of a schedulability test is also important in order to quickly

determine if a task set is schedulable on a particular platform. Efficiency in evaluating

a test enables the system designers to quickly apply the test for different choices of the

parameters, e.g., different periods of each task, number of processors, and so on.

The density bound test for global FP scheduling based on the ISM-DS priority as-

signment policy is efficient: the total density can be computed in linear time and can be

compared against the density bound in constant time. This test enables the designer to

quickly determine, for a given number of processors, whether the timing constraints of

a set of constrained-deadline sporadic tasks are met or not. In addition, the test also can

be used to find the sufficient number of processors for meeting the timing constraints of

a sporadic task set. The schedulability test using the ISM-DS priority assignment policy

is proved to dominate the state-of-the-art density-bound test. The utilization bound test

based on the priority assignment policy ISM-DS is also higher than other existing uti-

lization bounds for global FP scheduling of implicit-deadline sporadic tasks. It is proved

that the best possible utilization bound for scale invariant and independent priority as-

signment policy is achievable for SM-US[
√
2−1] priority assignment policy if no task’s

utilization is in the range (1− 1√
2
,
√
2−1]. This test is highly effective for task sets with

m > 9 and higher cardinality. The uniprocessor slack monotonic scheduling is shown

to have a utilization bound higher that the state-of-the-art 50% untilization bound.

The priority assignment policy ISM-DS[ξ] is derived based on the schedulability

analysis of the global FP scheduling for the ISM-DS priority assignment policy. The

schedulability test proposed for the ISM-DS[ξ] priority assignment policy dominates

the density-bound test proposed for global FP scheduling for the ISM-DS priority as-

signment policy. Searching the threshold density ξ from the set of densities of the tasks

in a task set using algorithm Find(ξ)is efficient and can be done in O(n · log n) time.

The simulation result shows significant improvement of the schedulability test for

the ISM-DS[ξ] priority assignment policy over the density-bound test proposed in this

chapter. However, the performance of all the considered tests decreases as the cardinality

increases for a given number of processors. This is because the total density of a task set

increases with the increase in cardinality while the number of processors is fixed. The

performance of the schedulability test for the ISM-DS[ξ] priority assignment policy

decreases if the number of processors increases for some fixed cardinality due to Dhall’s

effect. This is because the number of tasks having relatively larger individual density

increases with the increase in number of processors while the number of tasks in a task

set is fixed. In contrast, the density bound tests perform relatively better if the number

of processors increases for a given cardinality of the task set since the average density

of task set decreases in such case.

6
Iterative Tests

This chapter presents three new iterative schedulability tests for global FP scheduling of

constrained-deadline sporadic task systems. Iterative schedulability test involves testing

one schedulability condition for each task in a task set to determine whether its deadlines

are met. One of the main challenges in deriving an iterative schedulability test is iden-

tifying the worst-case runtime behavior, i.e., called the critical instant. A job released

at the critical instant suffers the maximum interference from the higher priority tasks.

However, the critical instant is not yet known for global FP scheduling. To overcome

this limitation, pessimism is introduced during the schedulability analysis to safely ap-

proximate the worst-case. The endeavor in this chapter is to reduce the different sources

of pessimism in the state-of-the-art schedulability analysis and propose better iterative

schedulability tests for global FP scheduling.

Another challenge for global FP scheduling is the problem of assigning the fixed

priorities to the tasks since the optimal priority ordering in such case is still unknown.

Each of the new schedulability tests proposed in this chapter combines the schedulability

test for each task with finding its fixed priority using the principle of Audsley’s priority

assignment policy. Finding the priority assignments for all the tasks implies that the

task set is schedulable using global FP scheduling. It is shown that the proposed tests

dominate and empirically perform better than the state-of-the-art iterative schedulability

test for constrained-deadline sporadic tasks.

77

78 CHAPTER 6. ITERATIVE TESTS

6.1 Introduction

In many real-time systems, e.g., avionics, spacecraft and automotive, it is important

to efficiently use the processing resources due to size, weight and power constraints.

Reducing the resource requirement (e.g., number of processors) of such systems would

significantly cut costs for mass production, for example, of cars, trucks or aircrafts.

However, if the pessimism in the schedulability analysis for such systems is large, then

a relatively higher number of processors is required to meet the deadlines. The endeavor

in this chapter is to reduce such pessimism by proposing better iterative schedulability

tests for global FP scheduling.

Global FP scheduling of constrained-deadline sporadic tasks systems is important

not only for CPU scheduling but also in other domains, for example, scheduling real-

time flows in WirelessHART networks designed for industrial process control and moni-

toring. WirelessHART is an open wireless sensor-actuator network standard specifically

designed for industrial process control to avoid severe economic loss or environmen-

tal threats, reduce production inefficiency, enhance equipment monitoring and mainte-

nance [WHA]. The analysis of global FP scheduling has been applied to the end-to-

end delay analysis and priority assignment of the periodic real-time flow scheduling on

multiple communication channels of WirelessHART networks [SXLC11a, SXLC11b].

Improvement of global FP schedulability analysis and the priority assignment policy

would result in less pessimistic end-to-end delay calculation and would enhance the

schedulability of the real-time flows transmitted over multiple communication channels

in WirelessHART networks; and consequently, better control and monitoring of indus-

trial processes can be attained.

Since the optimal priority assignment for global FP scheduling on a multiprocessor

system (at present time) is unknown, the quality (e.g., minimum number of processors

required) of many previously proposed global FP schedulability tests depends on the

actual priority ordering of the tasks. Therefore, determining a good priority ordering

is as important as deriving a good schedulability test. In this chapter, novel priority

assignment schemes and the corresponding schedulability tests for scheduling such task

systems on multiprocessors are proposed and demonstrated, using proof and simulation,

that the schemes are superior to prior schemes.

Three new iterative schedulability tests for global FP scheduling are proposed: each

test combines schedulability analysis of each task with priority assignment using Auds-

ley’s approach such that successful priority assignment implies the schedulability of the

task. In other words, if all the tasks are assigned priorities using this combination, then

the task set is also schedulable. Each of these iterative tests dominates the state-of-the-

art iterative test for global FP scheduling of constrained-deadline sporadic tasks.

State-of-the-art Iterative Test. The basic idea of iterative schedulability test is that one

condition is tested for each lower-priority task τi ∈ Γ. The schedulability analysis of

each task τi is performed within an interval, called the problem window, such that one

job of the task τi is assumed to be released at the beginning of the problem window. One

flavor of iterative test is based on computing the upper bound on the response-time of

6.1. INTRODUCTION 79

task τi: the problem window size is initially set to Ci, then the response-time of task τi
within the problem window is calculated; and, if the computed response-time of task τi
is greater than the length of the problem window, then the size of the problem window

is reset to the response-time just computed, and the process is repeated until the length

of the problem window is not greater than the relative deadline of task τi. The itera-

tive schedulability test proposed by Guan et al. in [GSYY09] for global FP scheduling,

called the RTA-LC test, is the state-of-the-art response-time based iterative schedulabil-

ity test1. The RTA-LC test derives an upper bound on the response time of each task τi
using the response time of each higher priority tasks in set HPi.

Another flavor of iterative test is based on deadline-analysis where the length of the

problem window of task τi is set equal to its relative-deadline Di and the schedulability

analysis of task τi with this problem window is considered. In deadline-based analysis,

an upper bound on the interference due to all the higher priority tasks on task τi in an

interval of length Di is computed. Then, based on the interference within the problem

window, the minimum available time to execute task τi in the problem window is cal-

culated. The iterative schedulability test proposed by Davis and Burns in [DB11b] for

global FP scheduling, called the DA-LC test, is the state-of-the-art iterative schedulabil-

ity test based on deadline-analysis.

It has been shown in [DB11b] that, for any given FP ordering of the tasks, the

RTA-LC test dominates the DA-LC test. Nevertheless, the work in [DB11b] derives

an effective joint priority assignment policy and schedulability test by combining the

DA-LC test with multiprocessor extension of Audsley’s optimal priority assignment

(OPA) algorithm2 [Aud01]. However, the RTA-LC test can not be combined with

the OPA algorithm to find another priority ordering when the task set does not sat-

isfy the RTA-LC test for the given priority assignment [DB11b]. It is empirically shown

in [DB11b] that the combination of OPA and DA-LC test, called the ODA-LC test in this

thesis, outperforms the RTA-LC test regardless of what heuristic priority assignment

policy (e.g., deadline-monotonic) the latter uses. The ODA-LC test is the state-of-the-art

iterative schedulability test for global FP scheduling of constrained-deadline sporadic

tasks.

Contributions. The main contribution in this chapter is to identify the sources of pes-

simism in the analysis of state-of-the-art ODA-LC test and applying techniques to reduce

such pessimism. In this chapter, three new iterative schedulability tests (each domi-

nates the ODA-LC test) are proposed by increasingly improving the ODA-LC test. The

overview of the main techniques for deriving the three tests is briefly presented below.

• The H-ODA-LC Test: This test combines the HPA policy with the ODA-LC test.

Regarding the optimality of the ODA-LC test (as claimed in [DB11b]), it is ob-

served that (i) optimality is only claimed under the assumption that the entire task

set and all the processors are involved when the ODA-LC test is applied for de-

termining the fixed-priority ordering of all the tasks, and (ii) the details of the

1The name “RTA-LC” test (response-time analysis with limited carry-in tasks) is introduced in [DB11b].
2The Audsley’s OPA algorithm, adapted for multiprocessors, is presented in Section 6.2.1.

80 CHAPTER 6. ITERATIVE TESTS

schedulability analysis of the ODA-LC test in [DB11b] imply that, if not all tasks

and processors are included in the analysis, the upper bound on the interference

due to the higher priority tasks on a lower priority task may be lowered. Based

on this finding, the first new iterative schedulability test, called HPA-applied

ODA-LC (H-ODA-LC) test, which dominates the ODA-LC test is proposed.

In H-ODA-LC test, at most m′ largest-density tasks are given the highest fixed

priorities and the remaining (n − m′) tasks are given other, lower, fixed prior-

ities for some m′, 0 ≤ m′ < m. While the OPA algorithm is not (as shown

in [DB11b]) applicable to the RTA-LC test, the HPA policy is indeed applicable

to the RTA-LC test. The HPA policy combined with the RTA-LC test resulted in

HPA-applied RTA-LC (H-RTA-LC) test which dominates the RTA-LC test.

• The IA-DA Test: The second contribution is proposing a novel idea to further im-

prove the H-ODA-LC test. The purpose of assigning the highest fixed priorities

to the m′ largest-density tasks in the H-ODA-LC test is to reduce the pessimism

involved in the interference computation of the higher priority tasks on a lower

priority task. However, Observation 5.1 (page 58, Chapter 5) does not necessar-

ily imply that the highest-density tasks are the best candidates for assigning the

highest fixed priorities for the HPA-based priority assignment policy.

It will be shown that it is not necessarily the highest-density tasks that may cause

the maximum interference on a lower priority task. This crucial observation

motivates the design of a new deadline-analysis-based iterative test, called the

Interference-Aware Deadline-Analysis (IA-DA) test, for global FP scheduling of

constrained–deadline sporadic tasks. A new criterion for identifying the tasks that

are mostly responsible for pessimistic computation of interference on each lower-

priority task is proposed. Based on this criterion, a novel priority-assignment

technique, based on the principle of Audsley’s OPA algorithm, is proposed. It is

proved that if all the tasks are successfully assigned priorities using the proposed

priority-assignment policy, then all deadlines of the tasks are met. It is also proved

that the IA-DA test dominates the H-ODA-LC test.

• The IA-RT Test: It will be evident later that the IA-DA test essentially applies

the deadline-based analysis to determine whether a task τi can be assigned (based

on Audsley’s algorithm) a particular priority level. While a deadline-based anal-

ysis considers a problem window of length Di, a response-time based schedula-

bility analysis considers a problem window smaller than Di. And, the way the

interference on a lower priority task is approximated for global FP scheduling

(e.g., in DA-LC test) implies that a problem window larger than the response time

of a the analyzed task is more pessimistic for interference computation.

The IA-DA test is improved by considering a response-time based test3 to deter-

mine whether a lower priority task τi can be assigned a particular priority level

3The response-time based test that will be used for IA-RT test is not the OPA-incompatible RTA-LC test;

rather an OPA-compatible response-time-based test proposed in [DB10] is used.

6.2. AN ANALYSIS FRAMEWORK 81

based on the OPA algorithm. This new test is called Interference-Aware Response-

Time (IA-RT) test which dominates the IA-DA test and significantly outperforms

the state-of-the art ODA-LC test in simulation.

Organization. The rest of the chapter is organized as follows: Section 6.2 presents

a schedulability analysis framework, an overview of Audsley’s OPA algorithm and its

applicability to multiprocessors. Section 6.3 presents the related works and the two

state-of-the-art RTA-LC and ODA-LC iterative schedulability tests. The H-ODA-LC,

IA-DA, IA-RT tests are presented in Sections 6.4 – 6.6, respectively. Simulation results

are presented in Section 6.7 before summarizing the results in Section 6.8.

6.2 An Analysis Framework

In this section, an overview of the schedulability analysis framework to derive an itera-

tive schedulability test of global FP scheduling is presented. The schedulability analysis

of a generic job of a lower priority task τi in the problem window of task τi is considered.

The iterative schedulability test of task τi is derived by computing the workload, inter-

fering workload, total interfering workload and interference of the higher priority tasks

within the problem window. Before techniques to compute these terms are presented,

their definitions are formally presented.

Workload. The workload of a higher priority task τk within the problem window of task

τi is the cumulative length of intervals during which task τk executes in that window.

In [BCL09, BC07, GSYY09], the work done by a job of a higher-priority task τk is

considered as “carry-in” work within the problem window of a lower-priority task τi if

a job of task τk is released before the beginning of the window and executes (partially

or fully) within the window. If a higher-priority task is considered to constitute carry-in

work, then its worst-case interference on the lower-priority task is higher than that of its

non-carry-in counterpart. In the remainder of this chapter, the higher priority task τi is

called a “carry-in task” (CI) if it is considered to have carry-in work within the problem

window of a lower priority task τk; otherwise, τi is called a “non-carry-in task” (NC).

Interfering Workload. The interfering workload of a higher priority task τk is the cu-

mulative length of the intervals during which jobs of task τk execute and job of task τi is

ready but not executing within the problem window of task τi. The CI and NC interfer-

ing workloads of each higher priority task τk are determined based on the upper bound

on the CI and NC workloads of task τk within the problem window, respectively.

Total Interfering Workload. The total interfering workload is the sum of interfering

workload of all the higher priority tasks within the problem window. It is proved by

Guan et al. in [GSYY09] that there are at most (m−1) carry-in tasks within the problem

window of any lower priority task for global FP scheduling of constrained-deadline

sporadic tasks. The total interfering workload is calculated by adding the CI interfering

workloads of (m− 1) carry-in tasks and the NC interfering workloads of the remaining

82 CHAPTER 6. ITERATIVE TESTS

higher priority tasks. The (m− 1) carry-in tasks from the set of higher priority tasks are

selected such that the total interfering workload is maximized.

Interference. The interference on a job of task τi within the problem window is the

cumulative length of the intervals during which the job of task τi within its problem

window is ready but not executing. The interference of the higher priority tasks on task

τi within the problem window is calculated based on total interfering workload. Once

the interference of the higher priority tasks within a problem window calculated, the

amount of available execution time for the lower priority task τi within the problem

window can be determined. Finally, based on the available execution time of a lower

priority task τi, sufficient schedulability test for task τi is derived.

In deadline-based analysis (e.g., DA-LC test), the length of the problem window is

equal to Di (i.e., the relative deadline of task τi). If the difference between Di and the

interference within a problem window of length Di is not smaller than the execution

time Ci of task τi, then task τi meets its deadline. On the other hand, the response-time

based analysis (e.g., RTA-LC test) initially sets the length of the problem window to Ci.
Then based on the interference within the current problem window, the response-time

of task τi is calculated. If the response-time is greater than the length of the current

problem window, the length of the problem window is incremented (a new problem

window is considered), and this process continues until (i) the computed response time

is greater than the deadline (deadline may be missed), or (ii) the computed response time

is exactly equal to the length of the current problem window (deadline is met).

The iterative schedulability tests proposed in [BCL09, BC07, GSYY09] assumes

that the priority ordering of the tasks is known before applying the test. However, there

is a class of iterative schedulability test, called OPA-compatible tests, that are applicable

not only for task sets with known priority ordering but also can be used to search for pri-

ority ordering combined with Audsley’s OPA algorithm [Aud01]. Finding a priority or-

dering using OPA algorithm is important because the optimal fixed-priority ordering for

global FP scheduling is not known. If a task set is not guaranteed to be schedulable for a

given priority ordering, then to ensure the schedulability of the tasks for that given prior-

ity ordering it may require to increase the number of processors or even re-specification

of the parameters of the tasks. Applying Audsley’s OPA algorithm, combined with a

schedulability test, could avoid such costly approach by finding another priority order-

ing for which the task set passes the schedulability test. The details of the Audsley’s

OPA algorithm and the conditions for a schedulability test to be OPA-compatible are

presented next.

6.2.1 Audsley’s OPA Algorithm

Audsley’s OPA algorithm, originally proposed for uniprocessors in [Aud01], is ex-

tended by Davis and Burns for priority assignment in global FP multiprocessor schedul-

ing [DB09]. All the proposed iterative schedulability tests (H-ODA-LC, IA-DA and

IA-RT) in this chapter use the principle of Audsley’s OPA algorithm for priority assign-

6.2. AN ANALYSIS FRAMEWORK 83

ment. In this subsection, the necessary conditions that must be satisfied for a schedu-

lability test to be OPA-compatible are presented. Then, the pseudo-code for OPA algo-

rithm is formally presented in Figure 6.1.

Andersson and Jonsson [AJ] concluded that Audsley’s OPA algorithm can not be

applied to determine the optimal priority ordering for global FP scheduling even if an

exact schedulability test (e.g., exact feasibility test for periodic tasks is proposed by Cucu

and Goossens in [CGG11]) were known. The basis for this conclusion by Andersson and

Jonsson is the following observation for implicit-deadline tasks [AJ]:

“For fixed priority preemptive global multiprocessor scheduling, there exist

task sets for which the response time of a task depends not only on Ti and

Ci of its higher priority tasks, but also on the relative priority ordering of

those tasks.”

However, this observation does not exclude the possibility of using Audsley’s OPA al-

gorithm for sufficient schedulability test of global multiprocessor scheduling as is first

pointed out in [DB09]. With respect to the applicability of Audsley’s OPA algorithm,

Davis and Burns [DB09, DB11b] categorize a global FP schedulability test S as being

either OPA-compatible or OPA-incompatible. An OPA-compatible test S implies that

Audsley’s OPA algorithm can be applied to find priority assignment using test S. The

clause “using test S” in the last sentence is very critical and also the basis for claiming

the optimality of the priority assignment according to the combination of the schedu-

lability test S and the OPA algorithm. If an OPA-compatible test S can not find a

priority ordering using the combination of OPA algorithm and the schedulability

test S for a task set, it does not necessarily imply that there is no priority ordering

for which the task set is global FP schedulable. The adjective “optimal” in finding a

priority ordering of a task set, based on the OPA algorithm and an OPA-compatible test

S, must not lead to the following confusion:

The optimal fixed-priority assignment for global multiprocessor scheduling

(an exciting and important result) is now known.

Applying the OPA algorithm using an OPA-compatible test S essentially finds an opti-

mal priority ordering only with respect to test S: if a task set satisfies an OPA-compatible

schedulability test S for some priority ordering, then that OPA-compatible test S can

find such a priority ordering using the OPA algorithm.

Conditions for OPA-Compatibility (from [DB09, DB11b])

A schedulability test S for global FP scheduling is OPA-compatible if the following

three conditions are satisfied:

• Condition 1: The schedulability of a task τi may, according to test S, be depen-

dent on the set of higher priority tasks, but not on the relative priority ordering of

those tasks.

84 CHAPTER 6. ITERATIVE TESTS

• Condition 2: The schedulability of a task τi may, according to test S, be depen-

dent on the set of lower priority tasks, but not on the relative priority ordering of

those tasks.

• Condition 3: When the priorities of any two tasks of adjacent priority are swapped,

the task being assigned the higher priority can not become unschedulable accord-

ing to test S, if it was previously schedulable at the lower priority. (As a corollary,

the task being assigned the lower priority can not become schedulable according

to test S, if it was previously unschedulable at the higher priority).

Audsley’s OPA Algorithm for Multiprocessors

The OPA algorithm given in Figure 6.1 assigns fixed priorities to the tasks in set A to

be scheduled on m̂ processors based on some global FP schedulability test S that is

OPA-compatible. Unlike the representation in [DB09, DB11b], the parameters (task set

A, number of processors m̂ and the OPA-compatible test S) of the OPA algorithm are

made explicit here.

Algorithm OPA(Task set A, number of processors m̂, Test S)

1. for each priority level PL, lowest first

2. for each priority-unassigned task τ ∈ A
3. If τ is schedulable on m̂ processors at priority level PL
4. according to schedulability test S with all other priority-

5. unassigned tasks assumed to have higher priorities, Then

6. assign τ to priority PL
7. break (continue outer loop)

8. return “failure”

9. return “success”

Figure 6.1: Audsley’s OPA algorithm for multiprocessors.

The OPA algorithm assigns priority to each task in set A starting from the lowest-

priority level. In order to be used, the FP schedulability test S has to be OPA-compatible

(i.e., needs to satisfy Conditions 1–3 given above). If the function call OPA(Γ, m, S)

returns “success”, then all deadlines of the tasks in Γ are met onm processors according

to the priorities assigned by the OPA algorithm in Figure 6.1. Initially, all the tasks in

setA are priority-unassigned. The objective of the OPA algorithm is to assign priority to

each of the tasks in set A starting from the lowest priority level (i.e., the lowest priority

task is determine first and the highest priority task is determined last).

The for loop in line 1 iterates for each of the priority level, denoted by PL, starting

from the lowest priority level. For each priority level in line 1, one priority-unassigned

task is searched using the inner loop in line 2 for assigning the priority at that priority

level. Whether or not a (priority-unassigned) task, say task τ , can be assigned the par-

ticular priority level PL is determined in line 3–5 by applying the test S and assuming

6.3. RELATED WORK 85

the higher priorities for all other (priority-unassigned) tasks. If such a task τ is found,

then that task is assigned the current priority level and the priority assignment for next

higher priority level starts (starting from the outer loop).

If no task can be assigned the current priority level, the inner loop terminates and

line 8 returns “failure”. If the outer loop terminates after assigning priorities for each of

the tasks in set A, then the algorithm returns “success”. The OPA algorithm performs

at most n(n + 1)/2 schedulability tests in contrast to exhaustively applying the test for

n! different fixed-priority orderings of the tasks. The following theorem guarantees that

algorithm OPA in Figure 6.1 always finds a priority assignment of the tasks if there

exists some priority ordering that makes the task set to satisfy the schedulability test S.

Theorem 6.1 (from [DB09]). The Optimal Priority Assignment (OPA) algorithm is an

optimal priority assignment policy for any global FP schedulability test S compliant

with Conditions 1-3.

While Theorem 6.1 is undoubtedly true, it is not correct to say that if algorithm OPA in

Figure 6.1 can not find a priority ordering using the OPA-compatible schedulability test

S, then there is no other priority ordering that can make the task set schedulable.

6.3 Related Work

Several iterative tests are already been proposed in the literature for global FP schedul-

ing of constrained-deadline sporadic tasks [Bak06, BC07, BCL09, GSYY09, DB11b]. A

recent survey by Davis and Burns of different schedulability tests for global FP schedul-

ing can be found in [DB11a]. Empirical investigations in [Bak06, BCL09, DB11b] show

that such tests are highly effective in determining the schedulability of task sets having

a total density / utilization beyond the state-of-the-art bound for implicit- / constrained-

deadline tasks.

The basis of the schedulability analysis in many iterative tests is determining the

interference on each lower priority task due to its higher priority tasks within a problem

window. However, unlike the uniprocessor FP scheduling, the exact interference calcu-

lation for multiprocessor FP scheduling is difficult since the critical instant for global

FP scheduling of sporadic tasks is not known (please see section 3.1). Consequently, an

upper bound on the interference of the higher priority tasks on each lower priority task

with the problem window is calculated to derive a sufficient schedulability test. Based

on Baker’s seminal work in [Bak06], several works [BCL09, BC07, GSYY09] have pro-

posed iterative schedulability tests for constrained-deadline sporadic task systems based

on bounding the amount of interference due to each of the higher priority tasks within

the problem window of a lower priority task.

Many global FP schedulability analysis of a lower-priority task τi considers that

all the higher-priority tasks to have carry-in work within the problem window [BCL09,

BC07]. Baruah’s global EDF schedulability analysis in [Bar07] limits the number of

higher-priority tasks considered to have carry-in work to (m− 1), where m is the num-

ber of processors. The RTA-LC test proposed by Guan et al. [GSYY09] employs the

86 CHAPTER 6. ITERATIVE TESTS

same carry-in task limitation as the analysis in [Bar07] to improve the response-time

analysis proposed in [BC07] for global FP scheduling of constrained-deadline sporadic

tasks. The test in [GSYY09] computes the upper bound on the response time of a task

based on the response time of the higher priority tasks. Recently, inspired by the works

in [BC07, Bar07, GSYY09], Davis and Burns [DB11b] proposed a test that also con-

siders (m− 1) tasks having carry-in work to improve the deadline-based schedulability

analysis in [BCL09] for global FP scheduling of constrained-deadline sporadic tasks.

This improved test proposed by Davis et al. in [DB11b] is called DA-LC test (deadline-

analysis with limited carry-in).

The RTA-LC test dominates the DA-LC test for any given fixed-priority ordering

of the constrained-deadline tasks [DB11b]. However, Davis et al. [DB09, DB11b] ad-

dressed the problem of finding an effective priority assignment using Audsley’s OPA

algorithm [Aud01] for the class of schedulability tests that are OPA-compatible. To that

end, RTA-LC is proved not to be OPA-compatible while DA-LC is proved to be OPA-

compatible [DB11b]. It is empirically shown that OPA combined with DA-LC tests

(i.e., the ODA-LC test) is currently the best combination of priority-assignment policy

and schedulability test for global FP scheduling [DB11b]. The state-of-the-art response-

time based RTA-LC test and deadline-based ODA-LC test are now presented in Subsec-

tion 6.3.1 in details to identify the pessimism in their schedulability analysis and to

propose the H-ODA-LC, IA-DA and IA-RT tests in Sections 6.4 – 6.6, respectively.

6.3.1 State-of-the-art Iterative Tests

The RTA-LC is the response-time-based test and the DA-LC test is a deadline-analysis-

based test. The RTA-LC test calculates an upper bound on the response time of each

task. The response time of task τi determined using the RTA-LC test is denoted by Ri.
Remember that HPi is the set of all the higher-priority tasks of task τi. In order to un-

derstand the RTA-LC and DA-LC tests, we need to know how the workload, interfering

workload, total interfering work, and interference within the problem window of any

job of a lower priority task τi are calculated in [GSYY09] and [DB11b], respectively.

The following equations Eq. (6.1) – (6.9) are presented in a different form than that are

used in [GSYY09, DB11b] in order to show the similarities and differences between the

DA-LC and RTA-LC tests.

Workload. There are at most (m− 1) tasks with carry-in workload within the problem

window of each lower priority task τi in global FP scheduling [GSYY09]. Whether task

τk ∈ HPi is a CI task or a NC task depends on the CI and NC workload of that task in

the problem window. The upper bound on the workloads of task τk ∈ HPi within any

interval of length t is denoted by WNCk (t) and WCIk (t) whenever τk is a NC task and CI task,

respectively. The NC workload WNCk (t) of task τk for both RTA-LC and DA-LC tests is

given as follows [GSYY09, DB11b]:

WNCk (t) = ⌊t/Tk⌋ · Ck +min(Ck, t− ⌊t/Tk⌋ · Tk) (6.1)

6.3. RELATED WORK 87

However, the CI workload for the RTA-LC test and the DA-LC tests are computed

differently. The value of CI workload WCIk (t) of task τk in an interval of length t for the

RTA-LC test is given as follows [GSYY09]:

WCIk (t) = Akt · Ck +min(Ck, t+Rk − Ck −Akt · Tk) (6.2)

where Akt = ⌊(t+Rk−Ck)/Tk⌋. Note that Rk is an upper bound on the response time

of the higher priority task τk ∈ HPi and Rk has to be calculated before Ri is calculated.

The dependence on the response time of the higher priority task τk when calculating the

CI workload WCIk (t) for analyzing the schedulability of lower-priority task τi makes the

RTA-LC test OPA-incompatible. This is because the response-time of higher priority

task τk depends on the relative priority ordering of the task in HPi (violates Condition 1

given in page 83). The value of CI workload WCIk (t) of task τk in an interval of length t
for the DA-LC test is given as follows [DB11b]:

WCIk (t) = Akt · Ck +min(Ck, t+Dk − Ck −Akt · Tk) (6.3)

where Akt = ⌊(t+Dk −Ck)/Tk⌋. Given the length of the problem window t, the value

of WCIk (t) for the DA-LC test is calculated only using the static parameters4 of task τk.

Interfering Workload: Similar to workload, ICIk,i(t) and INCk,i(t) denote the upper bounds

on the interfering workload of task τk on any job of task τi within the problem window

of length t whenever τk is a CI task and NC task, respectively. An upper bound on the

interfering workload of a higher priority task within the problem window is the work-

load of the higher priority task within that problem window. However, it is pointed out

in [BC07, GSYY09, DB11b] that it is sufficient to consider the interfering workload of

a higher priority task limited to at most (t− Ci + 1) within the problem window size t.
Thus, ICIk,i(t) and INCk,i(t) for both DA-LC and RTA-LC tests are given as follows:

ICIk,i(t) = min(WCIk (t), t− Ci + 1) (6.4)

INCk,i(t) = min(WNCk (t), t− Ci + 1) (6.5)

The CI interfering workload of higher priority task τk is never smaller than its NC inter-

fering workload. In other words, ICIk,i(t) ≥ INCk,i(t). The difference between the CI and

NC interfering workload of task τk within the problem window of length t is denoted by

IDIFFk,i (t) and given as follows:

IDIFFk,i (t) = ICIk,i(t) − INCk,i(t) (6.6)

The value of IDIFFk,i (t) determines whether the higher priority task τk has to be considered

as a CI task or NC task within the problem window of length t.

Total Interfering Workload. The upper bound on total interfering workload on task τi
due to all the higher priority tasks in set ψ is denoted as Ii(t, ψ,m); where ψ ⊆ HPi,

4The static parameters describe characteristics of a task that apply independent of other tasks.

88 CHAPTER 6. ITERATIVE TESTS

the length of the problem window is t, and the tasks are scheduled on m processors.

Total interfering workload Ii(t, ψ,m) is the sum of the interfering workload of all tasks

in set ψ where at most (m− 1) tasks are considered as CI tasks. The (m− 1) carry-in

tasks from set ψ are those tasks that have the largest value of IDIFFk,i (t). The value of

Ii(t, ψ,m) is calculated as follows for both the DA-LC and RTA-LC tests:

Ii(t, ψ,m) =
∑

τk∈ψ
INCk,i (t) +

∑

τk∈Max(ψ,m−1)

IDIFFk,i (t) (6.7)

where Max(ψ,m−1) is the set of (m−1) tasks from set ψ that have the largest values

of IDIFFk,i (t).

Interference. The term interference is an integer and all the m processors are busy

executing tasks from ψ while task τi is interfered by the higher priority tasks in ψ ⊆ HPi.
Thus, based on the schedulability analysis in [BC07, GSYY09, DB11b], an upper bound

on interference due to the tasks in ψ on any job of task τi within the problem window of

length t is ⌊Ii(t,ψ,m)
m

⌋.

The RTA-LC test: The RTA-LC test [GSYY09], which computes an upper bound on

the response time of each lower priority task τi ∈ Γ, is recursively given as follows:

R
(h+1)
i ← Ci +

⌊

Ii(Rhi ,HPi,m)

m

⌋

(6.8)

This can be solved by searching iteratively the least fixed point starting with R0
i = Ci

for the right-hand side of Eq. (6.8). Thus, this recursion starts with R0
i = Ci and

stops when either (i) R
(h+1)
i > Di (i.e., task τi can not be guaranteed schedulable) or

(ii) Rh+1
i = Rhi (i.e., task τi is schedulable with response time Ri = Rh+1

i). Note

that in order compute the response time of task τi using Eq. (6.8), the response time

of each higher priority task τk ∈ HPi must be known. It is not difficult to see that the

computational complexity of the RTA-LC test is pseudo-polynomial and the dependency

on knowing the response time of the higher priority task τk ∈ HPi to compute the

response time of task τi makes the RTA-LC test OPA-incompatible.

DA-LC Test: The DA-LC test [DB11b] for each lower priority task τi ∈ Γ with relative

deadline Di ≤ Ti is given as follows:

Di ≥ Ci +
⌊

Ii(Di,HPi,m)

m

⌋

(6.9)

This can be solved by calculating the interference of the higher priority tasks in HPi within

the problem window of length Di. It is not difficult to see that the computational com-

plexity of the DA-LC test is polynomial and the test is OPA-compatible.

ODA-LC Test: The DA-LC test is OPA-compatible and can be used to find the FP or-

dering of the tasks using the Audsley’s OPA algorithm presented in Figure 6.1. The

6.4. THE H-ODA-LC TEST 89

ODA-LC test (combination of OPA and DA-LC test) works as follows [DB11b]:

If the call OPA(Γ,m,DA-LC) in Figure 6.1 returns “success”, then all the

tasks meet deadlines using global FP scheduling on m processors based on

the priority assignment determined by the OPA algorithm.

According to the ODA-LC test, the OPA algorithm in Figure 6.1 essentially applies the

DA-LC test in Eq. (6.9) to determine whether a priority-unassigned task can be assigned

a particular priority level by assuming the higher priorities for all the other priority-

unassigned tasks. It will be evident shortly that, the H-ODA-LC test (proposed in next

section) is based on applying the HPA policy where not all the higher priority tasks and

all the m processors are considered when determining the priority level of a priority-

unassigned task based on the DA-LC test.

6.4 The H-ODA-LC Test

In this section, the HPA policy is applied to improve the priority assignment policies

for two state-of-the-art iterative schedulability tests: ODA-LC test proposed by Davis et

al. [DB11b] and OPA-incompatible RTA-LC test proposed by Guan et al. [GSYY09].

The OPA algorithm in Figure 6.1 reveals an interesting fact: the priority-assignment

determined by the combination of the OPA algorithm and an OPA-compatible schedu-

lability test S only claims to be optimal under the assumption that this combination is

applied to the entire task set and to all processors (Theorem 3 in [DB11b]). An intuitive

question to ask is then whether it would be possible to obtain a more effective priority

assignment for an OPA-compatible test if the combination of the OPA algorithm and

the OPA-compatible test was applied to find the priorities of a subset of the entire task

set to be scheduled on a lower number of processors while the remaining tasks are as-

signed fixed priorities using some other mechanism (e.g., the highest fixed priority as

is proposed for ISM-DS policy in Chapter 5). By carefully studying the equations of

the OPA-compatible DA-LC test presented in subsection 6.3.1, it is realized that there is

indeed room for improvement.

In this section, the HPA policy is considered to improve the priority assignment

policy for the ODA-LC test. This is based on a crucial observation: the amount of

interference calculated based on the DA-LC test on a lower priority task can be

reduced by not including all the tasks and all the processors in the schedulability

test. The HPA policy combined with the ODA-LC test is called the H-ODA-LC test.

Moreover, the HPA policy can also be applied to the OPA-incompatible RTA-LC test.

The HPA policy combined with the RTA-LC test is called the H-RTA-LC test which

dominates the RTA-LC test.

6.4.1 Applying HPA Policy to ODA-LC Test

In this subsection, by applying the HPA policy to the ODA-LC test an improved fixed-

priority assignment policy and the schedulability test, called H-ODA-LC test, is pro-

90 CHAPTER 6. ITERATIVE TESTS

posed. When computing the total interfering workload Ii(Di,HPi,m) in Eq. (6.9),

for testing the schedulability of the lower priority task τi on m processors using the

DA-LC test, the higher priority tasks are in HPi and the number of CI tasks considered

is (m − 1). The improved priority-assignment policy H-ODA-LC is based on the fol-

lowing observation of Eq (6.9): if one task, say τh, is removed from HPi and also the

number of processors is reduced from m to (m − 1), and apply the DA-LC test on this

smaller task set and reduced number of processors, then the interference on task τi de-

pends on the the higher priority tasks in set (HPi −{τh}) and on (m−2) carry-in tasks.

To understand the importance of this observation, consider the following example.

Example 6.1. Consider four tasks in Γ = {τ1, . . . τ4} to be scheduled onm = 3 proces-

sors using global FP scheduling. The parameters (Ci, Di, Ti) of the four tasks are as fol-

lows: (23, 33, 33), (106, 210, 214), (58, 216, 217), and (46, 60, 64). The ODA-LC test

by calling algorithm OPA(Γ,3,DA-LC) returns “failure” because no task in Γ can be

assigned the lowest priority level. This is because, when the schedulability of each

τi ∈ Γ is checked for priority assignment as the lowest priority level (line 3-5 of OPA

algorithm in Figure 6.1), the calculation of Ii(Di,HPi ,m) using Eq. (6.7) considers

(m − 1) = 2 tasks in HPi as CI tasks and the remaining task in HPi as NC tasks. The

value of Ii(Di,HPi,m) for each of the four tasks was large (pessimistic) enough to vio-

late the DA-LC test in Eq. (6.9), and no task is decided to be assigned the lowest priority

and the OPA algorithm returns “failure”.

Now consider hybrid-priority assignment in which the highest-density task τ4 is

given the highest fixed priority. The call OPA({τ1, τ2, τ3}, 2, DA-LC) by removing

τ4 from Γ and reducing the number of processors from m = 3 to m = 2 returns “suc-

cess” (task τ3 is assigned the lowest priority, tasks τ1 and τ2 are assigned the highest

fixed priorities). Therefore, the task set Γ is schedulable on m = 3 processors (follows

from Observation 5.1 following Lemma 5.6). This is because, when OPA({τ1, τ2, τ3},
2, DA-LC) is called, the calculation of I3(D3, {τ1, τ2},m = 2) in Eq. (6.7) considers

only (m − 1) = 1 task in {τ1, τ2} as CI task and one task in {τ1, τ2} as NC task.

In this case, I3(D3, {τ1, τ2},m = 2) was small enough to satisfy the DA-LC test

in Eq. (6.9) and τ3 is assigned the lowest priority. The other two tasks, τ1 and τ2,

are trivially assigned the highest fixed priority since there are two processors. Hence,

OPA({τ1, τ2, τ3}, 2, DA-LC) returns “success”. Since τ4 is assigned the highest fixed

priority and OPA({τ1, τ2τ3}, 2, DA-LC) returns “success”, this instance of HPA guar-

antees that Γ is schedulable on m = 3 processors (from Observation 5.1).

The important conclusion from this example is that, if the schedulability of Γ can

not be decided on m processors by applying the ODA-LC test to the entire task set

Γ and to all m processors, it does not necessarily mean that there is no feasible

priority assignment for Γ based on the DA-LC test. The lesson learned is that the

upper bound on interference Ii(Di,HPi,m), calculated based on DA-LC using Eq. (6.7),

may be lowered by not including all the tasks and all the processors in the corresponding

schedulability test. The HPA policy can exploit this because it provides “separation of

concerns” in the sense that (i) the ODA-LC test can be applied (due to the predictability

6.4. THE H-ODA-LC TEST 91

of global FP scheduling) only to the (n − m′) lowest-density tasks to be scheduled

on (m − m′) processors, and (ii) the remaining m′ highest-density tasks are assigned

(without any concern) the highest fixed priorities for some m′, 0 ≤ m′ < m. This is the

main principle in developing the improved H-ODA-LC test.

Based on Observation 5.1, the entire task set Γ is global FP schedulable if the

(n−m′) lowest-density tasks are schedulable using the ODA-LC test on (m−m′) pro-

cessors. Note that the H-ODA-LC test dominates the ODA-LC test (i.e., when m′ = 0,

H-ODA-LC is equivalent to the ODA-LC test; and Example 1 shows the superior-

ity of H-ODA-LC to the ODA-LC test). Figure 6.2 shows the pseudocode for the

H-ODA-LC test. Each of the m′ highest density tasks is assigned the highest fixed

priority in line 4 of Figure 6.2 and the remaining (n −m′) tasks are tested for schedu-

lability using the ODA-LC test on (m − m′) processors in line 6. If the OPA returns

“success” (in line 6) for some m′, 0 ≤ m′ < m, then the task set Γ is decided to be

FP schedulable.

Algorithm H-ODA-LC(Γ , m)

1. for m′ = 0 to (m− 1)
2. if(m′ > 0) then

3. τh ← the highest-density task in Γ
4. assign τh the highest fixed priority

5. Γ = Γ− {τh} // one task is removed

6. if OPA(Γ, m−m′, DA-LC) returns “success” then

7. return “schedulable”

8. return “schedulability can not be determined” // when the for loop ends

Figure 6.2: The H-ODA-LC test

Remember that the OPA algorithm can not be applied to the RTA-LC test since it is

OPA-incompatible [DB11b]. However, HPA policy is applicable to the RTA-LC test

as follows (called, the H-RTA-LC test): assign the m′ highest-density tasks the highest

fixed priorities and the fixed-priority ordering of the remaining (n−m′) lowest-density

tasks remains the same as the original fixed-priority ordering that is given for the entire

task set Γ. Using Observation 5.1 following Lemma 5.6, the entire task set Γ is global

FP schedulable if the (n−m′) lowest-density tasks are feasible using the RTA-LC test

on (m−m′) processors for some m′, 0 ≤ m′ < m. For a given priority assignment for

Γ, it is not hard to see that the H-RTA-LC test dominates the RTA-LC test.

It is empirically shown in [DB11b] that the ODA-LC test significantly performs

better that the RTA-LC test. Therefore, it is expected that the H-ODA-LC test also

guarantees such improvement over the H-RTA-LC test. The IA-DA schedulability test

proposed in next section further improves the H-ODA-LC test.

92 CHAPTER 6. ITERATIVE TESTS

6.5 The IA-DA Test

A new priority assignment policy and schedulability test, called the IA-DA test, is pro-

posed in this section. The H-ODA-LC test in Section 6.4 is developed by observing that

if not all the higher-priority tasks and all the processors are included when applying the

DA-LC test to a lower-priority task, the pessimism in the estimation of the upper bound

on interference due to the higher-priority tasks on a lower priority task can be reduced.

The basic idea for applying the HPA policy in H-ODA-LC test is to keep some tasks and

processors “separate” from the schedulability analysis of a lower priority task. Notice

that the H-ODA-LC test “separates” a total of m′ highest-density tasks, here referred

to as “separated tasks”, and “separates” a total of m′ processors, here referred to as

“separated processors”, from the schedulability analysis of the remaining (n − m′)
lowest-density tasks. The separated tasks and processors are not considered while eval-

uating the DA-LC test for a lower-priority task. Therefore, the number of CI tasks when

applying the DA-LC test to each of the (n−m′) lower-priority tasks in the ODA-LC test

is limited to at most (m−m′ − 1) rather than (m− 1) for some m′, 0 ≤ m′ < m.

In this section, a new and novel criterion is proposed to determine the set of tasks that

are separated when analyzing the schedulability of a lower-priority task. The proposed

criterion for separating tasks is special in the sense that it is not based on “highest den-

sity” and separates different set of tasks for each lower priority tasks. The “separation”

of tasks and processors has nothing to do with partitioned multiprocessor scheduling —

the separation only exists as a means for reducing the pessimism of interference due to

the higher-priority tasks on a lower-priority task.

Based on this new criterion, a new priority-assignment algorithm and the corre-

sponding IA-DA test for global FP scheduling is presented. First, an overview of the

proposed priority-assignment policy is presented in subsection 6.5.1. Then, in subsec-

tion 6.5.2, the elegant criterion for finding the set of separated tasks for a lower-priority

task is proposed. Finally, the algorithmic details of the priority-assignment policy and

the IA-DA test based on this new criterion is proposed in subsection 6.5.3.

6.5.1 Overview of the IA-DA Test

In this subsection, an overview of the priority assignment for the IA-DA test is pre-

sented. The IA-DA test checks whether all the tasks are successfully assigned priorities

while at the same time also verifies the schedulability of the tasks. If all the tasks are

assigned priority, then it is also guaranteed that all the tasks meet their deadlines.

The proposed priority-assignment policy applies the principle of Audsley’s OPA

algorithm: it assigns priorities to the tasks starting5 from lowest-priority level PL=1
to the highest priority level PL=n. At each priority level PL, all tasks that are not yet

assigned any priority are called the priority-unassigned tasks. The objective is to assign

5In this chapter, it is assumed without loss of generality that a task having priority level 1 (n) has the lowest

(highest) fixed priority. This simplifies the mathematical reasoning in proving the correctness and domination

of the IA-DA test.

6.5. THE IA-DA TEST 93

fixed priority to one of the priority-unassigned tasks at each priority level. Each of the

priority-unassigned tasks at each priority level is checked for priority assignment using

the DA-LC test until one such task satisfying the DA-LC test is found.

Each of the priority-unassigned tasks when selected as a candidate for priority as-

signment is called the target task. Given a target task at priority level PL, the IA-DA test

temporarily separatesm′ processors and separatesm′ tasks from the set of other priority-

unassigned tasks where 0 ≤ m′ < m. Unlike the previously proposed H-ODA-LC test,

the m′ separated tasks are not assigned any priority when separated, and more impor-

tantly, the criterion for selecting the separated tasks is not based on the “highest density”.

A new criterion for selecting the tasks for separation for each target task at each priority

level is proposed (the criterion will be presented in Subsection 6.5.2).

After separatingm′ tasks for a particular target task at priority level PL, it is checked

(using the DA-LC test in Eq. (6.9)) whether or not the target task can be assigned pri-

ority level PL. The separated tasks and separated processors are not considered while

evaluating the DA-LC test for the target task. If the target task passes the DA-LC test at

priority level PL, then the task is assigned priority level PL. If the target task does not

pass the DA-LC test at priority level PL, then another priority-unassigned task is selected

as the target for priority assignment at priority level PL. If no priority-unassigned task

can be assigned priority level PL, the priority assignment fails. If all tasks are assigned

priorities, then the priority assignment succeeds.

When a target task can not be assigned priority level PL, the corresponding separated

tasks and separated processors are no more considered “separated”. These tasks along

with other priority-unassigned tasks are considered as candidates for selecting the next

target task at priority level PL. Similarly, if a target task is assigned priority level PL,

then the corresponding separated tasks and separated processors are no more considered

“separated”. And, these tasks are also considered as candidates for target task at next

priority level. Thus, the separated tasks and separated processors for each target task are

temporary in the sense that priority assignment for each new target task always starts

with all the m processors and all the priority-unassigned tasks.

6.5.2 New Criterion for Separation

In this subsection, the elegant criterion for separating the tasks for each target task τi
is designed. Remember that H-ODA-LC test separates m′ highest-density tasks from

Γ and then applies the ODA-LC test to the remaining (n − m′) lowest density tasks

using (m −m′) processors for some m′, 0 ≤ m′ < m. Note that the same set of m′

highest-density tasks having the highest fixed priorities are always kept separated from

all the (n −m′) lowest-density tasks in H-ODA-LC test. These separated m′ highest-

density tasks are “constant” in the sense that the same set of m′ highest density tasks are

kept separated when determining the priorities of the (n −m′) lowest-density tasks on

(m−m′) processors based on the ODA-LC test.

The reason for separating the highest density tasks in H-ODA-LC test is the feelings

that the tasks that are responsible the most, for the pessimism involved in the interfer-

94 CHAPTER 6. ITERATIVE TESTS

ence calculation using the DA-LC test applied to task τi, are the highest-density tasks.

However, by studying the details of the proposed H-ODA-LC test, a very interesting

fact is observed: it is not necessarily the pessimism of the interference estimation

due to the highest-density tasks that may cause some lower priority task τi to fail

the DA-LC test. To see why, consider the following example:

Example 6.2. Consider four tasks in Γ = {τ1, . . . τ4} to be scheduled on m = 3
processors using global FP scheduling. The parameters (Ci, Di, Ti) of the four tasks

are as follows: (26, 51, 54), (11, 14, 25), (32, 33, 37), and (19, 25, 29). The densities

are δ1 = 0.509, δ2 = 0.785, δ3 = 0.967, and δ4 = 0.760. The task set Γ does not

pass the H-ODA-LC test. In particular, none of the tasks in Γ can be assigned the lowest

priority level by separating m′ highest-density tasks for any m′ = 0, 1, 2.

However, there exits a valid fixed priority assignment that would make task set Γ
global FP schedulable. Consider that the two tasks {τ3, τ4} are separated along with

m′ = 2 processors. The other two tasks {τ1, τ2} are schedulable on (m − m′) = 1
processor by assigning the two lowest priority levels PL=1 and PL=2 to tasks τ1 and τ2,

respectively. Then, the two separated tasks τ3 and τ4 are assigned the highest priority

levels PL=3 and PL=4, respectively. These two highest priority tasks τ3 and τ4 are

trivially schedulable since we have m = 3 processors; and these two highest priority

tasks uses at most two processors at any time. Evidently, at least one processor is always

available for executing the two lowest priority tasks τ1 and τ2. Consequently, the entire

task set is global FP schedulable based on observation 5.1. Note that the two separated
tasks τ3 and τ4 are not the two highest density tasks.

The lesson learned is that “separation” based on the HPA policy is effective; how-

ever, the best criterion to separate the tasks from the schedulability analysis of the lower

priority tasks is not necessarily should be based on “highest density”. Another important

fact is that the (constant) set of m′ highest-density tasks may not be the best set of sep-

arated tasks when checking the schedulability for each of the lower-priority tasks using

the DA-LC test. A new criterion for separating the tasks when considering the priority

assignment of a target task using the DA-LC test is proposed for this purpose. As will

be evident now the proposed criterion separates different sets of tasks for each possible

target task at each priority level.

Proposed Separation Criterion

Consider a target task τi at priority level PL where HPi is the set of all the higher-

priority tasks of τi. Assume that task τi does not pass the DA-LC test when applying

the DA-LC test by considering all the tasks from HPi and all the m processors. So,

according to Eq. (6.9), the upper bound on interference, i.e., ⌊ Ii(Di,HPi,m)
m

⌋, that task τi
suffers due to the tasks in HPi is greater than (Di − Ci).

Now, separating m′ tasks from set HPi and separating m′ processors may able

task τi to pass the DA-LC test. The objective is to separate those m′ tasks from HPi
such that the interference ⌊ Ii(Di,HPi,m)

m
⌋ is maximally reduced. And, m′ processors

6.5. THE IA-DA TEST 95

are also kept separated in such case. If SEP is the set of m′ separated tasks selected

from set HPi, then the value of (new) interference on any job of task τi (after sep-

aration) is ⌊ Ii(Di,HPi−SEP,m−m′)
m−m′ ⌋ where the computation of total interfering workload

Ii(Di,HPi−SEP,m−m′) considers (m−m′−1) carry-in tasks from set (HPi−SEP).
The challenge is to find set SEP such that the value of (new) interference, which is

⌊ Ii(Di,HPi−SEP,(m−m′))
m−m′ ⌋, becomes as small as possible where SEP is the set of m′ sep-

arated tasks selected from set HPi. In other words, the problem to solve is the follow-

ing: What is the best way to separate m′ tasks from set HPi such that the value of

Ii(Di,HPi,m) is maximally reduced for some m′ > 0?

Note that when task τi fails to pass the DA-LC test before separation of any task

from HPi, the value of Ii(Di,HPi,m) depends on (m− 1) carry-in tasks from set HPi.
Let cis and ncs respectively denote the sets of CI tasks and NC tasks from set HPi
such that HPi = (cis ∪ ncs). According to Eq. (6.7), cis = Max(HPi,m − 1),
and then obviously ncs = (HPi − cis). Separating each of the m′ tasks from HPi is

equivalent to separating that task either from cis or ncs.

First, the criterion for separating exactly one task from HPi, particularly, separating

one task either from set cis or ncs is considered. Then, based on this criterion of

separating one task, the criteria for separating subsequent tasks is presented.

(Separation of one task) When m′ = 1, either one CI-task or one NC-task is sep-

arated and this task is selected either from set cis or ncs, respectively. Remember

that it is also needed to separate m′ = 1 processor. Thus, the number of CI tasks after

separation is at most (m−m′− 1) = (m− 2) when applying the DA-LC test to task τi
considering the non-separated tasks from HPi and (m−m′) processors.

When separating a CI-task τk, where τk ∈ cis ⊆ HPi, the value of Ii(Di,HPi,m)
is reduced by ICIk,i(Di) (i.e., the carry-in interfering workload of task τi) according to

Eq. (6.7). In order to maximally reduce the value of Ii(Di,HPi,m) by separating exactly

one CI task from cis, the best criterion is to select the task from cis that has the

largest value of carry-in interfering workload. The largest value of interfering carry-in

workload of any task in cis is given as follows:

max
τk∈cis

{ICIk,i(Di)}

Separating a NC-task τj , where τj ∈ ncs ⊆ HPi, has two effects. First, separating

the NC task τj from ncs reduces the value of Ii(Di,HPi,m) by INCj,i(Di) (i.e., the non

interfering carry-in workload of τj). Second, one of the CI tasks from cis becomes a

new NC task since, after separation, there are at most (m−2) carry-in tasks. The CI task

from cis that becomes a NC task is the one with the minimum value of the difference

between its carry-in and non carry-in interfering workload among all the tasks in cis.

This is because, after separation, the Max function in Eq. (6.7) would consider (m− 2)
carry-in tasks that have the largest values of the difference between the carry-in and non

carry-in interfering workload. Thus, separating a NC-task τj from ncs reduces the value

of Ii(Di,HPi,m) by the following amount:

96 CHAPTER 6. ITERATIVE TESTS

INCj,i(Di) + min
τd∈cis

{IDIFFd,i (Di)}

where min
τd∈cis

{IDIFFd,i (Di)} is the minimum value of the difference between the carry-

in and non carry-in interfering workload for any task in cis. Note that the value of

min
τd∈cis

{IDIFFd,i (Di)} is completely independent of the NC task τj that is selected for

separation from ncs. Thus, in order to maximally reduce Ii(Di,HPi,m) by separating

exactly one NC task from ncs, the best criterion is to select the NC task from ncs that

has the largest value of non carry-in interfering workload. The largest value of non

carry-in interfering workload of any task in ncs is given as follows:

max
τj∈ncs

{INCj,i(Di)}

The criterion to determine whether to separate a CI task or a NC task, when m′ = 1, is

determined as follows.

Criterion For Separating One Task: When m′ = 1, the task τa ∈ cis that satisfies

ICIa,i(Di) = max
τk∈cis

{ICIk,i(Di)} is selected for separation if

max
τk∈cis

{ICIk,i(Di) } >
(

max
τj∈ncs

{INCj,i(Di) }+ min
τd∈cis

{IDIFFd,i (Di) }
)

(6.10)

otherwise, task τb ∈ ncs satisfying INCb,i(Di) = max
τj∈ncs

{INCj,i(Di) } is selected for

separation.

(Separation of more than one task) If m′ > 1, then one task from set HPi = (cis ∪
ncs) is first separated using the criterion in Eq. (6.10). Then, this separated task, say

task τs, is removed from either cis or ncs depending on whether τs ∈ cis or τs ∈
ncs, respectively. Now separating the next task is the same as separating one new task

from the updated set (cis ∪ ncs) = HPi − {τs} using the criterion in Eq. (6.10). The

pseudocode for selecting the m′ tasks from set HPi for separation is given in Figure 6.3.

The algorithm Select(ψ,m′, τi, t) in Figure 6.3 returns m′ separated tasks selected

from set ψ considering the target task τi and a problem window of size t.

The algorithm in Figure 6.3 has four parameters. The first parameter ψ is the set of

higher priority tasks of the target task τi, the second parameterm′ is the number of tasks

that need to be separated from set ψ, the third parameter τi is the target task, and finally,

the fourth parameter t is the length of the problem window. It will be evident later that

the proposed priority assignment assignment policy for the IA-DA test separates m′

higher priority tasks from set HPi by calling Select(HPi,m′, τi, Di) before applying

the DA-LC test for the target task τi considering the problem window of length Di.

The set of CI tasks and NC tasks from set ψ are determined in line 1–2 of Figure 6.3

where setMax(ψ,m′−1) is defined in Eq. (6.4). Each iteration of the loop in line 3–13

selects one task from (cis ∪ ncs) for separation. The task to be separated during each

6.5. THE IA-DA TEST 97

Algorithm Select(ψ, m′, τi, t)

// ψ is the set of higher priority tasks of τi
// m′ tasks needs to be separated from set ψ
// The target task is τi
// The problem window is of length t

1. cis =Max(ψ,m′ − 1)
2. ncs = ψ − cis
3. For g = 1 to m′ // each iteration separates one task

4. Find the task τa ∈ cis where ICIa,i(t) = max
τk∈cis

ICIk,i(t)

5. Find the task τb ∈ ncs where INCb,i(t) = max
τj∈ncs

INCj,i(t)

6. Find the task τc ∈ cis where IDIFFc,i (t) = min
τd∈cis

IDIFFd,i (t)

7. If (ICIa,i(t) > INCb,i(t) + IDIFFc,i (t)) Then

8. cis = cis− {τa}
9. Else

10. cis = cis− {τc}
11. ncs = (ncs ∪ {τc})− {τb}
12. End If

13. End For

14. Return ψ − (ncs ∪ cis)

Figure 6.3: Algorithm for selecting the tasks for separation

iteration is either a CI task from cis or a NC task from ncs. The CI task τa ∈ cis
having the largest carry-in interfering workload is determined in line 4. The NC task

τb ∈ ncs having the largest non carry-in interfering workload is determined in line 5.

The CI task τc ∈ cis having the smallest value of the difference between its carry-in

and non carry-in interfering workload is determined in line 6.

The condition in line 7 (based on the criterion in Eq. (6.10)) determines whether

separation of the CI task τa or separation of the NC task τb would maximally reduce the

value of Ii(t, ψ,m). If the CI task τa is separated, i.e., condition in line 7 is true, then

τa is removed from set cis in line 8. If the NC task τb is separated, i.e., condition in line

7 is false, then the CI task τc determined in line 6 becomes a NC task, and thus task τc is

first removed from set cis in line 10. Then, task τc is included in set ncs, and finally,

the NC task τb is removed from set ncs in line 11. Separation of the subsequent task in

next iteration uses these updated sets of CI and NC tasks. When the for loop exits, the

set of total m′ separated tasks in ψ − (cis ∪ ncs) is returned in line 14.

98 CHAPTER 6. ITERATIVE TESTS

Lemma 6.1 now shows that the proposed separation criterion of algorithm Select in

Figure 6.3 is better in terms of reducing the pessimism in interference estimation for

the DA-LC test in comparison to that of the separation criterion that is based on the

“highest-density” policy as proposed for the H-ODA-LC test.

Lemma 6.1. If task τi passes the DA-LC test by separating m′ highest-density tasks

from set HPi of higher priority tasks, then τi also passes the DA-LC test by separat-

ing the tasks returned by algorithm Select(HPi,m′, τi, Di) from set HPi, where

DA-LC test in both cases after separation uses (m − m′) processors and the non-

separated tasks from set HPi .

Proof. Let SEPdensity is the set ofm′ highest-density tasks from set HPi andHdensity =
(HPi − SEPdensity). Let SEPnew is the set of m′ tasks returned by the algorithm

Select(HPi,m′, τi, Di) and Hnew = (HPi − SEPnew). If τi passes the DA-LC test

by separating the tasks in SEPdensity from HPi, then according to the DA-LC test in

Eq. (6.9), the following holds:

⌊

Ii(Di, Hdensity,m−m′)

m−m′

⌋

≤ (Dk − Ck)

Note that the interfering workload of each task τk ∈ HPi for the DA-LC test is calcu-

lated based on static parameters of the task τk (i.e., independent of other tasks in HPi).
Algorithm Select at each stage separates from set HPi the task that maximally reduces

Ii(Di,HPi,m). Since the total interfering workload is the sum of interfering workload

of the non-separated tasks, algorithm Select maximally reduces Ii(Di,HPi,m) by

separating m′ tasks from set HPi, and we must have

Ii(Di, Hnew,m−m′) ≤ Ii(Di, Hdensity,m−m′)

Consequently, the following also holds

⌊

Ii(Di, Hnew,m−m′)

m−m′

⌋

≤ (Dk − Ck)

which implies that task τi also passes the DA-LC test.

The two tasks (i.e., τ3 and τ4), separation of which makes the task set in Example 6.2

(page 94) schedulable, can be determined using the separation criterion of the Select
algorithm presented in Figure 6.3; but can not be determined using the “highest-density”

based separation criterion. Thus, the proposed separation criterion is better in terms

of reducing the amount of pessimism in calculating the interference due to the higher

priority tasks on a lower priority task. Now the details of the priority assignment pol-

icy for global FP scheduling based on this new separation criterion is presented. The

IA-DA test, presented in Subsection 6.5.3, essentially combines the schedulability test

and priority assignment of the tasks. And, successful priority assignment of all the tasks

implies that the task set is schedulable using global FP scheduling.

6.5. THE IA-DA TEST 99

6.5.3 Priority Assignment Algorithm: the IA-DA Test

The development of the priority assignment algorithm for the IA-DA test takes the ad-

vantage of the HPA policy based on the elegant separation criterion proposed in last

subsection, applies the DA-LC test to each target task, and uses the basic idea of OPA

algorithm for assigning the fixed priorities to the tasks. The priority assignment to the

tasks in Γ starts from the lowest priority level PL = 1 ends at the highest priority level

PL = n. The pseudocode of the priority assignment policy of the IA-DA test is pre-

sented in Figure 6.4.

Algorithm IA-DA(Γ , m)

1. ΓU= Γ
2. For PL = 1 to (n−m)
3. For each τi ∈ ΓU //a new task is selected as target task

4. HPi = ΓU−{τi}
5. For m′ = 0 to (m− 1) //m′ tasks from HPi will be separated

6. H = HPi − Select(HPi,m′, τi, Di)

7. If (

⌊

Ii(Di,H,m−m′)
m−m′

⌋

+ Ci ≤ Di) Then

8. Task τi is assigned priority level PL
9. ΓU = ΓU − {τi}
10. If (PL= n−m) Then

11. //there are m tasks left in ΓU
12. Each task in ΓU is assigned one unique

13. priority level between (n−m+ 1) to n
14. Return “Schedulable”

15. Else

16. Break and go to next priority level (line 2)

17. End If

18. End If

19. End For

20. End For

21. Return “Failure”

22. End For

Figure 6.4: The IA-DA test

Initially, all tasks are considered as potential target tasks for priority assignment at

the lowest priority level PL=1. All the tasks in set Γ are stored in variable ΓU (set of

priority-unassigned tasks) in line 1. Each iteration of the loop in line 2–22 represents

one priority level starting from the lowest priority level PL=1 to the highest priority

level PL=(n-m). Note that priority assignment of the final m priority-unassigned tasks

is trivial since these tasks are assigned the m highest priority levels. Therefore, the loop

in line 2–22 runs from 1 to (n−m) and tries to assign one priority-unassigned task one

priority level.

100 CHAPTER 6. ITERATIVE TESTS

At each priority level PL, the inner loop in line 3–20 considers one-by-one priority-

unassigned task from set ΓU until one such task is assigned the priority level PL. During

each iteration of the loop in line 3–20, a new task τi ∈ ΓU is selected as a target task in

line 3. The set of other priority-unassigned tasks HPi = (ΓU − {τi}) is determined in

line 4. If the target task τi is eventually assigned the priority level PL, then the tasks in

set HPi will have higher priorities than task τi.

For a given target task τi, the algorithm (temporarily) separatesm′ tasks from set HPi
and it also separates m′ processors. During each iteration (using the iterative variable

m′ = 0, . . . (m − 1)) of the loop in line 5–19, a total of m′ tasks from set HPi are

separated in line 6 by calling algorithm Select(HPi,m′, τi, Di). The other non-

separated, priority-unassigned tasks from set HPi are stored in set H in line 6 where

H = (HPi − Select(HPi,m′, τi, Di)). Notice that the set of separated tasks for each

target task may be different. Next the DA-LC test is applied in line 7 to determine if the

target task τi can be assigned priority level PL by assuming the higher priorities of the

tasks in set H . In such case, the DA-LC test uses (m − m′) processors and only the

higher priority tasks in set H .

If the DA-LC test in line 7 is satisfied, then task τi is assigned priority level PL in line

8 and removed from the set of priority-unassigned tasks in line 9. If the current priority

level PL is equal to (n −m), i.e., condition in line 10 is true, then there are exactly m
(priority-unassigned) tasks in ΓU after τi is removed from ΓU in line 9. And, each of

these m priority-unassigned tasks in ΓU is assigned one unique priority level between

PL=(n-m+1) and PL=n in line 12–13 (note that these are the m highest priority tasks

and are always schedulable). At this point, all tasks are assigned priorities and the

algorithm returns “schedulable” in line 14. If the current priority level PL is less than

(n − m), i.e., the condition in line 10 is false, then the priority assignment for next

priority level starts (jumping from line 16 to line 2).

If the DA-LC test for task τi in line 7 is never satisfied for any m′, 0 ≤ m′ < m,

then the for loop in line 5–19 exits; and the loop in line 3–20 selects another new target

task. If no new task can be selected as a target task at line 3, then the for loop in line

3–20 exits. Since at this stage there is no task that is assigned the current priority level

PL, the algorithm returns “Failure” in line 21.

Notice that if a target task can not be assigned priority level PL, the correspond-

ing separated processors and separated tasks are no more considered “separated”. And,

these tasks along with other priority-unassigned tasks are considered as candidates for

selecting the next target task at the current priority level. Similarly, if a target task

is assigned priority level PL, the separated tasks along with other priority-unassigned

tasks are considered as candidates for selecting the target tasks at next priority level. In

other words, the priority assignment for each new target task starts with all the priority-

unassigned tasks, i.e., set ΓU , and all the m processors. It is not difficult to see that the

time complexity of algorithm IA-DA is polynomial.

Correctness of the IA-DA Test: The correctness of the priority assignment policy of

the IA-DA test is proved in Theorem 6.2 by showing that if the IA-DA test in Fig-

6.5. THE IA-DA TEST 101

ure 6.4 successfully assigns the priorities, then all the deadlines are met. The following

Lemma 6.2 will be used in Theorem 6.2.

Lemma 6.2. Consider four positive integers w, x, y, and z. The following holds:

⌊

w

x

⌋

+ y ≤ z if and only if w ≤ x · (z − y + 1)− 1

Proof. (if part) It will be shown that, if w ≤ x · (z − y + 1) − 1, then ⌊w
x
⌋ + y ≤ z.

Since w ≤ x · (z − y + 1)− 1, then the following (due to integer assumption) is true

w < x · (z − y + 1) ≡ w

x
< (z − y + 1)

⇒ (since

⌊

w

x

⌋

≤ w

x
)

⌊

w

x

⌋

< (z − y + 1)

⇒ (since

⌊

w

x

⌋

and (z − y + 1) are integers)

⌊

w

x

⌋

≤ (z − y) ≡
⌊

w

x

⌋

+ y ≤ z

(only if part) It will be shown that, if ⌊w
x
⌋+ y ≤ z, then w ≤ x · (z− y+1)− 1 holds.

Since, ⌊w
x
⌋+ y ≤ z and (w

x
− 1) < ⌊w

x
⌋, the following is true

(
w

x
− 1) + y < z ≡ w < x · (z − y + 1)

⇒ (since x · (z − y + 1) is an integer)

w ≤ x · (z − y + 1)− 1

Theorem 6.2. If algorithm IA-DA in Figure 6.4 returns “schedulable”, then all the

tasks in set Γ meet deadlines using global FP scheduling on m processors according to

the priorities assigned by IA-DA.

Proof. If algorithm IA-DA in Figure 6.4 returns “schedulable”, then each of the tasks

in Γ is assigned a unique priority level between 1 to n. It will be proved that each task

that is assigned a priority level using algorithm IA-DA meets all the deadlines.

If a task τi is assigned any priority level PL between (n − m + 1) and n in line

12–13 of Figure 6.4, then task τi is one of the m highest-priority tasks. Since we have

m processors, each task assigned any priority level between (n −m + 1) and n meets

all its deadlines. Now consider a task τi that is assigned priority level PL such that

1 ≤ PL < (n−m+ 1). It will be shown that task τi meets all the deadlines.

102 CHAPTER 6. ITERATIVE TESTS

Since PL < (n−m+1), task τi is assigned priority in line 8 of the IA-DA algorithm

in Figure 6.4. This implies that the condition in line 7 is true and the following holds:

⌊

Ii(Di, H,m−m′)

m−m′

⌋

+ Ci ≤ Di (6.11)

where H = [HPi − Select(HPi,m′, τi, Di)] and the set HPi (determined in line 4) is

the set of all tasks having higher priorities than that of task τi.
Since Eq. (6.11) holds, the maximum interference that any job of task τi suffers

due to the higher priority tasks in H is ⌊ Ii(Di,H,m−m′)
m−m′ ⌋. According to Lemma 6.2,

Eq. (6.11) holds, if and only if,

Ii(Di, H,m−m′) ≤ (m−m′) · (Di − Ci + 1)− 1 (6.12)

Therefore, the upper bound on the total interfering workload due to the tasks inH within

the problem window of any job of task τi is [(m−m′) · (Di − Ci + 1)− 1].
Notice that after task τi is assigned priority level PL, the corresponding separated

tasks (i.e., tasks in set [HPi − H]) are considered as target tasks at next higher priority

levels and are ultimately assigned higher priority levels than task τi. Thus, task τi suf-

fers interference not only from the tasks in set H but also from the “separated” tasks

returned by the algorithm Select(HPi,m′, τi, Di). The upper bound on interfering

workload due to each of the tasks returned by the algorithm Select(HPi,m′, τi, Di)
is (Di − Ci + 1) according to Eq. (6.4) and Eq. (6.5) as given in page 87. Thus,

the total interfering workload due to all the m′ separated tasks, determined by calling

Select(HPi,m′, τi, Di), is at most [m′ · (Dk − Ck + 1)]. Thus, the total interfering

workload due to all the higher priority tasks in HPi = H ∪ Select(HPi,m′, τi, Di) on

any job of task τi is at most:

[(m−m′) · (Dk − Ck + 1)− 1] + [m′ · (Dk − Ck + 1)]

= m · (Dk − Ck) + (m− 1)

Because interference is an integer and all the m processors are simultaneously busy

executing the tasks in HPi when task τi is interfered, the interference that any job of

task τi suffers (based on similar reasoning in [BC07, GSYY09, DB11b]) is at most

⌊m(Dk−Ck)+(m−1)
m

⌋ = (Dk −Ck). Consequently, any job of task τi meets its deadline.

If IA-DA in Figure 6.4 returns “schedulable”, then all the tasks in Γ meet deadlines

using global FP scheduling on m processors according to the priorities assigned by

IA-DA. The IA-DA test dominates the H-ODA-LC test as is given in next theorem.

Theorem 6.3. If task set Γ is schedulable using the H-ODA-LC test, then Γ is also

schedulable using the IA-DA test, and not conversely.

Proof. Proof in given in Appendix A (page 224).

6.6. THE IA-RT TEST 103

6.6 The IA-RT Test

The algorithm for the IA-DA test in Figure 6.4 applies the DA-LC test in line 7 for

target task τi by considering the higher priorities of the tasks in set H using (m −m′)
processors and a problem window of length Di. Remember that the response-time-

based RTA-LC test dominates the deadline-analysis-based DA-LC test. However, the

RTA-LC test can not be applied in line 7. This is because the response time Rk for each

task τk ∈ H has to be known before applying the RTA-LC test for task τi in line 7. This

way the RTA-LC test being OPA-incompatible can not be used in line 7 in Figure 6.4

for the IA-DA test. However, there is another response-time test proposed by Davis

and Burns in [DB10], called the D-RTA-LC test, which uses the same schedulability

analysis as the DA-LC test but uses a problem window that is never larger than that

of considered for the DA-LC test. The D-RTA-LC test is OPA-compatible and domi-

nates the DA-LC test. Based on these observations, the IA-DA test is further improved

by using the D-RTA-LC test and the proposed criterion for separating the tasks when

determining the schedulability and priority of each target task τi.

In this chapter, the IA-DA test is improved by incorporating the D-RTA-LC test

rather than using the DA-LC test to determine whether a target task can be assigned

a particular priority level. First, the D-RTA-LC test is presented in subsection 6.6.1.

Then, the IA-RT test and its priority assignment policy are proposed in subsection 6.6.2.

6.6.1 The D-RTA-LC Test

The D-RTA-LC test [DB10] is similar to the RTA-LC test except that it uses the

CI workload computation of the DA-LC test (given in Eq. (6.3)) instead that of the

RTA-LC test (given in Eq. (6.2)). The details of the D-RTA-LC test are given below:

Workload. The NC workload WNCk (t) of τk in an interval of length t is given as follows:

WNCk (t) = ⌊t/Tk⌋ · Ck +min(Ck, t− ⌊t/Tk⌋ · Tk) (6.13)

The CI workload WCIk (t) of τk in an interval of length t is given as follows:

WCIk (t) = Akt · Ck +min(Ck, t+Dk − Ck −Akt · Tk) (6.14)

where Akt = ⌊(t+Dk − Ck)/Tk⌋.
Interfering Workload: The CI and NC interfering workload ICIk,i(t) and INCk,i(t) are

given as follows:

ICIk,i(t) = min(WCIk (t), t− Ci + 1) (6.15)

INCk,i(t) = min(WNCk (t), t− Ci + 1) (6.16)

104 CHAPTER 6. ITERATIVE TESTS

The difference between the CI and NC interfering workload of task τk within the prob-

lem window of length t is denoted by IDIFFk,i (t) such that:

IDIFFk,i (t) = ICIk,i(t) − INCk,i(t) (6.17)

Total Interfering Workload. The upper bound on total interfering workload due to all

the tasks in set ψ ⊆ HPi is denoted by Ii(t, ψ,m). The value of Ii(t, ψ,m) is calculated

as follows:

Ii(t, ψ,m) =
∑

τk∈ψ
INCk,i (t) +

∑

τk∈Max(ψ,m−1)

IDIFFk,i (t) (6.18)

where Max(ψ,m−1) is the set of (m−1) tasks from set ψ that have the largest values

of IDIFFk,i (t).

Interference. An upper bound on interference due to the tasks in ψ on any job of task

τi within the problem window of length t is ⌊Ii(t, ψ,m)/m⌋.
The D-RTA-LC Test: The D-RTA-LC test [DB10], which involves computing the

upper bound on the response time of each task τk ∈ Γ, is recursively given as follows

for finding the response time Ri of task τi:

R
(h+1)

i ← Ci +

⌊

Ii(R
h

i ,HPi,m)

m

⌋

(6.19)

Note that, in contrast to the RTA-LC test that computesRi using Eq. (6.8), the response-

time Ri of task τi based on Eq. (6.19) does not need to know the response time of the

higher priority tasks τk ∈ HPi. It is not difficult to see that the three conditions for

OPA-compatibility (page 83) are satisfied for the D-RTA-LC test.

6.6.2 Priority Assignment Algorithm: the IA-RT Test

The IA-RT test is presented in Figure 6.5. The algorithm IA-RT in Figure 6.5 has

two parameters: the task set Γ and the number of processors m. It determines whether

the task set is schedulable on m processors by finding appropriate priority ordering

of the tasks in Γ. The algorithm IA-RT in Figure 6.5 is similar to the algorithm

IA-DA in Figure 6.4 with two major difference: (i) the OPA-compatible response time

test D-RTA-LC in Eq. (6.19) is used to determine whether a target task can be assigned

certain priority level, and (ii) the m′ separated tasks are redetermined each time the size

of the problem window changes.

Initially, all tasks are considered as potential target tasks for priority assignment at

the lowest priority level PL=1. All the tasks in set Γ are stored in variable ΓU (set of

priority-unassigned tasks) in line 1. Each iteration of the loop in line 2–29 represents

one priority level starting from the lowest priority level PL=1 to the highest priority

level PL=(n-m).

At each priority level PL, the loop in line 3–27 considers priority-unassigned task

from ΓU until one such task is assigned the priority level PL. During each iteration of

6.6. THE IA-RT TEST 105

Algorithm IA-RT(Γ , m)

1. ΓU= Γ
2. For PL = 1 to (n−m)
3. For each τi ∈ ΓU
4. HPi=ΓU−{τi}
5. For m′ = 0 to (m− 1)

6. R
0

i = Ci
7. For h = 0 to∞
8. H = HPi − Select(HPi ,m′, τi, R

h

i)

9. R
(h+1)

i ← Ci +

⌊

Ii(R
h

i ,H,m−m′)
m−m′

⌋

10. If R
(h+1)

i = R
h

i Then

11. Task τi is assigned priority level PL
12. ΓU = ΓU − {τi}
13. If (PL= n−m) Then

14.

15. Each task in ΓU is assigned one unique

16. priority level between (n−m+ 1) to n
17. Return “Schedulable”

18. Else

19. Break and Go to next priority level (line 2)

20. End If

21. End If

22. If R
(h+1)

i > DiThen

23. Break and go to next iteration in line 5

24. End If

25. End For // loop with variable h in line 7 ends

26. End For // loop with variable m′ in line 5 ends

27. End For // loop with variable τi in line 3 ends

28. Return “Failure”

29. End For // loop with variable PL in line 2 ends

Figure 6.5: The IA-RT test

the loop in line 3–27, a new task τi ∈ ΓU is selected as a target task in line 3. The set of

other priority-unassigned tasks HPi = (ΓU − {τi}) is determined in line 4. If the target

task τi is eventually assigned the priority level PL, then the tasks in HPi will have higher

priorities than task τi.

For a given target task τi, the algorithm (temporarily) separate m′ tasks from set

HPi considering the length of the current problem window and it also separates m′

processors. During each iteration (using the iterative variablem′ = 0, . . . (m−1)) of the

106 CHAPTER 6. ITERATIVE TESTS

loop in line 5–26, the response time of task τi is calculated based on the D-RTA-LC test

in Eq. (6.19) by separating total of m′ tasks from set HPi in line 8.

The initial value of the problem window R
0

i is set to Ci in line 6. Remember that

in response-time-based analysis if the response time of task τi is greater than the length

of the current problem window, the size of the problem window is increased until the

problem window is not greater than the relative deadline of the task. The for loop in

line 7–25 determines the response time of task τi for each possible size of the prob-

lem window. A total of m′ tasks is separated from set HPi by considering the current

problem window of size R
h

i (i.e., for the current value of the loop variable h) by calling

the algorithm Select(HPi,m′, τi, R
h

i). The other non-separated, priority-unassigned

tasks are stored in set H in line 8 where H = (HPi − Select(HPi,m′, τi, R
h

i)). The

size of the new problem window R
(h+1)

i is calculated in line 9 based on Eq. (6.19). If

the length of the new problem window size has not increased (i.e., the response time

calculation converges), then the target task τi can be assigned priority level PL.

If the D-RTA-LC test in line 10 is satisfied, then task τi is assigned priority level

PL in line 11 and removed from the set of priority-unassigned tasks in line 12. If the

current priority level PL is equal to (n−m), i.e., condition in line 13 is true, then there

are exactly m (priority-unassigned) tasks in ΓU after τi is removed from ΓU in line 12.

And, each of these m priority-unassigned tasks in ΓU is assigned one unique priority

level between PL=(n-m+1) and PL=n in line 15–16 (note that these are the m highest

priority tasks and are always schedulable). At this point, all tasks are assigned priorities

and the algorithm returns “schedulable” in line 17. If the current priority level PL is less

than (n−m), i.e., the condition in line 13 is false, then the priority assignment for next

priority level starts (jumping from line 19 to line 2).

If the D-RTA-LC test for task τi in line 10 is not satisfied for current m′ and the

new problem window size R
(h+1)

i > Di in line 22, then separating one more tasks is

considered by jumping from line 23 to line 5 in next iteration. If the D-RTA-LC test for

task τi in line 10 is never satisfied for any m′, 0 ≤ m′ < m, then the for loop in line

5–26 exits, and the next iteration of loop in line 3 begins by selecting another new target

task. If no new task can be selected as a target task at line 3, then the for loop in line

3–27 exits. Since at this stage there is no task that is assigned the current priority level

PL, the algorithm returns “Failure” in line 28.

The correctness of the IA-RT test follows from the correctness of the IA-DA test

proved in Theorem 6.2. Moreover, the IA-RT test dominates the IA-DA test since

Ii(R
h

i , H,m−m′) in line 10 is never greater than Ii(Di, H,m−m′) as is used for the

IA-DA test. In next section, the simulation results to compare the three proposed tests

(H-ODA-LC, IA-DA, and IA-RT) with the state-of-the-art ODA-LC test are presented.

6.7. EMPIRICAL INVESTIGATION 107

6.7 Empirical Investigation

In this section, empirical investigation into the performance of the proposed schedula-

bility tests of global FP scheduling is presented. The derivation of theoretical result,

for example, dominance of one schedulability test over another, does not demonstrate

the average improvement of one test over another. Experimental investigation of an it-

erative schedulability test is highly effective in comparing different schedulability tests

using randomly generated task sets. The ODA-LC test proposed by Davis and Burns

[DB11b] is the sate-of-the-art iterative global FP schedulability test for constrained-

deadline tasks. Each of the three tests (i.e., H-ODA-LC, IA-DA, and IA-RT) proposed

in this chapter dominates the ODA-LC test. To quantitatively measure the improvement

of the proposed tests over the state-of-the-art ODA-LC test, simulation using randomly

generated task sets are conducted. The empirical investigation into the following four

schedulability tests in Table 6.1 are presented in this section.

ODA-LC Test The OPA algorithm in Figure 6.1 combined with

the DA-LC test (proposed by Davis and Burns

[DB11b]).

H-ODA-LC Test The algorithm in Figure 6.2 (proposed in this the-

sis, page 91).

IA-DA Test The algorithm in Figure 6.4 (proposed in this the-

sis, page 99).

IA-RT Test The algorithm in Figure 6.5 (proposed in this the-

sis, page 105).

Table 6.1: Different Iterative Schedulability Tests

The metric, called acceptance ratio, is used to evaluate the effectiveness of each

schedulability test. The acceptance ratio of a schedulability test is the percentage of

the randomly generated task sets that are deemed schedulable using that schedulability

test at a given utilization level. The larger the value of acceptance ratio at a utilization

level, the better is the test in determining the global FP schedulability of task sets at that

utilization level.

The UUnifast-Discard algorithm presented in subsection 5.6.1 (page 66) is

used to generate n utilization values of a task set with cardinality n and total utilization

U . Once a set of n utilizations {u1, u2, . . . un} of a task set is generated, the other

parameters of each task τi are generated as follows:

• The minimum inter-arrival time Ti of each task τi is generated from the uniform

random distribution within the range [10ms, 1000ms].

• The WCET of task τi is set to Ci = ui · Ti.
• The relative deadline Di of task τi is generated from the uniform random distri-

bution within the range [Ci, Ti].

108 CHAPTER 6. ITERATIVE TESTS

Each of the experiments is characterized by a pair (m,n) where m is the number

of processors and n is the cardinality of task set. For each experiment (m,n), task sets

are generated at 40 different utilization levels: {0.025m, 0.5m, . . . 0.975m,m}. A total

of 1000 task sets at each of the 40 utilization levels using the UUnifast-Discard
algorithm with parameters n and U (where U is the utilization level) are generated. Each

of the 1000 task sets generated at a particular utilization level, say U , has cardinality

n and total utilization equal to U . The schedulability of each of the 1000 task sets

generated at each utilization level are determined based on the schedulability test for

each of the four priority assignment policies in Table 6.1 and the acceptance ratio for

each test is computed.

6.7.1 Result Analysis

A series of experiments for different pairs of (m,n) where m ∈ {2, 4, 8, 16} and n ∈
{10, 20, 40, 60, 80, 160} for constrained-deadline tasks are conducted. The acceptance

ratios at each of the 40 utilization levels for each of the fours tests in Table 6.1 are

calculated for each experiment. The important trends and observations based on these

experiments are presented in this section.

In each graphs presented in this section, the x-axis represents the system utiliza-

tion U/m for utilization level U and the y-axis represents the acceptance ratio. The

acceptance ratios of all tests are around 100% at relatively low utilization level (e.g.,

U ≤ 0.3m) and 0% at very high utilization level (e.g., U > 0.85m). The acceptance

ratios for system utilization between 30% to 85%, which correspond to the utilization

levels between 0.3m and 0.85m, are plotted.

The impact of task set cardinality on the theoretically best IA-RT schedulability

test is first discussed based on experimental results. It will be evident that when the

cardinality of the task set is≈ 5m, then the acceptance ratio of the IA-RT test becomes

relatively small, and it is concluded that n = 5m represents the worst-case parameter

setting regarding the task set generation algorithm for the proposed schedulability tests.

Then, the comparison among all the four schedulability tests in Table 6.1 is presented to

see the improvement of the proposed tests over the state-of-the-art ODA-LC test for task

set cardinality equal to 5m.

Impact of n on the IA-RT Test

In order to measure the impact of task set cardinality in determining the schedulability

of random task sets using the IA-RT test for some given m, the acceptance ratios for

experiments with (m = 4, n) where n = 8, 10, 12, 15, 20 are presented in Figure 6.6.

The acceptance ratios of the IA-RT test at each utilization level decreases as the task

set size increases from 8 to 20 for a given m. It seems to be more difficult to schedule

task sets with larger cardinality. This reason can be explained as follows: as the car-

dinality of the task set increases, the number of tasks having relatively large utilization

also increases. Each of such heavy utilization tasks in the worst-case may occupy one

6.7. EMPIRICAL INVESTIGATION 109

processor and leaving relative fewer number of free processors for other tasks. Conse-

quently, the other tasks can not be decided to be schedulable using the IA-RT test on

an insufficient number of processors.

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

Variation in n for a given m=4

n=8
n=10
n=12
n=15
n=20

Figure 6.6: Acceptance ratios of the IA-RT test for experiments with m = 4 and n =

8, 10, 12, 15, 20.

When the cardinality is increased from 8 to 20 form = 4, the decrease in acceptance

ratios of the IA-RT test, due to having relatively higher number of large utilization

tasks, only tells one-side of the story. If the cardinality of the task sets is increased

beyond a certain number (e.g., n ≥ 5m), then the trend is reversed: acceptance ratio at

each utilization level increases with the increase in number of tasks in a task set. The

acceptance ratios for experiments with (m = 4, n) where n = 20, 40, 60, 80, 100 for the

IA-RT test are presented in Figure 6.7.

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

Variation in n for a given m=4

n=100
n=80
n=60
n=40
n=20

Figure 6.7: Acceptance ratios of the IA-RT test for experiments with m = 4 and n =

20, 40, 60, 80, 100.

In such case, the acceptance ratios of the IA-RT test increases as the task set size in-

creases for a given m. This phenomenon can be explained as follows: as the cardinality

110 CHAPTER 6. ITERATIVE TESTS

of each task set increases beyond 5m, the number of high utilization tasks starts decreas-

ing since the total utilization of the task set is now distributed across higher number of

tasks. A low utilization task uses less computing resource and provides more opportu-

nity for other tasks to execute on the processors. And, task set with smaller number of

high utilization tasks does not suffer much from Dhall’s effect.

The conclusion from these experiments is that (m, 5m) seems to be the worst-case

parameters for the experimental setup. To compare the improvement of the proposed

tests in comparison to the state-of-the-art ODA-LC test, results related to the experi-

mental parameter n = 5m are only presented in this section. The experiments with

m = 4, 8, 16 and n = 3m, 10m are given in the Appendix B.

Observation 1: Remember that the average total density of task set increases as the

cardinality of task set increases for a fixed number of processors (please see Figure 5.10

and Figure 5.11 in Chapter 5). While the acceptance ratio of the density-based tests pro-

posed in Chapter 5 decreases with the increase in task set cardinality for a fixed number

of processors, the iterative test IA-DA shows a different trend: the acceptance ratio de-

creases until n = 5m and then increases again. This demonstrates that iterative tests are

highly effective for scheduling tasks with large total density where the cardinality of a

task set is relatively large.

Experiments with (m, 5m)

The acceptance ratios of all the four tests in Table 6.1 with experimental parameters

(m, 5m) are presented in Figure 6.8—6.10 where m = 4, 8, 16 are considered.

Observation 2: The acceptance ratios for the IA-DA and IA-RT tests do not differ

noticeably although IA-RT test theoretically dominates the IA-DA test. The two plots

for the IA-DA and IA-RT tests in Figure 6.8—6.10 are completely overlapping (i.e.,

difficult to see them separately). By looking at the raw acceptance ratio numbers of

these two tests, it is found that those values are the same for almost all utilization lev-

els and differ very insignificantly in the remaining utilization levels. The IA-DA test

runs in polynomial time while the IA-RT test runs in pseudo-polynomial time. Given

the polynomial time complexity of the IA-DA test and the fact that its performance is

equivalent to the IA-RT test, the IA-DA test is the preferable iterative schedulability

test. The discussion regarding the IA-DA test is thus also valid for the IA-RT test.

Observation 3: The improvement of the proposed three tests in this chapter over the

state-of-the-art ODA-LC test is noticeable at higher utilization levels. The improvement

in acceptance ratio of the proposed tests at higher utilization levels is due to improved

priority assignment policy based on the HPA policy. By prudently separating the prob-

lematic tasks from the schedulability analysis of a target task, significant fraction of the

randomly generated task sets pass one or more of the proposed tests but do not pass

the ODA-LC test. The proposed IA-DA tests performs much better than the proposed

H-ODA-LC test. This demonstrates the effectiveness of the novel separation criteria pro-

posed for the IA-DA test in comparison to the highest-density based separation criteria

proposed for the H-ODA-LC test.

6.7. EMPIRICAL INVESTIGATION 111

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=4, n=20 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure 6.8: Acceptance ratios for experiments with (m = 4, n = 5m = 20).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=8, n=40 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure 6.9: Acceptance ratios for experiments with (m = 8, n = 5m = 40).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=16, n=80 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure 6.10: Acceptance ratios for experiments with (m = 16, n = 5m = 80).

112 CHAPTER 6. ITERATIVE TESTS

The IA-DA test significantly outperforms the state-of-the-art ODA-LC test. For

example, the acceptance ratio of the IA-DA test at 0.6m utilization level for (m =
8, n = 40) in Figure 6.9 is 38.5% while that of for the ODA-LC test is 16.4% (i.e.,

an improvement in acceptance ratio of more than 134%). Similarly, the acceptance

ratio of the IA-DA test at 0.6m utilization level for (m = 4, n = 20) in Figure 6.8

is approximately 47.3% while that of for the ODA-LC test is approximately 19.3% (an

improvement in acceptance ratio of more than 145%).

Observation 4: The differences in acceptance ratio between the ODA-LC test and each

of the other three proposed tests decreases as the number of processors increases. And,

the acceptance ratios at each utilization level decreases for each of the four tests as

the number of processors increases. For example, the plots of the acceptance ratios of

IA-DA test in Figure 6.8—6.10 are becoming relatively “healthier” with decreasing m.

This is due the way the task sets are generated for the experiments. When the number

of processors is large, the number of tasks in a task set for experiments with (m, 5m) is

also relatively larger (one additional processor causes the cardinality to increase by 5).

Given that the number tasks in a task set is larger, the interference on the problem

window of each target task is still too large even after separating at most 0, 1, . . . (m −
1) problematic tasks. There are too many problematic tasks such that separation can

not sufficiently reduce interference. And, each lower priority task suffers interference

from a relatively larger number of higher priority tasks each of which contributes to the

computation of interference. The interference is possibly relatively higher on a lower

priority task for task sets with larger cardinality. Therefore, the acceptance ratio of all

the tests decreases at each utilization level with increasing m.

6.8 Summary

This chapter proposes three different iterative schedulability tests for global FP schedul-

ing: H-ODA-LC test, IA-DA test, and IA-RT test. Each of these proposed tests domi-

nates the state-of-the-art ODA-LC schedulability test. All these proposed tests is based

on HPA policy which is effective in reducing the amount of pessimism in the calculation

of interference when analyzing the schedulability of a particular task. It has been shown

that separating the highest-density tasks, as is done for the proposed H-ODA-LC test,

is not the best choice of separated tasks for the HPA policy. A novel strategy to find

the best set of separated tasks when considering the schedulability analysis of a lower

priority task is proposed for the IA-DA and the IA-DA tests.

Both the proposed IA-DA and IA-RT tests perform significantly better than the

state-of-the-art ODA-LC test. While the time complexity in evaluating the IA-DA test

is polynomial, the time complexity in evaluating the IA-RT test is pseudo-polynomial.

Although the IA-RT test dominates the IA-DA test, empirical investigation shows that

the performance difference between these two tests is insignificant. This finding implies

that one should apply the polynomial-time IA-DA test first before applying the pseudo-

polynomial IA-RT test to determine the FP schedulability of a task set.

7
Fault-Tolerant Scheduling on

Uniprocessor

A fault-tolerant deadline-monotonic (FTDM) scheduling of constrained-deadline spo-

radic tasks for tolerating multiple task errors on uniprocessor is presented in this chap-

ter. Time-redundant execution of backup tasks is considered to recover from task errors.

Each task has multiple backups that are scheduled one-by-one until the output of the

task is correct. The fault model that FTDM scheduling considers is very powerful in the

sense that it includes multiple hardware or software faults that can cause errors at any

time, in any task, and even during the recovery. Tolerating a task error by executing its

backup means that the task is able to produce its correct output before the deadline.

The schedulability analysis of the FTDM scheduling is based on computing the work-

load of each task and its higher priority tasks within an interval equal to the relative dead-

line of the task under study. The schedulability analysis of the FTDM scheduling derives

an exact test considering at most f task errors within each of all possible intervals of

length equal to the maximum relative deadline of any task.

7.1 Introduction

The importance of dependability on computer systems is increasing as computers are

taking a more active role in everyday control applications. Fault-tolerance in such sys-

tems is an important aspect to guarantee the correctness of the application even in the

event of faults. In many safety-critical systems, use of time redundancy is considered

as a cost-efficient means to achieve fault-tolerance. In such systems, when a task error

113

114 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

is detected, the backup of the task is executed. However, due to the additional real-time

requirements, it is essential that exploitation of time as a means for tolerating faults must

not compromise the timeliness guarantee in the system.

The two requirements, achieving fault-tolerance through time redundancy and meet-

ing the deadlines of the tasks, seem to be antagonistic. To guarantee both the correctness

and timeliness of dependable real-time systems, it is necessary to design fault-tolerant

scheduling algorithm and to derive appropriate schedulability test. An algorithm, called

Fault-Tolerant Deadline-Monotonic (FTDM) scheduling, is proposed and its schedula-

bility analysis is presented in this chapter. The proposed FTDM scheduling algorithm

is based on FP scheduling on uniprocessor where the tasks are given the Deadline-

Monotonic (DM) priorities. However, the FTDM scheduling and its schedulability anal-

ysis are also applicable to arbitrary fixed-priority assignment of the tasks.

The fault model (presented in Section 3.3) of the FTDM algorithm considers the

occurrences of at most f task errors within each of the all possible intervals of length

Dmax where Dmax is the largest relative deadline of any task in the sporadic task set

Γ. There is no assumption regarding the distribution of the faults or on minimum inter-

arrival time of the faults that could cause task errors. Relaxing these assumptions allow

to consider many different situations, for example, where (i) a single job of a particular

task is affected by multiple faults, (ii) different jobs of different tasks might be affected

by multiple faults, (iii) faults that may occur in bursts, and (iv) the inter-arrival time of

consecutive faults is not predictable.

The FTDM scheduling considers passive backups: no backup is dispatched until a

task error is detected. Each task is considered to have one primary and several backups,

where a backup could be same as the primary or could be a diverse implementation of the

same task. The worst-case execution time of the backups associated with a particular

task may be different. The backups associated with a particular task have the same

priority as the primary and these backups are scheduled by FTDM algorithm one-by-one

until the no task error is detected. The time-redundant execution of backups to recover

from task errors takes additional CPU time. The FTDM algorithm requires to ensure

that the correct output of each job of each task is generated before its deadline even if

execution of backups are required to tolerate task errors.

The objective of the schedulability analysis of the FTDM algorithm is to derive a

schedulability test that needs to be verified to ensure that all the deadlines are met.

The outcome of the schedulability analysis of FTDM algorithm is the derivation of an

exact schedulability test. The exact test is derived for each task (an iterative test) and

based on computing the maximum total workload requested within the release time and

deadline of any job of each task. To calculate the maximum total workload considering

occurrences of task errors, a novel technique to compose the execution time of the higher

priority jobs is used.

The only work that deals with a similar fault model as the FTDM algorithm is ad-

dressed by Aydin [Ayd07], but considered EDF priority and the exact test in [Ayd07]

has an exponential run-time complexity. On the other hand, the run time-complexity to

evaluate the exact schedulability test of the proposed FTDM algorithm is O(n · N̂ · f2),

7.2. SYSTEM MODEL 115

where N̂ is the maximum number of jobs (generated by the n periodic tasks) released

within any time interval of length Dmax. No previous work has derived an exact fault-

tolerant uniprocessor schedulability test that has a lower time complexity than that is

presented in this thesis for the assumed fault model.

The FTDM algorithm does not consider tolerating processor failures. Fault-tolerant

multiprocessor scheduling algorithm for tolerating both task errors and processor fail-

ures is proposed in Chapter 8. However, the uniprocessor schedulability analysis of

FTDM algorithm is applicable to partitioned multiprocessor scheduling in which each

processor executes (preassigned) tasks based on uniprocessor FP scheduling algorithm.

The exact uniprocessor schedulability condition of the FTDM algorithm can be applied

during task-to-processor assignment phase in partitioned multiprocessor scheduling. To

determine whether an unassigned task can be feasibly assigned to a processor, the pro-

posed exact test for FTDM scheduling can be used to guarantee that each processor can

tolerate up to f task errors within any time interval equal to the maximum relative dead-

line of the tasks assigned to that particular processor.

The rest of the chapter is organized as follows: the system model and the FTDM al-

gorithm are presented in Section 7.2. Then, the related work on fault-tolerant schedul-

ing on uniprocessor is presented in Section 7.3. The problem statement is formally

given in Section 7.4. The schedulability analysis of one lower priority task under the

FTDM scheduling is presented in Section 7.5. Then, in Section 7.6, the exact test of

the entire task set is derived. The pseudocode of the exact test for FTDM scheduling is

presented in Section 7.7 and its applicability to the multiprocessor setting is discussed.

Section 7.8 summarizes this chapter.

7.2 System Model

The task and fault models for FTDM scheduling are presented in Section 3.1 and Section

3.3, respectively. The salient features of the models are reiterated here for readability.

A set of n constrained-deadline sporadic tasks Γ ={τ1, τ2, . . . , τn} is considered where

each task τi ∈ Γ is characterized by WCET Ci, relative deadline Di, and period Ti. At

most f task errors due to a variety of hardware and software faults may occur within

each of the all possible time intervals of length Dmax. The f task errors may occur

in the same job or may occur in different jobs of different tasks. The WCET of the

primary of task τi is Ci and the WCET of each of the f backups of task τi is denoted by

Eki where k = 1, 2, . . . f .

Scheduler Model. The FTDM scheduling is uniprocessor FP scheduling where each

task’s primary or backup is executed based on DM priority ordering. And, each backup

of task τi has the same priority as that of task τi. The FTDM scheduling works as follows.

For each task τi, whenever a job of tis task is released, the primary executes first. If an

error is detected at the end of execution of the primary, the first backup of the task

becomes ready for execution. Again an error may be detected at the end of execution of

this backup which in turn would trigger the execution of next backup, and so on. Each

116 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

task is considered to have f different backups in case all the f task errors occur in the

same job of the task.

Remember that during the execution of a particular primary or backup of a task, at

most one fault could affect this execution; and each error is assumed to be detected at

the end of execution of a primary or backup (please see the fault-model in Section 3.3).

It is assumed that there is no fault propagation: one error can affect exactly one primary

or backup. If the cumulative execution demand within an interval of lengthDmax due to

f task errors is maximum, then it is necessary that all the f task errors occur within that

interval. If total k task errors, k ≤ f , affect a particular job of task τi, then the execution

time required for recovery is maximized if the first error affect the primary and each of

the subsequent (k − 1) errors affect each subsequent backup of the same job of task τi.

The exact FTDM schedulability condition has to check that whether all the tasks

deadlines are met or not if the occurrences of task errors is not worse than the assumed

fault model. Since there are many different combinations of the occurrence of task errors

that could affect the execution of the tasks in an interval of length Dmax, algorithm

FTDM must guarantee that the schedule is fault-tolerant for each such combination. In

other words, all tasks must met their deadlines for any combination of errors affecting

the different jobs of different tasks. The different combination of errors lead to the

notion of fault pattern.

Fault-Pattern. Remember that there are a maximum of N̂ jobs released within any in-

terval of lengthDmax. There are different possibilities of the occurrences of the f errors

affecting the N̂ jobs. One possibility is that all the f errors occur in one of the N̂ jobs.

Another possibility is that different number of errors occur in different jobs. Each such

possibility of error occurrence is called a fault pattern in [Ayd07, LMM00]. Given the

jobs in set A, any possible combination of k errors that can affect the jobs in set A is

denoted by k-fault-pattern. For example, if k = 0, no error occurs within the jobs in set

A. If k = 1 and |A| = 5, then there are 5 different 1-fault-patterns since the single error

due to the fault may affect any one of the five jobs in set A.

To achieve fault-tolerance, it has to be ensured that all the jobs released in any inter-

val of length Dmax meet the deadlines for f -fault patterns. The question that arises is:

what are the different possible fault patterns that one must consider for FTDM schedula-

bility analysis of N̂ jobs released within a time interval of lengthDmax? In other words,

in how many ways the f task errors could affect the N̂ jobs that are released within any

time interval of lengthDmax. It is already pointed out in [Ayd07] that the number of dif-

ferent fault patterns is given by the binomial coefficient
(

N̂+f -1
f

)

= Ω((N̂
f
)f) = O(N̂f),

which is exponential [CLRS01]. The FTDM schedulability analysis on uniprocessor con-

sidering this exponential number of different fault patterns may not be computationally

practical if f are large. To overcome this problem, a dynamic-programing technique

is used to find an exact FTDM schedulability condition. The time complexity of this

technique for evaluating the exact test is O(n · N̂ · f2).

7.3. RELATED WORK 117

7.2.1 Traditional DM Scheduling

Leung and Whitehead proved that DM is an optimal fixed-priority scheduling algorithm

on uniprocessor for constrained-deadline sporadic tasks [LW82]. Necessary and suffi-

cient (exact) schedulability condition for uniprocessor DM scheduling have been derived

in [JP86, ABR+93, ABRW91] without considering occurrences of faults. The exact

DM schedulability condition proposed in [ABR+93] is derived by assuming that all

tasks are released at time 0 (i.e., critical instant for uniprocessor fixed-priority schedul-

ing [LL73]). In [ABR+93], the response-time of each task τi ∈ Γ is given as follows:

Rh+1
i = Ci +

i−1
∑

j=1

Cj ·
⌈

Rhi
Tj

⌉

(7.1)

The iteration starts with R0
i = Ci and terminates if Rh+1

i = Rhi (schedulable) or

Rh+1
i > Di (unschedulable). The exact schedulability test of the entire task set Γ is

essentially applying the test in Eq. (7.1) for each task.

The exact analysis as given in Eq (7.1) is not directly applicable for the exact fault-

tolerant schedulability analysis of the FTDM scheduling because the worst-case fault

pattern considering the assumed fault model, for which the workload within the problem

window is maximum, is not known in advance. In this chapter, an exact schedulability

condition for FTDM scheduling is derived by computing the exact amount of execution

that needs to be completed within the release time and deadline of each task for the

assumed fault model.

7.3 Related Work

Many approaches exist in the literature for tolerating faults in real-time tasks. Tradi-

tionally, processor failures (permanent faults) are tolerated using Primary and Backup

(PB) approach in which the primary and backups of each task are scheduled on two

different processors [GMM94, OS94, BMR99, AOSM01, KLLS05b, KLLS05a]. Next

chapter deals with algorithm for tolerating permanent processor failures. The discussion

of related work for tolerating processor failures is postponed until next chapter.

Ghosh, Melhem and Mossé proposed fault-tolerant uniprocessor scheduling of ape-

riodic tasks considering transient faults by inserting enough slack in the schedule to

allow for the re-execution of tasks when an error is detected [GMM95]. They assumed

that the occurrences of two faults are separated by a minimum distance. Pandya and

Malek analyzed fault-tolerant RM scheduling on a uniprocessor for tolerating one fault

and proved that the minimum achievable utilization bound is 50% [PM98]. The authors

also demonstrated the applicability of their scheme for tolerating multiple faults if two

faults are separated by a minimum time distance equal to maximum period Tmax of a

task set. In this thesis, the proposed FTDM algorithm can tolerate f task errors within

each of all possible time intervals equal to length Dmax and no restriction is placed in

time distance between occurences of two consecutive faults within Dmax.

118 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

Ghosh et al. derived a utilization bound for RM uniprocessor scheduling for tolerat-

ing single and multiple transient faults using a concept of backup utilization [GMMS98].

To tolerate f transient faults, the utilization of the backup is set to f times the maximum

utilization of any task given that a fault model similar to the one in this thesis is used.

Such reservation of backup can lead to schedule task sets only having very small to-

tal utilization in the fault-free case. Whereas the recovery scheme in [GMMS98] allows

backups to execute at a priority higher than that of the faulty task, the recovery scheme in

this thesis executes backups at the same priority as the faulty task. Sinha and Suri [SS99]

later showed that the proposed protocol in [GMMS98] is in fact faulty.

Liberato, Melhem and Mossé derived both exact and sufficient feasibility condi-

tions for tolerating f transient faults for a set of aperiodic tasks using EDF schedul-

ing [LMM00]. They showed that for a set of n aperiodic tasks in which a maximum of

f faults could occur, the exact test can be evaluated in O(n2 · f) time using a dynamic

programming technique. However, the authors of [LMM00] consider backup of a faulty

task simply as a re-execution of the primary copy and do not consider the execution of a

diverse implementation of a task possibly having a different execution time as backup.

Burns, Davis, and Punnekkat derived an exact fault-tolerant feasibility test for any

fixed-priority system using backup that could be simple re-execution or a diverse imple-

mentation of the same task [BDP96]. This work is extended in [PBD01] to provide the

exact schedulability tests employing check-pointing for fault recovery. In [MdALB03],

de A Lima and Burns proposed an optimal fixed-priority assignment to tasks for fault-

tolerant scheduling based on re-execution. The fixed priorities of the tasks can be

determined in O(n2) time for a set of n periodic tasks. The schedulability analysis

in [BDP96, MdALB03] require the information about the minimum time distance be-

tween any two consecutive occurrences of transient faults within the schedule, and only

considers simple re-execution or exactly one different implementation when an error is

detected. In the latter case, the execution time of the backup is the same regardless of the

number of errors affecting a particular job. This is in contrast to the proposed method in

this thesis where each backup for a particular job may have different execution time.

Based on the last chance strategy of Chetto and Chetto [CC89] (in which backups

execute at late as possible), software faults are tolerated by considering two versions of

each periodic tasks: a primary and a backup [HSW03]. Backups are scheduled as late as

possible using a backward RM algorithm (schedule from backward in time). Similar to

the work in [MdALB03], the work in [HSW03] considers that there is only one backup

for each task and therefore does not have the provision for considering different backups

of the same task if more than one fault affect the same task.

Santos et al. in [SSO05] derived a schedulability condition for determining the com-

binations of faults in jobs that can be tolerated using fault-tolerant RM scheduling of

periodic tasks. The work in [SSO05] is based a notion, called k-RM schedulable (origi-

nally proposed in [SUSO04]). By k-RM schedulable, the authors mean that there are at

least k free time slots available between the release time and deadline of each task. In

order to guarantee that the system can tolerate multiple transient faults for any combina-

tion of faults, all possible fault patterns has to be considered in their derived condition

7.4. PROBLEM FORMULATION 119

which gives an intractable time complexity. Moreover, the authors assumed that a fault

can occur only in the primary copy of a job.

A fault-burst model is recently defined by Many and Doose in [MD11] as a bounded

time interval during which the execution of the tasks are disturbed due to the occurrences

of faults for which the distribution of the faults is unknown. Although [MD11] assumes

arbitrary number of faults in a fault burst, the proposed recovery strategy in fact con-

siders a finite number of errors to be tolerated within an interval of length Dmax where

only one job of each task is assumed to be faulty. In contrast, the proposed FTDM algo-

rithm considers that multiple jobs of the same task can be disturbed due to burst of faults

within an interval of length Dmax.

Aydin in [Ayd07] proposed aperiodic and periodic task scheduling based on an exact

EDF feasibility analysis in which a backup of a task can be different from the primary.

Aydin considers a fault model in which a maximum of f transient errors could occur

in tasks of the aperiodic task set. The schedulability analysis in [Ayd07] is based on

processor demand analysis proposed by Baruah et al. in [BRH90]. For periodic task

systems, the proposed exact feasibility test in [Ayd07] is evaluated inO(N̂2
hyper ·f2hyper)

time, where N̂hyper is the number of jobs released within the first hyper-period (i.e. least

common multiple of all the tasks periods) and fhyper is the number of task errors that

can occur within the first hyper-period.

In this thesis, the derived exact DM feasibility condition has run-time complexity of

O(n · N̂ · f2) where N̂ is the maximum number of jobs of the n sporadic tasks released

within a time interval of length Dmax, and f is the maximum number of task errors that

can occur within any time interval of length Dmax. Therefore, the (pseudo-polynomial)

time complexity of the proposed exact test is more efficient than the exponential time-

complexity of the exact EDF test proposed in [Ayd07].

In summary, most of the work related to developing fault-tolerant scheduling algo-

rithms using time redundancy consider a fault model that is not as general as the fault

model considered in this thesis. In many other works, a relatively restricted fault model

is considered, assuming, for example, that

• the inter-arrival time of two faults must be separated by a minimum distance

[GMM95, PM98, BDP96, MdALB03, PBD01]

• at most one fault may occur in one task [PBD01, HSW03]

• the backup is simply the re-execution of the original task (i.e., does not consider

diverse implementation of the task) [GMM95, PM98, PBD01, LMM00, MD11]

7.4 Problem Formulation

The uniprocessor fault-tolerant scheduling algorithm FTDM proposed in this thesis is

based on an exact schedulability analysis of the tasks. An occurrences of a maximum

of f task errors within each of all possible time intervals of length Dmax is considered.

The f task errors could be distributed over any subset of jobs that are eligible to execute

120 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

within the time interval of length Dmax. Note that a job is eligible to execute between

its release time and its deadline. The problem addressed in this chapter is:

Is the task set Γ FTDM-schedulable if a maximum of f task errors occur

within any time interval of length equal to Dmax?

The exact schedulability condition of task set Γ for the fault-tolerant scheduling algo-

rithm FTDM can be derived based on exact feasibility condition of each task τi ∈ Γ, for

i = 1, 2, . . . n. If a maximum of f task errors can occur within a time interval of length

Dmax, then the maximum number of such errors that can occur within any time interval

of length Di, for i = 1, 2, 3, . . . n, can be at most f . Following this, the last problem

statement can be re-written as:

Is task τi FTDM-schedulable if a maximum of f task errors occur within

any time interval of length equal to Di, for i = 1, 2, . . . n?

If the exact schedulability condition for each task τi ∈ Γ can be determined, then the ex-

act schedulability condition for the entire task set Γ follows immediately. To ensure that

task τi is FTDM-schedulable on uniprocessor, the critical instant for which the workload

imposed by the higher-priority tasks on task τi is maximized needs to be considered in

the fault-tolerant schedule. Under the assumed fault model, the critical instant in the

uniprocessor fault-tolerant schedule is when all the tasks are released at the same time

(as discussed in Section 3.1). In this chapter, without loss of generality, it is assumed

that all the tasks are released simultaneously at time zero. In order to derive the exact

schedulability condition of task τi, it is sufficient to derive the exact schedulability con-

dition for the first job of each task τi ∈ Γ. The first job of task τi become eligible for

execution at time 0 and must finish its execution (including any possible execution of

backup due to faults) before time Di. Consequently, the problem addressed can finally

be re-written as:

Is the first job of task τi FTDM-schedulable if a maximum of f task

errors occur within the time interval [0, Di), for i = 1, 2, . . . n?

In the rest of this chapter, the exact schedulability condition of task τi refers to the exact

schedulability condition of the first job of τi unless otherwise specified. During the

schedulability analysis, the following considerations and assumptions are made:

• The critical instant for each task is at time zero where all the tasks are simultane-

ously released for the first time.

• Considering the critical instant, the workload within the time interval [0, Di) is

maximized if the jobs of each sporadic task is arrived as quickly as possible

(strictly periodic task set).

• Considering the critical instant and strictly periodic releases of the jobs of each

task, the job Jji of task τi is released at time rji = Ti · (j− 1) and has its deadline

at dji = rji +Di.

7.5. LOAD FACTORS AND COMPOSABILITY 121

• An error is assumed to be detected at the end of execution of the primary or

backup. This assumption is necessary for the worst-case schedulability analy-

sis since it corresponds to larger wasted CPU time in comparison to the situation

when the error is detected in the middle of execution.

• There is no fault propagation. One fault is assumed to affect at most one job either

the primary or the backup. And, any primary or backup is affected by at most one

fault since multiple faults affecting the same primary or backup does not cause

any increase in recovery workload according to the FTDM scheduling.

The exact schedulability analysis of task τi within the interval [0, Di) is presented in

Section 7.5. In order to find the worst-case workload required to be completed within

an interval [0, Di) on behalf of the higher priority sporadic tasks, it is not difficult to

see that the work within the interval is maximized under the assumption that the jobs of

the tasks arrive as quickly as possible (as is assumed above). In order to find the exact

schedulability condition, the maximum total work completed within [0, Di) by the jobs

of the tasks {τ1, τ2 . . . τi} is calculated based on two load factors.

In subsection 7.5.1, the first load factor that is equal to the maximum work that needs

to be completed by a job of task τi in [0, Di) is calculated. Then in subsection 7.5.2, the

second load factor that is equal to the maximum work that need to be completed within

[0, Di) by the higher priority jobs of the tasks {τ1, τ2 . . . τi−1} is calculated. This sec-

ond load factor is calculated as follows. First, the different subsets of higher priority

jobs such that all the jobs in each such subset are released at the same time at some time

instant within [0, Di) are determined. Then, based on each of these different subsets, the

execution requirement of all the higher-priority jobs is abstracted by means of two com-

position techniques, called vertical composition and horizontal composition, to find the

maximum work completed by the higher priority jobs within [0, Di) in subsection 7.5.2.

7.5 Load Factors and Composability

In this section, the fundamental theoretical building blocks for the schedulability analy-

sis of task τi within the time interval [0, Di) in terms of load factors and compositions

are derived. To determine whether the first job of task τi is schedulable, the amount of

execution completed by higher-priority jobs within [0, Di) needs to be calculated. Note

that the maximum amount of execution completed by the higher-priority jobs depends

on different fault patterns affecting these higher-priority jobs. By subtracting the max-

imum amount of execution completed by the higher- priority jobs within [0, Di) from

Di, the maximum available time for execution of task τi within [0, Di) can be derived.

To determine whether the available execution time for task τi is enough for its complete

execution within [0, Di), it is needed to know the maximum amount of execution re-

quired to be completed by the first job of task τi. This amount of execution depends on

the number of task errors exclusively affecting task τi within [0, Di).
When analyzing the schedulability of τi, the worst-case workload within [0, Di) is

the maximum execution completed by the jobs of the tasks in set {τ1, τ2 . . . τi} that

122 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

are released within [0, Di). Remember that at most f task errors could occur within

[0, Di). To find this worst-case workload required to be completed within [0, Di) by the

jobs of the tasks in set {τ1, τ2 . . . τi}, one has to consider (i) the occurrences of k task

errors affecting the jobs of the higher-priority tasks (including their backups), and (ii)

the occurrences of (f − k) task errors exclusively affecting the first job of task τi and

its backups, for k = 0, 1, 2, . . . f . In summary, to find the worst-case workload within

[0, Di), the following two workload factors are determined:

1. Load-Factor-i: Execution time required by task τi when (f − k) errors ex-

clusively affect the first job of task τi, for k = 0, 1, 2 . . . f .

2. Load-Factor-HPi: Execution time required by the higher-priority jobs within

[0, Di) when k errors affect these higher-priority jobs in this interval, for k =
0, 1, 2 . . . f .

The worst-case workload within [0, Di) can now be defined as the sum of these two

load factors such that this sum is maximized for some k, 0 ≤ k ≤ f . To meet the

deadline of task τi, the complete execution of task τi (including the execution of its

backups) must take place within the interval [0, Di). However, parts of the execution of

jobs released within [0, Di) and having higher priority than the priority of task τi may

take place outside the interval [0, Di). If the execution of any higher-priority job takes

place outside the interval [0, Di), the execution time beyond time instant Di must not be

accounted in the calculation of Load-Factor-HPi. This is to avoid overestimating

the amount of worst-case workload within the interval [0, Di) and to derive an exact

schedulability test for FTDM scheduling.

If the sum of Load-Factor-i and Load-Factor-HPi, i.e., the maximum

workload in [0, Di), is not greater thanDi, then task τi has enough time to finish its com-

plete execution within [0, Di). Thus, based on the values of the two workload factors, the

exact schedulability condition for task τi is derived in this thesis. The calculation of the

two workload factors (that is, value of Load-Factor-i and Load-Factor-HPi)

are presented in subsection 7.5.1 and subsection 7.5.2, respectively.

7.5.1 Calculation of Load-Factor-i

The value of Load-Factor-i is the execution time required by task τi when (f − k)
task errors exclusively affect task τi, for k = 0, 1, 2 . . . f . If an error is detected after

executing of the primary of the first job task τi, then the first backup of task τi is ready

for execution. If an error is detected at the end of execution of a backup of task τi, then

the next backup of task τi is ready for execution. Remember that the WCET of the bth

backup of task τi is denoted by Ebi , for b = 1, 2 . . . f . The total execution time required

due to the (f−k) errors affecting the primary and backups of a particular job of task τi is

denoted by C (f − k)
i . The value of Load-Factor-i is equal to C

(f − k)
i and has to be

calculated for all k = 0, 1, 2, . . . f . The value of C
(f − k)
i can be recursively calculated

7.5. LOAD FACTORS AND COMPOSABILITY 123

using Eq. (7.2) as follows:

C
(f − k)
i =

Ci if (f − k) = 0

E
(f−k)
i + C

(f − k − 1)
i if (f − k) > 0

(7.2)

The value ofC
(f − k)
i is set equal toCi when (f−k) is equal to 0. When (f−k) is equal

to 0, only the execution time of the primary copy of task τi is considered in Eq. (7.2). In

the recursive part of Eq. (7.2), the execution time of the (f − k)th backup of task τi and

the execution time due to a total of (f − k− 1) task errors affecting task τi are added to

find the value of C
(f − k)
i . Using Eq. (7.2), starting from k = f, (f − 1), . . . 0, the value

C
(f − k)
i can be calculated for all (f − k) = 0, 1, 2 . . . f using a total of O(f) addition

operations. The task τi must complete C
(f − k)
i units of execution within the interval

[0, Di) to tolerate (f − k) task errors that exclusively affect the first job of task τi. The

calculation of Load-Factor-i is now demonstrated using an example.

Example 7.1. Consider a task set {τ1, τ2, τ3} given in Table 7.1 for f=2. The first

column in Table 7.1 represents the name of each task. The second and third columns

represent the relative deadline and period of each task, respectively. The WCET of

the primary copy of each task is given in the fourth column. The fifth and sixth columns

represent the WCET of the first and second (since f = 2, at most two errors can occur in

the same job of any task for the assumed fault model) backups of each task, respectively.

Note that the WCET of a backup of a task may be equal to, greater or smaller than

the WCET of the primary of the corresponding task. Using Eq. (7.2), the amount of

τi Di Ti Ci E1
i E2

i

τ1 10 10 3 2 3
τ2 15 15 3 4 2
τ3 40 40 9 8 6

Table 7.1: Example task set with f=2 backups for each task

execution time required for each task τi due to (f − k) task errors exclusively affecting

task τi is calculated in Eq. (7.3) for k = 0, 1, 2 and f = 2 as follows:

For task τ1, For task τ2, For task τ3,

C0
1 = C1 = 3 C0

2 = C2 = 3 C0
3 = C3 = 9

C1
1 = E1

1 + C0
1 = 5 C1

2 = E1
2 + C0

2 = 7 C1
3 = E1

3 + C0
3 = 17 (7.3)

C2
1 = E2

1 + C1
1 = 8 C2

2 = E2
2 + C1

2 = 9 C2
3 = E2

3 + C1
3 = 23

The task set in Table 7.1 is used in the rest of this chapter as the running example. The

calculation of the value of Load-Factor-HPi is presented in next subsection.

124 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

7.5.2 Calculation of Load-Factor-HPi

The value of Load-Factor-HPi is the maximum execution time completed within

[0, Di) by the jobs having higher priority than the priority of task τi, when k errors

affect these higher-priority jobs within [0, Di). If the execution of some of these higher-

priority jobs takes place outside [0, Di), then only the execution that takes place within

[0, Di) must be considered in the calculation of Load-Factor-HPi. This is a very

crucial issue in determining the value of Load-Factor-HPi, as can be seen in the

following example.

Example 7.2. Consider the first job of task τ2 in Table 7.1 that is to be scheduled within

the interval (0, 15] since D2 = 15. Assume that jobs of the only higher priority task τ1
are released as soon as possible: J1

1 and J2
1 are the jobs that are released within the

interval [0, 15) and have higher priority than the priority of task τ2. The primary of each

of the jobs J1
1 and J2

1 executes within the interval [0, 3) and [10, 13), respectively.

0 2 4 6 8 10 12 14 16 18 20 t

✲

↓ ↓ ↓

J1
1 J2

1 J2
1 J2

1

First

Fault

Second

Fault

Execution time by jobs J1
1

and J2
1 within [0, 15) is 8

✛ ✲

Figure 7.1: Schedule of jobs J1
1 and J2

1 . The downward vertical arrows denotes the arrival time

of the jobs of τ1. The two errors occur in the primary and the first backup of job J2
1 . The maximum

amount of total execution by the jobs J1
1 and J2

1 due to the two errors is equal to 11. However, the

amount of maximum total execution by the jobs J1
1 and J2

1 within the interval [0, 15) is 8, not 11.

Now, consider a 2-fault pattern in which the first and the second errors affect the

primary and the first backup of job J2
1 , respectively. The detection of the second error in

the first backup of job J2
1 triggers the execution of the second backup of job J2

1 . The first

and second backups of job J2
1 executes within the interval [13, 15) and [15, 18), respec-

tively. The schedule of the jobs J1
1 and J2

1 including the execution of the backups for

the considered 2-fault pattern is shown in Figure 7.1. The total execution time required

by the higher-priority jobs J1
1 and J2

1 is (3 + 3 + 2 + 3) = 11 time unit (including time

for recovery). Notice that, the second backup of job J2
1 executes outside the interval

[0, D2). The maximum execution time by the jobs J1
1 and J2

1 within the interval [0, D2)
is equal to (3 + 3 + 2) = 8, not 11 for the considered 2-fault pattern.

When calculating the worst-case workload in [0, Di) to derive the exact FTDM schedu-

lability test of task τi, the value of Load-Factor-HPi must not be overestimated. To

7.5. LOAD FACTORS AND COMPOSABILITY 125

calculate the value of Load-Factor-HPi, the jobs that are released within interval

[0, Di) and have higher priority than the priority of task τi need to be determined. The

set of jobs having higher-priority than the priority of task τi is denoted by a set HPJi
such that each job in set HPJi is released within the interval [0, Di). That is, the set

HPJi is defined in Eq. (7.4) as follows:

HPJi = {Jqp | p < i and rqp < Di} (7.4)

where rqp = Tp · (q − 1) and q = 1, 2, According to Eq. (7.4), if job Jqp ∈ HPJi,
then task τp has shorter deadline (that is, higher priority1) than task τi and the release

time of job Jqp (that is, value of rqp defined in Eq. (3.1)) is less than Di. Each of the

higher-priority jobs in set HPJi is eligible for execution at or after its release time within

[0, Di). In the case of our running example, the sets HPJi for i = 1, 2, 3 are determined

for the three tasks in Table 7.1.

Example 7.3. Using Eq. (7.4) for the task set in Table 7.1 we have,

[0, D1) = [0, 9) and HPJ1 = ∅
[0, D2) = [0, 15) and HPJ2 = {J1

1 , J2
1 } (7.5)

[0, D3) = [0, 20) and HPJ3 = {J1
1 , J2

1 , J3
1 , J4

1 , J1
2 , J2

2 , J3
2 }

Remember that N̂ is the maximum number of jobs that are released within the time

interval [0, Dmax). Therefore, the number of jobs having higher priority than the priority

of task τi that are released within [0, Di) is at most N̂ . If the release time of a higher-

priority job Jqp is earlier than Di, then Jqp is included in HPJi. Therefore, the time

complexity to find the set HPJi is O(N̂).
When considering the FTDM schedulability of the first job of task τi, the value of

Load-Factor-HPi for a k-fault pattern such that the k errors affect the jobs in set

HPJi needs to be calculated for k = 0, 1, . . . f . The value of Load-Factor-HPi is

a measure of how much computation is completed within the interval [0, Di) by the

higher-priority jobs in set HPJi due to the k-fault pattern. The amount of computation

completed by the jobs in set HPJi within [0, Di) depends on how much workload is

requested by the jobs in HPJi due to the k-fault pattern. Aydin in [Ayd07] used a

dynamic programming technique to compute the maximum workload requested by a set

of aperiodic tasks due to a k-fault pattern. Using an approach similar to that in [Ayd07],

the maximum workload requested by a set of higher-priority jobs that are all released at

a particular time instant t within the time interval [0, Di) is computed.

The maximum workload requested by a set of jobs in set A, all released at a partic-

ular time instant t, is denoted by function Lk(A) for a k-fault pattern2. Note that the

value of Lk(A) is the maximum workload requested by the jobs in set A, not the actual

1Ties between the deadlines of two tasks can be broken arbitrarily.
2The jobs in set A are released at time t. The time instant t is not included in function Lk(A) and can be

understood from the context. Although the value of Lk(A) can be calculated independent of t, the context t
is important for the schedulability analysis as will be evident shortly.

126 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

amount of execution by the jobs in set A within [0, Di) because some of the work-

load may need to be executed after [0, Di). The function Lk(A) is defined recursively

(similar to [Ayd07], but the difference being that all the jobs in set A have the same

release time) in Eq. (7.6) and Eq. (7.7). The basis of the recursion is defined in Eq. (7.6)

considering exactly one job Jyx exists in set A, for k = 0, 1, 2, . . . f , as follows

Lk({J
y
x}) = Ckx (7.6)

The value of Lk({J
y
x}) represents the amount of execution time requested by job Jyx

when k errors exclusively affect the primary and backups of job Jyx . Remember that the

value of Ckx is defined in Eq. (7.2) as the maximum amount of execution time required

by the task τx when k errors exclusively affect a particular job of this task. The value of

Ckx in the right hand side of Eq. (7.6) can be calculated using Eq. (7.2) in O(f) time,

for all k = 0, 1, 2 . . . f .

By assuming that the value of Lk(A) is known, the value of Lk(A ∪ {Jyx}) is com-

puted recursively, for k = 0, 1, 2 . . . f , as follows:

Lk(A ∪ {Jyx}) =
k

max
q=0

{

Lq(A) + Lk−q({J
y
x})

}

(7.7)

In Eq. (7.7), the value of Lk(A ∪ {Jyx}) is maximum for one of the (k + 1) possible

values of q, where 0 ≤ q ≤ k, for the right hand side of Eq. (7.7). The value of q
is selected such that, if q errors occur in the jobs in set A and (k − q) errors occur

exclusively in job Jyx , then Lk(A ∪ {Jyx}) is at its maximum for some q, 0 ≤ q ≤ k.

The working of Eq. (7.7) is now demonstrated using an example.

Example 7.4. Consider the lowest-priority task τ3 given in Table 7.1. The jobs, having

higher priority than the priority of task τ3, that are released at time t = 0 are in the set

A={J1
1 , J1

2 }. To determine the maximum workload requested by the higher-priority jobs

in setA={J1
1 , J1

2 } due to a k-fault pattern, one needs to calculate the value of Lk(A). To

calculate Lk(A), the base in Eq. (7.6) for each of the jobs in set A need to be computed

considering the occurrences of k errors exclusively affecting that job. Since f is equal

to 2, the possible values of k are 0, 1 and 2.

According to Eq. (7.3), the maximum execution time required for job J1
1 is C0

1 =3,

C1
1 =5 and C2

1 =8 for k = 0, k = 1 and k = 2 errors exclusively affecting job J1
1 ,

respectively. The maximum execution time required for job J1
2 is C0

2 =3, C1
2 =7 and

C2
2 =9 for k = 0, k = 1 and k = 2 errors exclusively affecting job J1

2 , respectively

(according to Eq. (7.3)). Using the base of the recursion in Eq. (7.6), we have

L0({J
1
1 }) = C0

1 = 3 L1({J
1
1 }) = C1

1 = 5 L2({J
1
1 }) = C2

1 = 8

L0({J
1
2 }) = C0

2 = 3 L1({J
1
2 }) = C1

2 = 7 L2({J
1
2 }) = C2

2 = 9

Using Eq. (7.7), the value of Lk(A) for k = 0, 1, 2 and A={J1
1 ,J1

2 } can be calculated

7.5. LOAD FACTORS AND COMPOSABILITY 127

as follows:

L0({J
1
1 , J1

2 }) =
0

max
q=0

{

Lq({J
1
1 }) + L0−q({J

1
2 })

}

= L0({J
1
1 }) + L0({J

1
2 })

= 3 + 3 = 6

L1({J
1
1 , J1

2 }) =
1

max
q=0

{

Lq({J
1
1 }) + L1−q({J

1
2 })

}

= max
{

L0({J
1
1 }) + L1({J

1
2 }) ,

L1({J
1
1 }) + L0({J

1
2 })

}

= max {3 + 7, 5 + 3} = 10

L2({J
1
1 , J1

2 }) =
2

max
q=0

{

Lq({J
1
1 }) + L2−q({J

1
2 })

}

= max
{

L0({J
1
1 }) + L2({J

1
2 }) ,

L1({J
1
1 }) + L1({J

1
2 }) ,

L2({J
1
1 }) + L0({J

1
2 })

}

= max {3 + 9, 5 + 7, 8 + 3} = 12

The maximum amount of workload requested by the jobs in set A={J1
1 ,J1

2 } is L0(A)=6,

L1(A)=10, and L2(A)=12 for k = 0, 1 and 2-fault-patterns, respectively.

Time complexity to calculateLk(A ∪ {Jyx }): There are (|A|+1) jobs in set (A∪ {Jyx}).

For each one of the (|A|+ 1) jobs, evaluating the base case using Eq. (7.6) can be done

using Eq. (7.2) in O(f) steps for all k = 0, 1, 2, . . . f . Therefore, evaluating the base for

all the jobs in set (A∪ {Jyx}) requires [(|A|+ 1) ·O(f)]= O(|A| · f) operations.

For the recursive step, if the value of Lk(A) is known, then there are (k + 1) pos-

sibilities for the selection of q in Eq. (7.7) to compute Lk(A ∪ {Jyx}) for a given k,

0 ≤ k ≤ f . Therefore, computing Lk(A ∪ {Jyx}) requires O(k) operations (k+1 addi-

tions and k comparisons) for a particular k and given that Lk(A) is known. Given that

the values of Lk(A) are known for all k = 0, 1, 2, . . . f , then computing Lk(A ∪ {Jyx})
for all k = 0, 1, . . . f requires total O(0 + 1 + 2 . . . f)=O(f2) operations.

Starting with one job in setA, a new job Jyx is considered when computing the value

ofLk(A ∪ {Jyx}). By including one job Jyx in the setA at each step, the set (A∪{Jyx}) is

finally formed. Therefore, for all the jobs in the set (A∪{Jyx}), the total time complexity

to recursively compute the value of Lk(A ∪ {Jyx}) is equal to [(|A| + 1) · O(f2)] =
O(|A| · f2). Consequently, the total time complexity for the base and recursive steps to

compute Lk(A ∪ {Jyx}) is O(|A| · f + |A| · f2)= O(|A| · f2).

As mentioned before, the value of Load-Factor-HPi is the maximum execution

completed within the interval [0, Di) by the jobs having higher priorities than the priority

of task τi for a k-fault pattern. The maximum execution completed by the set of higher-

priority jobs within [0, Di) may not be same as the maximum workload requested by

128 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

this set of higher-priority jobs for a k-fault pattern.

Remember that the value of Lk(A) is calculated considering that all the jobs in set

A are released at the same time, say at time t. Consider that the set A contains the jobs

having higher priority than the priority of task τi and all the jobs in set A are released

at time t. If the value of Lk(A) is greater than (Di − t), then the maximum amount of

work completed by the higher-priority jobs in set A within the interval [0, Di) is at most

(Di − t) using the work-conserving algorithm FTDM. If Lk(A) is less than or equal to

(Di − t), then the maximum amount of work that can be completed by the jobs in set

A within the interval [0, Di) is at most Lk(A). This crucial observation is later used to

compose the workload of the higher priority jobs within the interval [0, Di).
In order to find the amount of execution completed by the jobs of the higher-priority

tasks within the time interval [0, Di), the higher-priority jobs released at different time

instants within the time interval [0, Di) are composed. A composed task is not an actual

task in the system rather a way to represent the execution of a collection of higher-

priority jobs in a compact (composed) way. The execution time of a composed task

(formally defined later) represents the maximum amount of execution within the inter-

val [0, Di) if the jobs represented by the composed tasks have exclusive access to the

processor within the interval [0, Di). In other words, the execution time of a composed

task is the amount of maximum execution within the interval [0, Di) if only the jobs

represented by the composed task are allowed to execute within the interval [0, Di).
The composition of the higher-priority tasks are done in two steps: first by verti-

cal composition and then by horizontal composition. Each vertically-composed task

abstracts the higher-priority jobs that are all released at a particular time instant within

[0, Di). Each horizontally-composed task abstracts the higher-priority jobs that are ab-

stracted by more than one vertically-composed task. Horizontal composition is pre-

sented next following vertical composition.

Vertical Composition

Consider a set of all jobs that are released at time instant t, t < Di and have higher

priority than the priority of task τi. To compactly represent these higher-priority jobs, a

vertically-composed task, denoted by V{t}, is defined such that the composed task V{t}

abstracts the set of higher-priority jobs that are all released at time t where 0 ≤ t <
Di. The execution time of the composed task V{t} (formally calculated later) denotes

the maximum amount of execution that can be completed within [0, Di) by the higher-

priority jobs that are released at time t such that only the jobs represented by V{t} are

allowed to execute within [0, Di). One vertically-composed task is formed for each time

instant within [0, Di) at which new higher-priority jobs are released.

Example 7.5. Consider the schedulability of task τ3 in Table 7.1. The first job of task

τ3 is released at time 0 and has its deadline by time D3 = 40. The tasks τ1 and τ2 are

the higher-priority tasks of τ3. The releases of the higher-priority jobs at different time

instants within the interval [0, 40) is shown in Figure 7.2 using downward arrows by

assuming strictly periodic arrival of the jobs.

7.5. LOAD FACTORS AND COMPOSABILITY 129

0 5 10 15 20 25 30 35 40 t

✲

↓ ↓ ↓

↓ ↓ ↓ ↓

τ2

τ1

V{0} V{10} V{15} V{20} V{30}
✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

Deadline of τ3

Figure 7.2: Five vertically-composed tasks are shown using vertically long ovals at time instants

0, 10, 15, 20, and 30. Each vertically-composed task at time t abstracts all the newly released

higher-priority jobs of task τ3 that are released at time t within the time interval [0, 40).

New jobs of the higher-priority tasks are released at time instants 0, 10, 15, 20 and 30.

At each of these five time instants, a vertically-composed task is formed (that abstracts

the released jobs shown in each oval in Figure 7.2). The five composed tasks are denoted

by V{0},V{10},V{15},V{20} and V{30} in Figure 7.2.

To form the vertically-composed tasks, the different time points in [0, Di) where new

jobs of the higher-priority tasks are released need to be determined. The set of time

points, denoted by Si, where jobs having higher priority than the priority of task τi are

released within the interval [0, Di) is given by Eq. (7.8) as follows:

Si = {k · Tj | j = 1 . . . (i− 1), k = 0 . . .

⌊

Di

Tj

⌋

} − {Di} (7.8)

Each of the time points in set Si are less than Di and are nonnegative integer multiples

of the periods of the higher-priority task τj for j = 1, 2, . . . (i− 1) assuming the critical

instant (i.e., all the tasks first arrives at time 0). Since the higher-priority jobs released at

or beyond time instant Di will not execute prior to time instant Di, it is necessary that

all the time points in set Si are less than Di (that is, before the deadline of the first job

of task τi). At each of the time points in set Si, new higher-priority jobs are released by

assuming that jobs of the higher priority tasks are released as quickly as possible.

Example 7.6. Consider the task set given in Table 7.1. Using Eq. (7.8), we have

S1 = {}
S2 = {0, 10} − {15} = {0, 10} (7.9)

S3 = {0, 10, 15, 20, 30, 40} − {40} = {0, 10, 15, 20, 30}

The jobs having higher priorities than that of task τi are released at each of the time

points in set Si. Remember that there are at most N̂ jobs released within any interval of

length Dmax. The time points in Si are integer multiples of the periods of the higher-

priority tasks. Therefore, the run-time complexity to compute Si is O(N̂).

130 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

During the schedulability analysis of task τi, we have to consider each time point

in set Si where some new higher-priority jobs of task τi are released. For each s ∈ Si,
a vertically-composed task V{s} is formed. In the case of the example in Table 7.1,

when analyzing the schedulability of task τ3, one vertically-composed task for each s ∈
S3 ={0,10,15,20,30} is formed (see the five vertically-composed tasks in Figure 7.2).

The vertically-composed task V{s} for s ∈ Si abstracts the set of higher-priority jobs

from set HPJi that are all released at time s. To find the execution time of a vertically-

composed task at time s ∈ Si, the higher-priority jobs in set HPJi that are released at

time instant s need to be determined. The set Reli,s denotes the higher-priority jobs of

task τi that are released at time s. The set Reli,s is given in Eq. (7.10) as follows:

Reli,s = {Jqp | Jqp ∈ HPJi and rqp = s} (7.10)

The set Reli,s contains the jobs that are released at time s and are of higher priority

than task τi. If job Jqp is in set Reli,s, then job Jqp is in set HPJi and the release time of

job Jqp is equal to time instant s, that is, s is equal to rqp. The condition in Eq. (7.10) is

to be evaluated for each job in set HPJi. Since there are at most N̂ jobs released within

any time interval of length Dmax, the number of jobs in set HPJi is O(N̂). The job Jqp
∈ HPJi is stored in set Reli,s if the release time rqp is equal to s. By selecting one by

one job Jqp from set HPJi, the job Jqp can be stored in the appropriate set Reli,s such

that the release time rqp of job Jqp is equal to s. Therefore, the time complexity to find

Reli,s for all s ∈ Si is equal to O(N̂).

Example 7.7. Consider the example task set in Table 7.1. Since there are no higher-

priority jobs of task τ1, the set HPJ1 = ∅. For tasks τ2 and τ3 we have S2 ={0, 10}

and S3 ={0, 10, 15, 20, 30}, respectively, according to Eq. (7.9). The set, Reli,s, of

higher-priority jobs released at different time instant s ∈ Si for i = 2 and i = 3 are

given in Eq. (7.11) as follows:

Rel2,0 = { J1
1 } Rel2,10 = { J2

1 }

Rel3,0 = { J1
1 , J1

2 } Rel3,10 = {J2
1 }

Rel3,15 = {J2
2 } Rel3,20 = {J3

1 }

Rel3,30 = {J3
2 , J4

1 }

(7.11)

The jobs in set Reli,s are of higher priority than that of the task τi and all these higher-

priority jobs are released at time s. For each s ∈ Si, the vertically-composed task V{s}

abstracts the jobs in set Reli,s. What follows next is the technique to calculate the

execution time of a vertically-composed task V{s}.

The execution time of the vertically-composed task V{s} is denoted by the function

w(k,{s}) for a k-fault pattern only affecting the jobs in set Reli,s. If no jobs other

than the jobs in set Reli,s are allowed to execute within the interval [0, Di), then the

value of w(k,{s}) represents the maximum amount of execution that can be com-

pleted by the jobs in set Reli,s within the interval [0, Di) for a k-fault pattern.

7.5. LOAD FACTORS AND COMPOSABILITY 131

The value of Lk(Reli,s) is the maximum amount of workload requested by the jobs

abstracted by the vertically-composed task V{s}. The set of jobs released at time s can

complete, using work conserving algorithm FTDM, at most (Di − s) amount of work

within [0, Di) if Lk(Reli,s) is greater than (Di − s). Otherwise, the maximum amount

of work completed by the set of jobs released at time s is Lk(Reli,s). To this end, the

execution time of V{s} for k = 0, 1, 2, . . . f is defined in Eq. (7.12) as follows:

w(k,{s})= min {Lk(Reli,s) , (Di − s) } (7.12)

The value w(k,{s}) represents the maximum amount of execution completed by the

jobs released at time s within the interval [0, Di) if no jobs other than the jobs in set

Reli,s are allowed to execute within the interval [0, Di). The calculation of w(k,{s})
is shown next for the running example.

Example 7.8. Consider the task set in Table 7.1. When considering the schedulability

of task τ1, there is no higher-priority jobs of task τ1. Therefore, no vertically-composed

task is formed since set S1 is empty.

For s = 0 and k = 0 For s = 10 and k = 0
w(0,{0}) w(0,{10})
= min{L0(Rel2,0), Di − 0} = min{L0(Rel2,10), Di − 10}
= min{L0(Rel2,0), 15− 0} = min{L0(Rel2,10), 15− 10}
= min{L0({ J

1
1 }), 15} = min{3, 15} = 3 = min{L0({ J

2
1 }), 5} = min{3, 5} = 3

For s = 0 and k = 1 For s = 10 and k = 1
w(1,{0}) w(1,{10})
= min{L1(Rel2,0), Di − 0} = min{L1(Rel2,10), Di − 10}
= min{L1(Rel2,0), 15− 0} = min{L1(Rel2,10), 15− 10}
= min{L1({ J

1
1 }), 15} = min{5, 15} = 5 = min{L1({ J

2
1 }), 5} = min{5, 5} = 5

For s = 0 and k = 2 For s = 10 and k = 2
w(2,{0}) w(2,{10})
= min{L2(Rel2,0), Di − 0} = min{L2(Rel2,10), Di − 10}
= min{L2(Rel2,0), 15− 0} = min{L2(Rel2,10), 15− 10}
= min{L2({ J

1
1 }), 15} = min{8, 15} = 8 = min{L2({ J

2
1 }), 5} = min{8, 5} = 5

Table 7.2: Calculation of w(k,{s}) for vertical composition at each s ∈ S2 for k = 0, 1, 2.

The left column show the execution time w(k,{0}) of the vertically-composed task V{0} for

k = 0, 1, 2 faults and the right column show the execution time w(k,{10}) of the vertically-

composed task V{10} for k = 0, 1, 2 faults.

When considering the schedulability of task τ2, there are higher-priority jobs that

are released within [0, D2). To find the vertical compositions of the higher-priority jobs,

132 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

the following information is used:

S2 = {0, 10} from Eq. (7.9)

D2 = 15 from Table 7.1

Rel2,0 = { J1
1 } for s = 0 from Eq. (7.11)

Rel2,10 = { J2
1 } for s = 10 from Eq. (7.11)

Two vertically-composed tasks are formed since there are two time points in set S2 =
{0, 10}. The two vertically-composed tasks are V{0} and V{10}. For each vertically-

composed task, the amount of execution time in [0, D2) can be determined for k = 0, 1, 2
(since f = 2) using Eq. (7.12). The value of w(k,{s}) for the composed task V{s}

using Eq. (7.12) is calculated in Table 7.2 for k = 0, 1, 2 and s = 0, 10.

When considering the schedulability of task τ3, there are higher-priority jobs that

are eligible for execution within [0, D3). To find the vertical compositions of the higher-

priority jobs, the following information is used:

S3 = {0, 10, 15, 20, 30} from Eq. (7.9)

D3 = 40 from Table 7.1

Rel3,0 = { J1
1 , J1

2 } for s = 0 from Eq. (7.11)

Rel3,10 = { J2
1 } for s = 10 from Eq. (7.11)

Rel3,15 = { J2
2 } for s = 15 from Eq. (7.11)

Rel3,20 = { J3
1 } for s = 20 from Eq. (7.11)

Rel3,30 = { J4
1 , J3

2 } for s = 30 from Eq. (7.11)

Five vertically-composed tasks are formed since there are five time points in S3 at each

of which new higher-priority jobs are released. The five vertically-composed tasks are

V{0}, V{10}, V{15}, V{20} and V{30}. For each vertically-composed task V{s}, the value

of w(k,{s}) for k = 0, 1, 2 is given in each row of Table 7.3 for k = 0, 1, 2 and

s = 0, 10, 15, 20, 30.

V{s} k = 0 k = 1 k = 2
V{0} w(0,{0})=6 w(1,{0})=10 w(2,{0})=12

V{10} w(0,{10})=3 w(1,{10})=5 w(2,{10})=8

V{15} w(0,{15})=3 w(1,{15})=7 w(2,{15})=9

V{20} w(0,{20})=3 w(1,{20})=5 w(2,{20})=8

V{30} w(0,{30})=6 w(1,{30})=10 w(2,{30})=10

Table 7.3: The value of w(k,{s}) for each s ∈ S3 and for k = 0, 1, 2. The k faults affect the

higher-priority jobs that are released at time s ∈ S3.

7.5. LOAD FACTORS AND COMPOSABILITY 133

Run-time complexity for vertical composition: Calculating Reli,s for all s ∈ Si
needs totalO(N̂) operations. CalculatingLk(Reli,s) for set Reli,s requiresO(|Reli,s|·
f2) operations for all k = 0, 1, 2, . . . f . There are at most N̂ jobs that are released

within any time interval of length Dmax. Therefore, the number of total jobs having

higher priority than the priority of task τi that are released in all the time points in

set Si is equal to O(N̂). In other words,
∑

s∈Si
|Reli,s| = O(N̂). Therefore, the

computational complexity of all the vertical compositions in all time points s ∈ Si is

[O(N̂)+O(
∑

s∈Si
|Reli,s| · f2)]=O(N̂ · f2).

For each s ∈ Si, a vertically-composed task V{s} is formed. The vertically-composed

task V{s} has execution time w(k,{s}) considering a k-fault pattern for k = 0, 1, 2 . . . f .

Within the interval [0, Di), there may be more than one vertically-composed task. In

our running example, there are five vertically-composed task within [0, D3) as shown

in Figure 7.2 for the schedulability analysis of task τ3. The higher-priority jobs repre-

sented by two or more vertically-composed tasks will execute in [0, Di). Notice that

the execution of the jobs represented by two or more vertically-composed tasks may

not be completely independent. Some jobs in one vertically-composed task may in-

terfere or be interfered by the execution of some jobs in another vertically-composed

task within [0, Di). By considering such effect of one composed task over another, the

vertically-composed tasks are further composed using horizontal composition to calcu-

late Load-Factor-HPi.

Horizontal Composition

A horizontally-composed task is formed by composing two or more vertically-composed

tasks. To see how this composition works, consider two different time points s1 and s2
in set Si such that s1 < s2. For these two time points, two vertically-composed tasks

V{s1} and V{s2} are formed during vertical composition. A horizontally-composed task,

denoted by H{s1, s2}, is formed by composing the two vertically composed tasks V{s1}

and V{s2}. The task H{s1, s2} abstracts all the jobs of the higher-priority tasks than the

priority of task τi that are released at time instants s1 and s2.

The execution time of this new horizontally-composed task H{s1, s2} is denoted by

w(k,{s1, s2}) and must not be greater than (Di−s1). This is because the earliest time

at which the jobs represented by the the composed task H{s1, s2} can start execution is

at time s1 since s1 < s2. Note that, if 0 ∈ {s1, s2}, then w(k,{s1, s2}) must not

be greater than Di. The value of w(k,{s1, s2}) represents the maximum execution

exclusively by the jobs released at time s1 and s2 within the time interval [0, Di).

When considering the schedulability of task τi, there are a total of |Si| time in-

stants at each of which a vertically-composed task is formed. To calculate the value of

Load-Factor-HPi, one has to find the final horizontally-composed task HSi
with

execution time w(k,Si) for all k = 0, 1, 2 . . . f . The value of w(k,Si) is the amount

of execution completed by the higher-priority jobs that are released within the time in-

stants in set Si in [0, Di). Since set Si contains all the time instants where jobs of

higher-priority task are released, the value of w(k,Si)is Load-Factor-HPi.

134 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

To find the horizontally-composed taskHSi
, total (|Si|−1) horizontal compositions

are needed. Starting with two vertically-composed tasks, a new horizontally-composed

task is first formed. This horizontally-composed task is further composed with a third

vertically-composed task to form the second horizontally-composed task. This process

continues until all the vertically-composed tasks are considered in the horizontal com-

positions. Note that a vertically-composed task has no priority associated with it. The

jobs (primary and backups) abstracted by a vertically-composed tasks have DM priori-

ties. Therefore, the order of execution of the jobs abstracted by a horizontally-composed

task is determined by the DM priorities of the jobs that are abstracted by the constituent

vertically-composed tasks.

The first horizontally-composed task abstracts all higher-priority jobs released at two

points that are in set Si. The last (final) horizontally-composed task abstracts all the jobs

that are released at all time points in set Si. For example, the five vertically-composed

tasks in Figure 7.2 are composed horizontally as shown in Figure 7.3.

0 5 10 15 20 25 30 35 40 t

✲

↓ ↓ ↓

↓ ↓ ↓ ↓

τ2

τ1

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

✞

✝

☎

✆

✄
✂

�
✁

✄
✂

�
✁

✄
✂

�
✁

✄
✂

�
✁

H{0,10}

H{0,10, 15}

H{0,10,15, 20}

H{0,10,15,20,30}

V{0} V{10} V{15} V{20} V{30} Deadline of τ3

Figure 7.3: Four horizontal compositions (horizontally longer ovals) are shown for the five

vertically-composed tasks (vertically longer ovals). The four horizontally-composed tasks are

H{0,10}, H{0,10, 15}, H{0,10, 15, 20} and H{0,10,15,20,30}. The execution time of H{0,10,15,20,30} is the value

of Load-Factor-HPi.

The technique to find the execution time of a horizontally-composed task is demon-

strated next. If there are c time points in the set Si, then the set Si is represented as

Si={s1, s2 . . . sc} where si < si+1. According to Eq. (7.8), the set Si contains the time

point 0 and therefore, s1 = 0. The first x time points in Si is denoted by set

p(x) = {sl | l ≤ x and sl ∈ Si}

Therefore, the set p(x) ={s1, s2 . . . sx} for x = 1, 2 . . . c. For example, we have

p(1) ={s1}={0}, p(2) ={s1, s2}={0, s2}, and p(c) ={s1, s2 . . . sc}=Si.
We start composing the first two vertically-composed tasks horizontally. The hor-

izontal composition of the first two vertically-composed tasks V{s1} and V{s2} is de-
noted by the composed task Hp(2)=H{s1, s2}. The execution time of V{s1} and V{s2}

are w(k,{s1}) and w(k,{s2}), respectively (can be computed using Eq.(7.12)). The

7.5. LOAD FACTORS AND COMPOSABILITY 135

execution time of Hp(2)is denoted by w(k,p(2)) = w(k,{s1, s2}) and is given in
Eq. (7.13) as follows, for k = 0, 1, 2, . . . f :

w(k,p(2)) =
k

max
q=0

{

min
{

[w(q,{s1})+ w(k-q,{s2})], Di

}

}

(7.13)

The calculation of the value of w(k,p(2))in Eq. (7.13) considers the sum of the exe-

cution time of tasks V{s1} and V{s2} considering respectively q and (k − q) fault pattern

such that the sum is maximized for some q, 0 ≤ q ≤ k. Since the amount of execution

within the interval [0, Di) by the higher-priority jobs released at time s1 and s2 can not

be greater than (Di−s1) = (Di−0) =Di, the minimum of this sum (for some q) andDi

is determined to be the value of w(k,p(2)) in Eq. (7.13). This is because the earliest

time that higher-priority jobs can start execution is at time s1 = 0.

By assuming that the value of w(k,p(x)) is known for the horizontally-composed
tasks Hp(x), a new horizontally-composed task Hp(x+1)=Hp(x) ∪ {sx+1} is formed. The
execution time w(k,p(x+1)) of the horizontally-composed task Hp(x+1)is given in
Eq. (7.14), for k = 0, 1, 2, . . . f , as follows:

w(k,p(x+1)) = w(k,p(x) ∪ {sx+1})

=
k

max
q=0

{

min
{

[w(q,p(x))+ w(k-q,{sx+1})], Di

}

}

(7.14)

The execution time w(k,p(x+1)) of the new horizontally-composed task Hp(x+1) is

calculated by finding the sum of the execution time of the horizontally composed task

Hp(x) and the execution time of a new vertically-composed task V{sx+1}. The value of

this sum is maximized by considering q fault-pattern in task Hp(x) and (k − q) fault-

pattern in task V{sx+1}, for some q, 0 ≤ q ≤ k. Since the amount of execution within

the interval [0, Di) can not be greater than (Di − s1) = (Di − 0) = Di, the minimum of

this sum (for some q) and Di is the value of w(k,p(x+1)) in Eq. (7.14).

Using Eq. (7.14), the execution time w(k,Si) of the final horizontally-composed

task HSi
=Hp(|Si|) can be determined, for k = 0, 1, 2 . . . f . The value of w(k,Si) is

the value of Load-Factor-HPi for k = 0, 1, 2 . . . f . Before the calculation of the

execution time of horizontally-composed task is demonstrated using an example, the

run-time complexity of horizontal composition is derived.

Run time complexity of horizontal compositions: There are total (|Si| − 1) horizon-

tal composition for |Si| vertically-composed tasks when considering the schedulability

analysis of task τi. When considering the schedulability of a task τi, for each horizontal

composition, there are (k+1) possibilities for q, 0 ≤ q ≤ k, in Eq. (7.14). For each value

of q, there is one addition and one comparison operation. Therefore, total (2·(k+1)) op-

erations are needed for one horizontal composition for each k. For all k = 0, 1, 2 . . . f ,

each horizontal composition requires total [2+4+6+ . . . 2 · (f+1)]=O(f2) operations.

Given all the |Si| vertical compositions, there are a total of [(|Si|−1) ·O(f2)]= O(|Si| ·
f2) operations for all the (|Si|−1) horizontal compositions. Note that |Si|=O(N̂) since

there are at most N̂ time instants where new higher-priority jobs are released. Therefore,

136 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

finding the Load-Factor-HPi for one task τi is O(N̂ · f2). The time complexity to

find the execution time of vertically-composed tasks is O(N̂ ·f2). Therefore, total time

complexity for the vertical and horizontal composition when considering the schedula-

bility of task τi is O(N̂ · f2 + N̂ · f2)=O(N̂ · f2).
Now the calculation of Load-Factor-HPi (that is, the value of w(k,Si)) using our

running example is presented.

Example 7.9. For task τ1, we have S1 = ∅ from Eq. (7.9). Therefore, no vertical

composition, and hence no horizontal composition is needed.

For task τ2, we have S2 = {0, 10}. Using vertical composition, we have two

vertically-composed tasks V{0} and V{10}. The execution time w(k,{s}) of the vertically-

composed task for s = 0 and k = 0, 1, 2 fault patterns are w(0,{0})=3, w(1,{0})=5,

and w(2,{0})=8 (given in the first column of Table 7.2 in page 131). Similarly, the

execution time w(k,{s}) of the vertically-composed task for s = 10 and k = 0, 1, 2
fault patterns are determined as w(0,{10})=3, w(1,{10})=5 and w(2,{10})=5

(given in the second column of Table 7.2 in page 131).

The two vertically-composed tasks V{0} and V{10} are horizontally-composed asH{0, 10}

and its execution time w(k,{0,10}) using Eq.(7.13) is calculated in Table 7.4 for

k = 0, 1, 2. Form Table 7.4, when considering the schedulability of task τ2, the amount

of execution completed by the higher-priority jobs within [0, 15) is 6, 8 and 11 for k=0,

1 and 2 errors affecting only the jobs of the higher-priority task, respectively.

For task τ3, we have S3 = {0, 10, 15, 20, 30}. Using vertical composition, we

have five vertically-composed tasks V{0}, V{10}, V{15}, V{20} and V{30}. The execution

time of the vertically-composed tasks for k = 0, 1, 2 are given in Table 7.3. Us-

ing Eq. (7.13) and Eq. (7.14), the execution time of the four horizontally composed

tasks formed using the five vertically-composed tasks V{0}, V{10},V{15} V{20} and V{30}

is calculated. The execution time of the horizontally-composed task H{0, 10, 15, 20, 30} is

w(k,{0,10,15,20,30}) that is calculated using Eq. (7.14), for k = 0, 1, 2 (given

in the fourth row of each Table 7.5-Table 7.7).

By composing V{0} and V{10} horizontally, the new horizontally-composed task is

H{0,10} is formed using Eq. (7.13). The execution time of the horizontally-composed task

H{0,10} is w(k,{0,10}) and calculated using Eq. (7.13) for k = 0, 1, 2 (given in the

first row of each Table 7.5-Table 7.7).

Then, the first horizontally-composed task H{0, 10} and the vertically-composed task

V{15} are composed to form the second horizontally-composed task H{0, 10, 15}. The ex-

ecution time of H{0,10,15} is w(k,{0,10,15}) and determined using Eq. (7.14) for

k = 0, 1, 2 (given in the second row of each Table 7.5-Table 7.7). This process contin-

ues and finally the horizontally-composed taskH{0, 10, 15, 20} and the vertically-composed

task V{30} are composed into the final horizontally-composed task that isH{0, 10, 15, 20, 30}.

The execution time of the four horizontally-composed tasks are given in Table 7.5, Ta-

ble 7.6 and Table 7.7 for k = 0, k = 1 and k = 2 fault patterns, respectively.

The amount of execution time w(k,{0,10,15,20,30}) of the final horizontally-

composed task HSi
is the exact value of Load-Factor-HPi due to a k-fault-pattern.

7.5. LOAD FACTORS AND COMPOSABILITY 137

For H{0, 10} and k = 0
w(0,{0,10}) = w(0,{0}∪{10})
=

0
max
q=0

{

min{w(q,{0})+ w(k-q,{10}), Di }
}

= min
{

[w(0,{0})+ w(0,{10})], Di

}

= min{[3 + 3], 15} = min{6, 15}
}

= 6

For H{0,10} and k = 1
w(1,{0,10}) = w(1,{0}∪{10})
=

1
max
q=0

{

min{w(q,{0})+ w(1-q,{10}), Di }
}

= max
{

min{[w(0,{0})+ w(1,{10})], Di },
min

{

[w(1,{0})+ w(0,{10})], Di }
}

= max
{

min{[3 + 5], 15},min{[5 + 3], 15}
}

= max
{

min{8, 15},min{8, 15}
}

= 8

For H{0,10} and k = 2
w(2,{0,10}) = w(2,{0}∪{10})
=

2
max
q=0

{

min{w(q,{0})+ w(2-q,{10}), Di }
}

= max
{

min{[w(0,{0})+ w(2,{10})], Di },

min{[w(1,{0})+ w(1,{10})], Di }
min{[w(2,{0})+ w(0,{10})], Di }

}

= max
{

min{[3 + 5], 15},min{[5 + 5], 15},min{[8 + 3], 15}
}

= max
{

min{8, 15},min{10, 15},min{11, 15}
}

= 11

Table 7.4: Calculation of w(k,{0,10}) for horizontally-composed task H{0, 10} for k = 0, 1, 2.

Composed task Execution time for 0-fault pattern

H{0, 10} w(0,{0,10})=9

H{0,10,15} w(0,{0,10,15})=12

H{0,10,15,20} w(0,{0,10,15,20})=15

H{0,10,15,20,30} w(0,{0,10,15,20,30})=21

Table 7.5: The execution time due to 0-fault pattern of the four horizontally-composed tasks

H{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, and H{0, 10, 15, 20, 30}

The value of w(k,{0,10,15,20,30}) represents the amount of execution time

within [0, 40) by all the higher-priority jobs due to the k-fault-pattern. Table 7.5-

138 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

Composed task Execution time for 1-fault pattern

H{0, 10} w(1,{0,10})=13

H{0,10,15} w(1,{0,10,15})=16

H{0,10,15,20} w(1,{0,10,15,20})=19

H{0,10,15,20,30} w(1,{0,10,15,20,30})=25

Table 7.6: The execution time due to 1-fault pattern of the four horizontally-composed tasks

H{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, and H{0, 10, 15, 20, 30}

Composed task Execution time for 2-fault pattern

H{0, 10} w(2,{0,10})=18

H{0,10,15} w(2,{0,10,15})=21

H{0,10,15,20} w(2,{0,10,15,20})=24

H{0,10,15,20,30} w(2,{0,10,15,20,30})=30

Table 7.7: The execution time due to 2-fault pattern of the four horizontally-composed tasks

H{0, 10}, H{0, 10, 15 }, H{0, 10, 15, 20}, and H{0, 10, 15, 20, 30}

Table 7.7 show that the execution completed by the higher-priority jobs within [0, 40) is

21, 25, and 30 for k=0,1 and 2-fault patterns, respectively (shown in the shaded fourth

row in each of the Table 7.5-Table 7.7).

It is easy to realize at this point that the way the composition technique is applied to

calculate the execution time of the final horizontally composed task can also be applied

to any fixed-priority task system and to any length of the interval rather than [0, Di).
Based on the value of the Load-Factor-HPi, the exact FTDM schedulability condi-

tion of task τi is derived in Section 7.6.

7.6 Exact Schedulability Test

The exact schedulability condition for FTDM scheduling of a sporadic task set Γ is de-

rived based on the exact schedulability condition of each task τi for i = 1, 2 . . . n. The

exact schedulability condition of task τi depends on the amount of execution required

by task τi and its higher-priority jobs within the interval [0, Di) considering at most

f errors that could occur within [0, Di).
By considering (f − k) faults exclusively affecting task τi and the k-fault pat-

tern affecting the higher-priority jobs of task τi within the interval [0, Di), the sum

of Load-Factor-i and Load-Factor-HPi can be calculated such that it is max-

imized for some k, 0 ≤ k ≤ f . This sum is consequently the worst-case workload

within [0, Di). The value of Load-Factor-i is C
(f − k)
i and can be calculated using

Eq. (7.2), for k = 0, 1, 2, . . . f . The value of Load-Factor-HPi is w(k,Si) and

can be calculated using Eq. (7.14), for k = 0, 1, 2, . . . f .

7.6. EXACT SCHEDULABILITY TEST 139

The maximum total workload within [0, Di) is denoted by TLoadi which is equal

to the sum of Load-Factor-i and Load-Factor-HPi such that this sum is max-

imum for some k, 0 ≤ k ≤ f . The function TLoadi is defined in Eq. (7.15):

TLoadi =
f

max
k=0
{ C(f − k)

i + w(k,Si)} (7.15)

Using Eq. (7.15), the maximum total workload within the interval [0, Di) can be deter-

mined. The total load is equal to the sum of the execution time required by task τi if

(f − k) errors exclusively affect the task τi and the execution time within the interval

[0, Di) by the jobs having higher priority than the task τi due to k-fault pattern, such

that, the sum is maximum for some k, 0 ≤ k ≤ f .

Run-time complexity to compute the total load: Calculating the value of C
(f − k)
i for

all k = 0, 1, 2, . . . f can be done in O(f) steps. The value of w(k,Si) is the execu-

tion time of the final horizontally-composed task and can be calculate in O(N̂ · f2)
time for all k = 0, 1, 2, . . . f . In Eq. (7.15), there are (f + 1) possible values for

the selection of k, 0 ≤ k ≤ f . Evaluating TLoadi in Eq. (7.15) requires a total of

(f + 1) addition operations and f comparisons to find the maximum. Given the val-

ues of C
(f − k)
i and w(k,Si) for all k = 0, 1, 2, . . . f , finding the value of TLoadi

requires O(f) steps. Therefore, the total time complexity for evaluating TLoadi is

[O(f)+O(N̂ · f2)+O(f)]=O(N̂ · f2).
Based on the value of TLoadi, the necessary and sufficient schedulability condition of

task τi in FTDM scheduling is proposed in Theorem 7.1.

Theorem 7.1. Task τi ∈ Γ is FTDM-schedulable if and only if TLoadi ≤ Di.

Proof. (if part) It will be shown using proof by contradiction that if TLoadi ≤ Di, then

task τi is FTDM-schedulable. The value of TLoadi is the sum of two workload factors:

Load-Factor-i and Load-Factor-HPi. The value of Load-Factor-i is the

maximum execution time required by the task τi if (f−k) errors exclusively occur in the

first job of task τi. The value of Load-Factor-i is given by C
(f − k)
i in Eq. (7.2) for

k = 0, 1, 2, . . . f . The value of Load-Factor-HPi is the execution completed within

the interval [0, Di) by the jobs having higher priority than the priority of task τi. The

value of Load-Factor-HPi is given by w(k,Si) which is equal to the execution

time of the final horizontally-composed task HSi
considering a k-fault pattern affecting

the jobs of the higher-priority tasks within the interval [0, Di), for k = 0, 1, 2, . . . f .

The value of w(k,Si) is the maximum amount of work that can be completed by the

higher-priority jobs within [0, Di).

Now, assume a contradiction, that is, that some job of task τi misses it deadline

when TLoadi ≤ Di. This assumption implies that the first job of task τi misses its

deadline (due to the first job being released at a critical instant). When the first job of

task τi misses its deadline at time Di, the processor must be continuously busy within

the entire interval [0, Di). This is because, if the processor was idle at some time instant

140 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

within [0, Ti), then τi could not have missed its deadline since FTDM scheduling is based

on work-conserving DM scheduling.

In case that τi misses its deadline, the processor either executes task τi or its higher-

priority jobs at each time instant within [0, Di). The time required for executing the

higher-priority jobs within [0, Di) is Load-Factor-HPiwhich is given by w(k,Si).

Note that w(k,Si) is less than or equal to Di (because of the min function) accord-

ing to Eq. (7.14). The total time required for completing the execution of task τi is

Load-Factor-i considering (f − k) errors that could affect the first job of task

τi. Since τi misses it deadline at Di, the complete execution of task τi can not have fin-

ished by timeDi. Therefore, the sum of Load-Factor-i and Load-Factor-HPi,

denoted by TLoadi, must have been greater than Di (which is a contradiction!). There-

fore, if TLoadi≤ Ti, then task τi is FTDM-schedulable.

(only if part) It will be shown that, if τi is FTDM-schedulable, then TLoadi ≤ Ti .

The amount of work on behalf of task τi (including execution of its backup) completed in

the FTDM schedule in [0, Di) is Load-Factor-i. Since when analyzing the schedu-

lability of task τi, the amount of execution on behalf of the jobs (including execution of

their backups) having higher priority than task τi that is completed by FTDM scheduling

is exactly equal to Load-Factor-HPi within [0, Di).
Since the work completed by algorithm FTDM on behalf of the jobs in (HPJi ∪ {J1

i })
in [0, Di) is equal to the sum of Load-Factor-i and Load-Factor-HPi, the

total load TLoadi is less than or equal to Di whenever task τi is FTDM schedulable.

Therefore, if task τi is fault-tolerant FTDM-schedulable, then TLoadi≤ Di.

The exact schedulability test for FTDM scheduling of task τi is given in Theorem 7.1.

The time complexity for evaluating the exact test is same as the time complexity for

evaluating Eq. (7.15). Therefore, the necessary and sufficient condition for checking the

schedulability of task τi can be evaluated in time O(N̂ · f2). The exact schedulability

condition for the entire task set Γ is now given in the following Corollary 7.1.

Corollary 7.1. Task set Γ ={τ1, τ2, . . . , τn} is FTDM-schedulable if, and only if, task

τi is FTDM-schedulable using Theorem 7.1 for all i = 1, 2, . . . n.

Note that Corollary 7.1 is the application of Theorem 7.1 for each one of the n tasks

in set Γ. Therefore, the exact schedulability condition for the entire task set can be

evaluated in O(n · N̂ · f2) time. The FTDM-schedulability of the running example task

set given in Table 7.1 is now demonstrated.

Example 7.10. We have to apply Theorem 7.1 to all the three tasks given in Table 7.1.

For task τi, the value of TLoadi for i = 1, 2, 3 has to be computed. The task τ1 being

the highest priority task is trivially FTDM-schedulable.

Consider the schedulability of task τ2. Remember that, w(k,Si) is the execu-

tion time of the final horizontally-composed task and is equal to Load-Factor-HPi.

For task τ2, we have S2 = {0, 10}. By horizontal composition, the final horizontally-

composed task H{0,10} has execution time equal to w(0,S2) = 6, w(1,S2) = 8, and

w(2,S2) = 11 for k = 0, k = 1 and k = 2 fault-patters within interval [0, 15)

7.7. ALGORITHM FOR THE FTDM SCHEDULABILITY TEST 141

(given in Table 7.4), respectively. For task τ2, we also have C0
2 =3, C1

2 =7 and C2
2 =9

for k = 0, k = 1 and k = 2 fault-patterns, respectively, which are the values of

Load-Factor-i using Eq.(7.3). For task τ2 and f = 2, the calculation of TLoad2

using Eq. (7.15) is given below:

TLoad2 =
2

max
q=0

{

C
(2 − q)
2 + w(q,{0,10})

}

= max
{

[C2
2 + w(0,{0,10})], [C1

2 + w(1,{0,10})],

[C0
2 + w(2,{0,10})]

}

= max
{

[9 + 6], [7 + 8], [3 + 11]
}

= 15

Since TLoad2= 15 ≤ D2 = 15, task τ2 is FTDM-schedulable using Theorem 7.1.

Consider the schedulability of task τ3. We have S3 = {0, 10, 15, 20, 30}. By hor-

izontal composition, the final horizontally-composed task H{0,10,15,20,30} has execution

time equal to w(0,S3)=21, w(1,S3)=25, and w(2,S3)=30 for k = 0, k = 1 and

k = 2 fault-patterns, within interval [0, 40) (given in the fourth shaded row in Ta-

ble 7.5–Table 7.7), respectively. For task τ3, we also have C0
3 =9, C1

3 =17 and C2
3 =23

for k = 0, k = 1 and k = 2 fault-patterns, respectively, which are the values of

Load-Factor-i using Eq.(7.3). For task τ3 and f = 2, the calculation of TLoad3

using Eq. (7.15) is given below:

TLoad3 =
2

max
q=0

{

C
(2 − q)
3 + w(q,{0,10,15,20,30})

}

= max
{

[C2
3 + w(0,{0,10,15,20,30})],

[C1
3 + w(1,{0,10,15,20,30})],

[C0
3 + w(2,{0,10,15,20,30})],

}

= max
{

[21 + 23], [25 + 17], [30 + 9]
}

= 44

Since TLoad3= 44 ≥ D3 = 40, task τ3 is not FTDM-schedulable using Theorem 7.1.

Therefore, the task set given in Table 7.1 is not FTDM-schedulable using Corollary 7.1.

Based on the necessary and sufficient schedulability condition in Corollary 7.1, the

pseudocode of the schedulability test for FTDM scheduling is now algorithmically pre-

sented in Section 7.7.

7.7 Algorithm for the FTDM Schedulability Test

In this section, the exact test for fault-tolerant scheduling algorithm FTDM based on the

exact schedulability condition derived in Corollary 7.1 is presented. First, the pseu-

docode of the algorithm CheckFeasibility(τi, f)is given in Figure 7.4. The al-

gorithm CheckFeasibility(τi, f)checks the FTDM schedulability of a task τi by

142 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

considering occurrences of f task errors in any jobs of the tasks in set { τ1, τ2, . . . τi}
released within the interval [0, Di). Next, the algorithm FTDM-Test(Γ, f)that checks

the schedulability of the entire task set Γ based on the schedulability of each task τi ∈ Γ
is presented in Figure 7.5.

Algorithm CheckFeasibility(τi, f)

1. Find the HPJi using Eq. (7.4)

2. Find the Si using Eq. (7.8)

3. For all s ∈ Si
4. For k = 0 to f
5. Find w(k,{s}) using Eq. (7.12)

6. End For

7. End For

8. For x = 2 to |Si|
9. For k = 0 to f
10. Find w(k,p(x-1)∪{sx}) using Eq. (7.14)

11. End For

12. End For

13. For k = f to 0

14. Find C
(f − k)
i using Eq. (7.2)

15. End For

16. For k = 0 to f

17. If [C
(f − k)
i +w(k,Si)] > Di then

18. return False

19. End If

20. End For

21. return True

Figure 7.4: Pseudocode of Algorithm CheckFeasibility(τi, f)

In line 1 of Algorithm CheckFeasibility(τi, f)in Figure 7.4, the jobs having

higher priority than the priority of task τi are determined using Eq. (7.4). In line 2,

the time instants at each of which higher-priority jobs are released within the interval

[0, Di) are determined using Eq. (7.8). Using the loop in line 3–7, the execution time

w(k,{s}) of each vertically-composed task V{s} is derived for each point s ∈ Si. The

value of w(k,{s}) is determined for each k = 0, 1, 2, . . . f at line 5 using Eq. (7.12).

Using the loop in line 8–12, the vertically-composed tasks are composed further us-

ing horizontal compositions. The loop at line 8 iterates total (|Si| − 1) times. Each

iteration of this loop calculates the execution time of one horizontally composed task

Hp(x)=Hp(x-1)∪{sx}, for x = 2, 3, . . . |Si|. The execution time w(k,p(x-1)∪{sx})
of the horizontally-composed task Hp(x-1)∪{sx} is calculated at line 10 using Eq. (7.14)

for a k-fault pattern, k = 0, 1, 2, . . . f . The execution time w(k,Si) of the final

7.7. ALGORITHM FOR THE FTDM SCHEDULABILITY TEST 143

horizontally-composed task HSi
is the value of Load-Factor-HPi, for k = 0, . . . f .

Using the loop in line 13–15, the value of C
(f − k)
i is determined in line 14 using

Eq. (7.2) for k = 0, 1, . . . f . Remember that the value ofC
(f − k)
i is Load-Factor-i.

In line 16–20, the exact schedulability condition for τi is checked by considering k errors

affecting the jobs of the higher-priority tasks and (f−k) errors exclusively affecting the

task τi, for k = 0, 1, 2, . . . f . In line 17, the value of TLoadi is calculated by summing

Load-Factor-i and Load-Factor-HPi and this sum is compared against the rel-

ative deadline of task τi. If this sum is greater than Di, then task τi is not FTDM schedu-

lable and the algorithm CheckFeasibility(τi, f)returns False at line 18. If the

condition at line 17 is false for all k = 0, 1, 2 . . . f , then task τi is FTDM-schedulable and

the algorithm CheckFeasibility(τi, f)returns True at line 21. Next, using the al-

gorithm CheckFeasibility(τi, f)the algorithm FTDM-Test(Γ, f)is presented in

Figure 7.5.

Algorithm FTDM-Test(Γ, f)

1. For all τi ∈{τ1, τ2, . . . , τn}
2. If CheckFeasibility(τi, f)= False then

3. return False

4. End If

5. End For

6. return True

Figure 7.5: Pseudocode of Algorithm FTDM-Test(Γ, f)

Using the loop in line 1–5 of algorithm FTDM-Test(Γ, f) given in Figure 7.5, the

FTDM-schedulability of task τi is checked. The algorithm FTDM-Test(Γ, f), based

on algorithm CheckFeasibility(τi, f), checks the FTDM schedulability of task

τi ∈ Γ at line 2. If the condition at line 2 is true for any task τi (the algorithm

CheckFeasibility(τi, f)returns False), then the task set Γ is not FTDM-schedulable.

In such case, the algorithm FTDM-Test(Γ, f) returns False (line 3). If the condition at

line 2 is false for task τi, for all i = 1, 2, . . . n (CheckFeasibility(τi, f)returns

True for each task), then the task set Γ is FTDM-schedulable. In such case, the algo-

rithm FTDM-Test(Γ, f) returns True (line 6). Given a task set Γ and the number of task

errors f that can occur within any possible interval of length Dmax, the fault-tolerant

schedulability of the task set using the FTDM algorithm can be exactly determined using

algorithm FTDM-Test(Γ, f) in O(n · N̂ · f2) time. The applicability of exact unipro-

cessor schedulability test for FTDM scheduling to multiprocessor platform is presented

in subsection 7.7.1.

144 CHAPTER 7. FAULT-TOLERANT SCHEDULING ON UNIPROCESSOR

7.7.1 Multiprocessor Scheduling

The uniprocessor FTDM schedulability analysis is applicable to multiprocessor parti-

tioned scheduling. The exact test of FTDM scheduling can be applied during the task

assignment phase of a partitioned multiprocessor scheduling algorithm in which the run

time dispatcher in each processor executes tasks in DM priority order using uniprocessor

FTDM scheduling.

Consider a multiprocessor platform consisting of m identical processors. The ques-

tion addressed is as follows:

Is there an assignment of the tasks of set Γ on m processors such that each

processor can tolerate f task errors within a time interval equal to the max-

imum relative deadline of the tasks assigned to each processor?

Partitioned multiprocessor task scheduling is typically based on a bin-packing algo-

rithm for task assignment to the processors. When assigning a new task to a processor,

a uniprocessor schedulability condition is used to check whether or not an unassigned

task and all the previously assigned tasks in a particular processor are schedulable using

uniprocessor scheduling, for example, DM scheduling algorithm. If the answer is yes,

the unassigned task can be assigned to the processor. In order to extend the partitioned

multiprocessor scheduling to fault-tolerant scheduling, we can apply the exact schedula-

bility condition derived in Corollary 7.1 when trying to assign a new task to a processor

in partitioned scheduling. The following principle discusses how the exact schedulabil-

ity condition derived in Corollary 7.1 can be applied to the First-Fit heuristic for task

assignment on multiprocessors.

An idea to assign tasks to multiprocessors: Consider the First-Fit heuristic for

task assignment to processors. Given a task set {τ1, τ2, . . . , τn}, the tasks are to be

assigned to m processors in increasing order of (given) task index. That is, task τ1 is

considered first, then task τ2 is considered, and so on. Using the First-Fit heuristics, the

processors of the multiprocessor platform are also indexed from 1 . . .m. An unassigned

task is considered to be assigned to processor in increasing order of processor index.

An unassigned task is assigned to the processor with the smallest index on which it is

schedulable.

Following the First-Fit heuristic, task τ1 is trivially assigned to the first processor.

For task τ2, the necessary and sufficient schedulability condition in Corollary 7.1 is

applied to a set of tasks {τ1, τ2} considering at most f errors that could occur in an

interval of length Dmax (where Dmax is the maximum relative deadline of the tasks

in set {τ1, τ2}). If the schedulability condition is satisfied, then τ2 is assigned to the

first processor. Otherwise, τ2 is trivially assigned to the second processor. Similarly,

for each unassigned task τi, the schedulability condition in Corollary 7.1 is first checked

considering the already assigned tasks including task τi on the processor with index 1. If

task τi and all the previously assigned tasks to the first processor are FTDM schedulable

using the exact condition in Corollary 7.1, then τi is assigned to the first processor. If

the exact condition is not satisfied, the schedulability condition is checked for the second

processor and so on.

7.8. SUMMARY 145

If task τi can not be assigned to any processor, then task set Γ can not be partitioned

on the given multiprocessor platform. If all the tasks are assigned to the multiprocessor

platform, then task set Γ is FTDM schedulable on each processor. For a successful par-

tition of the task set Γ, each processor can tolerate f errors that can occur in any tasks

within a time interval equal to the maximum relative deadline of the tasks assigned to

each particular processor. The successful assignment of the tasks to m processors also

guarantees that total (m · f) task errors (each processor tolerating at most f errors) can

be tolerated within each of all possible time intervals of length Dmax where Dmax is

the largest relative deadline of all the tasks.

7.8 Summary

This chapter presents the analysis of FTDM scheduling algorithm that can be used to

guarantee the correctness and timeliness property of real-time applications on unipro-

cessor. The correctness property of the system is addressed by means of fault-tolerance

so that the system functions correctly even in the presence of faults. The timeliness

property is addressed by deriving a necessary and sufficient schedulability condition for

the FTDM scheduling algorithm on uniprocessor.

The proposed algorithm FTDM-Test(Γ, f) can verify the FTDM-schedulability of

constrained-deadline sporadic task sets. The time complexity to evaluate the test is

O(n · N̂ ·f2), where n is the number of tasks in the periodic task set, N̂ is the maximum

number of jobs released within any time interval of lengthDmax, and f is the maximum

number of task errors that can occur within any time interval of length Dmax.

The fault model considered for the FTDM schedulability analysis is general enough in

the sense that multiple task errors due to various hardware and software faults can occur

in any job, at any time and even during the recovery operation. There is no restriction

posed on the inter-arrival time between the occurrences of any two consecutive faults.

The only restriction of the fault model is that a maximum of f task errors could occur

within any time interval of length Dmax. Such a fault model does not require to know

the distribution of the faults and also covers faults where they may arrive in bursts.

No other work has proposed an exact fault-tolerant schedulability analysis of spo-

radic tasks having constrained deadlines considering such a general fault model as is

used in this chapter. If an efficient (in terms of time complexity) and exact schedula-

bility test is needed, then the scheduling algorithm FTDM provides better computational

efficiency than that of proposed for fault-tolerant EDF scheduling algorithm in [Ayd07].

The proposed exact uniprocessor schedulability condition can be applied to task schedul-

ing on multiprocessors based on partitioned approach.

8
Fault-Tolerant Scheduling on

Multiprocessors

In this chapter, a fixed-priority multiprocessor scheduling algorithm, called Fault-Tolerant

Global Scheduling (FTGS), is proposed for tolerating both task errors and processor fail-

ures. The major strength of FTGS algorithm is the fault model it assumes; a variety of

software and hardware faults that may lead to task errors or processor failures are con-

sidered. The main contribution is the derivation of a sufficient schedulability test for the

proposed FTGS algorithm that exploits time redundancy to tolerate faults. This schedu-

lability test when satisfied guarantees that all the deadlines of the real-time tasks are met

even in the presence of task errors and processor failures.

The novelty of the proposed schedulability test is that the resilience of resource-

constrained embedded real-time systems can be determined for different combinations

of task errors and processor failures. The schedulability test for the FTGS algorithm is

OPA-compatible: if a task set does not satisfy the schedulability test for a given priority

ordering of the tasks, then a priority ordering for which the taskset may satisfy the

schedulability test can be searched using multiprocessor extension of Audsley’s optimal

priority assignment algorithm.

8.1 Introduction

There are numerous works that have addressed fault-tolerance for partitioned and global

scheduling on multiprocessors [OS94, GMM94, TKK95, BMR99, CYKT07, KLR10,

BGJ06, LLMM99]. In fault-tolerant scheduling, each task is considered to have one pri-

147

148 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

mary and one or more backups. In partitioned fault-tolerant scheduling, a task allocation

algorithm assigns the primary and backups of each task to distinct processors at design

time. In case of a task error or processor failure detected at run time, the backup of the

affected task is executed on a different non-faulty processor to which it is assigned.

One interesting observation of the task allocation algorithms proposed in [OS94,

GMM94, TKK95, BMR99, CYKT07, KLR10] is that these algorithms do not take into

account any difference between task errors and processor failures when assigning the

tasks to the processors. These allocation algorithms pessimistically assume that tolerat-

ing a task error is equivalent to tolerating a processor failure. This pessimism requires

relatively higher number of processors for successfully assigning all the primary and

backups even when only task errors are to be tolerated. Such over provisioning of com-

puting resources (i.e., processors) may restrict the use of partitioned method for many

resource-constrained embedded real-time systems like automotive and avionics where

weight, volume and space are limited. And more importantly, increasing the number of

processors also increases the probability of having more faults in the system.

One of the consequences of the rising trend of transient faults in computer electron-

ics (as pointed out by Baumann in [Bau05]) is the possibility of having higher number of

task errors. It is therefore important to develop resource efficient fault-tolerant schedul-

ing algorithm to tolerate task errors. Global scheduling algorithm does not require allo-

cation of tasks to processors. The main motivation of the work in this chapter is based

on an important observation: the global scheduler can simply dispatch the backup of the

faulty task to any processor even to the processor on which the task has encountered a

task error. This is because transient errors are short lived and tolerating such errors using

global scheduling does not need the backups to be executed on different processors.

In this chapter, a Fault-Tolerant Global Scheduling algorithm, called FTGS, to tol-

erate both task errors and processor failures is proposed. The algorithm FTGS not only

can tolerate task errors but also can withstand processor failures. Global scheduling can

tolerate processor failure just by assuming the task executing on the faulty processor has

encountered an error. In other words, a processor failure can be viewed from the global

scheduler’s point of view as a task error. The treatment to tolerate the processor failure

using FTGS algorithm is same as tolerating a task error — dispatching the primary and

the backups of the tasks only to the non-faulty processors. By tolerating processor fail-

ure it means that the effect of permanent processor failure is mitigated by executing the

tasks on non-faulty processors while meeting all the deadlines of the tasks.

Time-redundancy is considered to tolerate both task errors and processor failures.

In order to ensure that all the deadlines of the application tasks are met while achiev-

ing fault-tolerance, the schedulability analysis of FTGS algorithm derives a sufficient

schedulability test that when satisfied for a task set guarantees that all the deadlines are

met. One of the novel properties of the proposed schedulability test is that the number

of task errors and the number of processor failures are separately incorporated in to the

mathematical expression of the schedulability test. This property enables the system de-

signer to independently judge the robustness of the schedule in terms of tolerating only

task errors, only processor failures, or tolerating both.

8.2. RELATED WORK 149

Another important property of the schedulability test for the FTGS scheduling al-

gorithm is that it is OPA-compatible. If the proposed schedulability test is not satisfied

for a task set for a given priority ordering, then another priority assignment for which

the task set may satisfy the schedulability test can be determined. This an important

property since the optimal priority assignment for global FP scheduling is not known.

The FTGS scheduling and its corresponding schedulability test consider a very gen-

eral fault model in the sense that, multiple errors can occur in any task, at any time, in

any processor, and even during the recovery operations. In many other works regard-

ing fault-tolerant scheduling on multiprocessors, a relatively restricted fault model is

considered, assuming, for example, that

• the inter-arrival time of two faults must be separated by a minimum distance

[GMM94, TKK95, LLMM99]

• at most one fault may affect each task [LLMM99, GMM94]

• the recovery operation is simply the re-execution (i.e., does not consider a differ-

ent implementation of the same task) [CYKT07, KLR10]

For the proposed algorithm, tolerating a maximum of f task errors within each possible

interval of length Dmax, where Dmax is the largest relative deadline of a constrained-

deadline sporadic task set is considered. In addition, tolerating at most ρ permanent pro-

cessor failures during the life time of the system is also considered in the fault model.

The assumed fault model does not put any restriction between the occurrences of con-

secutive task errors or processor failures. Any job of any task may suffer from multiple

errors at any time. The backups of each task could simply be the re-execution of the

primary or execution of a diverse implementation of the task.

The rest of this chapter is organized as follows: Section 8.2 presents related work.

Section 8.3 presents the system models and the FTGS algorithm. In Section 8.4, the

fault-tolerant schedulability problem is formally stated. The fault-tolerant global schedu-

lability analysis considering only task errors is presented in Section 8.5–8.7. This analy-

sis is then extended for tolerating processor failure in Section 8.8. Finally, Section 8.10

concludes the chapter.

8.2 Related Work

The fault-tolerant partitioned scheduling algorithms are traditionally based on Primary-

Backup (PB) paradigm with the main aim for tolerating permanent processor failures

[GMM94, TKK95, BMR99, CYKT07, KLR10]. In PB approach, each task is consid-

ered to have a primary and one or more backups. The primary and backups of each

task are statically assigned (partitioned) to different processors at design time. Both task

errors and processor failures are tolerated in the same way — by executing the backup

of the affected task on a different processor.

A backup may be active or passive. An active backup always executes regardless

of any error in its corresponding primary while a passive backup only executes after

150 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

the primary fails. Active backups are always executed even if the primary encounters no

fault. Active backup policy utilizes more processing resource and energy but can provide

better fault-tolerance for low-laxity (shorter deadline) tasks. In contrast, passive backup

policy consumes less processing resource but may not provide enough fault-tolerance

for the low-laxity tasks. Considering the wide ranges of resource-constrained embedded

real-time systems, passive backups is considered for FTGS algorithm: the backup is

only executed if an error is detected.

The work in [BT83] considers the allocation of a set of periodic tasks to a number

of processors by assuming the same WCET of the r backups and does not consider

minimizing the number of processors. The works in [OS94, OS95a] consider allocation

of primary and multiple backups using RM first-fit [OS94] and RM next-fit [OS95a]

heuristics. Both these algorithms requires at least twice the number of processors than

that of required for some optimal allocation algorithm. The work in [CYKT07] proposes

efficient allocation algorithm by simple modification of the first-fit, best-bit and worst-fit

heuristics for minimizing the number of processors require to successfully assign a task

set where each task has fixed number of replicas.

The works in [OS94, BMR99, CYKT07] consider active backups to tolerate only

processor failures based on partitioned scheduling of strictly periodic real-time tasks.

The task allocation algorithm proposed by Oh and Son in [OS94] considers multiple

diverse backups of each task while the algorithm proposed by Chen et al. in [CYKT07]

considers the backups simply as replicated copies of the primary. The task allocation

algorithm proposed by Bertossi et al. in [BMR99] is based on RM first-fit bin pack-

ing heuristic to assign the primary and exactly one backup of each periodic task to

the processors. Multiple active backups of the periodic tasks are considered by Kim

et al. in [KLR10] for tolerating multiple processor failures; however, the backups are

duplicates of the primary. None of these works consider sporadic task model and do

not explicitly address the issue of tolerating only task errors. Task assignment with

replication to achieve fault tolerance in heterogeneous processor processors are consid-

ered [ZQQ11, EB08].

Fault-tolerant scheduling of aperiodic tasks based on PB approach is proposed in

[GMM94, TKK95]. Instead of considering active backup, passive backup [GMM94]

or partially-active backup [TKK95] are found to be effective for fault tolerance. More-

over, in order to efficiently utilize the processors, the scheduling algorithms in [GMM94,

TKK95] consider backup-backup overloading and backup deallocation techniques. In

backup-backup overloading, two backup copies of two different primary copies over-

lapped in time on the same processor if their corresponding primaries are assigned in

two different processors. Primary-backup overloading is considered in [AOSM01] and

shown to have better schedulability than backup-backup overloading. In primary-backup

overloading, the primary of a task can be scheduled onto the same or overlapping time

interval with the backup of another task on a processor. These works considers only

one backup copy for each task and assumes that there is a minimum separation interval

between occurrences of consecutive processor failures. The work in [BFM97] consider

RM first-fit policy for allocating periodic tasks to tolerate one processor failure using

8.3. SYSTEM MODELS AND THE FTGS SCHEDULING 151

PB approach by determining whether a task should use active or passive backup. The

idea of [BFM97] is augmented with backup deallocation and overloading for implicit

deadline task set in [BMR99]. To tolerate more processors failure at a certain time,

the processors are statically [MM98] and dynamically [AOMS00] divided into disjoint

logical groups such that one processor failure can be tolerated in each group.

There are very few works that have addressed fault-tolerance for global scheduling

[BGJ06, LLMM99]. Fault-tolerant global scheduling based on probabilistic fault model

is proposed by Berten et al. for global EDF scheduling in [BGJ06]. The algorithm

in [BGJ06] considers simple re-execution of the tasks to tolerate only task errors based

on EDFk scheduling that is proposed by Goossens et al. in [GFB03]. The task model

used in [BGJ06] is periodic and the deadline of each task is considered to be equal to its

period. The pFair scheduling proposed by Baruah et al. in [BCPV96] for periodic task

model is augmented with fault tolerance by Liberato et al. in [LLMM99]. However,

the work in [LLMM99] considers exactly one backup for each task. Moreover, the

schedulability test in [LLMM99] requires that there is a minimum separation between

the occurrences of two consecutive task errors. There is no work that addresses fault-

tolerant global scheduling that considers sporadic task model, fixed-priority, deadline of

the tasks being less than or equal to the periods, and considers both processor failures

and task errors using multiple and diverse backups. The proposed FTGS scheduling

algorithm presented in this chapter possesses all these characteristics.

8.3 System Models and the FTGS Scheduling

Fault-tolerant scheduling of a set of constrained-deadline sporadic tasks on a multipro-

cessor platform consisting of m identical processors/cores is considered. The task and

fault models for FTDM scheduling are presented in Section 3.1 and Section 3.3, respec-

tively. The salient features of the models are reiterated here for better readability. A

set of n constrained-deadline sporadic tasks Γ ={τ1, τ2, . . . , τn} is considered, where

each task τi ∈ Γ is characterized by WCET Ci, relative deadline Di, and period Ti. A

number of f task errors due to a variety of hardware and software faults that may occur

within each of the all possible time intervals of length Dmax is considered. Within any

time interval of length Dmax, the f task errors may occur in the same jobs or may oc-

cur in different jobs of different tasks. Each task has one primary and f backups. The

WCET of the primary of task τi is Ci and the WCET of each of the f backups of task

τi is denoted by Eki where k = 1, 2, . . . f .

When there are (f − c) task errors affecting the primary and subsequent (f − c− 1)
backups of the same job of task τi, the total execution requirement of the job of this task

is denoted by C
(f − c)
i and recursively calculated using Eq. (8.1) as follows:

C
(f − c)
i =

{

Ci if (f − c) = 0

E
(f−c)
i + C

(f − c− 1)
i if (f − c) > 0

(8.1)

where E
(f−c)
i is the WCET of the (f − c)th backup of task τi. Thus, starting from k =

152 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

f, (f − 1), . . . 0, all the values C0
i , C

1
i , . . . C

f
i for task τi can be recursively calculated

using total O(f) addition operations (and for all tasks O(n · f) addition operations are

needed). Note that the WCET, relative deadline, and inter-arrival time of each task

τi must satisfy Cfi ≤ Di ≤ Ti.
The FTGS algorithm does not only capable of tolerating task errors but also can

mitigate the effect of permanent processor failures. The FTGS algorithm considers mit-

igating the effect of ρ permanent processor failures during the lifetime of the system.

The effect of processor failure is mitigated in FTGS algorithm by executing the backup

of the affected task on a non-faulty processor. The backup in such case may be the

re-execution of the primary.

Fault-Tolerant Mechanism and Algorithm FTGS: Each sporadic task generates an

infinite number of jobs having a minimum inter-arrival time between successive jobs.

The fault-tolerant mechanism based on time-redundancy for FTGS scheduling works

as follows. For each job of a task, the primary executes first. Whenever a task error

or processor failure is detected, the first backup of the affected task becomes ready to

execute. The priority of the backup is same as that of its primary. Again, a task error

or processor failure may be detected during the execution of the backup which in turn

would trigger the execution of next backup and so on.

The scheduler is always made aware of all the non-faulty processors in the system.

Such awareness can be achieved using fail-signaled processors. Once a processor fail-

ure is detected, the FTGS scheduler never dispatches any task to this faulty processor.

Moreover, if a task was dispatched to this faulty processor, then the backup of the af-

fected task becomes ready for execution. The FTGS scheduler stores all the ready (i.e.,

released but not completed) tasks in a global queue and dispatches them highest priority

tasks from this queue on m processors, possibly by preempting, if any, the execution of

a lower priority task. The FTGS scheduling is based on global FP scheduling paradigm.

Similar to the uniprocessor FTDM scheduling algorithm, it is assumed for FTGS algo-

rithm that a task error is detected at the end of execution of the primary or backup. There

is no fault propagation: one fault is assumed to affect at most one job either a primary

or a backup. And, any primary or backup is assumed to be affected by at most one fault.

8.4 Problem Statement

In this chapter, the following problem is addressed:

Are all the deadlines of sporadic task set Γ met on m processors using

FTGS scheduling if there are maximum f task errors within each of all

possible time intervals of length Dmax and a maximum of ρ processors

failures during the lifetime of the system?

Note that the maximum number of task errors within any time interval of length Dk

is also f , for k = 1, 2, 3, . . . n, because Dk ≤ Dmax. Following this, the problem

statement for tolerating only task errors can be re-written as:

8.5. ANALYSIS FOR TOLERATING TASK ERRORS 153

Are all the deadlines of task τk met onm processors using FTGS schedul-

ing if there are maximum f task errors within any time interval of

length Dk, for k = 1, 2, . . . n?

In Sections 8.5–8.7, this later schedulability problem regarding tolerating only task er-

rors is addressed first by proposing an iterative schedulability test — the schedulability

of the entire task set is given in terms of a schedulability test for each of the lower prior-

ity task. Then this schedulability test is extended in Section 8.8 for mitigating the effect

of ρ permanent processors failures.

8.5 Analysis for Tolerating Task Errors

The schedulability analysis presented in this and the following two sections derives a

schedulability test for task τk ∈ Γ by assuming that all the higher priority tasks in HPk
meet their deadlines using FTGS scheduling. Then it follows that, if this test is sat-

isfied for all the lower priority tasks in Γ (an iterative test), then the entire task set

Γ is schedulable using FTGS algorithm. The proposed schedulability analysis in this

chapter follows the same multiprocessors schedulability analysis framework proposed

by Baker in [Bak06]: a necessary condition whenever any job of task τk misses its

deadline is derived. Consequently, if this condition is not satisfied, then all the jobs

of task τk meet their deadlines. When analyzing the schedulability of task τk, the oc-

currences of at most f task errors within any interval of length Dk is considered. In

other words, the schedulability test for the FTGS scheduling algorithm is derived based

on deadline-based analysis. In Section 8.8, this schedulability analysis for tolerating

processor failures is extended.

Consider a generic job Jk of task τk. By generic it means that Jk represents an

arbitrary job of task τk. The interval [rk, dk] is called the scheduling window of job

Jk. Note that the length of the scheduling window of any job of task τk is Dk. The

computation load within the scheduling window of job Jk is defined to be equal to

the cumulative length of the intervals during which job Jk is ready but not executing

(interference) plus the total execution requirement of job Jk. Notice that the lower

priority tasks τk+1, . . . τn do not contribute to the computation load since they can not

interfere the execution of task τk in fixed-priority scheduling.

Consider the FTGS schedule of the tasks in set (HPk ∪ {τk}) such that all the jobs

of tasks in HPk meet their deadlines while the job Jk misses its deadline at dk. The

computation load within the scheduling window of job Jk must exceed Dk if and only if

job Jk misses its deadline. Without loss of generality, job Jk is considered as a critical

job in the sense that task τk is not feasible, if and only if, job Jk is not feasible using

FTGS scheduling. It will be evident later from the schedulability analysis that it is not

needed to know where in the schedule this critical job Jk is released. If the computation

load of this critical job Jk within its scheduling window is not greater than Dk, then all

the jobs of task τk meet deadlines, and conversely.

154 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

The computation load in the scheduling window of job Jk has two contributing fac-

tors: interference of the higher priority jobs and self-execution requirement of job Jk.

The interference due to the tasks in HPk and self-execution requirement of job Jk de-

pend on the number of task errors within [rk, dk]. Let there be a errors that affect the

higher priority jobs within [rk, dk] and there are b errors of job Jk within [rk, dk] when

job Jk misses its deadline. Because there are at most f errors any interval of length Dk,

we must have (a+ b) ≤ f . The self execution requirement of job Jk is at most Cbk since

job Jk suffers from b errors (according to Eq. (8.1)).

The interference within [rk, dk] due to all the higher priority jobs in HPk is defined

as the cumulative length of intervals during which tasks of set HPk are executing and job

Jk is ready but not executing. The interference on τk within the interval [rk, dk], where

the higher priority jobs in HPk suffer from a errors in [rk, dk], is denoted by I
a

k([rk, dk]).
Thus, if job Jk misses its deadline, then

I
a

k([rk, dk]) + Cbk > Dk (8.2)

where (a + b) ≤ f and Dk is the length of the scheduling window [rk, dk]. Since

(a+ b) ≤ f , the following inequality in Eq. (8.3) holds:

f
max
c=0

{

I
c

k([rk, dk]) + C
(f − c)
k

}

≥ Iak([rk, dk]) + Cbk (8.3)

Therefore, from Eq. (8.2) and Eq. (8.3), it follows that if job Jk misses its deadline, then

f
max
c=0

{

I
c

k([rk, dk]) + C
(f − c)
k

}

> Dk (8.4)

The inequality in Eq. (8.4) is a necessary unschedulability condition for task τk. How-

ever, computing the interference I
c

k([rk, dk]) of the higher priority jobs on job Jk within

[rk, dk] is difficult. This is because it is not known where in the schedule the job Jk
is released. In other words, the critical instant — the job of task τk that suffers the

maximum interference — is unknown for global multiprocessor scheduling (please see

Example 3.1 and the discussion in page 36). The problem of not knowing the critical

instant for determining the interference on a lower priority job is sidetracked by finding

a safe upper bound on the interference due to the tasks in HPk for global (non fault-

tolerant) multiprocessor scheduling [Bak06, BCL09, GSYY09, DB09]. In order to find

such an upper bound on actual interference, the upper bound on the total interfering

workload which is the sum of the upper bounds of interfering workload of each of the

tasks in HPk has to be determined.

The interfering workload within [rk, dk] of a higher priority task τi in HPk is de-

fined as the cumulative length of intervals during which task τi is executing and job Jk is

ready but not executing. The total interfering workload within [rk, dk] of all the higher

priority tasks in a set HPk is defined as the sum of the interfering workload of each task

in set HPk within [rk, dk]. Notice that the total interfering workload within [rk, dk] of

8.6. CALCULATING INTERFERING WORKLOAD 155

the tasks in HPk is equal to (m ·Ick([rk, dk])). This is because when task τk is interfered,

all the m processors are simultaneously busy executing the higher priority tasks. The

idea from [Bak06, BCL09, GSYY09, DB09] in finding the safe upper bound on the total

interfering workload is adopted for the proposed fault-tolerant schedulability analysis of

FTGS in this chapter. Deriving such an upper bound on total interfering workload does

not require us to know the released time of job Jk in the fault-tolerant schedule. How-

ever, the pessimism in deriving the safe upper bound on total interfering workload needs

to be reduced as much as possible in order to derive an effective sufficient schedulability

test based on necessary unschedulability test.

The upper bound on the total interfering workload in [rk, dk] due to all the higher

priority tasks in HPk, where c errors affect the higher priority jobs in [rk, dk], is denoted

by Ick(Dk). Thus, the following inequality holds:

Ick(Dk) ≥ m · I
c

k([rk, dk]) (8.5)

Since interference I
c

k([rk, dk]) is an integer, it follows that

⌊

Ick(Dk)

m

⌋

≥ Ick([rk, dk]) (8.6)

Thus from Eq. (8.4) and Eq. (8.6), if job Jk misses its deadline, then the following holds:

f
max
c=0

{⌊

Ick(Dk)

m

⌋

+ C
(f − c)
k

}

> Dk (8.7)

The schedulability test proposed in this chapter for FTGS scheduling is based on the

necessary unschedulability condition in Eq. (8.7) and needs to find the value of Ick(Dk)
for all c = 0, 1, . . . f . In Section 8.6, the upper bound on interfering workload of each

higher priority task τi in HPk is computed. The upper bound on interfering workload of

all the tasks in HPk are combined to find the value of Ick(Dk) in Section 8.7. Based on

the value of Ick(Dk), the sufficient schedulability tests for FTGS scheduling is proposed.

8.6 Calculating Interfering Workload

The interfering workload of each task τi in HPk is determined in two steps. First, an

upper bound on the workload of each task τi in set HPk within [rk, dk] is determined

(Subsection 8.6.1). Second, an upper bound on the interfering workload of each task

τi within [rk, dk] is calculated based on the upper bound on τi’s workload within [rk, dk]
(Subsection 8.6.2). The value of the upper bound on the total interfering workload

(i.e., Ick(Dk)) is calculated in Section 8.7 by combining the upper bounds on interfering

workload of all the tasks τi in HPk in order to derive the schedulability test of the lower

priority task τk.

156 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

8.6.1 Workload of task τi

The workload of task τi within an interval [x, y] is the amount of time task τi executes

in [x, y]. The work done by task τi in [x, y] can be divided into three parts:

1. Carry-in: the contribution of at most one job (called, carry-in job) with release

time earlier than x and deadline in [x, y].

2. Body: the contribution of the jobs (called, body jobs) with both release time and

deadline in [x, y].

3. Carry-out: the contribution of at most one job (called, carry-out job) with release

time in [x, y] and deadline after y.

Finding the actual workload of a sporadic task τi in [x, y] requires to consider all possible

release times for all of its jobs in [x, y]. Instead, an upper bound on the workload of task

τi within [x, y] is calculated. The upper bound on the workload is computed based on

the workload of each of the parts: carry-in, body, and carry-out job of task τi in [x, y].
Task τi is called a carry-in task (CI-task) if task τi is considered to have carry-in

work within the interval [x, y]; otherwise, task τi is called a non carry-in task (NC-task).

The length of the interval [x, y] id denoted as L where L = (y − x). It is determined

later whether task τi must be a CI-task or NC-task. The following notations are used to

denote the carry-in and non carry-in workload of task τi within any interval of length L:

• WNCgi (L, ξ) denotes the upper bound on the non carry-in workload of task τi in

any interval of length L such that there are g errors of task τi in [x, y] and the set

ξ contains all the body and carry-out jobs of NC-task τi in [x, y].

• WCIgi (L, ξ) denotes the upper bound on the carry-in workload of task τi in any

interval of length L such that there are g errors of task τi in [x, y] and the set ξ
contains all the carry-in, body and carry-out jobs of CI-task τi in [x, y].

The calculation of WNCgi (L, ξ) and WCIgi (L, ξ) are presented next.

Calculating WNCgi (L, ξ)

Since task τi is a NC-task, there is no carry-in work of task τi in [x, y]. In order to find

a safe upper bound on the workload of NC-task τi in [x, y], it is needed to consider the

densest possible packing of jobs of task τi in [x, y]. In such case, the released time of the

first job of task τi in [x, y] coincides with x. Without loss of generality, it is considered

that job Jp+1
i of task τi has its release time exactly at the beginning of the interval [x, y]

and the subsequent jobs of τi are released as early as possible (see Figure 8.1).

Considering the densest possible packing of jobs of NC task τi, there are at most ⌊ L
Ti
⌋

body jobs and one carry-out job released within the interval [x, y] of length L. Note that

all the body jobs have their deadlines within the interval [x, y] while the deadline of the

carry-out job is outside the interval. Therefore, the maximum amount of work completed

by the carry-out job in [x, y] is upper bounded by (L− ⌊ L
Ti
⌋Ti).

8.6. CALCULATING INTERFERING WORKLOAD 157

Figure 8.1: Densest possible packing of the jobs of NC task τi within an interval of length L. The

up-arrow and down-arrow are the released time and deadline of the jobs of task τi, respectively.

The set of body jobs of the NC-task τi within [x, y] are {Jp+1
i , . . . Jp+Ni } where

N = ⌊ L
Ti
⌋ if L ≥ Ti, otherwise there is no body job. The carry-out job is Jp+N+1

i

if Ti is not an integer multiple of L, otherwise, there is no carry-out job. Therefore,

ξ = {Jp+1
i , . . . Jp+Ni , Jp+N+1

i }.
In order to find the value of WNCgi (L, ξ), the worst-case occurrences of g errors

affecting the primary and backups of the jobs in set ξ has to be determined. Aydin’s work

in [Ayd07] considered dynamic programming to compute the workload of a collection

of aperiodic tasks scheduled using EDF on uniprocessor such that the aperiodic tasks

suffer from a particular number of errors. Inspired by the work in [Ayd07], the value of

WNCgi (L, ξ) is computed based on the workload of each job in ξ. Since the jobs in set

{Jp+1
i , . . . Jp+Ni } are from the same task τi, it follows that

WNCgi (L, {Jp+1
i }) = . . . = WNCgi (L, {Jp+Ni }) = Cgi (8.8)

where Cgi is given according to Eq. (8.1). The Eq. (8.8) essentially calculates workload

of each individual job such that there are g errors effecting this particular job.

It is pointed out earlier that the maximum amount of carry-out work within the in-

terval of length L is limited to (L − ⌊ L
Ti
⌋Ti). Thus, WNCgi (L, {Jp+N+1

i }) is given as

follows:

WNCgi (L, {Jp+N+1
i }) = min

{

Cgi ,

(

L−
⌊

L

Ti

⌋

Ti

)}

(8.9)

In order to evaluate WNCgi (L, ξ), the worst-case occurrences of g errors within [x, y],

affecting the jobs in {Jp+1
i , . . . Jp+Ni , Jp+N+1

i }, has to be considered. The value of

WNCgi (L, ξ) is maximum, for some q, such that there are q errors of job {Jp+1
i } and

there ere (g − q) errors of the jobs in set {Jp+2
i , . . . Jp+N+1

i } where 0 ≤ q ≤ g. Thus,

158 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

the value of WNCgi (L, ξ) is recursively given as follows:

WNCgi (L, ξ) = WNCgi (L, {Jp+1
i } ∪ {Jp+2

i , . . . Jp+N+1
i }) =

g
max
q=0

{

WNCqi (L, {Jp+1
i }) + WNC(g − q)

i (L, {Jp+2
i , . . . Jp+N+1

i })
}

(8.10)

Calculating WCIgi (L, ξ)

Since task τi is CI-task, there is carry-in work of task τi in [x, y]. In such case, the

released time of the first job of task τi in [x, y] is earlier than x and its deadline is after

x. Lets say the job Jpi of CI-task τi is the carry-in job in [x, y]. Also let A is the set of

body and carry-out jobs in [x, y]. Therefore, ξ = {Jpi } ∪ A. In order to find the upper

bound on the workload of CI-task τi within [x, y], the densest possible packing of the

carry-in, body and carry-out jobs has to be considered. (Remember that L is the length

of the interval [x, y]).

Figure 8.2: The carry-in job J
p
i suffers from q errors and executes for C

q
i time units starting

from the beginning of L. The subsequent body and carry-out jobs are released as early as possible

within an interval of length L′ = L− (Cq
i + (Ti −Di)) and are subjected to (a− q) errors.

The value of WCIgi (L, ξ) is maximum, for some q, such that there are q errors of the

carry-in job Jpi and the remaining (g − q) errors affect the body and carry-out jobs in

A where 0 ≤ q ≤ g. The job Jpi executes for Cqi time units if there are q errors of

this job. The workload WCIgi (L, ξ) within [x, y] is maximized for some q (depicted in

Figure 8.2), if the following two conditions are satisfied:

• C1: the carry-in job starts execution exactly at time x and finishes its execution

exactly at its deadline which is dpi = x + Cqi (see the shaded execution of the

carry-in job in Figure 8.2), and

8.6. CALCULATING INTERFERING WORKLOAD 159

• C2: the subsequent jobs (i.e., body and carry-out jobs) are released and execute

as early as possible such that (g − q) errors affect the body and carry out jobs,

where 0 ≤ q ≤ g.

To show that these two conditions (i.e., C1 and C2) result in maximum workload

in [x, y], it will be shown that for any leftward shift of the interval [x, y] up to Ti time

units, the amount of workload within the interval [x, y] does not increase as long as

τi has carry-in contribution. Note that since the situation is periodic (i.e., jobs arrives as

compactly as possible), shifting the interval for exactly Ti time units again produces the

same situation as in Figure 8.2. Therefore, any leftward shift of the interval for at most

Ti time units is considered.

Consider leftward shift of interval [x, y] up to (x − rpi) time units. In such case the

carry-in contribution can not increase and the carry-out can only decrease. Now consider

a leftward shift of [x, y] for more than (x − rpi) time units but less than Ti time units.

Any leftward shift of [x, y] by ∆ time units is equivalent to shifting [x, y] rightward for

(Ti −∆) time units. Thus, the leftward shift of [x, y] for more than (x− rpi) time units

but less than Ti time units is equivalent to shifting [x, y] rightward for more than 0 time

units but less than Ti − (x − rpi) time units. Any rightward shift of the interval [x, y]
cause the carry-in work to decrease while the carry-out work can only be increased by

the same amount as long as there is carry-in contribution in [x, y]. Evidently, if τi is a

CI-task, then the workload within the interval [x, y] is maximum if the conditions C1

and C2 are satisfied.

The workload of the carry-in job is given as Cqi according to Eq. (8.1). It is

evident from Figure 8.2 that the body and carry-out jobs are released within the in-

terval [rp+1
i , y]. This situation is same as in Figure 8.1 where task τi is a NC task

within [rp+1
i , y]. The length of the interval [rp+1

i , y], denoted by L′, is given as L′ =

L − (Cqi + (Ti − Di)). And, according to Eq. (8.10), the value of WNC(g − q)
i (L′, A)

is the worst-case workload of the body and carry-out jobs within the interval [rp+1
i , y]

such that these body and carry-out jobs are subjected to (g − q) errors. Thus, the value

of WCIgi (L, ξ) is given as follows:

WCIgi (L, ξ) =
g

max
q=0

{

Cqi + WNC(g − q)
i (L′, A)

}

(8.11)

where ξ = ({Jpi } ∪ A), set A is the collection of body and carry-out jobs in [rp+1
i , y],

L′ = L− (Cqi + (Ti −Di)) and Cqi is given using Eq. (8.1).

Note that the value of WCIgi (L, ξ) is greater than or equal to WNCgi (L, ξ). This is

because shifting the interval [x, y] leftward for exactly (x− rpi) time units in Figure 8.2

produces the same scenario as in Figure 8.1 for NC-task, and such leftward shift can

only reduce the workload within the interval [x, y]. In next subsection, the upper bound

on interfering workload of task τi on job Jk based on workload of task τi in [rk, dk] is

determined. The value of carry-in workload may be reduced further by exploiting the

slack of the carry-in higher priority task similar to the approach in [BCL09]; however,

this issue is not addressed in this thesis.

160 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

8.6.2 Interfering Workload of task τi

The upper bound on interfering workload of each higher priority task τi based on the

upper bound on the workload of task τi is calculated. Similar to workload, the carry-

in and non carry-in interfering workload of task τi subjected to g errors in [rk, dk] are

defined as follows:

• INCgi (Dk, c) denotes the upper bound on the interfering workload of NC-task τi in

any interval [rk, dk] of length Dk such that there are g errors of task τi and there

are c errors of all the higher priority tasks (including task τi) of τk in [rk, dk].

• ICIgi (Dk, c) denotes the upper bound on the interfering workload of CI-task τi in

any interval [rk, dk] of length Dk such that there are g errors of task τi and there

are c errors of all the higher priority tasks (including task τi) of τk in [rk, dk].

In both INCgi (Dk, c) and ICIgi (Dk, c), it is assumed that there are c errors affecting

all the tasks in HPk within [rk, dk] where g errors, g ≤ c, exclusively affect the higher

priority task τi ∈ HPk.

A straightforward upper bound on the interference of each task τi in [rk, dk] is the

upper bound on the workload of each task τi in [rk, dk]. However, this way of bounding

the interference using the upper bound on the workload may be pessimistic as pointed

out in [Bar07, BC07, BCL09] for non-fault-tolerant global multiprocessor scheduling.

This fact is also true for the fault-tolerant schedulability analysis of FTGS scheduling as

is shown below.

If job Jk misses its deadline when the higher priority jobs suffer from c errors and job

Jk suffer from (f − c) errors, the amount of work completed by job Jk within [rk, dk] is

strictly less than C
(f − c)
k . If job Jk misses its deadline, then all the m processors simul-

taneously execute jobs of the higher priority tasks for strictly more than (Dk−C(f − c)
k)

time units. Therefore, if job Jk suffers enough interference in [rk, dk] to miss its dead-

line, then it is sufficient to consider the interfering workload of each task τi limited to at

most (Dk − C(f − c)
k + 1). Thus, the value of INCgi (Dk, c) and ICIgi (Dk, c) are given

as follows:

INCgi (Dk, c) = min{WNCgi (Dk, ξ), Dk − C(f − c)
i + 1} (8.12)

ICIgi (Dk, c) = min{WCIgi (Dk, ξ), Dk − C(f − c)
i + 1} (8.13)

Similar to workloads, it is not difficult to see that the carry-in interference ICIgi (Dk, c)
is greater than or equal to the non carry-in interference INCgi (Dk, c) for task τi. Given

the values of INCgi (Dk, c) and ICIgi (Dk, c) for all τi ∈ HPk and for all g = 0, 1, . . . c,
the value of combined interference Ick(Dk) is calculated in Section 8.7.

It will be discussed shortly that only a subset of all the higher priority tasks in HPk
are considered as CI tasks. However, such a subset must be selected such that the dif-

ference between its total carry-in interfering workload and total non carry-in interfering

workload within [rk, dk] is the largest in comparison to that of any other subset of the

8.6. CALCULATING INTERFERING WORKLOAD 161

higher priority tasks having the same cardinality. The following function and set defini-

tions will be used to determine the set of carry-in tasks in next subsection.

Useful Definitions: Consider a subset Y of the task set HPk such that within the schedul-

ing window of Jk, there are g errors of the tasks in Y and there are c errors of the task in

HPk. Note that the occurrences of the g errors are part of the occurrences of the c errors

since Y ⊆ HPk. We denote DIFFg(Y,Dk, c) as the maximum difference between the

• total carry-in interfering workload by considering all tasks in Y as carry-in tasks,

and

• total non carry-in interfering workload by considering all tasks in Y as no carry-in

tasks

within the scheduling window of job Jk where there are g errors of the tasks in Y and

there are c errors of the task in HPk. If there is exactly one task in set Y , say Y = {τi},
then DIFFg(Y,Dk, c) is given as

DIFFg({τi}, Dk, c) = ICIig(Dk, c)− INCig(Dk, c) (8.14)

If set Y has more than one task, say Y = X ∪ {τi} where X is the set of all tasks in

set Y except task τi, then the value of DIFFg(Y ,Dk, c) is maximized, for some q, such

that there are q errors of the tasks in set X and there are (g − q) errors of the task τi
within the interval [rk, dk], where 0 ≤ q ≤ g. Thus, the value of DIFFg(Y,Dk, c) can

be recursively calculated as follows:

DIFFg(Y,Dk, c) = DIFFg(X ∪ {τi}, Dk, c)

=
g

max
q=0

{

DIFFq(X,Dk, c) + DIFF(g − q)({τi}, Dk, c)

}

(8.15)

We define Q(S, a, m̂, c) as a subset of the task set S such that Q(S, a, m̂, c) has m̂ tasks

from set S and satisfies Constraint C1 that is given for set Q(S, a, m̂, c) as follows:

Constraint C1: The tasks in set Q(S, a, m̂, c)

• has m′ tasks from set S,

• are subjected to the worst-case occurrences of a errors within [rk, dk],

• where there are at most c errors that affect the tasks in set S within [rk, dk], and

• the difference between

– the total interfering workload of these m̂ tasks considering each task in

Q(S, a, m̂, c) as a CI-task, and

– the total interfering workload of these m̂ tasks considering each task in

Q(S, a, m̂, c) as a NC-task

is greater than or equal to that of any other subset of m̂ tasks from set S.

162 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

Formally, if setQ(S, a, m̂, c) satisfies Constraint C1, then for any other set B such that

B ⊆ S and |B| = m̂, we have

DIFFa(Q(S, a, m̂, c), Dk, c) ≥ DIFFa(B, Dk, c) (8.16)

The definition of set Q(S, a, m̂, c) is used in the next section to determine the set of

carry-in tasks. Once the set of carry-in and non carry-in tasks are known, the interfering

workloads of all tasks in HPk are combined to find Ick(Dk).

8.7 Total Interfering Workload of the Tasks in HPk

In order to find the upper bound on total interfering workload Ick(Dk), the upper bound

on interfering workload in [rk, dk] of all the tasks in HPk have to be combined consider-

ing the worst-case occurrences of c task errors affecting the tasks in HPk. Whether task

τi should be considered as a CI or NC task has to be determined before combining the in-

terfering workload of individual task. Based on Baruah’s idea in [Bar07] for global EDF,

it has already been shown in [GSYY09, DB11b] that for global fixed-priority schedul-

ing, there are at most (m − 1) higher priority tasks that have carry-in work within the

scheduling window of any lower priority job.

However, selecting the (m − 1) carry-in tasks from set HPk is challenging for two

reasons: (i) there are
(|HPk|
(m−1)

)

= (k−1)!
(m−1)!·(k−m)! possible ways to select a subset of (m−1)

tasks from set HPk, and more importantly, (ii) the carry-in or non carry-in interfering

workload of each task τi depends on the number of errors affecting task τi which in

turn depends on the worst-case occurrence of the c errors affecting all the tasks in HPk
within [rk, dk]. To solve the problem of finding (m − 1) carry-in tasks efficiently, the

algorithm, called FindCITasks, is proposed in Subsection 8.7.1 based on dynamic

programming approach. Given the sets of carry-in and non carry-in tasks, the individual

carry-in and non carry-in interfering workload of all tasks are combined to find Ick(Dk)
in Subsection 8.7.2. Finally, the schedulability test for FTGS algorithm based on this

total interfering workload is proposed.

8.7.1 Finding Carry-in Set Q(S, a, m̂, c)

Recall that setQ(S, a, m̂, c) is a subset of m̂ tasks from set S and satisfies Constraint 1.

In this subsection, an algorithm called FindCITasks that finds the setQ(S, a, m̂, c) is

proposed. Two cases are considered to find the set Q(S, a, m̂, c): Case(i) m̂ = 1, and

Case(ii) m̂ > 1.

Case(i) m̂ = 1: For this case, the aim is to find set Q(S, a, 1, c) such that Constraint 1

is satisfied. The set Q(S, a, 1, c) is given as follows:

Q(S, a, 1, c) = {τx} (8.17)

8.7. TOTAL INTERFERING WORKLOAD OF THE TASKS IN HPK 163

such that task τx satisfies Eq. (8.18)

DIFFa({τx}, Dk, c) = max
τi ∈ S

{

DIFFa({τi}, Dk, c)

}

(8.18)

which implies Constraint 1 is satisfied for set Q(S, a, 1, c) .

Case (ii) m̂ > 1: For this case, it is required to find from set S more than one carry-in

tasks that are subjected to a errors within the scheduling window of job Jk. Two steps

are considered to find such m̂ number of tasks from set S:

• Step 1 Find exactly one carry-in task from set S.

• Step 2 Recursively find (m̂− 1) carry-in tasks from set (S−{τx}) where task τx
is found in Step 1.

These two steps (i.e., Step 1 and Step 2) have to consider the worst-case occurrences

of a errors that can affect all these m̂ tasks within the scheduling window of job Jk.

The worst-case is determined by considering that (a − α) errors exclusively affect the

task determined in Step 1, and the worst-case occurrences of α errors affecting the other

(m̂ − 1) tasks determined in Step 2 for α = 0, 1, . . . a. For Step 1, the task affected by

(a− α) errors is in the set Q(S, a− α, 1, c) and can be determined using Eq. (8.17).

For Step 2, the other (m̂ − 1) tasks are selected from set (S − Q(S, a− α, 1, c))
considering an occurrences of α errors affecting these (m̂−1) tasks. This set of (m′−1)
tasks is given by Q(S′, α, m̂− 1, c) where S′ = (S−Q(S, a− α, 1, c)). The tasks

found in Step 1 and Step 2 for a particular α are given in set Sα as follows:

Sα = Q(S, a− α, 1, c) ∪ Q(S′, α, m̂− 1, c) (8.19)

where S′ = (S−Q(S, a− α, 1, c)) and 0 ≤ α ≤ a. The set Sα is a potential candidate

for set Q(S, a, m̂, c) which must satisfy Constraint C1 where 0 ≤ α ≤ a. Therefore,

the set Q(S, a, m̂, c) for m̂ > 1 is given as follows:

Q(S, a, m̂, c) = Sx (8.20)

where set Sx satisfies

DIFFa(Sx, Dk, c) = =
a

max
α=0

{

DIFFa(Sα, Dk, c)

}

(8.21)

which implies Constraint 1 is satisfied for set Sx = Q(S, a, m̂, c). The algorithm

FindCITasks(S, a, m̂, c) in Figure 8.3 determines the set Q(S, a, m̂, c) based on

these two cases: case(i) m̂ = 1 (line 1–5), and case(ii) m̂ > 1 (line 6–16).

When m̂ = 1 (line 1–5), the task τx is selected from set S such that Eq. (8.18)

is satisfied. The task τx is returned in line 4. When m̂ > 1 (line 6–16), the sets Sα
for all α = 0, 1, . . . a using Eq. (8.19) have to be determined first. Then, the set Sx
which is equal to set Q(S, a, m̂, c) is determined by evaluating Eq. (8.21). The for

164 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

Algorithm FindCITasks(S, a, m̂, c)

1. If (m̂ = 1) Then

2. Find task τx such that

3. DIFFa({τx}, Dk)=max
τi ∈ S

{

DIFFa({τi}, Dk)

}

4. Return {τx}

5. End If

6. If (m̂ > 1) Then

7. For α = 0 to a
8. Q(S, a− α, 1, c)= FindCITasks(S, a− α, 1, c)
9. S′ = S −Q(S, a− α, 1, c)
10. Q(S′, α, m̂− 1, c)=FindCITasks(S′, α, m̂− 1, c)
11. Sα = Q(S, a− α, 1, c) ∪ Q(S′, α, m̂− 1, c)
12. End For

13. Find task set Sx such that

14. DIFFa(Sx, Dk, c)=
a

max
α=0

{

DIFFa(Sα, Dk, c)

}

15. Return Sx
16. End If

Figure 8.3: Pseudocode for finding carry-in tasks

loop in line 7–12 runs a total of (a + 1) times for the iterative variable α = 0, . . . a.

For each value of α, the set Q(S, a− α, 1, c) is determined by recursively calling

FindCITasks(S, a − α, 1, c) in line 8. The set S′ = S −Q(S, a− α, 1, c) is deter-

mined in line 9. The rest of the (m̂ − 1) tasks are determined in line 10 by recursively

calling FindCITasks(S′,α,m̂− 1,c). Finally, the set Sα is determined in line 11.

The value of DIFFa(Sα, Dk, c) can be determined using Eq. (8.15) for all α =
0, 1, . . . a. The set Sα that satisfies Constraint 1 is the set Q(S, a, m̂, c). The set

Q(S, a, m̂, c)= Sx, that satisfies Constraint 1 for some 0 ≤ x ≤ a, is searched in line

13–14 and returned in line 15. The set of (m − 1) carry-in tasks from set HPk, where

the carry-in tasks are affected by q errors and all tasks in HPk are affected by c errors, is

Q(HPk, q, m− 1, c) and can be determined by calling FindCITasks(HPk,q,m−1,c).

The time complexity of algorithm FindCITasks(S, a, m̂, c) is now presented

by assuming that the value of DIFFg({τi}, Dk, c) is known for all τi ∈ S and for all

g = 0, 1, . . . a. The base case, i.e., when m̂ = 1, in line 1–5 can be determined in O(n)
steps since there are at most n tasks in set S.

When m̂ > 1, the set Sα has to be determined for all α = 0, 1, . . . a. For each value

of α, the base case in line 1–5 is evaluated total m̂ times and there are total (m̂ − 1)
set difference operations in line 9. The time complexity for each call of the base case in

line 1–5 is O(n). The set difference in line 9 can be done in linear time since only one

element is removed from set S. The set union in line 10 can be done in constant time

8.7. TOTAL INTERFERING WORKLOAD OF THE TASKS IN HPK 165

since one of the sets has only one element. Thus, for a particular α, the time complexity

to determine the set Sα in line 11 is O(n ·m).
The tasks in set Sα are potential candidates for the set of m̂ carry-in tasks while

the tasks in (S − Sα) are potential candidates for the set of non carry-in tasks, for

α = 0, . . . a. The for loop in line 7–12 finds all the potential CI task sets S1, S2 . . . Sa.

Note that since a ≤ f , the for loop in line 7–12 runs total O(f) time. Thus, the time

complexity to find all the sets S1, S2 . . . Sa in line 7–12 is O(n ·m · f).
It is not difficult to see that given the values of DIFFg({τi}, Dk, c), for all g =

0, 1, . . . a, evaluating DIFFa(Sα, Dk, c) using Eq. (8.15) has the time complexity of

O(n · f) since there are at most n elements in Sα and the maximum operation in

Eq. (8.15) needs at most g comparisons for set X ∪ {τi} where g ≤ c ≤ f . Therefore,

evaluating the value of DIFFa(Sα, Dk, c) in line 13-14 for all α = 0, . . . a has time

complexity O(n · f2). Thus, the time complexity of the algorithm FindCITasks is

O(n ·m · f + n · f2) = O(n · f ·max{m, f}) if the values of DIFFg({τi}, Dk, c), for

all g = 0, 1, . . . a and for all τi ∈ S are known.

8.7.2 Total Interfering Workload and Schedulability Test

The total interfering workload, i.e., the value of Ick(Dk) is computed by combining

the upper bound on the interfering workload of all the higher priority tasks in HPk.

Recall that there are (m − 1) carry-in tasks in set HPk. The worst-case occurrence of

the c errors affecting the tasks in HPk needs to consider the worst-case occurrence of

q errors affecting the (m − 1) carry-in tasks and the worst-case occurrence of (c − q)
errors affecting the (|HPk| − m + 1) non carry-in tasks for some q, 0 ≤ q ≤ c. The

set of (m − 1) carry-in task are given by Q(HPk, q, m− 1, c) according to Eq. (8.20)

and can be determined by calling FindCITasks(HPk, q, m− 1, c) for a particular q,

0 ≤ q ≤ c. And the remaining (|HPk| − m + 1) non carry-in tasks are given by set

(HPk −Q(HPk, q, m− 1, c)).
Before combining the upper bound of the individual interfering workload of all the

tasks in HPk to find Ick(Dk), the following problem needs to be solved: Consider a set
Y such that Y ⊆ HPk and assume that it is already known whether τi is a CI task
or NC task for each task τi ∈ Y . What is the upper bound on the total interfering
workload of the tasks in set Y on task τk within [rk, dk] if the tasks in set Y suffer
from g errors and all the tasks in HPk suffers from c errors within [rk, dk]?

The upper bound on the total interfering workload of the tasks in set Y on task τk
within [rk, dk] is denoted as TIg(Y,Dk, c) such that there are g and c errors within

[rk, dk] affecting the tasks in sets Y and HPk, respectively (note that the g errors are part

of the c errors since Y ⊆ HPk). If there is exactly one task in set Y , such that Y = {τi},
then TIg(Y,Dk, c) is given as follows:

TIg(Y,Dk, c) =

{

ICIgi (Dk, c) if τi is a CI-task

INCgi (Dk, c) if τi is a NC-task
(8.22)

where ICIgi (Dk, c) and INCgi (Dk, c) are defined in Eq. (8.13) and Eq. (8.12), respec-

166 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

tively. Now consider the case where the set Y has more than one task, say Y = X∪{τi},
where X is the set of all the tasks in Y except task τi. The value of TIg(Y,Dk, c) is

maximized, for some q, if there are q errors of the tasks in setX and there are (g−q) er-

rors of the task τi, where 0 ≤ q ≤ g. Thus, the value of TIg(Y,Dk, c) can be recursively

calculated as follows:

TIg(Y, Dk, c) = TIg(X ∪ {τi}, Dk, c)

=
g

max
q=0

{

TIq(X, Dk, c) + Ψ

}

(8.23)

where Ψ =

{

ICIg−qi (Dk, c) if τi is a CI-task

INCg−qi (Dk, c) if τi is a NC-task

Recall that the upper bound on combined interference Ick(Dk) is sum of the upper bound

of the individual interfering workload of the higher priority tasks in HPk where these

tasks are affected by c errors within [rk, dk]. The sum of the upper bounds of the indi-

vidual interferences of the CI and NC tasks is maximum, for some q, where there are

q errors of the (m − 1) carry-in tasks and there are the (c − q) errors of the remaining

(|HPk| −m + 1) non carry-in tasks, 0 ≤ q ≤ c. Thus, the value of Ick(Dk) is given as

follows:

Ick(Dk) =
c

max
q=0

{

TIq(A,Dk, c) + TIg−q(B,Dk, c)

}

(8.24)

whereA = Q(HPk, q, m− 1, c) is the set of (m−1) carry-in tasks and B = (HPk−A)
is the set of non carry-in tasks. Note that the set A in Eq. (8.24) may be different for

different values of q, 0 ≤ q < c. The value of Ick(Dk) given in Eq. (8.24) is the upper

bound on the total interfering workload.

Sufficient Schedulability Test. Now based on the necessary unschedulability condi-

tion in Eq. (8.7), the following sufficient schedulability test in Theorem 8.1 for task

τk follows:

Theorem 8.1. A task τk ∈ Γ is schedulable using FTGS algorithm if

f
max
c=0

{⌊

Ick(Dk)

m

⌋

+ C
(f − c)
k

}

≤ Dk (8.25)

Proof. This Theorem is proved using contradiction. Assume that some job of task τk has

missed its deadline while the condition in Eq. (8.25) holds. Remember that job Jk is a

critical job in the sense that task τk is not feasible using FTGS if and only if Jk misses

its deadline. Consequently, if at least one job of task τk misses its deadline, then job

Jk also misses its deadline which implies that Eq. (8.7) holds (contradicts the fact that

Eq. (8.25) holds!).

8.7. TOTAL INTERFERING WORKLOAD OF THE TASKS IN HPK 167

The schedulability test of the entire task set Γ is given by iteratively applying Theo-

rem 8.1 on each lower priority task τk for k = (m+ 1), . . . n.

Corollary 8.1. Sporadic task set Γ is feasible using FTGS algorithm if

f
max
c=0

{⌊

Ick(Dk)

m

⌋

+ C
(f − c)
k

}

≤ Dk (8.26)

for all k = m+ 1, . . . n.

A concise notation for the iterative schedulability test of Corollary 8.1 is denoted by

FTGS-Test(Γ, f,m)that when passed for a task set Γ guarantees that all the tasks in

Γ meet their deadlines on m processors even if there are f task errors in any interval of

lengthDmax. The Pseudocode to evaluate FTGS-Test(Γ, f,m)is given in Figure 8.4.

The algorithm in Figure 8.4 starts by calculating C
(f − c)
k for all k = 1, 2, . . . n and

for all (f − c) = 0, 1, . . . f in line 1–6 of Figure 8.4. In other words, the values of

C0
k , C

1
k . . . C

f
k for all k = 1, . . . n is calculated in line 1–6. The for loop in line 7–33

runs total (n−m) times and evaluates the schedulability condition in Eq. (8.26) for each

of the lower priority tasks τk in each iteration for k = m+1, . . . n. When evaluating the

schedulability of task τk, the carry-in workload and non carry-in workload of each of

the higher priority tasks are determined first in line 8–13. Then, the individual carry-in

interfering workload, non carry-in interfering workload, and their difference for each

higher priority task are determined in line 14–22. Finally, the total interfering workload

of all the higher priority tasks are determined and Eq. (8.26) is evaluated in line 23–32.

The condition in line 28 checks whether the total computation load of the tasks in

HPk∪{τk} in any interval of length Dk exceeds Dk where task τk is affected by (f − c)
errors, the carry-in tasks are affected by q errors, and the non carry-in tasks are affected

by (c− q) error for all q, c and f such that q ≤ c ≤ f . If the answer is positive (compu-

tation load is greater than the length of the interval), then task τk can not be guaranteed

to be schedulable and the algorithm returns “False” in line 29. If the condition at line

28 is never true, then the for loop at line 7–33 is exited, the algorithm returns “True”

in line 34 and the entire task set is schedulable using the FTGS scheduling. The time

complexity of FTGS-Test(Γ, f,m)is pseudo-polynomial as is shown next.

Time Complexity. Remember that the self execution time of all the n tasks when af-

fected by (f − c) errors can be determined in O(n · f) time. So, line 1–6 runs in

O(n · f) time. The two nested for loops in line 8–13 determine the carry-in and non

carry-in workload of each of the higher priority tasks when considering the schedulabil-

ity of task τk. All the higher priority tasks are iterated using the iterative variable i for

i = 1, . . . (k − 1) in line 8–13. The carry-in and non carry-in workload of the higher

priority jobs of task τi that is exclusively affected by g errors are determined in line

10–11 for all g = 0, . . . f . Aydin in [Ayd07] showed that the time complexity to find

the workload of a set of N̂ aperiodic tasks is O(N̂ · f) where these jobs are affected by

exactly f errors. The jobs of a set of sporadic tasks, when arrive as early as possible,

can be considered as a set of aperiodic tasks and there are at most N̂ jobs within the

168 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

Algorithm FTGS-Test(Γ, f,m)

1. For k = 1 to n
2. C0

k = Ck
3. For c = (f − 1) to 0

4. C
(f − c)
k =E

(f − c)
k + C

(f − c− 1)
k

5. End For

6. End For

7. For k = (m+ 1) to n
8. For i = 1 to (k − 1)
9. For g = 0 to f
10. Find WNCgi (Dk, ξ) using Eq. (8.10)

11. Find WCIgi (Dk, ξ) using Eq. (8.11)

12. End For

13. End For

14. For i = 1 to (k − 1)
15. For c = 0 to f
16. For g = 0 to c
17. Find INCgi (Dk, c) using Eq. (8.12)

18. Find ICIgi (Dk, c) using Eq. (8.13)

19. Find DIFFg({τi}, Dk, c) using Eq. (8.15)

20. End For

21. End For

22. End For

23. For c = 0 to f
24. For q = 0 to c
25. A =FindCITasks(HPk, q, m− 1, c)
26. B = HPk −A
27. I =TIq(A, Dk, c) + TIc−q(B, Dk, c)

28. If (⌊ I
m
⌋+ C

(f − c)
k > Dk) then

29. Return “False”

30. End if

31. End For

32. End For

33. End For

34. Return “True”

Figure 8.4: Pseudocode of FTGS-Test(Γ, f,m)

scheduling window of each task. Thus, the time complexity to find the value of carry-in

and non carry-in workload using Eq. (8.10) and Eq. (8.11) is O(N̂ · g) for a particular

g and a particular task τi. And, thus the time complexity for evaluating Eq. (8.10) and

Eq. (8.11) for all g = 0, 1, . . . f and for all tasks in line 8–13 is O(n · N̂ · f2).

8.8. TOLERATING PROCESSOR FAILURES 169

Based on the workload of each of the higher priority tasks, individual interfering

workload of each higher priority task in line 14–22 is calculated. Given the values of

C
(f − c)
k and the workload of each task, the value of individual carry-in or non carry-in

interfering workload can be calculated using one addition, one subtraction and one com-

parison using using Eq. (8.12) and Eq. (8.13), respectively. The difference between the

carry-in and non carry-in individual interfering workloads of each task τi is determined

in line 19. The value of DIFFg({τi}, Dk, c) using Eq. (8.15) is determined in line 19

using only one subtraction operation. Thus, the time complexity to find the individual

carry-in and non carry-in interfering workload and the difference between them for all

c = 0, . . . f , for all i = 1, 2, . . . (k − 1) and for all g = 0, 1, . . . c is O(n · f2).
When evaluating Eq. (8.26) for task τk, one has to consider c errors affecting the

higher priority tasks in HPk and the remaining (f − c) errors affecting task τk within an

interval of length Dk for c = 0, · · · f . Moreover, for a given a value of c, a total of q
errors affecting only the (m−1) higher priority carry-in tasks and (c−q) errors affecting

the higher priority non carry-in tasks are considered for q = 0, . . . c. The two nested for

loops in line 23–24 consider each possible values of c and q where 0 ≤ c ≤ f and

0 ≤ q ≤ c. The (m− 1) carry-in tasks are determined by calling FindCITasks(HPk,

q, m − 1, c) in line 25 for particular values of c and q. The non carry-in tasks from

set HPk are determined in line 26 using one set difference operation. However, it is

not needed to perform this set difference operation since algorithm FindCITasks in

Figure 8.3 can easily determine the set of non carry-in tasks while determining the set

of carry-in tasks. Remember that the time complexity to find the (m− 1) carry-in tasks

using FindCITasks is O(n · f · max{m, f}). Given the carry-in and non carry-in

tasks in sets A and B (line 25–26), the total interfering workload of all the tasks in

HPk = A ∪B can be determined using Eq. (8.23).

The total interfering workload of the carry-in tasks and non carry-in tasks respec-

tively in setsA andB are given as TIq(A, Dk, c) and TIg−q(B, Dk, c) using Eq. (8.23).

The sum of TIq(A, Dk, c) and TIg−q(B, Dk, c) in line 27 is the total interfering work-

load of the higher priority tasks that are affected by c errors where q errors affect the

carry-in task and (c − q) errors affect the non carry-in tasks. It is not difficult to see

that the time complexity to find the values of TIq(A, Dk, c) and TIg−q(B, Dk, c) for a

particular c, where c ≤ f , using Eq. (8.23) is O(n · f).
Evaluating the condition in line 28–30 can be done in constant time. Thus, the time

complexity to evaluate the condition in line 28 for all possible values of c and q using

the loops in line 23–24 is O(n · f3 · max{m, f}) when evaluating the schedulability

test for task τk. By adding the time complexities of all the steps, the time complexity to

evaluate FTGS-Test(Γ, f,m)in Figure 8.4 is O(n2 · f2 ·max{N̂ ,m · f, f2}) which

is pseudo-polynomial in the representation of the task set and fault model.

8.8 Tolerating Processor Failures

In this section, the schedulability test FTGS-Test(Γ, f,m)is extended in order to

determine whether the effect of ρ permanent processor failures can be mitigated using

170 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

FTGS algorithm. Remember that FTGS scheduler deals with a processor failure by

assuming the task that was executing on the faulty processor has encountered a task

error. Once a processor failure is detected, the FTGS scheduler performs the following

two actions:

• no task is dispatched to the faulty processor, and

• if any task was executing on the faulty processor, its backup is stored in the ready

queue.

The fault model for processor failure considers fail-stop processors and includes simul-

taneous multiple processor failures. The execution requirement of the recovery opera-

tions at any time instant due to processor failures is maximum if all the ρ processors

fail simultaneously at that time instant while each of these ρ processors is executing

some task. This is the worst-case scenario for ρ processor failures since the backups

of total ρ tasks that were executing on the faulty processors simultaneously become

ready. And, the multiprocessor platform now has (m − ρ) non-faulty processors. Con-

sequently, there is an interval of length Dmax in which it is required to consider to-

tal (f + ρ) task errors that need to be tolerated using FTGS scheduling on (m − ρ)
processors. Note that tolerating both task errors and processor failures using FTGS al-

gorithm requires each task to have (f + ρ) backups. The extended schedulability test

for FTGS algorithm to tolerate both task errors and processor failures is given as fol-

lows: apply FTGS-Test(Γ,f + ρ,m− ρ) to determine whether the answer to this

schedulability test is positive or negative.

Resilience: Given a sporadic task set Γ, the system designer can apply the proposed

FTGS-Test(Γ,f + ρ,m− ρ) for various combinations of the parameters f , m and

ρ. An exhaustive approach to judge the resilience of the fault-tolerant system would be

to apply the FTGS-Test(Γ,f + ρ,m− ρ) on all possible triplets (m, f , ρ) where

m ∈ {2, 3, . . .}, f ∈ {0, 1, . . .} and ρ ∈ {1, 2, . . .m}. The system designer can also

determine the minimum number of processors required for scheduling an embedded

real-time application for some given f and ρ using FTGS algorithm.

Effective Priority Assignment Policy: It is not difficult to see that the schedulability

test FTGS-Test(Γ, f,m)is OPA-compatible (i.e., the three OPA-compatibility condi-

tions in page 83 are satisfied). Thus, it can be used to determine effective fixed-priority

assignment by applying the combination of multiprocessor extension of Audsley’s op-

timal priority assignment policy. Moreover, this test can also take the advantage of

the hybrid priority assignment policy using the separation criterion that is proposed in

Chapter 6. In addition, instead of performing deadline-analysis, a response-time based

analysis similar to the IA-RT test can be performed (please see chapter 6). These three

features (i.e, OPA+HPA+RTA) would result progressively better tests than the proposed

FTGS-Test(Γ, f,m)for the FTGS scheduling.

Configuring FTGS for Active Backups: The FTGS scheduling algorithm and the

schedulability test FTGS-Test(Γ, f,m)considers passive backups: a backup task

8.9. GRACEFUL DEGRADATION 171

only becomes ready if a task error is detected, otherwise, the backup never executes.

However, it is possible to configure FTGS scheduling algorithm to consider active back-

ups as well. Active backups consumes more CPU cycles in comparison to passive back-

ups but provides quick error recovery to the tasks. Such quick error recovery is needed

for low-laxity tasks. The basic idea for incorporating active backups is described below.

Consider that there are f ′ backups of each task τi that are active backups where

0 ≤ f ′ ≤ f . Without loss of generality, consider that the first f ′ backups of each task

τi are the active backups while the remaining (f − f ′) backups are passive backups. In

such case, the primary and the f ′ backups of each task become ready whenever a job of

the task is released. The priority of the active backups are same as that of the primary. In

contrast to complete passive backup, the active backups always execute no matter what

happens to the primary or other active backups. If an error is detected after execution of

any one of these active backups or the primary, the first passive backup becomes ready

for execution. Subsequent error detected in any one of the currently active backups or

the primary results in next passive backup to become ready for execution. However, as

soon as either the primary or any of the backups of a task completes execution without

signaling an error, the other active backups of the task can be terminated. Such backup

deallocation utilizes the processors efficiently without sacrificing fault-tolerance.

In order to ensure that all the tasks are schedulable using the combined active-passive

backup policy, new schedulability test has to be derived. A preliminary idea is to con-

sider each of the active backups as a different task. Thus, there will be f ′ additional

(pseudo) tasks for each original task τi. A new task set is formed by including for each

task τi ∈ Γ, a task corresponding to the primary and the f ′ tasks corresponding to the

f ′ active backups. This new task set has total (n + n · f ′) tasks. If this new task is

global FP schedulable (without considering faults), then at most f ′ task errors can be

tolerated within any interval of length Dmax. To tolerate an additional (f − f ′) task

errors within any time interval of length Dmax, it is sufficient to show that an additional

(f − f ′) task errors within any time interval of length Di can be tolerated when con-

sidering the schedulability of a lower priority task τi. therefore, if this new task set can

tolerate (f − f ′) task errors within any interval of length Dmax, then all the deadlines

are met on m processors while tolerating f tasks errors in any interval of length Dmax.

The FTDM scheduling algorithm proposed in last chapter for uniprocessor fault-tolerant

scheduling can also be extended to incorporate active backups.

8.9 Graceful Degradation

The fault tolerant scheduling algorithms FTDM and FTGS proposed respectively in Chap-

ter 7 and Chapter 8 assumes a certain fault model. However, fault-tolerant systems needs

to provide correct service even if the errors that occur in the system are not compliant

with the fault model. For example, if there are more that f task errors within an interval

of length Dmax, then the proposed schedulability analysis can not ensure that all the

deadlines will be met. In such case, upon detection of an error if the recovery operation

(i.e., execution of a backup) can not be guaranteed to meet the deadline of the task, the

172 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

system should be robust enough such that it provides degraded service in a graceful way.

An admission controller in such can decide whether to accept or reject such a recovery

request. Three possible alternatives for handling the recovery request are proposed:

• Direct Rejection: Simply reject the request without any further consideration.

• Criticality-Based Eviction: Evict some low-criticality task from the system to

accept the new recovery request.

• Imprecise Computation: Accept the new recovery request and execute as much

as possible of the corresponding backup without compromising the timeliness of

other tasks.

8.9.1 Direct Rejection

If an error is detected and the recovery request can not be accepted, for example by the

admission controller of the fault-tolerant scheduling algorithm, then the simple approach

is to just rejecting the recovery request. If the system is already highly-loaded, the

recovery request is most probably be rejected and in such case the reliability of the

system is degraded so as to guarantee schedulability of the other existing tasks.

8.9.2 Criticality-Based Eviction

If an error is detected and the recovery request can not be accepted by the admission

controller of the fault-tolerant scheduling algorithm, then criticality-based eviction can

be employed. In this approach, some already-admitted task, having lower criticality than

the criticality of the recovery request, is temporarily terminated and the recovery request

is serviced. The termination of the lower-criticality task is temporary in the sense that,

when the backup corresponding to the recovery finishes execution, the evicted lower

criticality task can be re-admitted into the system. In such case, the lower-criticality

task may be unable to execute its jobs that are released while recovery operation is

being performed.

By criticality of a task it means the user-perceived importance of the applications

tasks in meeting the deadlines. The criticality of the tasks in a task set can be determined

independent of the priorities of the tasks [MAM99]. Such criticality-based eviction is

applicable for applications in which execution of some jobs of a task can be skipped.

In [CB98], scheduling of hard and firm periodic tasks are considered. A firm task can

occasionally skip one of its jobs based on some predetermined quality-of-service agree-

ment while the hard periodic task must execute all of its jobs.

Criticality-based scheduling for non-deterministic workloads is addressed by Al-

varez and Mossé in [MAM99]. They analyzed the schedulability of a fixed-priority sys-

tem using a concept called responsiveness [MAM99]. Their analysis is best suited for

systems with nondeterministic workload in which recovery operations caused by faults

are serviced at different responsiveness levels. By responsiveness level, the authors

8.10. SUMMARY 173

mean whether the recovery operation is run in a non-intrusive (without affecting schedu-

lability of other tasks) or intrusive (affecting schedulability of existing tasks) manner. In

case of intrusive recovery, timeliness of the less-critical tasks are compromised and the

system suffers degraded service. Thus, the eviction of lower-criticality task degrades

schedulability performance but provides higher reliability.

Note that, such criticality-based eviction may not work if there is no lower-criticality

task to evict in order to accept a recovery request, or if negating the total computation de-

mand of all the lower-criticality tasks from the system is not enough for executing the re-

covery request. This problem can be addressed using imprecise computation paradigm.

8.9.3 Imprecise Computation

If partial computation of the recovery request is useful, then the recovery request can

be accepted into the system even though a complete recovery request can not be ser-

viced due insufficient processing capacity. When the result of a complete execution of

a recovery request can not be produced before the deadline, errors (outside the scope of

the consider fault model) can be recovered using imprecise computation of the backup.

Imprecise computation models are considered in [CLL90, LSL+94, MAAMM00] and

are appropriate for monotone processes where result produced by a task will have in-

creasingly higher quality if more time is spent in executing the task. Such monotone

processes are considered to have a mandatory part and an optional part [LSL+94]. The

mandatory part of each task has a hard deadline and must complete its execution be-

fore deadline. However, the optional part of a task can be skipped if enough processing

power is not available.

The imprecise computational model is applicable if the backup of a faulty task is

modeled as a monotone process. Therefore, even if the full execution of the backup can

not be completed, the result of the partial computation of the backup can ensure certain

quality to the application. Hence, when the admission controller can not guarantee com-

plete execution of a recovery request, the request can still be accepted to the system and

imprecise result can be delivered to the application. By considering the recovery request

as a monotone process, the imprecise computation technique to serve a recovery request

can be seen as providing a balance between schedulability performance and reliability.

It is easy to realize that eviction of a low-criticality task and imprecise computation

can be combined so as to offer a solution to the problem where the mandatory part of a

task does not have enough time to finish before its hard deadline. In such case evicting

a lower criticality task could enable the complete execution of the mandatory part of a

highly-critical recovery request.

8.10 Summary

In this chapter, a fault-tolerant multiprocessor scheduling algorithm called FTGS and its

corresponding schedulability test for constrained-deadline sporadic tasks are proposed.

174 CHAPTER 8. FAULT-TOLERANT SCHEDULING ON MULTIPROCESSORS

This schedulability test enables the system designer to judge the robustness of the sys-

tem by experimenting with different number of task errors and processor failures. Such

sensitivity analysis enables the designers to evaluate off-line the resource requirement

and resilience of the fault-tolerant system. The fault model that FTGS algorithm con-

siders is very powerful in the sense that multiple task errors or processor failures are

considered to occur at any time, in any task, or even during the execution of recovery

operation. No other works have considered such a general fault model for scheduling

real-time sporadic tasks on multiprocessors.

The FTGS scheduling considers passive backups: a backup is dispatched after an

error is detected. Such passive-backup strategy is good in terms of saving CPU cycles

for systems where faults are less likely. Passive backups are also effective for tasks that

have enough laxity so that there is enough time in the schedule to execute the backup

after an error is detected. However, for low-laxity tasks, passive backups may not be

effective to provide fault-tolerance and active backups may be appropriate in such case.

However, active backup strategy consumes more energy but provides quick recovery.

The system designer can determine for the FTGS algorithm whether only active backups,

only passive backups, or a combined approach to be used for the system.

The FTGS scheduling algorithm and its analysis can be extended both for an im-

proved priority assignment policy. The proposed schedulability test for FTGS algo-

rithm is OPA-compatible and can be used to find a fixed-priority ordering of the tasks if

the schedulability test is not satisfied for the given fixed-priority ordering of the tasks.

Moreover by prudently keeping some tasks and processor separated from the schedu-

lability analysis of a lower priority task, better priority assignment policy based on the

HPA scheme can be obtained.

9
Mixed-Criticality Systems

The advent of multicore processors has attracted many safety-critical systems, e.g., au-

tomotive and avionics, to consider integrating multiple functionalities on a single, pow-

erful computing platform. Such integration leads to host functionalities with different

criticality levels on the same platform. The design of such “mixed-criticality” systems

is often subject to certification from one or more certification authorities. Coming up

with an effective scheduling policy and its analysis that can guarantee certification of

the system at each criticality level, while maximizing the utilization of the processors,

is the focus of the research presented in this chapter.

The global, fixed-priority scheduling algorithm for a set of constrained-deadline and

mixed-criticality sporadic tasks on multiprocessors is considered. A sufficient schedu-

lability test based on response-time analysis of the proposed algorithm is derived. One

of the useful features of the proposed test is that it can be used for systems with more

than two criticality levels. In addition, the test can be used to find “effective” fixed-

priority ordering of the mixed-criticality tasks based on Audsley’s approach. Empirical

investigation into the effectiveness of Audsley’s priority assignment algorithm using the

proposed schedulability test shows significant improvement over other heuristic-based

(e.g., deadline-monotonic, criticality-monotonic) priority assignment policies.

9.1 Introduction

Single-chip multiprocessors are viewed as serious contenders for many safety-critical

and hard real-time systems to meet the growing demand of computing power. The de-

signers of such systems are considering integrating multiple functionalities on the same

175

176 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

computing platform due to space, weight and power concerns. For example, aviation

industry is contemplating “Integrated Modular Avionics” (IMA) to achieve economic

advantage by hosting multiple avionics functions on a single platform [ARI]. Simi-

larly, the growing complexity and safety requirements in automotive systems have led

to the development of the AUTOSAR framework focusing on composability of compo-

nents [AUT]. Version R4.0 of AUTOSAR provides the specification for multicore OS

architectures.

The functionalities of safety-critical applications, e.g., control and monitoring, are

often modeled as a collection of real-time, sporadic tasks having hard deadlines. A

MC real-time system is the one in which the criticality levels, i.e., importance, of differ-

ent real-time tasks may be different. The design of MC systems is often subject to certifi-

cation at each criticality level by standard statutory certification authority (CA), for ex-

ample, by Federal Aviation Authority in the US or the European Aviation Safety Agency

in Europe for avionics systems. One of the major challenges in designing MC real-time

systems is devising a scheduling strategy that addresses both the “criticality” and “dead-

line” aspects of the tasks while facilitating certification and efficient resource usage.

In order to certify a MC system as being correct, the CAs make certain assumptions

about the worst-case behavior of the system. In this thesis, a particular aspect of the run-

time behavior of the system: the WCET of the application tasks is considered. Vestal

has pointed out in [Ves07] that the more confidence one needs in a task execution time

bound, the larger and more conservative that bound tends to be in practice. The CAs

become increasingly pessimistic regarding their estimation of the WCET of a piece of

code for increasingly higher criticality levels. However, the CA, when certifying the

system at some criticality level, is also concerned about the correctness (i.e., meeting

the deadlines) of the real-time tasks relevant only to that particular criticality level. For

example, in order to operate Unmanned Aerial Vehicle (UAV) over civilian airspace, the

flight-critical functionalities must be certified as “correct” by the CA while the manu-

facturer needs to ensure the correctness of both mission-critical and flight-critical func-

tionalities. Due to such different assumptions and concerns among the CAs and the

manufacturers, conventional scheduling strategies addressing both the “criticality” and

“deadline” aspects of MC systems are not cost- and resource-efficient. This is illustrated

using a contrived example:

Example 9.1. Consider six constrained-deadline periodic tasks τ1 . . . τ6 that are to be

scheduled on m = 2 identical processors based on global FP scheduling. Assume that

all the tasks are released at time zero and there are only two criticality levels (i.e., dual-

criticality system): tasks τ1 and τ2 are low-critical tasks while the other tasks τ3 . . . τ6
are the high-critical tasks.

The period of each task is 7. The relative deadline of each of the low-critical tasks

τ1 and τ2 is 4. The relative deadline of each of the high-critical tasks τ3 . . . τ6 is 7.

According to the system designer, the WCET of each task is 2. According to the CA,

the WCET of each of the higher-critical1 tasks τ3 . . . τ6 is 3. Scheduling the tasks us-

1The CA is not concerned about the low-critical tasks and does not specify their execution times.

9.1. INTRODUCTION 177

ing global FP scheduling requires each of the tasks to have one distinct fixed-priority

between priority level 1 (highest) to 6 (lowest).

If any of the low-critical tasks τ1 or τ2 is assigned priority level 5 or 6, then that task

misses its deadline even if each of the high critical tasks {τ3, . . . τ6} actually executes

for at most 2 time units (the system designer is not happy with the schedule). If none of

the tasks τ1 and τ2 is assigned priority level 5 or 6, then not all the high-critical tasks

{τ3, . . . τ6} meet their deadlines when they execute for 3 time units at run-time (the CA

is not happy with the schedule). Thus, the system can not be scheduled in a manner that

satisfies both the system designer and the CA if traditional global FP scheduling is used.

However, there is a valid schedule that can satisfy both parties.

• Consider that the global FP scheduling algorithm is augmented with runtime

monitoring support that can monitor the execution time of each job of each task,

i.e., can determine how long a job has been executing.

• Task τ3 and τ4 are assigned the highest priority levels 1 and 2. Task τ1 and τ2 are

assigned the next two priority levels 3 and 4. And, task τ5 and τ6 are assigned the

lowest two priority levels 5 and 6.

• Note that the hyperperiod of the task set is 7 and within each hyperperiod exactly

one job of each task is released. Therefore, if the job of each task is schedulable

in the first any hyperperiod, then all the jobs of all the tasks are schedulable.

• First, the tasks τ3 and τ4 are executed within the hyperperiod since these are the

two highest priority tasks and there are two processors.

• If any of the two jobs of these two tasks τ3 and τ4 does not signal completion

of execution after executing for 2 time units (i.e., the assumption of the system

designer does not hold), then low-critical tasks τ1 and τ2 are dropped from the

system. And, each of the jobs of the high-critical tasks {τ3, . . . τ6} can execute for

at most 3 time units within each hyperperiod and can meet their deadlines.

• If both jobs of tasks τ3 and τ4 signal completion after executing for at most 2 time

units, then the two jobs of the low-critical tasks τ1 and τ2 are executed for 2 time

units and can meet their deadlines. Finally, the two jobs of the high-critical tasks

τ5 and τ6 can execute for at most 3 time units and can also meet their deadlines.

So, if the system designer’s assumption (that each job execute for 2 time units) hold

during runtime, then all tasks meet their deadlines according to global FP scheduling.

If the CA is right (that each high-critical job executes for 3 time units), then all the

deadlines are met. Thus, both the CA and the system designers are satisfied.

It is evident that the schedulability of the MC task systems in Example 9.1 can not

be guaranteed based on traditional global FP scheduling algorithm. No work has pro-

posed scheduling of constrained-deadline MC sporadic tasks on multiprocessors based

on the industry-preferred FP scheduling. The only work on multiprocessor schedul-

ing of MC tasks is recently proposed by Li and Baruah in [LB12] considering dynamic

178 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

priority and implicit-deadline tasks. The study of FP scheduling algorithms and their

analysis on multiprocessors for MC constrained-deadline sporadic tasks is the focus of

this chapter.

In this thesis, an implementation scheme of global FP scheduling, called Mixed-

criticality Scheduling algorithm on Multiprocessors (MSM), for dispatching a set of

mixed-criticality, sporadic tasks onm identical processors is proposed. The proposed al-

gorithm MSM essentially dispatches tasks in accordance to traditional global FP schedul-

ing but has two additional implementation features: (i) the duration of the execution time

of each job is monitored at run-time in order to detect any transition of the system’s be-

havior to a higher criticality level, and (ii) upon detection of such transition at runtime,

some tasks are dropped to better utilize the processors without violating the certification

requirements. The run-time monitoring support exists in many safety critical-system

where the execution time of each job is monitored in order to provide temporal guar-

antees, fault-tolerance or health monitoring [AB98, CJD91, PMCR08, RRJ92, HS89].

And, this capability is exploited in this thesis for the design and analysis of certification-

cognizant multiprocessor FP scheduling of MC systems.

The main contribution in this chapter is the derivation of a sufficient schedulabil-

ity condition of the MSM algorithm based on response time analysis (RTA) that can be

used to guarantee certification at each criticality level. One of the novel features of

the proposed schedulability test is that it can be used to find “effective” fixed-priority

ordering of the MC tasks based on Audsley’s optimal priority assignment (OPA) algo-

rithm [Aud01]. When a MC task set for a given priority ordering does not satisfy the

proposed schedulability test, a different priority ordering for which the task set satisfies

the schedulability test may be determined using Audsley’s algorithm. This is an im-

portant feature since the optimal fixed-priority ordering, even for traditional (non-MC)

sporadic tasks on multiprocessors, is still unknown. Another useful feature of the pro-

posed test is that it is applicable to systems having more than two criticality levels. This

feature is important as many safety-critical systems (i.e., automotive, avionics) that have

more than two criticality levels.

The chapter is organized as follows: Section 9.2 presents the system model and the

MSM algorithm. The basic framework for the schedulability analysis of the MSM algo-

rithm is presented in Section 9.3. The schedulability analysis of the MSM algorithm for

dual-critical systems is presented in Sections 9.4–9.5. Then, the schedulability analysis

for arbitrary number of criticality levels is presented in Section 9.6. Empirical investi-

gation into the proposed schedulability test and priority assignment policy is presented

in Section 9.7. The related works are presented in Section 9.8 before concluding the

chapter in Section 9.9.

9.2 System Model and The Scheduler

The preemptive scheduling of MC sporadic task systems on m identical processors is

considered. A MC sporadic task system Γ consists of n mixed-criticality sporadic tasks

τ1, . . . , τn having L distinct criticality levels. Each task τi is characterized by a 4-tuple

9.2. SYSTEM MODEL AND THE SCHEDULER 179

(Li, Di, Ti, Ci), where

• Li ∈ {1, 2, . . .L} is the criticality level of the task where L is the highest criti-

cality level in the system.

• Ti ∈ N
+ is the minimum inter-arrival time of the jobs (also, called period) of the

task.

• Di ∈ N
+ is the relative deadline such that Di ≤ Ti.

• Ci is a vector < C1
i , C

2
i , . . . C

L
i > that represents the worst-case execution times

of task τi at different criticality levels. The WCET of task τi at criticality level ℓ
is equal to Cℓi .

The WCET of a piece of code is generally an upper bound on the true WCET and

the more confidence one needs in estimating the WCET of a piece of code, the more

pessimistic this upper bound tends to be. Therefore, different values for WCET of a

piece of code can be determined based on the level of confidence one needs in estimating

that WCET. To that end, it is assumed that Cℓi ≤ C
(ℓ+1)
i for each task τi ∈ Γ.

The set of all the higher priority tasks of task τi is denoted by HPi. The set of higher-

priority but lower-critical tasks of task τi is denoted by hpL(i). Similarly, the set of

higher-priority and higher/equal-critical tasks of task τi is denoted by hpH(i). Note

that, HPi = hpL(i) ∪ hpH(i).

Behavior: A MC sporadic task system shows different behavior during different run of

the system since different jobs may be released at different time instant and may have

different execution times. The system is said to have exhibited ℓ-criticality behavior if

no job of any task τi executes for more than Cℓi time units, for some minimum ℓ, where

1 ≤ ℓ ≤ L. If no such ℓ between 1 and L exists, then the behavior of the system is

erroneous.

Correctness: A MC system is certified as correct if and only if the system is schedulable

at each criticality level. A MC task system is schedulable at criticality level ℓ using

algorithm A if and only if the jobs of each task τi, satisfying Li ≥ ℓ, complete by their

deadlines for all ℓ-criticality behavior of the system when scheduled using A.

The MSM algorithm. The MSM algorithm for dispatching the jobs of the MC tasks works

as follows:

• There is a criticality level indicator ℓ, initialized to the lowest criticality level,

ℓ← 1.

• While (ℓ ≤ L), at each time-instant, the ready jobs of at most m highest-priority

tasks with criticality level greater than or equal to ℓ are dispatched for execution

on m processors; and

– if a currently executing job of any task τi has executed Cℓi time units without

signaling completion, then ℓ← (ℓ+ 1).

180 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

Algorithm MSM works exactly same as traditional global FP scheduling except that run-

time monitoring of the execution of each job is employed to detect the switch from

ℓ-criticality to (ℓ + 1)-criticality behavior of the system. And, according to the defini-

tion of “correctness” the jobs of ℓ-critical tasks need not be dispatched (hence, dropped

by MSM algorithm) as soon as the system switches to (ℓ+ 1)-criticality behavior. The

system switches from ℓ to (ℓ+ 1)-criticality behavior if some job does not signal com-

pletion after executing for its ℓ-criticality execution time.

The main objective in this chapter is to derive a schedulability test of the MSM al-

gorithm. Section 9.3 presents the framework for the schedulability analysis of the

MSM algorithm. The schedulability analysis is first presented for dual-criticality2 sys-

tems: Section 9.4 and Section 9.5 present the response time analysis considering the

LO and HI criticality behavior of the system, respectively. The schedulability analysis

for more than two criticality levels is presented in Section 9.6.

9.3 Schedulability Analysis: an Overview

In this section, an overview of the schedulability analysis of the MSM algorithm is pre-

sented. To guarantee certification of MC system at criticality level ℓ, each task τi sat-

isfying Li ≥ ℓ must be schedulable during all ℓ-criticality behavior of the system. A

sufficient schedulability test of the MSM algorithm based on response time analysis is

derived in this chapter.

The response time of task τi is denoted by Rℓi considering the ℓ-criticality behavior

of the system. To derive Rℓi , the schedulability analysis of a generic job of task τi in

an interval of length t, called the “problem window” of task τi, is considered. The re-

sponse time of task τi is derived by computing the workload, interfering workload, total

interfering workload and interference of the higher priority tasks within the problem

window.3

The CI and NC workloads of each higher priority task τk ∈ HPi within the prob-

lem window of length t are determined. Whether a task τi should be considered as a

CI task or a NC task is determined later. The CI and NC interfering workloads of each

higher priority task τk ∈ HPi are determined based on the upper bound on the CI and

NC workloads of task τk within the problem window, respectively.

It is proved in [GSYY09] that there are at most (m−1) carry-in tasks in the problem

window of any lower priority task for global FP scheduling of constrained-deadline

sporadic tasks. Since the MSM algorithm essentially dispatches the MC tasks based on

global FP scheduling policy, limiting the number of CI tasks to (m−1) is also applicable

for the schedulability analysis of MSM algorithm. The total interfering workload is

calculated by adding the CI interfering workloads of (m − 1) carry-in tasks and the

NC interfering workloads of the remaining higher priority tasks. The (m − 1) carry-in

tasks from set HPi are selected such that the total interfering workload is maximized.

2The criticality levels 1 and 2 are denoted by “LO” and “HI”.
3The terms (i.e., workload, interfering workload, total interfering workload and interference) are formally

defined in Section 6.2 (see page 81).

9.3. SCHEDULABILITY ANALYSIS: AN OVERVIEW 181

Finally, the interference due to the tasks in HPi in the problem window of task τi is

calculated based on total interfering workload of the tasks in HPi.

Once the interference of the higher priority tasks within a problem window con-

sidering the ℓ-criticality behavior of the system is calculated, the response time Rℓi of

task τi is given as a recurrence that can be solved using fixed-point iteration technique.

This response-time test is derived by assuming some given fixed-priority ordering of

the tasks. However, determining a “good” fixed-priority ordering of the MC tasks is as

important as deriving a schedulability test. This is because if a task set does not pass

the schedulability test for a given priority ordering, then a priority ordering for which

the task set passes the schedulability test can avoid unnecessary upgrade of hardware or

re-specification of software. The Audsley’s OPA algorithm [Aud01] combined with the

proposed (response-time based) schedulability test in this chapter will be applied to find

an effective fixed-priority ordering of the MC tasks.

9.3.1 Dual-Criticality Systems

A dual-criticality system exhibits either LO or HI criticality behavior. The response

time RLO
i and RHI

i of task τi will be derived for the LO and HI-criticality behavior of the

dual-criticality system, respectively. The following Lemma is used in Sections 9.4–9.5.

Lemma 9.1. If task τj meets all its deadlines during all correct behaviors of a dual-

criticality system, then

RLO
j ≤ ζj

where, ζj =

{

Dj − (CHI
j − CLO

j) if Lj = HI
Dj if Lj = LO

(9.1)

Proof. Consider a job of task τj that finishes CLO
j units of execution exactly RLO

j time

units after its release time without signaling completion. If RLO
j > Dj − (CHI

j − CLO
j)

and Lj = HI, then this job can not complete additional (CHI
j − CLO

j) units of exe-

cution before its deadline during the HI-criticality behavior of the system. Therefore,

if task τj meets its deadline in all correct behavior of the system and Lj = HI, then

RLO
j ≤ Dj − (CHI

j − CLO
j). And obviously, if Lj = LO, then RLO

j ≤ Dj for all correct

behavior of the system.

According to Lemma 9.1, a job of task τj that is released at time r must finish CLO
j units

of execution by time (r + ζj) in all LO-criticality behaviors. Lemma 9.1 essentially

captures the “true” relative deadline of task τj for the LO-criticality behavior of the

system. The relative deadline of task τj when analyzing the LO criticality behavior of

the system is denoted by ζj . The relative deadline of task τj during the HI criticality

behavior of the system is still equal to Dj .

182 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

9.4 RTA Procedure at LO Criticality Level

A dual-criticality system is schedulable at the LO criticality level if and only if each

task τi ∈ Γ meet their deadlines for all LO-criticality behaviors of the system. In this

section, the response time RLO
i of task τi considering the LO-criticality behavior of the

system is derived. According to the MSM algorithm and Lemma 9.1, the execution of

any task τj ∈ (HPi ∪ {τi}) during the LO-criticality behavior of the system is equiv-

alent to traditional global FP scheduling of (non-MC) sporadic task τj with parameters

(CLO
j , ζj , Tj). In such case, the response time RLO

i of task τi can be determined us-

ing standard RTA technique proposed for (non-MC) sporadic task systems, for example,

using the test proposed by Guan et al. in [GSYY09]. However, the test proposed by

Guan et al. in [GSYY09] is OPA-incompatible [DB11b], i.e., it can not be used to find

effective fixed-priority ordering of the tasks based on Audsley’s approach. Now in sub-

section 9.4.1 a new, OPA-compatible response time test that can be used to determine

the schedulability of task τi is presented.

9.4.1 New RTA for Sporadic Task Systems

The response time RLO
i of task τi is determined by calculating the workload, interfering

workload, total interfering workload and interference of the higher priority tasks within

the problem window of task τi.

Workload. The CI and NC workloads of each higher priority task τk ∈ HPi within the

problem window of task τi need to be computed. The upper bound on the workload of

task τk ∈ HPi within any interval of length t is denoted by WNCk (t) and WCIk (t) whenever

τk is a NC task and CI task, respectively. Since each job of task τk executes at most CLO
k

time units during the LO-criticality behavior, the NC workload WNCk (t) of task τk is given

(based on [GSYY09]) as follows:

WNCk (t) = ⌊t/Tk⌋ · CLO
k +min(CLO

k , t− ⌊t/Tk⌋ · Tk) (9.2)

Guan et al. in [GSYY09] also proposed a novel technique for estimating the CI work-

load of task τk within the problem window of τi. However, the CI workload computa-

tion of task τk, according to [GSYY09], requires to know the response time of task τk
which in turn requires to know the relative priority ordering of the higher priority tasks

in HPi. This is because without knowing the relative priority ordering of the tasks in

HPi it is not possible to determine the response time of task τk ∈ HPi. Such dependency

on the relative priority ordering of the higher priority tasks needs to be avoided to derive

an OPA-compatible [Aud01, DB11b] schedulability test (the first condition in page 83

for being a test OPA-compatible is not satisfied). This problem is circumvented by using

the upper bound on the response timeRLO
k of task τk according to Lemma 9.1. The value

of CI workload WCIk (t) of task τk is given as follows:

WCIk (t) = Akt · CLO
k +min(CLO

k , t+ ζk − CLO
k −Akt · Tk) (9.3)

9.4. RTA PROCEDURE AT LO CRITICALITY LEVEL 183

where Akt = ⌊(t + ζk − CLO
k)/Tk⌋ and ζk is defined in Eq. (9.1). Note that if RLO

k

is used in place of ζk in Eq. (9.3), then Eq. (9.3) calculates the same CI workload as

in [GSYY09]. However, in order to make the proposed test OPA-compatible, an upper

bound on RLO
k (according to Lemma 9.1) is used in Eq. (9.3). It is easy to see that the

NC and CI workloads calculation in Eq. (9.2) and Eq. (9.3) do not require to know the

relative priority ordering of the tasks in HPi.

Interfering Workload: The upper bounds on the interfering workload of task τk on any

job of task τi within the problem window of length t are denoted by ICIk,i(t) and INCk,i(t)
whenever τk is a CI task and NC task, respectively. It is pointed out in [BC07, BCL09]

that if a job of task τ with execution time C and relative deadline D suffers enough

interference to miss its deadline, then it is sufficient to consider the interfering workload

of a higher priority task limited to at most (D − C + 1). Therefore, ICIk,i(t) and INCk,i(t)
are given as follows:

ICIk,i (t) = min(WCIk (t), t− CLO
i + 1) (9.4)

INCk,i (t) = min(WNCk (t), t− CLO
i + 1) (9.5)

The difference between the CI and NC interfering workload of task τk within the prob-

lem window of length t is denoted by IDIFFk,i (t) such that:

IDIFFk,i (t) = ICIk,i (t)− INCk,i (t)

Total Interfering Workload. The upper bound on total interfering workload due to all

the tasks in set HPi is denoted by Ii(t). The value of Ii(t) is calculated as follows:

Ii(t) =
∑

τk∈HPi

INCk,i (t) +
∑

τk∈Max(HPi,m−1)

IDIFFk,i (t) (9.6)

where Max(HPi,m − 1) is the set of (m − 1) tasks from set HPi that have the largest

values of IDIFFk,i (t).

Interference. The term interference is an integer and all the m processors are busy exe-

cuting tasks from HPi while task τi is interfered. Thus, an upper bound on interference

due to the tasks in HPi on any job of task τi within the problem window of length t is

⌊Ii(t)/m⌋.
The Response Time Test. The response time RLO

i of task τi for the LO criticality be-

havior of the system is given as follows:

RLO
i ← CLO

i +

⌊

Ii(RLO
i)

m

⌋

(9.7)

This can be solved by searching iteratively the least fixed point starting withRLO
i = CLO

i

184 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

for the right-hand side of Eq. (9.7). If RLO
i > ζi, then the task τi misses its deadline.

When certifying a system at LO criticality level, Eq. (9.7) can be used to determine

whether task τi ∈ Γ meets its deadline during all the LO-criticality behavior of the sys-

tem. Note that Eq. (9.7) can also be used to determine the schedulability of traditional,

non-MC, sporadic tasks. The test in Eq. (9.7) does not depend on the relative priority

ordering of the higher priority tasks; hence, is OPA-compatible.

An Example: Consider the following dual-criticality task set in Table 9.1 comprised of

n = 3 tasks to be scheduled using MSM algorithm on m = 2 processors.

τi Li CLO
i CHI

i Di Ti ζi
τ1 HI 1 2 3 4 2
τ2 LO 1 − 2 3 2
τ3 HI 2 3 3 4 2

Table 9.1: An example task set

Assume that task τ1 is the lowest priority task. The aim is to calculate RLO
1 to determine

if τ1 is MSM-schedulable during all LO-criticality behaviors. Note that the other two

higher priority tasks τ2 and τ3 are trivially schedulable since m = 2.

CalculatingRLO
1 : The response timeRLO

1 of task τ1 is calculated in the table below. The

first column represents the length of the problem window; initially, set to RLO
1 = CLO

1 =
1. The second column presents (based on Eq. (9.6)) the total interfering workload of the

higher priority tasks τ2 and τ3 for the length of the problem window given in the first

column. Finally, the right hand side of Eq. (9.7), i.e., new value of RLO
1 , is evaluated and

presented in the third column.

RLO
1 (problem window) I1(R

LO
1) RLO

1 ← CLO
1 + ⌊ I1(R

LO
1)

2
⌋

CLO
1 = 1 2 1 + ⌊ 2

2
⌋ = 2

2 3 1 + ⌊ 3
2
⌋ = 2

Since the values of RLO
1 in the third column for the first two iterations are the same,

the RTA procedure converges and RLO
1 = 2. Since RLO

1 = 2 ≤ ζ1 = 2 ≤ D1 = 3, the

deadline of task τ1 is met for all LO-criticality behaviors.

9.5 RTA Procedure at HI Criticality Level

A dual-criticality system is schedulable at the HI criticality level if and only if it is true

that each HI-critical task in Γ meets their deadlines for all HI-criticality behaviors of the

system. In this section, the response time RHI
i of task τi considering the HI-criticality

behavior of the system is derived.

9.5. RTA PROCEDURE AT HI CRITICALITY LEVEL 185

In order to derive the response time RHI
i of a HI-critical task τi, the schedulability

analysis of a generic job Jxi of task τi within the problem window [rxi , r
x
i + t) of length

t is considered. Assume s be the time instant relative to the release time of job Jxi at

which the system switches from LO to HI criticality behavior (as is given in Figure 9.1).

Figure 9.1: The problem window of length t

If s > RLO
i , then the system exhibits LO-criticality behavior before (rxi + s) and the

job Jxi must have completed before (rxi + s) because (rxi + s) > (rxi + RLO
i). Since

the aim is to determine the response time of task τi for the HI-criticality behavior of the

system, it is sufficient to consider 0 ≤ s ≤ RLO
i to compute RHI

i .

The response time of task τi (i.e., the response time of the generic job Jxi) for a

given value of s is denoted by RHI
i,s. The response time RHI

i is the largest RHI
i,s for some

s, 0 ≤ s ≤ RLO
i . The value ofRHI

i,s is calculated based on the workload, interfering work-

load, total interfering workload and interference of each higher-priority task τk ∈ HPi
where HPi = (hpL(i) ∪ hpH(i)).

The NC and CI workloads of the higher priority task τk ∈ hpL(i) are respec-

tively denoted by WLNCk (s, t) and WLCIk (s, t) such that the system switches from LO to

HI criticality behavior at time s relative to the beginning of the problem window of

length t. Similarly, WHNCk (s, t) and WHCIk (s, t) denote the NC and CI workloads of task

τk ∈ hpH(i), respectively.

The remainder of this section is organized as follows. First, the NC and CIworkloads

of task τk ∈ hpL(i)are derived in subsection 9.5.1. Second, the NC and CI workloads

of task τk ∈ hpH(i)are derived in subsection 9.5.2. Then, the interfering workload,

total interfering workload and interference of the tasks in HPi are calculated, and finally,

a recurrence for RHI
i,s is derived in subsection 9.5.3.

9.5.1 Workload of τk ∈ hpL(i) within [rxi , r
x
i + t)

In this subsection, the NC and CI workloads of a LO-critical task τk ∈ hpL(i) within

the problem window [rxi , r
x
i +t) are calculated. According to the MSM algorithm, the LO-

critical task τk is not dispatched after the criticality-switch at (rxi +s). The WCET of task

τk is CLO
k since task τk executes only during the LO-criticality behavior of the system.

The execution of the LO-critical task τk in [rxi , r
x
i + s) is equivalent to the execution of

traditional (non-MC) sporadic task with parameters (CLO
k , ζk = Dk, Tk). In such case,

186 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

WLNCk (s, t) and WLCIk (s, t) are given as follows:

WLNCk (s, t) = WNCk (s) (9.8)

WLCIk (s, t) = WCIk (s) (9.9)

where WNCk (s) and WCIk (s) are given in Eq. (9.2) and Eq. (9.3), respectively.

9.5.2 Workload of τk ∈ hpH(i) within [rxi , r
x
i + t)

In this subsection, the NC and CI workloads of a HI-critical task τk ∈ hpH(i) within

the problem window [rxi , r
x
i + t) are calculated.

Calculating WHNCk (s, t). The NC workload WHNCk (s, t) of task τk ∈ hpH(i) within the

problem window [rxi , r
x
i + t) is calculated according to the releases of the jobs of task

τk as follows: one job of task τk is released at time instant rxi and subsequent jobs of

task τk are released as early as possible. The jobs of task τk execute as early as possible

within the problem window (as given in Figure 9.2).

Figure 9.2: The NC workload of task τk ∈ hpH(i) within an interval of length t. Note that the

criticality changes at time instant (rxi + s).

If each job of task τk executes for CHI
k time units within [rxi , r

x
i + t), then the work-

load of task τk within [rxi , r
x
i + t), denoted by Wupper(t), is given as follows:

Wupper(t) = ⌊t/Tk⌋ · CHI
k +min(CHI

k , t− ⌊t/Tk⌋ · Tk) (9.10)

However, each of at least ⌊s/Tk⌋ jobs of task τk executes for at most CLO
k time units

within [rxi , r
x
i + s). The value of NC workload WHNCk (s, t) is given as follows4:

WHNCk (s, t) =Wupper(t)− ⌊s/Tk⌋ · (CHI
k − CLO

k) (9.11)

4The job of task τk that is released at time (rxi + ⌊s/Tk⌋ · Tk) executes for at most CLO
k

time units if

(⌊s/Tk⌋ · Tk + RLO
k
) < s; otherwise, it executes for at most CHI

k
time units. For ease of presentation, this

job is assumed to execute for CHI
k

time units.

9.5. RTA PROCEDURE AT HI CRITICALITY LEVEL 187

Calculating WHCIk (s, t). The CI workload WHCIk (s, t) of task τk ∈ hpH(i) within a

problem window of length t is calculated by considering a particular release pattern,

called the reference pattern, of the jobs of task τk within [rxi , r
x
i + t). The reference

pattern is defined considering releases of the jobs of task τk within [rxi , r
x
i +t) as follows

(see Figure 9.3):

• one job of task τk is released at time (rxi + t − CHI
k) and other jobs of τk are

released as close as possible (periodically) to the job released at (rxi + t − CHI
k);

and

• the jobs of task τk that are released before time instant (rxi + t − CHI
k) execute

as late as possible and the jobs of task τk that are released at or after time instant

(rxi + t− CHI
k) execute as early as possible.

Figure 9.3: The reference pattern. The criticality-switch occurs at (rxi + s) within the interval

[rxi , r
x
i + t).

Based on the reference pattern, the value of CI workload WHCIk (s, t) is calculated in two

steps as follows:

• STEP1: The workload of task τk within [rxi , r
x
i + t) for the reference pattern in

Figure 9.3 is calculated. The workload of task τk within the problem window for

the reference pattern is denoted by Pk(s, t).

• STEP2: By considering all possible leftward or rightward shifts of the problem

window in the reference pattern, the maximum net increase in workload within

the shifted window in comparison to the workload calculated in Step 1 is deter-

mined.

The sum of the two workload factors in Step 1 and Step 2 is the value of WHCIk (s, t). The

details of calculating the workloads for Step 1 and Step 2 are now presented.

STEP 1 (workload of τk in the reference pattern): In this step, the workload Pk(s, t) of

the jobs of task τk for the reference pattern in Figure 9.3 is computed. Consider the job

Jyk that satisfies the following condition in the reference pattern:

ryk ≤ (rxi + s) < r
(y+1)
k (9.12)

188 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

According to Eq. (9.12), the criticality-switch at (rxi + s) occurs at or after the release

time of job Jyk but prior to the release of job J
(y+1)
k . It is assumed that job Jyk executes

for CHI
k time units5. Any job of task τk that is released before and after the release of

Jyk executes for at most CLO
k and CHI

k time units in the reference pattern, respectively.

Given the values of t and s, the time instant when job Jyk is released relative to the

time instant rxi can be precisely determined. Since job Jyk satisfies Eq. (9.12), the release

time ryk of job Jyk is:

ryk = (rxi + t)− CHI
k −N k

t,s · Tk (9.13)

where N k
t,s is number of jobs of task τk that are released in [ryk , r

x
i + t− CHI

k) in the

reference pattern; and N k
t,s is given as follows:

N k
t,s = ⌈(max{0, t− CHI

k − s})/Tk⌉ (9.14)

In other words, the job Jyk is released (t − CHI
k − N k

t,s · Tk) time units apart from

the beginning of the problem window. Since τk is a HI-critical task, i.e., Lk = HI,

the response time of a job of task τk that executes for at most CLO
k time units is upper

bounded by ζk = Dk − (CHI
k − CLO

k) according to Lemma 9.1. In other words, each of

the jobs released before ryk completes its execution at least (Dk − ζk) = (CHI
k − CLO

k)
time units earlier than its deadline. Based on this observation, the specific reference

pattern is depicted in Figure 9.4.

Figure 9.4: The reference pattern. Each job released before r
y

k finishes (Dk − ζk) time units

earlier than its deadline in the reference pattern.

Observe that no job of task τk in Figure 9.4 can execute in [ryk − (Tk − ζk), ryk)
since the job J

(y−1)
k completes its execution at or before time instant ryk − (Tk − ζk).

Thus, the workload of task τk within [rxi , r
y
k) is in fact the workload of task τk within

5In fact, job Jy

k
executes for CLO

k
time units if (ry

k
+RLO

k
) < (rxi + s); otherwise, Jy

k
executes for at

most CHI
k

time units. For ease of presentation, job Jy

k
is assumed to execute for CHI

k
time units.

9.5. RTA PROCEDURE AT HI CRITICALITY LEVEL 189

[rxi , r
y
k − (Tk − ζk)). The length of the interval [rxi , r

y
k − (Tk − ζk)) is denoted by Q

such that

Q = max{0, t− CHI
k −N k

t,s · Tk − (Tk − ζk)} (9.15)

The workload of task τk in the reference pattern is calculated considering two cases:

Case(A) Q = 0, and Case(B) Q > 0.

Case (A) (Q = 0): For this case, each of the jobs of task τk executes for at most CHI
k

time units within the entire problem window [rxi , r
x
i +t) since rxi ≥ 0 ≥ t−CHI

k −N k
t,s ·

Tk − (Tk − ζk). In other words, the execution of task τk is equivalent to the execution

of traditional (non-MC) sporadic task τk with parameters (CHI
k , Dk, Tk) in the reference

pattern. Based on the work by Bertogna and Cirinei in [BC07] for traditional sporadic

tasks, the workload Pk(s, t) of task τk with parameters (CHI
k , Dk, Tk) in any interval of

length t is given as follows:

Pk(s, t) = Bkt · CHI
k +min{CHI

k , t+Dk − CHI
k −Bkt · Tk} (9.16)

where Bkt = ⌊(t+Dk − CHI
k)/Tk⌋.

Case (B) (Q > 0): According to Eq. (9.15) for this case, t > CHI
k +N k

t,s ·Tk+(Tk−ζk).
And, according to Eq. (9.13), ryk > rxi whenever t > CHI

k + N k
t,s · Tk + (Tk − ζk).

Therefore, job Jyk is not the carry-in job because Jyk is not released before rxi . The

workload Pk(s, t) of task τk within [rxi , r
x
i + t) for the reference pattern in Figure 9.4 is

determined by adding the workload of task τk in [rxi , r
y
k) and [ryk , r

x
i + t).

Remember that the workload of task τk within [rxi , r
y
k) in Figure 9.4 is in fact the

workload of task τk within [rxi , r
y
k − (Tk − ζk)). By viewing the schedule in Figure 9.4

(backward in time), starting from ryk − (Tk − ζk) to rxi , it is evident that the workload

of task τk in [rxi , r
y
k − (Tk − ζk)) is equal to the NC workload of traditional (non-MC)

sporadic task τk with parameters (CLO
k , ζk, Tk) in an interval of length Q. Thus, the

NC workload of sporadic task τk with parameters (CLO
k , ζk, Tk) within an interval of

length Q can be given as WNCk (Q) according to Eq. (9.2).

Within the interval [ryk , r
x
i + t) in Figure 9.4, there are at most (N k

t,s + 1) jobs of

task τk that each executes for CHI
k time units. Therefore, the workload of task τk within

[ryk , r
x
i + t) is equal to (N k

t,s + 1) · CHI
k . The workload Pk(s, t) of task τk within the

entire problem window [rxi , r
x
i + t) for the reference pattern is given as follows:

Pk(s, t) = WNCk (Q) + (N k
t,s + 1) · CHI

k (9.17)

In summary, the workload Pk(s, t) of task τk for the reference pattern is given using

Eq. (9.16) and Eq. (9.17) for Case (A) and Case (B), respectively.

STEP 2 (net increase in workload due to shift): In this step, by shifting the prob-

lem window within the reference pattern in Figure 9.4 the maximum net increase in

workload within the shifted problem window in comparison to Pk(s, t) is determined.

According to the analysis by Bertogna and Cirinei in [BC07], the releases of the jobs

in the reference pattern for Case (A) represents the worst-case workload of task τk with

190 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

parameters (CHI
k , Dk, Tk) in any interval of length t. Therefore, it is only needed to con-

sider shifting the problem window in the reference pattern for Case (B), i.e., whenever

Q > 0. The maximum net increase in workload in addition to Pk(s, t) for all possible

leftward and rightward shifts of the problem window in Figure 9.4 is given in Lemma 9.2

(proof is in Appendix A, page 225).

Lemma 9.2. The net increase in workload due to any shift of the problem window in

Figure 9.4 is bounded by (CHI
k − CLO

k).

Given the workload Pk(s, t) for the reference pattern in Eq. (9.16) and Eq. (9.17) respec-

tively for Case (A) and Case (B), the value of CI workload WHCIk (s, t) of the HI-critical

task τk in the problem window is given as follows:

WHCIk (s, t) =

{

Pk(s, t) + (CHI
k − CLO

k) if Q > 0

Pk(s, t) otherwise
(9.18)

In summary, the NC and CIworkloads of a LO-critical task τk ∈ hpL(i)within a prob-

lem window of length t of task τi are given in Eq. (9.8) and Eq. (9.9), respectively. And,

the NC and CI workloads of a HI-critical task τk ∈ hpH(i) within a problem window

of length t of task τi are given in Eq. (9.11) and Eq. (9.18), respectively. Based on the

NC and CI workloads of each task τk ∈ HPi = (hpL(i) ∪ hpH(i)), the response

time RHI
i of the HI-critical task τi is derived in next subsection.

9.5.3 The RTA Test for HI Criticality Level

The response time RHI
i of HI-critical task τi is calculated by computing the interfering

workload, total interfering workload and interference based on the workload of the tasks

in HPi within the problem window of task τi.

Interfering Workload. The NC and CI interfering load of task τk within the problem

window of length t for some given s are denoted by INCk,i(s, t) and ICIk,i(s, t) whenever τk
is NC and CI task, respectively. An upper bound on the interfering workload of a higher

priority task within the problem window is the workload of the higher priority task

within that problem window. However, it is pointed out in [BC07, GSYY09, DB11b]

that it is sufficient to consider the interfering workload of a higher priority task limited

to at most (t−Ci+1) within the problem window size t whenever task τi has execution

time Ci. The values of INCk,i(s, t) and ICIk,i(s, t) are given as follows:

INCk,i(s, t) =

min{WLNCk (s, t), t− CHI
i + 1} if τk ∈ hpL(i)

min{WHNCk (s, t), t− CHI
i + 1} if τk ∈ hpH(i)

ICIk,i(s, t) =

min{WLCIk (s, t), t− CHI
i + 1} if τk ∈ hpL(i)

min{WHCIk (s, t), t− CHI
i + 1} if τk ∈ hpH(i)

9.5. RTA PROCEDURE AT HI CRITICALITY LEVEL 191

The difference between the CI and NC interfering workload of task τk is denoted by

IDIFFk,i (s, t) and is given as:

IDIFFk,i (s, t) = ICIk,i(s, t) − INCk,i(s, t)

Total Interfering Workload. The upper bound on total interfering workload due to all

the tasks in set HPi within the problem window for some given s is denoted by Ii(s, t).
The value of Ii(s, t) is given as follows:

Ii(s, t) =
∑

τk∈HPi

INCk,i(s, t) +
∑

τk∈Max(HPi ,m−1)

IDIFFk,i (s, t) (9.19)

where Max(HPi ,m− 1) is the set of (m− 1) tasks from set HPi that have the largest

values of IDIFFk,i (s, t).

Interference. Because interference is an integer and all the m processors are busy

executing tasks from HPi while task τi is interfered, the upper bound on interference

due to the tasks in HPi on any job of task τi within the problem window of length t is

⌊Ii(s, t)/m⌋.

The Response Time Test. The response time of HI-critical task τi for some given s is

given as follows:

RHI
i,s ← CHI

i + ⌊
Ii(s,RHI

i,s)

m
⌋ (9.20)

The Eq. (9.20) can be solved by iteratively searching the least fixed point starting with

RHI
i,s = CHI

i for the right-hand side of Eq. (9.20). The response time RHI
i of task τi

during any HI-criticality behavior of the system is given as:

RHI
i = max

0≤s≤RLO
i

{RHI
i,s} (9.21)

When certifying a system at HI criticality level, Eq. (9.21) can be used to determine

whether the HI-critical task τi meets its deadline during all HI-criticality behaviors of

the system. The RTA test in Eq. (9.21) is OPA-compatible since it does not depend on

the relative priority ordering of the higher priority tasks in HPi and all conditions given

in page 83 for a schedulability test to be OPA-compatible are satisfied.

An Example: Consider the dual-criticality task set in Table 9.1 where task τ1 is the

lowest priority task. It is shown in subsection 9.4.1 that task τ1 is schedulable for all

LO-criticality behaviors and RLO
1 = 2. Since task τ1 is a HI-critical task, i.e., L1 = HI,

the aim is to calculate RHI
1 to verify if τ1 is schedulable in all HI-criticality behaviors.

Calculating RHI
1 : According to Eq. (9.21), the response time RHI

1 is the maximum of

RHI
1,s for all s = 0, . . . , RLO

1 where RLO
1 = 2. The values of RHI

1,s for all s = 0, 1, 2 are

calculated using the recurrence in Eq. (9.20) in the table below.

192 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

The first column represents all possible values of s, 0 ≤ s ≤ RLO
1 . The second

column presents the length of the problem window; initially, set to RHI
1,s = CHI

1 =
2 for each new value of s in the first column. The third column presents (based on

Eq. (9.19)), the total interfering workload I1(s,R
HI
1,s) of the higher-priority tasks τ2 and

τ3 considering the length of the problem window given in the second column. Finally,

the right hand side of Eq. (9.20), i.e., new value ofRHI
1,s, is evaluated in the forth column.

s RHI
1,s(window) I1(s,R

HI
1,s) RHI

1,s ← CHI
1 + ⌊I1(s,R

HI
1,s)

2 ⌋

0
CHI

1 = 2 2 2 + ⌊ 22⌋ = 3

3 2 2 + ⌊ 32⌋ = 3

1
CHI

1 = 2 3 2 + ⌊ 32⌋ = 3

3 3 2 + ⌊ 32⌋ = 3

2
CHI

1 = 2 3 2 + ⌊ 32⌋ = 3

3 3 2 + ⌊ 32⌋ = 3

It is evident that RHI
1,s=0 = 3, RHI

1,s=1 = 3, and RHI
1,s=2 = 3 (see the shaded cells

in the last column). Therefore, it follows that RHI
1 = 3 based on Eq. (9.21). Since

RHI
1 = 3 ≤ D1 = 3, the deadline of task τ1 is met in all the HI-criticality behaviors

of the system. Therefore, task τ1 meets all its deadlines in both LO and HI criticality

behaviors of the system. And, the two other tasks τ2 and τ3 having higher priorities are

trivially schedulable sincem = 2. Consequently, the dual-criticality task set in Table 9.1

is MSM-schedulable.

9.6 Schedulability Analysis for L > 2

In this section, the main principle to compute the response timeRℓi of task τi is presented

considering the ℓ-criticality behavior of the system where 3 ≤ ℓ ≤ Li and Li ≤ L.

Consider the problem window [rxi , r
x
i + t) of some generic job Jxi of task τi. As-

sume that S = {s1, . . . , s(ℓ−1)} is the set of relative distances from rxi such that the

system switches from ν-criticality to (ν + 1)-criticality behavior at time (rxi + sν) for

each sν ∈ S. For the sake of analysis, assume that sν = ∞ for ν ≥ ℓ, and sν = 0 for

ν = 0.

According to the MSM algorithm, task τk ∈ HPi is allowed to execute within the

problem window [rxi , r
x
i + t) before time instant (rxi + p) during the ℓ-criticality behav-

ior of the system such that p = min{t, sLk
}. In other words, if Lk < ℓ, then task τk

is allowed to execute before (rxi + sLk
) in the problem window; otherwise, task τk is

allowed to execute during the entire problem window for all ℓ-criticality behaviors of

the system.

The response time of task τi for some given set S is denoted by Rℓi,S . The response

time Rℓi is the maximum Rℓi,S over all possible sets S where each sν ∈ S can have

9.6. SCHEDULABILITY ANALYSIS FOR L > 2 193

any value between [0, Rvi] and sν ≤ s(ν+1). Therefore, the number of different sets

S that one has to consider to find Rℓi is upper bounded by (Di)
L. However, the num-

ber of different criticality levels L in many practical safety-critical systems is not very

large, e.g., according to the RTCA DO-178B standard, there are five different Design

Assurance Levels (DAL A to DAL E) for software in avionics systems, and according to

ISO 26262 standard, the safety functions in automotive systems can have four different

Automotive Safety Integrity Levels (ASIL A to ASIL D).

The response time Rℓi,S can be derived (similar to that of in Section 9.5 for dual-

criticality systems) once the NC and CI workloads of each task τk ∈ HPi in [rxi , r
x
i +

p) are known, where p = min{t, sLk
}. The basic idea for calculating the NC and

CI workloads of task τk ∈ HPi is presented next.

NC Workload: In order to find the NC workload of task τk within an interval of length

p, consider that one job of task τk arrives exactly at the beginning of the window and

subsequent jobs arrive and execute as early as possible. To find Rℓi , the upper bound on

NC workload of τk ∈ HPi within an interval of length p can be calculated as follows:

• If all the jobs of task τk executes for Cℓk time units within an interval length p,

then the total workload within the problem window is:

Wupperk = ⌊p/Tk⌋ · Cℓk +min{Cℓk, p− ⌊p/Tk⌋ · Tk}

• However, each of at least ⌊ sν
Tk
⌋ jobs of task τk executes for at most Cνk time units

for ν = 1 . . . (ℓ − 1). This is because the system exhibits ν-criticality behavior

before (rxi + sν). Thus, an upper bound on NC workload within the problem

window is:

Wupperk −
ℓ−1
∑

ν=1

⌊sν/Tk⌋ · (C(ν+1)
k − Cνk)

CI Workload: In order to calculate the CI workload within the problem window, con-

sider the releases of the jobs of τk as follows (called, the reference pattern): one job

of task τk releases exactly at (rxi + p− Cℓk) and executes for Cℓk time units as early as

possible; and earlier jobs of τk are released and execute as late as possible.

Given the reference pattern, the release time of each job of task τk relative to the

beginning of the interval [rxi , r
x
i + p) can be determined. For each such job of task τk,

say job Jyk , that executes within the problem window, the largest sν , if one exists in S,

such that ryk ≤ (rxi + sν) < r
(y+1)
k , can be determined. If such an sν ∈ S exists for job

Jyk , then it is assumed that job Jyk executes forC
(ν+1)
k time units. If no such sν exists for

job Jyk , then it is considered that job Jyk executes for C
(ν+1)
k time units where (rxi + sν)

is the closest criticality-switch time of the system prior to the release of job Jyk (such an

sν must exist since it is assumed that s0 = 0).

Given the execution time of each job of task τk for the reference pattern within the

interval of length p, the workload of task τk for the reference pattern can be computed.

194 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

And, it can be shown that the maximum increase in workload due to any possible shift of

the problem window within the reference pattern is bounded by (Cℓk − C1
k). By adding

these two workload factors, the CI workload within the problem window is derived.

Once the CI and NC workloads of each task τk ∈ HPi are known, the recurrence for the

response time Rℓi,S can be derived by finding the interfering workload, total interfering

workload and interference for a given set S.

9.6.1 Finding Priorities using Audsley’s Algorithm

The pseudocode for applying Audsley’s approach to find the fixed-priority ordering of

the MC tasks is given in Figure 9.5. The MC tasks in set Γ are assigned priority starting

from the lowest priority level n to the highest priority level 1 using the outer loop in line

1. If Rℓi ≤ Di for all ℓ ≤ Li for some priority-unassigned task τi (i.e., condition in line

3–5 is true), then task τi is assigned the current priority level in line 6. The value of Rℓi
is calculated in line 3–5 by assuming priority level PL for the priority-unassigned task

τi and higher priorities for all other priority-unassigned tasks.

If some priority-unassigned task τi is assigned the current priority level in line 6, then

the priority assignment for next (higher) priority level is considered (i.e., next iteration of

the outer loop starts). If no priority-unassigned task can be assigned the current priority

level (condition in line 3 is false for all priority-unassigned tasks), then the priority

assignment fails and line 8 reports “Failure”. If all the tasks are assigned priorities, then

line 9 reports “Success”.

Algorithm OPA(Mixed-Criticality task set Γ)

1. for each priority level PL, lowest first

2. for each priority-unassigned task τi ∈ Γ
3. If Rℓi ≤ Di for all ℓ ≤ Li, where task τi is assumed to have

4. priority level PL with all other priority-unassigned

5. tasks are assumed to have higher priorities, Then

6. assign τi priority level PL
7. break (continue outer loop)

8. return “Failure”

9. return “Success”

Figure 9.5: OPA algorithm for MC tasks scheduled using MSM.

Time-Complexity for Dual-Criticality. To determine whether a dual-criticality task τi
meets all the deadlines in all correct behaviors of the system, it is required to find RLO

i

andRHI
i based on Eq. (9.7) and Eq. (9.21), respectively. Since the recurrence in Eq. (9.7)

can be solved inO(Tmax) iterations, the time complexity to findRLO
i isO(Tmax), where

Tmax is the largest period of the task set.

To computeRHI
i based on Eq. (9.21), one has to evaluate the recurrence in Eq. (9.20)

for each possible value of s, where 0 ≤ s ≤ RLO
i . The recurrence in Eq. (9.20) can be

9.7. EMPIRICAL INVESTIGATION 195

solved for a given value of s using O(Tmax) iterations. Since s ≤ RLO
i ≤ Tmax, at most

O(T 2
max) iterations are needed to find RHI

i based on Eq. (9.21). Therefore, the time

complexity to find RLO
i and RHI

i is pseudo-polynomial.

When applying the OPA algorithm in Figure 9.5 for dual-criticality system, evaluat-

ing the condition in line 3–5 requires to compute RLO
i and RHI

i for at most n different

tasks at priority level PL = n, for at most (n − 1) different tasks at priority level

PL = (n − 1), and so on. Therefore, the total number of times line 3–5 is executed is

O(n2). Therefore, the time complexity of the OPA algorithm for dual-criticality system

is O(n2 · T 2
max) which is pseudo-polynomial in the representation of the task set. It can

be shown that the time complexity of the OPA algorithm for task set with L criticality

levels is O(n2 · L · TL
max) which can be considered pseudo-polynomial for any fixed

value of L that is reasonable for practical mixed-criticality systems.

9.7 Empirical Investigation

In this section, the result of empirical investigation to measure the performance of the

proposed response time test for dual-criticality systems is presented. In particular, the

effectiveness of the OPA-based priority assignment scheme (as given in Figure 9.5) is

compared with the following two heuristic priority assignment schemes:

• Deadline-Monotonic Priority Ordering (DMPO): The priorities are ordered based

on deadline (i.e., the shorter the relative deadline, the higher is the priority).

• Criticality-Monotonic Priority Ordering (CMPO): The priorities are first ordered

based on criticality (i.e., HI critical task first); and then based on deadline (i.e.,

shorter relative deadline first).

To determine the MSM-schedulability of randomly generated task sets using OPA,

DMPO, and CMPO priority assignment schemes, the response-time tests in Eq. (9.7) and

Eq. (9.21) are used. The well-known metric, called acceptance ratio, is used to evaluate

the effectiveness of different priority assignment schemes. The acceptance ratio of a

priority assignment scheme is the percentage of the randomly generated task sets that

are deemed schedulable using the response-time tests in Eq. (9.7) and Eq. (9.21) at a

given utilization level. Before presenting the experimental results, the task set generation

algorithm is presented next.

Task set Generation. The UUnifast-Discard algorithm proposed by Davis

and Burns [DB11b] (given in subsection 5.6.1, page 66) is used to generate utilizations

for n tasks with total utilization equal to U . Once a set of n utilizations {u1, u2, . . . un}
of a task set is generated, the other parameters of each task τi are generated as follows:

• The minimum inter-arrival time Ti of each task τi is generated from the uniform

random distribution within the range [1ms, 1000ms].

• The LO-criticality execution time of task τi is set to CLO
i = ui · Ti. Note that ui is

the utilization corresponds to the task’s LO-criticality execution time.

196 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

• Whether a generated task is a LO- or HI-critical task is determined using a sim-

ulation parameter CP where CP ≤ 1. A random number in the range [0, 1] is

generated. If this newly generated random number is greater than CP, then task τi
is a LO-critical task; otherwise, the task is HI-critical.

• The HI-criticality execution time of τi is set to CHI
i = CLO

i · CF, where CF is a

simulation parameter ≥ 1.

• The relative deadline Di of task τi is generated from the uniform random distri-

bution within the range [CLO
i , Ti] and [CHI

i , Ti] whenever τi is a LO-critical and

HI-critical task, respectively.

Each of the experiments is characterized by a 4-tuple (m,n,CF,CP) where m is the

number of processors, n is the task set size, CF is equal to
CHI

i

CLO
i

, and CP corresponds to

the percentage of HI-critical tasks in a task set. For each experiment, total 40 different

utilization levels {0.025m, . . . 0.975m,m} are considered. For each utilization level

U ∈ {0.025m, . . . 0.975m,m}, total 1000 task sets are generated with parameters n,

CF, CP and U .

Result Analysis. Experiments with different simulation parameters m ∈ {2, 4, 8}, n ∈
{10, 20, 40, 60}, CF = {2, 3, 4} and CP = {0.25, 0.5, 0.75} for both implicit-deadline

and constrained-deadline task sets are conducted.

The acceptance ratios for experiment (m = 4, n = 20,CF = 2,CP = 0.5) consider-

ing the OPA, DMPO, and CMPO priority-assignment schemes are presented in Figure 9.6

(the trend is similar for other experiments). The x-axis represents the system utilization

(i.e., U/m) and the y-axis represents the acceptance ratios.

Since the scheduling window for implicit-deadline task sets is relatively wider than

that of the constrained-deadline task sets, the acceptance ratios of all priority assign-

ment schemes for implicit-deadline task sets are relatively better in comparison to the

constrained-deadline task sets in Figure 9.6. The performance of CMPO is very poor in

comparison to the DMPO scheme, i.e., the criticality-monotonic priority ordering is far

from the optimal priority assignment scheme. The acceptance ratio of the OPA scheme

is more than 50% larger than that of the DMPO scheme at 0.6m and 0.4m utilization lev-

els for implicit-deadline and constrained-deadline task systems, respectively. The OPA

scheme significantly outperforms both the DMPO and CMPO schemes.

It is not difficult to realize that the acceptance ratio would be relatively lower for ex-

periments with relatively larger CF and/or CP. This is because larger CF and/or CPmeans

larger total utilization of the HI-critical tasks; and it is generally difficult to schedule task

sets having large total utilization.

The acceptance ratios of the OPA scheme using CF = 2 and CP = 0.5 for implicit-

deadline task sets for different (m,n) pairs are presented in Figure 9.7. There are vari-

ations in acceptance ratios at higher U for the variations in m and n. The reasons for

such variations are also common for traditional global FP scheduling and discussed in

Chapter 6. However, the acceptance ratios for all the cases in Figure 9.7 are 100% upto

9.8. RELATED WORKS 197

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=20, CP=0.5, CF=2 (Implicit-Deadline)

OPA
DMPO
CMPO

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

m=4, n=20, CP=0.5, CF=2 (Constrained-Deadline)

OPA
DMPO
CMPO

Figure 9.6: Acceptance ratios for Di = Ti (top) and Di ≤ Ti (right)

0.4m utilization level which justifies the scaleability of the proposed response time test

combined with the OPA algorithm.

9.8 Related Works

The seminal work by Vestal in [Ves07] first proposed the MC task model and its anal-

ysis based on FP scheduling algorithm on uniprocessor platform. Vestal’s algorithm

is proved as the optimal for traditional FP scheduling on uniprocessor by Dorin et

al. [DRRG10]. By showing that neither FP nor EDF scheduling of MC tasks on unipro-

cessor dominates the other, Baruah and Vestal proposed a hybrid algorithm by combin-

ing the benefits of both FP and EDF policies [BV08]. Recently, a variant of FP schedul-

ing algorithm and its analysis on uniprocessor platform is proposed by Baruah et al.

based on the following observation [BBD11b]: the run-time monitoring of execution

time of the jobs can be used to drop jobs of ℓ-critical tasks as soon as the system switches

to (ℓ+1)-criticality behavior. The MSM algorithm proposed in this chapter also uses this

observation but for multiprocessors.

198 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

0 %

20 %

40 %

60 %

80 %

100 %

 0.2 0.4 0.6 0.8 1

A
cc

ep
ta

nc
e

R
at

io

Utilization / m

CP=0.5, CF=2 (Implicit-Deadline)

(2, 20)
(2, 10)
(4, 40)
(8, 60)
(4, 20)
(8, 40)

Figure 9.7: Acceptance ratio using OPA scheme with different (m,n) pairs.

Several works addressed MC scheduling of a finite collection of jobs on uniproces-

sors. It has been proved by Baruah et al. [BBD+12b] that determining the feasibility

of a collection of MC jobs is strongly NP-hard, even when all release times are iden-

tical and there are only two criticality levels. Baruah et al. proposed Own Criticality

Based Priority (OCBP) algorithm for scheduling a finite collection of jobs on unipro-

cessor. Algorithm OCBP works as follows: jobs are assigned fixed-priorities in offline,

and the highest priority ready job is always dispatched at run-time [BLS10]. The pro-

cessor speed-up factor of the OCBP algorithm for dual-criticality system is 1.619, i.e.,

any feasible instance of dual-criticality jobs on unit-capacity processor is also OCBP-

schedulable on a processor that is 1.619 times faster [BLS10]. An improved load-based

sufficient schedulability condition of the OCBP algorithm is proposed in [LB10b] by Li

and Baruah.

By assuming the earliest releases of the jobs within a busy interval, Li and Baruah

proposed interesting techniques to apply the OCBP algorithm for scheduling sporadic

MC tasks on uniprocessor platform [LB10a]. However, Due to the sporadic nature of the

tasks, the priorities of the jobs are recomputed at run-time and such priority recompu-

tation at run-time has pseudo-polynomial time complexity [LB10a]. Recently, Guan et

al. [GESY11b] proposed a novel polynomial time algorithm for recomputing the priori-

ties at run-time for scheduling sporadic tasks using the OCBP algorithm.

An EDF based scheduling algorithm, called EDF-VD (Virtual-Deadline), in which

the deadlines of the implicit-deadline sporadic tasks are modified online, is proposed

by Baruah et al. in [BBD+11a]. The algorithm EDF-VD modifies the deadlines of the

tasks depending of the behavior of the system at different criticality levels and schedule

the tasks based on EDF scheduling according to the modified deadlines. The processor

speed-up factor of EDF-VD scheduling for dual-criticality system is 1.619. By perform-

ing a more precise analysis of the EDF-VD scheduling of implicit-deadline MC spo-

radic tasks, the speed-up factor of EDF-VD is further improved by Baruah et al. to

9.8. RELATED WORKS 199

1.333 [BBD+12a]. Ekberg and Yi [EY12] recently proposed interesting technique to

compute the demand-bound [BMR90] function to determine the EDF schedulability of

constrained-deadline MC sporadic tasks. The demand-bound of the tasks at each critical-

ity level is determined by adjusting the deadline of the tasks when the system switches

from LO to HI criticality behavior. The purpose of shaping or adjusting the demand is

to respect the supply-bound [MFC01] function of the underlying uniprocessor platform

to ensure schedulability.

Time-triggered (TT) scheduling of MC jobs on uniprocessor platform is proposed by

Baruah and Fohler in [BF11]. The TT-scheduling essentially computes in offline, for

each criticality levels, the scheduling table that stores the time instant at which jobs will

be dispatched for execution. When the criticality behavior of the system switches from ℓ
to (ℓ+1), then jobs are scheduled based on the scheduling table computed for criticality

level (ℓ+ 1). The processor speed-up factor for TT-scheduling is 1.619.

Many of the scheduling algorithms for MC systems considers dropping tasks of lower

criticality levels when the system switches to a higher criticality level. However, the

lower criticality tasks may not need to be dropped as long as they are not causing a higher

criticality task to miss its deadline. Based on this observation, Santy et al. [SGTG12]

proposed a method, called Latest Completion Time (LCT), that allows lower criticality

task to execute using uniprocessor FP scheduling until time instant at which the lower

criticality task is suspended to allow execution of a higher criticality task to avoid miss-

ing its deadline. The lower-criticality task may resume its execution later when the

system switches back to lower-criticality behavior.

The only work that considers multiprocessor scheduling of MC system is proposed

by Li and Baruah in [LB12] but for implicit-deadline tasks. This work is based on the

basic principle of computing the deadlines for uniprocessor EDF-VD scheduling but

uses the utilization-bound test of global dynamic-priority scheduling, known as fpEDF,

proposed by Baruah in [Bar04]. The processor speed-up factor for this algorithm is

(
√
5+ 1): a MC task sets that can be scheduled in a certifiably correct manner on m unit

capacity processors by an optimal clairvoyant scheduling algorithm can be scheduled by

the proposed algorithm onm speed-(
√
5+1) processors. This work in [LB12] considers

implicit-deadline tasks, dynamic priority and is applicable to only two criticality levels.

The work presented in this chapter is the first work that considers global FP scheduling

of certifiable mixed-criticality sporadic tasks with constrained deadlines and more than

two criticality levels on multiprocessor platform.

Many other works addressed scheduling of MC systems for aspects other than cer-

tification. Pellizzoni et al. [PMN+09] and Petters et. al. [PLHE09] proposed tech-

niques for isolating (either in time or space) subsystems having different criticality lev-

els based on reservation based approach. However, these work concentrate on provid-

ing isolation through worst-case reservation of resources and do not efficiently utilize

the resources. The work proposed by De Niz et al. [dNLR09] observed that isolation

among multiple subsystems that are based on reservation based approach may suffer

from, so called criticality inversion problem: the deadline of a higher-criticality job may

be missed while allowing a lower criticality job to meet its deadline. In addition, as-

200 CHAPTER 9. MIXED-CRITICALITY SYSTEMS

signing priorities based on criticality to avoid criticality-inversion is not a good priority

assignment policy for meeting the deadlines. They have proposed slack-aware schedul-

ing that dynamically assigns the priorities to tasks or jobs to avoid criticality inversion

while focusing on efficient use of the resources [dNLR09]. This algorithm avoids crit-

icality inversion under which low-criticality task can not interfere with high-criticality

task but high-criticality task can steal cycles from the low-criticality task under over-

load situations to meet deadlines. The work in [dNLR09] is further extended for non-

preemptable shared resources [LdNRM10] and distributed systems [LdNR11]. Mollison

et al. [MEA+10] proposed an architecture for scheduling MC tasks based on criticality-

monotonic scheduling on multicore. The allocation of MC tasks in a distributed systems

is considered in [TSP11], where each task allocated to a processor is given a time par-

tition by determining the sequence and size of each partition in addition to finding the

scheduling table for each processor.

9.9 Summary

In this chapter, the global FP scheduling of mixed-criticality systems on preemptive

multiprocessors is considered. In order to utilize the processors efficiently and to fa-

cilitate certification, a sufficient schedulability test based on response-time analysis of

the proposed MSM algorithm is derived. This schedulability test can also be used to

find fixed-priority ordering of the MC tasks based on Audsley’s approach. The time-

complexity for evaluating the proposed test is pseudo-polynomial for dual-criticality

system. In addition, the proposed test is applicable to system having more than two

criticality levels which makes the algorithm relevant for many practical safety-critical

systems that have more than two criticality levels. The schedulability test of the MSM al-

gorithm can be easily extendented by finding a better priority assigning policy using the

separation criteria proposed in Chapter 6 and using the HPA-based priority assignment

policy.

In order to design a certification-cognizant scheduling algorithm for mixed-criticality

systems, the criticality behaviors of the systems need to be monitored at run-time. How-

ever, such monitoring requires to know what behavior specifies a particular criticality-

behavior of the system. The criticality-behavior of the system is determined based on

the run-time behavior of the system which varies from one time instant to another. The

run-time behavior of the system depends on many factors, for example, the actual exe-

cution time of each task, the actual inter-arrival time of each task, energy consumption,

the frequency and types of faults, and so on. This chapter considers one such source

of variation to determine the criticality-behavior at runtime: the actual execution time

of each task. By appropriately modeling the criticality-behavior based on other sources

of variations that specify the criticality behavior, designing new certification-cognizant

real-time scheduling algorithms for MC systems is left as future work.

10
Conclusion

This thesis deals with the modeling, analysis, and verification of three important non-

functional behaviors of real-time systems: timeliness, fault tolerance, and mixed criti-

cality. The level of acceptability or the desired quality of each non-functional behavior

is modeled as a set of design constraints — satisfaction of which are important for cor-

rectness, popularity, and competitiveness of the system. The functional behaviors (i.e.,

the workload) of the real-time applications are modeled using constrained-deadline spo-

radic tasks that are dispatched for execution on a platform having multiple identical

processors/cores using global fixed-priority scheduling algorithm. The non-functional

behaviors considered in this thesis are common in many safety-critical real-time sys-

tems; therefore, the proposed scheduling algorithms and the corresponding schedulabil-

ity tests have wide applicability for many practical systems.

The acceptability of timeliness behavior is modeled as hard deadline for each spo-

radic task. The proposed schedulability tests for global FP scheduling verify offline

whether all the deadlines of all the tasks are met or not. The acceptability of fault-

tolerant behavior is modeled based on the number and types of faults that need to be

tolerated during the execution of the tasks. The proposed fault-tolerant scheduling algo-

rithms have the responsibility to ensure that the effects of faults are mitigated in order

to generate the correct output before the deadline of each task. Finally, the acceptability

of mixed-criticality behavior is modeled as the level of assurance needed in meeting the

deadlines of the tasks where different WCETs (estimated at different level of assurance)

for each task are considered. The reason for considering certain level of assurance in

meeting the deadlines of the tasks is to facilitate certification while efficiently utilizing

the processing platform of the mixed-criticality system. To this end, the following three

research questions are addressed in this thesis:

201

202 CHAPTER 10. CONCLUSION

Q1 (Timeliness) How to guarantee that all the deadlines of a real-time

application are met on a particular computing platform?

Q2 (Fault Tolerance) How to guarantee that all the deadlines of a real-

time application are met on a particular computing platform while

providing fault-tolerance?

Q3 (Mixed Criticality) How to guarantee that all the deadlines of a real-

time application are met while ensuring certification of mixed-criticality

system at each criticality level?

In this thesis, timeliness is about meeting the deadlines of the tasks; fault-tolerance

is about providing correct service even in the presence of faults while also meeting

the deadlines; and mixed-criticality is about certification (i.e., guaranteeing timeliness)

regarding the integration of multi-criticality tasks on a common computing platform

where different WCETs of each task are considered at varying degrees of confidence.

The purpose of modeling the real-time application and its design constraints is to

ensure through analysis and verification that the system is predictable at runtime. A

system is considered to be predictable when all the design constraints are satisfied for

the assumed model of the system. Satisfying the temporal constraints (i.e., meeting

the deadlines) is the main design constraint considered in this thesis. The temporal

constraints of meeting the deadlines might be contending with the design constraints

of other non-functional behaviors (e.g., fault-tolerance, criticality). In order to verify

offline that whether all the design constraints will be met or not, schedulability tests are

proposed by analyzing global FP scheduling. The proposed schedulability tests do not

only dominate but also empirically perform significantly better than the corresponding

state-of-the-art schedulability tests.

The different techniques used to analyze one particular non-functional behavior are

orthogonal to the analysis of other non-functional behaviors in this thesis. For example,

the criteria to determine the set of tasks to be kept separated from the schedulability

analysis of a lower priority task (as proposed for the IA-DA test) can also be used for the

schedulability analysis of the FTGS and MSM algorithms. Similarly, if a mixed-criticality

system is also a fault-tolerant system, then the response-time based schedulability test

of the MSM algorithm can be extended with the schedulability analysis used for the fault-

tolerant FTGS algorithm in order to derive a new schedulability test.

The mathematical expressions of the proposed schedulability tests incorporate the

parameters of the task set, processing platform, and design constraints. The compact

representation and the efficiency in evaluating the proposed schedulability tests enable

the designers making the trade-off between resource-requirement and rigidity of the

design constraints. The analysis of the scheduling algorithms aims to reduce the pes-

simism in order to derive more effective schedulability tests for global FP scheduling.

Such reduced pessimism is beneficial in reducing resource consumption and enables

quick adaptation to changes, for example, adding new services on existing hardware.

Although the proposed algorithms consider fixed-priority scheduling of constrained-

deadline tasks on multiprocessors, the corresponding results can be extended for other

203

work-conserving scheduling algorithms, for example, global EDF scheduling. To per-

form the schedulability analysis of global EDF scheduling, the technique for workload

computation of the higher priority jobs within the problem window of each task has to

be derived. In global EDF, each job having its absolute deadline in a problem window,

that ends at the deadline of the analyzed task, becomes a contributor to the workload

in that problem window. Depending on the non-functional behavior under study, the

workload within the problem window has to be appropriately calculated. By finding

the workload of the higher priority jobs, an upper bound on the interference on each

task within its problem window can be calculated and a schedulability test for global

EDF can be derived. In addition, designing new scheduling algorithms, performing pre-

cise schedulability analysis and deriving efficient schedulability tests for the following

open problems are left as future work:

• There is an important source of pessimism in the existing schedulability analysis

of global scheduling algorithms, which is stated as follows: when a lower prior-

ity task τ executes, all the other (m − 1) processors are assumed to be idle.

This assumption is not always true as will be demonstrated now using an example.

Consider the global FP scheduling of four tasks {τ1, τ2, τ3, τ4} on m = 2 pro-

cessors, where a task with lower index has higher priority. Also consider that the

interference on task τ3 according to the DA-LC test within a problem window of

length D3 is (D3 − C3). Evidently, task τ3 is guaranteed to be schedulable ac-

cording to the DA-LC test. Now assume that D4 = D3, C3 = 4, and C4 ≤ C3.

The total interfering workload within a problem window of length D4 is at least

[m · (D3 − C3) + 4] when analyzing the schedulability of task τ4 based on the

DA-LC test. By assuming that all the other processors are idle when task τ4 exe-

cutes within a problem window of lengthD4, the interference on task τ4 according

to the DA-LC test is at least (D3 − C3 + 2) = (D4 − C4 + 1). Therefore, the

schedulability of task τ4 can not be guaranteed based on the DA-LC test. How-

ever, the DA-LC test assumes that (m − 1) = 1 processor is idle when task τ3
executes, and therefore, task τ4 is also schedulable since its relative deadline is

equal to D3 and its execution time is smaller than the execution time of task τ3.

The lesson learned is that the assumption that (m − 1) processors are idle, when

a particular task executes, does not need to be enforced during the schedulability

analysis of each task. Relaxing this assumption for appropriate tasks will result

in more precise schedulability analysis and better schedulability test. Finding the

details when such assumption can be relaxed is left as a future work.

• The fault-tolerance scheduling algorithms proposed in this thesis considers a fault

model in which a particular job of each task is assumed to be affected by at most

f task errors. A relatively general fault model would be to consider different num-

ber of task errors to be tolerated for different tasks. This is a more reasonable fault

model since not every task is equally prone to the same number of errors. For ex-

ample, a piece of complex software is possibly more prone to design errors than

a simple software. In addition, the internal robustness in masking faults or er-

204 CHAPTER 10. CONCLUSION

rors of different software can be different due to the difference in software design

process, testing, debugging, and so on. Therefore, it is more reasonable to con-

sider different number of errors to be tolerated for different tasks. Fault-tolerant

schedulability analysis considering such a relatively general fault-model and re-

laxing the assumption of no-fault-propagation is left as a future work. In addition,

schedulability analysis on multiprocessors considering checkpoint or imprecise-

computation for error recovery is also another interesting future work.

• In order to provide different degrees of assurance needed in meeting the deadlines

of mixed-criticality tasks, this thesis considers only one source of variation in the

run-time behavior of the system, i.e., the execution time of each task. There are

other sources of variations that may impact the degree of assurance needed for

certifying a mixed-criticality system at various criticality levels. One such source

is the inter-arrival time (period) of each task.

The system designer may assume a relatively larger period of a task while the CA

being more pessimistic may assume a shorter period of the same task. For exam-

ple, consider an aircraft that periodically runs some diagnostic function to check

if lightning (or some other disturbance) has caused some damages to the on-board

electrical and electronic systems. The system designer may decide to execute the

function in every minute whereas the CA may require to execute it every 5 sec-

onds. To put it in another way, consider that the function is executed every minute

during sunny weather and every 5 seconds during cloudy weather. Developing

scheduling algorithm and schedulability test considering different periods along

with different WCETs of each task at different criticality levels is another inter-

esting future work. Similarly, the number and types of faults that may need to be

tolerated for each task can be different for different criticality levels. Fault tolerant

scheduling of MC systems considering different number and types of faults to be

tolerated at different criticality levels is another interesting future work.

The research presented in this thesis is to help the system designers to build a predictable

system. To this end, I wonder whether it is really possible to design a computerized

system that is completely predictable. The answer is positive if the model of the system

is perfect and the analysis of the system based on this “perfect” model is precise. Then,

the question arises is whether the model of a computer system is perfect in capturing

the environment of the system. I believe that it is really difficult to entirely capture the

environment of computerized systems which may consist of:

• hardware (e.g., sensor, actuator, processing platform, accelerators, GPUs),

• software (e.g., application tasks, operating systems, middleware, drivers),

• inputs (e.g., from sensors, human users, other systems),

• users’ interactions (e.g., robots, human beings),

• factors related to atmosphere (e.g., radiation, temperature, lightning, dust, snow),

• factors related to software design (e.g., competence, experience, testing).

205

In addition, changes in technology (e.g., introduction of multicore, miniaturization

of transistors), changes in users’ perceived level of comfort (e.g., autonomous cars), new

operating condition/atmosphere (e.g., spacecraft in a new planet), and new certification

standards — all are contributing to the difficulty in the design of predictable comput-

erized systems. Perfect modeling and precise analysis considering all these sources of

variability are daunting tasks in terms of time and complexity. Although it seems that

we are far from building true predictable system, there are computerized systems that

are in fact behaving predictably.

A computer system can hardly be entirely predictable and there are only systems

which may have not yet become unpredictable and we can only design a “more” pre-

dictable system in comparison to another existing system. One way to build a more

predictable system is to consider the different system layers — starting from the ap-

plication to the middleware, operating system, processors and all the way down to the

transistors — as information providers rather than information concealers. An interde-

pendent system design approach in which information from one design layer is heavily

exploited in another can help building a better predictable real-time system.

Bibliography

[AB98] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time

systems. In Proc. of the RTSS, pages 4 –13, 1998.

[AB08] B. Andersson and K. Bletsas. Sporadic Multiprocessor Scheduling with Few Pre-

emptions. In Proc. of the ECRTS, pages 243–252, 2008.

[ABB96] N.C. Audsley, I.J. Bate, and A. Burns. Putting fixed priority scheduling theory

into engineering practice for safety critical applications. In Proc. of the RTAS,

pages 2 –10, 1996.

[ABB08] B. Andersson, K. Bletsas, and S. Baruah. Scheduling Arbitrary-Deadline Sporadic

Task Systems on Multiprocessors. In Proc. of the RTSS, pages 385–394, 2008.

[ABJ01] B. Andersson, S. Baruah, and J. Jonsson. Static-Priority Scheduling on Multipro-

cessors. In Proc. of RTSS, pages 193–202, 2001.

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying

new scheduling theory to static priority pre-emptive scheduling. Software Engi-

neering Journal, 8(5):284–292, 1993.

[ABRW91] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard Real-Time

Scheduling: The Deadline-Monotonic Approach. In Proc. IEEE Workshop on

Real-Time Operating Systems and Software, pages 133–137, 1991.

[AFK05] J. Aidemark, P. Folkesson, and J. Karlsson. A Framework for Node-Level Fault

Tolerance in Distributed Real-Time Systems. In Proceedings of the International

Conference on Dependable Systems and Networks, pages 656–665, 2005.

[AJ] B. Andersson and J. Jonsson. Some insights on fixed-priority pre-emptive non-

partitioned multiprocessor scheduling. In In Proc. RTSS Work-in-Progress Ses-

sion, Nov. 2000.

[AJ03] B. Andersson and J. Jonsson. The utilization bounds of partitioned and pfair static-

priority scheduling on multiprocessors are 50%. In Proc. of ECRTS, pages 33–40,

2003.

[ALRL04] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and

Taxonomy of Dependable and Secure Computing. IEEE Trans. on Depend. and

Sec. Comp., 1(1):11–33, 2004.

[And08a] Björn Andersson. Global Static-Priority Preemptive Multiprocessor Scheduling

with Utilization Bound 38%. In Proc.of OPODIS, pages 73–88, 2008.

[And08b] Björn Andersson. The Utilization Bound of Uniprocessor Preemptive Slack-

Monotonic Scheduling is 50%. In Proc. of ACM Symp. On Applied Computing,

pages 281–283, 2008.

207

208 BIBLIOGRAPHY

[And10] B. Andersson. Conjecture about global fixed-priority preemptive multiprocessor

scheduling of implicit-deadline sporadic tasks: The utilization bound of SM −
US(
√
2 − 1) is

√
2 − 1 . In In Proceedings of the 1st International Real-Time

Scheduling Open Problems Seminar, in conjunction with the ECRTS, 2010.

[AOMS00] R. Al-Omari, G. Manimaran, and Arun K. Somani. An efficient backup-

overloading for fault-tolerant scheduling of real-time tasks. In Proc. of the Work-

shops on Parallel and Distributed Processing, pages 1291–1295, 2000.

[AOSM01] R. Al-Omari, Arun K. Somani, and G. Manimaran. A New Fault-Tolerant Tech-

nique for Improving Schedulability in Multiprocessor Real-time Systems. In

Proc.of the IPDPS, page 8, 2001.

[ARI] ARINC Incorporated. ARINC specification 651: Design guidance for integrated

modular avionics, November 1997.

[AS04] James H. Anderson and Anand Srinivasan. Mixed pfair/erfair scheduling of asyn-

chronous periodic tasks. J. Comput. Syst. Sci., 68(1):157–204, 2004.

[AS06] Armando Aguilar-Soto. Fixed-Priority Scheduling Algorithms with Multiple Ob-

jectives in Hard Real-Time Systems. PhD thesis, Department of Computer Sci-

ence, The University of York, UK, 2006.

[AT06] B. Andersson and E. Tovar. Multiprocessor Scheduling with Few Preemptions. In

Proc. of the RTCSA, pages 322–334, 2006.

[Aud91] N.C. Audsley. Optimal priority assignment and feasibility of static priority tasks

with arbitrary start times. Technical Report YCS 164, Dept of Computer Science,

University of York, UK, 1991.

[Aud01] N. C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Info. Proc.

Letters, 79(1):39–44, 2001.

[AUT] AUTOSAR, Automotive Open System Architecture, www.autosar.org.

[Avi85] A. Avižienis. The N-Version Approach to Fault-Tolerant Software. IEEE Trans-

actions on Software Engineering, 11(12):1491–1501, 1985.

[Ayd07] H. Aydin. Exact Fault-Sensitive Feasibility Analysis of Real-Time Tasks. IEEE

Trans. on Comp., 56(10):1372–1386, 2007.

[BA10] Björn B. Brandenburg and James H. Anderson. Spin-based reader-writer syn-

chronization for multiprocessor real-time systems. Real-Time Syst., 46(1):25–87,

September 2010.

[Bak06] T. P. Baker. An Analysis of Fixed-Priority Schedulability on a Multiprocessor.

Real-Time Systems, 32(1-2):49–71, 2006.

[Bar04] S.K. Baruah. Optimal utilization bounds for the fixed-priority scheduling of peri-

odic task systems on identical multiprocessors. IEEE Transactions on Computers,

53(6):781 – 784, june 2004.

[Bar07] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In

Proc of RTSS, pages 119–128, 2007.

[Bau05] R. Baumann. Soft errors in advanced computer systems. IEEE Design and Test of

Computers, 22(3):258–266, 2005.

BIBLIOGRAPHY 209

[BB05] Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulabil-

ity Tests. Real-Time Systems, 30:129–154, 2005.

[BBA10] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. An Empirical

Comparison of Global, Partitioned, and Clustered Multiprocessor EDF Sched-

ulers. In Proc. of RTSS, pages 14–24, 2010.

[BBA11] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Is semi-

partitioned scheduling practical? In Proc. of ECRTS, pages 125–135, 2011.

[BBB+] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy,

J. S. P. Stanfill, D. Stuart, and R Urzi. White paper: A re-

search agenda for mixed-criticality systems, april 2009, available at

http://www.cse.wustl.edu/~cdgill/CPSWEEK0_MCAR.

[BBD+11a] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-

Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Mixed-criticality Schedul-

ing of Sporadic task Systems. In Proc. of the European conference on Algorithms,

pages 555–566, 2011.

[BBD11b] Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed

criticality systems. In Proc. of RTSS, pages 34–43, 2011.

[BBD+12a] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der

Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality

implicit-deadline sporadic task systems. In Proc of ECRTS, pages 145 –154, 2012.

[BBD+12b] S. Baruah, V. Bonifaci, G. D’Angelo, Haohan Li, A. Marchetti-Spaccamela,

N. Megow, and L. Stougie. Scheduling Real-Time Mixed-Criticality Jobs. IEEE

Transactions on Computers, 61(8):1140 –1152, 2012.

[BC07] Marko Bertogna and Michele Cirinei. Response-Time Analysis for Globally

Scheduled Symmetric Multiprocessor Platforms. In Proc. of RTSS, pages 149–

160, 2007.

[BCA08] B.B. Brandenburg, J.M. Calandrino, and J.H. Anderson. On the Scalability of

Real-Time Scheduling Algorithms on Multicore Platforms: A Case Study. Proc.

of RTSS, pages 157 –169, 2008.

[BCB+08] B.B. Brandenburg, J.M. Calandrino, A. Block, H. Leontyev, and J.H. Anderson.

Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to

Suspend or Spin? In Proc. of RTAS, pages 342 –353, 2008.

[BCGM99] Sanjoy Baruah, Deji Chen, Sergey Gorinsky, and Aloysius Mok. Generalized

multiframe tasks. Real-Time Syst., 17(1):5–22, July 1999.

[BCL05] M. Bertogna, M. Cirinei, and G. Lipari. New Schedulability Tests for Real-Time

Task Sets Scheduled by Deadline Monotonic on Multiprocessors. In Proc. of

OPODIS, pages 306–321, 2005.

[BCL09] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. Schedulability Analysis

of Global Scheduling Algorithms on Multiprocessor Platforms. IEEE Tran. on

Par. and Dist. Syst., 20(4):553–566, 2009.

[BCPV96] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600–

625, 1996.

http://www.cse.wustl.edu/~cdgill/CPSWEEK0_MCAR.

210 BIBLIOGRAPHY

[BDP96] A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis of Fault-Tolerant Real-

Time Task Sets. In Proc. of the ECRTS, pages 522–527, 1996.

[BEL11] Stefan Bygde, Andreas Ermedahl, and Björn Lisper. An Efficient Algorithm for

Parametric WCET Calculation. Journal of Systems Architecture, 57:614–624,

May 2011.

[BF11] Sanjoy Baruah and Gerhard Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. In Proc. of RTSS, pages 3–12, 2011.

[BFM97] A.A. Bertossi, A. Fusiello, and L.V. Mancini. Fault-tolerant deadline-monotonic

algorithm for scheduling hard-real-time tasks. In Parallel Processing Symposium,

1997. Proceedings., 11th International, pages 133 –138, April 1997.

[BG03a] S. Baruah and J. Goossens. Rate-monotonic scheduling on uniform multiproces-

sors. IEEE Transactions on Computers, 52(7):966–970, 2003.

[BG03b] S. Baruah and J. Goossens. The Static-priority Scheduling of Periodic Task Sys-

tems upon Identical Multiprocessor Platforms. pages 427–432, 2003.

[BGJ06] V. Berten, J. Goossens, and E. Jeannot. A probabilistic approach for fault tolerant

multiprocessor real-time scheduling. In Proc. of IPDPS, page 8, 2006.

[BLS10] S. Baruah, Haohan Li, and L. Stougie. Towards the Design of Certifiable Mixed-

criticality Systems. In Proc. of RTAS, pages 13–22, 2010.

[BMR90] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-time

sporadic tasks on one processor. In Proc. of the RTSS, pages 182 –190, 1990.

[BMR99] A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-Tolerant Rate-Monotonic

First-Fit Scheduling in Hard-Real-Time Systems. IEEE Transactions on Parallel

and Distributed Systems, 10(9):934–945, 1999.

[BPSW99] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Probabilistic scheduling

guarantees for fault-tolerant real-time systems. In Dependable Computing for

Critical Applications, pages 361–378, 1999.

[BRH90] S. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and Complexity Concern-

ing the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor.

Real-Time Systems., 2(4):301–324, 1990.

[BT83] J. A. Bannister and K. S. Trivedi. Task allocation in fault-tolerant distributed

systems. Acta Informatica, 20:261–281, 1983.

[BV08] S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks with Multiple

Criticality Specifications. In Proc. of ECRTS, pages 147–155, 2008.

[CB98] M. Caccamo and G. Buttazzo. Optimal scheduling for fault-tolerant and firm real-

time systems . In Proceedings of the IEEE Conference on Real-Time Computing

Systems and Applications, pages 223–231, 1998.

[CC89] H. Chetto and M. Chetto. Some Results of the Earliest Deadline Scheduling Al-

gorithm. IEEE Trans. on Soft. Engg., 15(10):1261–1269, 1989.

[CFH+04] J. Carpenter, S. Funk, P. Holman, J. H. Anderson, and S. Baruah. A categorization

of real-time multiprocessor scheduling problems and algorithms. Handbook on

Scheduling Algorithms, Methods, and Models, 2004.

BIBLIOGRAPHY 211

[CGG11] Liliana Cucu-Grosjean and Joël Goossens. Exact Schedulability Tests for Real-

Time Scheduling of Periodic Tasks on Unrelated Multiprocessor Platforms. Jour-

nal of Systems Architecture, 57(5):561–569, 2011.

[CJD91] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-time

systems. In Proc. of RTSS, pages 74 –83, 1991.

[CKR+12] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, Timon Kelter, Pe-

ter Marwedel, and Heiko Falk. A Unified WCET Analysis Framework for Multi-

core Platforms. In Proc. of the RTAS, pages 99–108, 2012.

[CLL90] J.-Y. Chung, J.W.S. Liu, and K.-J. Lin. Scheduling periodic jobs that allow impre-

cise results. IEEE Transactions on Computers, 39(9):1156–1174, 1990.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2001.

[CMR92] A. Campbell, P. McDonald, and K. Ray. Single Event Upset Rates in Space. IEEE

Trans. on Nuclear Sci., 39(6):1828–1835, Dec 1992.

[CMS82] X. Castillo, S. R. McConnel, and D. P. Siewiorek. Derivation and Calibration of a

Transient Error Reliability Model. IEEE Transactions on Computers, 31(7):658–

671, 1982.

[CRD06] H. Cho, B. Ravindran, and E. Douglas. An Optimal Real-Time Scheduling Algo-

rithm for Multiprocessors. In Proceedings of the IEEE Real-Time Systems Sym-

posium, pages 101–110, 2006.

[CYKT07] Jian-Jia Chen, Chuan-Yue Yang, Tei-Wei Kuo, and Shau-Yin Tseng. Real-Time

Task Replication for Fault Tolerance in Identical Multiprocessor Systems. In Proc.

of RTAS, pages 249–258, 2007.

[DB09] Robert Davis and Alan Burns. Priority Assignment for Global Fixed Priority Pre-

Emptive Scheduling in Multiprocessor Real-Time Systems. In Proc. of RTSS,

pages 398–409, 2009.

[DB10] R.I. Davis and A. Burns. On optimal priority assignment for response time anal-

ysis of global fixed priority pre-emptive scheduling in multiprocessor hard real-

time systems. Tech. report YCS-2010-451, University of York, Computer Science

Dept., April 2010.

[DB11a] Robert Davis and Alan Burns. A Survey of Hard Real-Time Scheduling for Mul-

tiprocessor Systems. ACM Computing Surveys, 43(4):35:1–35:44, 2011.

[DB11b] Robert Davis and Alan Burns. Improved priority assignment for global fixed pri-

ority pre-emptive scheduling in multiprocessor real-time systems. Real-Time Sys-

tems, 47:1–40, 2011.

[Dha77] S. K. Dhall. Scheduling periodic-time - critical jobs on single processor and mul-

tiprocessor computing systems. PhD Thesis, University of Illinois at Urbana-

Champaign, 1977.

[DL78] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Problem. Operations

Research, 26(1):127–140, 1978.

[dNLR09] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-

criticality real-time task sets. In Proc. of the RTSS, pages 291 –300, 2009.

212 BIBLIOGRAPHY

[DRRG10] François Dorin, Pascal Richard, Michaël Richard, and Joël Goossens. Schedu-

lability and sensitivity analysis of multiple criticality tasks with fixed-priorities.

Real-Time Systems, 46:305–331, 2010.

[EB08] Paul Emberson and Iain Bate. Extending a task allocation algorithm for graceful

degradation of real-time distributed embedded systems. In Proc. of the RTSS,

pages 270–279, 2008.

[EY12] P. Ekberg and Wang Yi. Bounding and shaping the demand of mixed-criticality

sporadic tasks. In Proc. of the ECRTS, pages 135 –144, july 2012.

[FBB06] N. Fisher, S. Baruah, and T. P. Baker. The Partitioned Scheduling of Sporadic

Tasks According to Static-Priorities. In Proc. of ECRTS, pages 118–127, 2006.

[GESY11a] Nan Guan, P. Ekberg, M. Stigge, and Wang Yi. Resource sharing protocols for

real-time task graph systems. In Proc. of the ECRTS, pages 272 –281, 2011.

[GESY11b] Nan Guan, Pontus Ekberg, Martin Stigge, and Wang Yi. Effective and Efficient

Scheduling of Certifiable Mixed-Criticality Sporadic Task Systems. In Proc. of

RTSS, pages 13–23, 2011.

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of pe-

riodic task systems on multiprocessors. Real-Time Syst., 25(2-3):187–205, 2003.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[GLYY12] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. WCET Analysis with MRU

Caches: Challenging LRU for Predictability. Proc. of RTAS, pages 55–64, 2012.

[GMM94] S. Ghosh, R. Melhem, and D. Mosse. Fault-tolerant scheduling on a hard real-time

multiprocessor system. In Proc. of the Parallel Processing Symposium, pages 775

–782, 1994.

[GMM95] S. Ghosh, R. Melhem, and D. Mossé. Enhancing Real-Time Schedules to Tolerate

Transient Faults. In Proc. of the RTSS, pages 120–129, 1995.

[GMMS98] S. Ghosh, Rami Melhem, Daniel Mossé, and Joydeep Sen Sarma. Fault-Tolerant

Rate-Monotonic Scheduling. Real-Time Systems., 15(2):149–181, 1998.

[GSYY09] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New Response Time Bounds for

Fixed Priority Multiprocessor Scheduling. Proc. of RTSS, pages 387–397, 2009.

[GSYY10] Nan Guan, M. Stigge, Wang Yi, and Ge Yu. Fixed-Priority Multiprocessor

Scheduling with Liu and Layland’s Utilization Bound. In Proc. of the RTAS,

pages 165 –174, 2010.

[HA05] Philip Holman and James H. Anderson. Adapting pfair scheduling for symmetric

multiprocessors. J. Embedded Comput., 1(4):543–564, December 2005.

[HL94] Rhan Ha and J.W.S. Liu. Validating timing constraints in multiprocessor and

distributed real-time systems. In Proc. of ICDCS, pages 162 –171, 1994.

[HS89] D. Haban and K.G. Shin. Application of real-time monitoring to scheduling tasks

with random execution times. In Proc. of the RTSS, pages 172 –181, 1989.

[HSW03] C.-C. Han, K. G. Shin, and J. Wu. A Fault-Tolerant Scheduling Algorithm for

Real-Time Periodic Tasks with Possible Software Faults. IEEE Trans. on Comp.,

52(3):362–372, 2003.

BIBLIOGRAPHY 213

[IRH86] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh. Measurement and Modeling of Com-

puter Reliability as Affected by System Activity. ACM Trans. on Comp. Syst.,

4(3):214–237, 1986.

[JHCS02] A. Jhumka, M. Hiller, V. Claesson, and N. Suri. On systematic design of globally

consistent executable assertions in embedded software. In Proceedings of the joint

conference on Languages, compilers and tools for embedded systems, pages 75–

84, 2002.

[Joh88] B. W. Johnson. Design & analysis of fault tolerant digital systems. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The

Computer Journal, 29(5):390–395, 1986.

[KLLS05a] K. Klonowska, H. Lennerstad, L. Lundberg, and C. Svahnberg. Optimal recovery

schemes in fault tolerant distributed computing. Acta Informatica., 41(6):341–

365, 2005.

[KLLS05b] K. Klonowska, L. Lundberg, H. Lennerstad, and C. Svahnberg. Extended Golomb

rulers as the new recovery schemes in distributed dependable computing. In Proc.

of the IPDPS, page 8, 2005.

[KLR10] Junsung Kim, K. Lakshmanan, and R. Rajkumar. R-BATCH: Task Partitioning

for Fault-tolerant Multiprocessor Real-Time Systems. In Proc. of ICESS, pages

1872 –1879, 2010.

[KSSF10] R. Kalla, B. Sinharoy, W.J. Starke, and M. Floyd. Power7: IBM’s Next-

Generation Server Processor. Micro, IEEE, 30(2):7 –15, 2010.

[KST11] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Inter-core prefetching

for multicore processors using migrating helper threads. In Proc. of ASPLOS,

pages 393–404, 2011.

[KY08] S. Kato and N. Yamasaki. Portioned static-priority scheduling on multiproces-

sors. In Proceedings of the IEEE International Parallel and Distributed Process-

ing Symposium, pages 1–12, 2008.

[KY09] S. Kato and N. Yamasaki. Semi-Partitioned Scheduling of Sporadic Task Systems

on Multiprocessors. In Proceedings of the EuroMicro Conference on Real-Time

Systems, pages 249–258, 2009.

[LB10a] Haohan Li and S. Baruah. An algorithm for scheduling certifiable mixed-

criticality sporadic task systems. In Proc. of RTSS, pages 183–192, 2010.

[LB10b] Haohan Li and Sanjoy Baruah. Load-based schedulability analysis of certifiable

mixed-criticality systems. In Proc. of EMSOFT, pages 99–108, 2010.

[LB12] Haohan Li and Sanjoy Baruah. Global mixed-criticality scheduling on multipro-

cessors. In Proc. of ECRTS, pages 166 – 175, 2012.

[LBOS95] J. Liebeherr, A. Burchard, Y. Oh, and S. H. Son. New Strategies for As-

signing Real-Time Tasks to Multiprocessor Systems. IEEE Trans. on Comp.,

44(12):1429–1442, 1995.

[LDG04] J. M. López, J. L. Díaz, and D. F. García. Minimum and Maximum Utilization

Bounds for Multiprocessor Rate Monotonic Scheduling. IEEE Transactions on

Parallel and Distributed Systems, 15(7):642–653, 2004.

214 BIBLIOGRAPHY

[LdNR11] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task synchroniza-

tion in zero-slack scheduling. In Proc. of RTAS, pages 47 –56, 2011.

[LdNRM10] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno. Resource allocation in

distributed mixed-criticality cyber-physical systems. In Proc. of the ICDCS, pages

169 –178, 2010.

[LGDG03] J. M. López, M. García, J. L. Díaz, and D. F. García. Utilization Bounds for Mul-

tiprocessor Rate-Monotonic Scheduling. Real-Time Systems, 24(1):5–28, 2003.

[LL73] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

[LLMM99] Frank Liberato, Sylvain Lauzac, Rami Melhem, and Daniel Mossé. Fault Tolerant

Real-Time Global Scheduling on Multiprocessors. Proc. of ECRTS, page 252,

1999.

[LMM98a] S. Lauzac, R. Melhem, and D. Mossé. An Efficient RMS Control and Its Appli-

cation to Multiprocessor Scheduling. In Proceedings of the International Parallel

Processing Symposium, pages 511–518, 1998.

[LMM98b] Sylvain Lauzac, Rami Melhem, and Daniel Mosse. Comparison of global and

partitioning schemes for scheduling rate monotonic tasks on a multiprocessor. In

Euromicro Workshop on Real Time Systems, pages 188–195, 1998.

[LMM00] F. Liberato, R. Melhem, and D. Mossé. Tolerance to Multiple Transient Faults for

Aperiodic Tasks in Hard Real-Time Systems. IEEE Trans. on Comp., 49(9):906–

914, 2000.

[LNBCG11] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-Grosjean. A New Way about

using Statistical Analysis of Worst-Case Execution Times. ACM SIGBED Review,

8(2), 2011.

[LRL09] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned Fixed-Priority Pre-

emptive Scheduling for Multi-core Processors. In Proceedings of the EuroMicro

Conference on Real-Time Systems, pages 239–248, 2009.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact

characterization and average case behavior. In Proceedings of the IEEE Real-Time

Systems Symposium, pages 166–171, 1989.

[LSL+94] J.W.S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise compu-

tations. Proceedings of the IEEE, 82(1):83–94, 1994.

[Lun02] L. Lundberg. Analyzing Fixed-Priority Global Multiprocessor Scheduling. In

Proc. of RTAS, pages 145–153, 2002.

[LW82] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling

of Periodic, Real-Time Tasks. Performance Evaluation, 2:237–250, 1982.

[MAAMM00] P. Mejia-Alvarez, H. Aydin, D. Mossé, and R. Melhem. Scheduling optional com-

putations in fault-tolerant real-time systems. In Proc. of the RTCSA, page 323,

2000.

[MAM99] P. Mejia-Alvarez and D. Mossé. A responsiveness approach for scheduling fault

recovery in real-time systems. In Proceedings of the IEEE Real-Time Technology

and Applications Symposium, pages 4–13, 1999.

BIBLIOGRAPHY 215

[MBS07] A. Meixner, M.E. Bauer, and D.J. Sorin. Argus: Low-Cost, Comprehensive Er-

ror Detection in Simple Cores. In Proc. of the Annual IEEE/ACM Int. Symp. on

Microarchitecture, pages 210–222, 2007.

[MCS91] H. Madeira, J. Camoes, and J. G. Silva. A watchdog processor for concurrent

error detection in multiple processor systems. Microprocessors and Microsystems,

15(3):123–130, 1991.

[MD11] F. Many and D. Doose. Scheduling Analysis under Fault Bursts. In Proc. of the

RTAS, pages 113 –122, 2011.

[MdALB03] G. M. de A. Lima and A. Burns. An optimal fixed-priority assignment algorithm

for supporting fault-tolerant hard real-time systems. IEEE Transactions on Com-

puters, 52(10):1332–1346, 2003.

[MEA+10] M.S. Mollison, J.P. Erickson, J.H. Anderson, S.K. Baruah, and J.A. Scoredos.

Mixed-criticality real-time scheduling for multicore systems. In Proc. of ICESS,

pages 1864–1871, 2010.

[MFC01] Aloysius K. Mok, Xiang (Alex) Feng, and Deji Chen. Resource partition for real-

time systems. In Proc. of the RTAS, pages 75–, 2001.

[MM98] G. Manimaran and C. S. R. Murthy. A Fault-Tolerant Dynamic Scheduling Algo-

rithm for Multiprocessor Real-Time Systems and Its Analysis. IEEE Transactions

on Parallel and Distributed Systems, 9(11):1137–1152, 1998.

[NLR09] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the

Scheduling of Mixed-Criticality Real-Time Task Sets. In Proc. of RTSS, pages

291–300, 2009.

[NSBS09] T. Nolte, Insik Shin, M. Behnam, and M. Sjodin. A Synchronization Protocol for

Temporal Isolation of Software Components in Vehicular Systems. IEEE Trans-

actions on Industrial Informatics, 5(4):375 –387, nov. 2009.

[OB98] D.-I. Oh and T. P. Baker. Utilization Bounds for N-Processor Rate Monotone

Scheduling with Static Processor Assignment. Real-Time Systems, 15(2):183–

192, 1998.

[OS94] Y. Oh and S. H. Son. Enhancing fault-tolerance in rate-monotonic scheduling.

Real-Time Systems., 7(3):315–329, 1994.

[OS95a] Y. Oh and S. H. Son. A Processor-Efficient Scheme for Supporting Fault-

Tolerance in Rate-Monotonic Scheduling. Technical report, University of Vir-

ginia, 1995.

[OS95b] Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodic tasks on multi-

processor systems. Real-Time Systems., 9(3):207–239, 1995.

[PBD01] S. Punnekkat, A. Burns, and R. Davis. Analysis of Checkpointing for Real-Time

Systems. Real-Time Systems., 20(1):83–102, 2001.

[PJ10] R.M. Pathan and J. Jonsson. Load regulating algorithm for static-priority task

scheduling on multiprocessors. In Proc. of the IPDPS, pages 1 –12, 2010.

[PLHE09] S.M. Petters, M. Lawitzky, R. Heffernan, and K. Elphinstone. Towards real multi-

criticality scheduling. In Proc. of RTCSA, pages 155 – 164, 2009.

[PM98] M. Pandya and M. Malek. Minimum Achievable Utilization for Fault-Tolerant

Processing of Periodic Tasks. IEEE Trans. on Comp., 47(10):1102–1112, 1998.

216 BIBLIOGRAPHY

[PMCR08] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware Runtime Mon-

itoring for Dependable COTS-Based Real-Time Embedded Systems. In Proc of

the RTSS, pages 481 –491, 30 2008-dec. 3 2008.

[PMN+09] Rodolfo Pellizzoni, Patrick Meredith, Min-Young Nam, Mu Sun, Marco Cac-

camo, and Lui Sha. Handling mixed-criticality in soc-based real-time embedded

systems. In Proc. of EMSOFT, pages 235–244, 2009.

[Pra07] Fault-tolerant systems. Morgan Kaufmann, 2007.

[RRJ92] S.C.V. Raju, R. Rajkumar, and F. Jahanian. Monitoring timing constraints in dis-

tributed real-time systems. In Proc. of the RTSS, pages 57 –67, 1992.

[SABR04] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Impact of Technology

Scaling on Lifetime Reliability. In Proceedings of the International Conference

on Dependable Systems and Networks, pages 177–186, 2004.

[Sch84] Fred B. Schneider. Byzantine generals in action: Implementing fail-stop proces-

sors. ACM Trans. Comput. Syst., 2(2):145–154, 1984.

[SEGY11] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The digraph real-time

task model. In Proc. of the RTAS, pages 71–80, 2011.

[SG90] Lui Sha and John B. Goodenough. Real-time scheduling theory and ada. Com-

puter, 23(4):53–62, 1990.

[SGTG12] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing Mixed-Criticality

Scheduling Strictness for Task Sets Scheduled with FP. In Proc. pf the ECRTS,

pages 155 –165, 2012.

[SKK+02] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the

effect of technology trends on the soft error rate of combinational logic. In Proc.

of the DSN, pages 389 – 398, 2002.

[SKK+08] P. N. Sanda, J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth, J. Ackaret,

R. Lockwood, J. Schumann, and C. R. Jones. Soft-error resilience of the IBM

POWER6 processor. IBM J. Res. Dev., 52(3):275–284, 2008.

[SKM+78] D.P. Siewiorek, V. Kini, H. Mashburn, S. McConnel, and M. Tsao. A case study

of C.mmp, Cm*, and C.vmp: Part I–Experiences with fault tolerance in multipro-

cessor systems. Proceedings of the IEEE, 66(10):1 –1199, 1978.

[SLR86] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for Some Practical Problems

in Prioritized Preemptive Scheduling. In Proc. of RTSS, pages 181–191, 1986.

[SMR11] Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. Predictable task migration

for locked caches in multi-core systems. In Proc. of LCTES, pages 131–140, 2011.

[SMRM09] Abhik Sarkar, Frank Mueller, Harini Ramaprasad, and Sibin Mohan. Push-

assisted migration of real-time tasks in multi-core processors. In Proceedings

of the 2009 ACM SIGPLAN/SIGBED conference on Languages, compilers, and

tools for embedded systems, pages 80–89, 2009.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach

to designing fault-tolerant computing systems. ACM Trans. Comput. Syst., 1:222–

238, 1983.

BIBLIOGRAPHY 217

[SS94] M. Spuri and J.A. Stankovic. How to Integrate Precedence Constraints and Shared

Resources in Real-Time Scheduling. IEEE Transactions on Computers, 43:1407–

1412, 1994.

[SS99] P. Sinha and N. Suri. On the use of formal techniques for analyzing dependable

real-time protocols. In Proc. of RTSS, pages 126 –135, 1999.

[SSO05] R. M. Santos, J. Santos, and J. D. Orozco. A Least Upper Bound on the Fault

Tolerance of Real-Time Systems. Jour. of Sys. and Soft., 78(1):47–55, 2005.

[SUSO04] R. M. Santos, J. Urriza, J. Santos, and J. D. Orozco. New Methods for Redis-

tributing Slack Time in Real-Time Systems: Applications and Comparative Eval-

uations. Jour. of Sys. and Soft., 69(1-2):115–128, 2004.

[SXLC11a] A. Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-End Delay Analysis

for Fixed Priority Scheduling in WirelessHART Networks. In Proc. of RTAS,

pages 13 –22, 2011.

[SXLC11b] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Priority Assign-

ment for Real-time Flows in WirelessHART Networks. In Proc. of ECRTS, pages

33–44, 2011.

[TKK95] T. Tsuchiya, Y. Kakuda, and T. Kikuno. Fault-tolerant scheduling algorithm for

distributed real-time systems. In Proceedings of the Workshop on Parallel and

Distributed Real-Time Systems, page 99, 1995.

[TSP11] D. Tamas-Selicean and P. Pop. Design Optimization of Mixed-Criticality Real-

Time Applications on Cost-Constrained Partitioned Architectures. In Proc. of

RTSS, pages 24 –33, 2011.

[Ves07] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with Varying De-

grees of Execution Time Assurance. In Proc. of RTSS, pages 239–243, 2007.

[WEMR04] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques to Reduce

the Soft Error Rate of a High-Performance Microprocessor. In Proceedings of the

annual international symposium on Computer architecture, pages 264–275, 2004.

[WHA] WirelessHART Specification, www.hartcomm.org, 2007.

[XP00] Jia Xu and David Lorge Parnas. Priority scheduling versus pre-run-time schedul-

ing. Real-Time Syst., 18(1):7–23, January 2000.

[YKS11] Man-Ki Yoon, Jung-Eun Kim, and Lui Sha. Optimizing tunable wcet with shared

resource allocation and arbitration in hard real-time multicore systems. In Proc.

of the RTSS, pages 227 –238, 2011.

[YYP+12] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Mem-

ory Access Control in Multiprocessor for Real-time Systems with Mixed Critical-

ity. In ECRTS, pages 299 – 308, 2012.

[ZMM03] Dakai Zhu, Daniel Mossé, and Rami Melhem. Multiple-Resource Periodic

Scheduling Problem: how much fairness is necessary? Proceedings of the IEEE

Real-Time Systems Symposium, pages 142–151, 2003.

[ZQQ11] Xiaomin Zhu, Xiao Qin, and Meikang Qiu. QoS-Aware Fault-Tolerant Scheduling

for Real-Time Tasks on Heterogeneous Clusters. IEEE Trans. Comput., 60:800–

812, 2011.

A
Proofs of Theorems and Lemmas

Lemma 5.3 (from Chapter 5). Consider a, b, x, c and d such that 0 ≤ a ≤ b ≤ x ≤
c ≤ d ≤ m

2m−1 for any integer m > 0. The following two inequalities hold:

min{Fm(b),Fm(c)} ≤ Fm(x) (5.4)

min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} (5.5)

Proof. To show that Eq. (5.4) holds we will show that, the function Fm(x) = m(1−x)
2−x +x

achieves its absolute minimum at one of the end-points in [b, c], where b ≤ x ≤ c, for

any given m. Thus, the minimum between Fm(b) and Fm(c) is the absolute minimum

of Fm(x), and consequently Eq. (5.4) holds.

The first derivative of function Fm(x) with respect to x is F ′
m(x) = 1− m

(2−x)2 .

By setting F ′
m(x) = 0, we have x = (2 ± √m). For any value of m > 0, the point

x = (2 +
√
m) is outside of (b, c) since c ≤ m

2m−1 ≤ 1 for m > 0. Moreover, the point

x = (2−√m) is outside of (0, m
2m−1) for both m = 1 and m ≥ 4. Consequently, x =

(2−√m) is also outside of (b, c) because (b, c) is entirely contained within (0, m
2m−1)

form = 1 andm ≥ 4. So, the only possible x values satisfying both x = (2−√m) and

F ′
m(x) = 0 are x = (2 −

√
2) and x = (2 −

√
3) for m = 2 and m = 3, respectively

(called the stationary points). Since there is no stationary point of Fm(x) within (b, c)
for m = 1 or m ≥ 4, the absolute minimum of Fm(x) occurs at one of the end points

of [b, c] for m = 1 and m ≥ 4. So, only the cases where m = 2 and m = 3 need to be

considered.

Now for m = 2, if the point x = (2 −
√
2) is outside of (b, c), then the absolute

minimum of F2(x) occurs at one of the endpoints of [b, c]. Otherwise, if the point

219

220 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

x = (2 −
√
2) is within (b, c), then the absolute minimum occurs at one of the three

points x = a, x = (2 −
√
2), or x = b. The function F2(x) is increasing within

[b, 2 −
√
2) since F ′

2(x) =1 − 2
(2−x)2 > 0 within (b, 2 −

√
2) and F2(x) is decreasing

within (2 −
√
2, c] since F ′

2(x) =1 − 2
(2−x)2 < 0 within (2 −

√
2, c). Therefore, the

function F2(x) has its absolute maximum at x = (2−
√
2). Thus, the absolute minimum

of F2(x) occurs at one of the end points of [b, c].

Similarly for m = 3, if the point x = (2−
√
3) is outside of (b, c), then the absolute

minimum of F3(x) occurs at one of the endpoints of [b, c]. Otherwise, if the point

x = (2 −
√
3) is within (b, c), then the absolute minimum occurs at one of the three

points x = a, x = (2 −
√
3), or x = b. The function F3(x) is increasing within

[b, 2 −
√
3) since F ′

3(x) =1 − 3
(2−x)2 > 0 within (b, 2 −

√
3) and F3(x) is decreasing

within (2 −
√
3, c] since F ′

3(x) =1 − 3
(2−x)2 < 0 within (2 −

√
3, c). Therefore, the

function F3(x) has its absolute maximum at x = (2−
√
3). Consequently, the absolute

minimum of F3(x) occurs at one of the end points of [b, c].

Since the function Fm(x) has its minimum at one of the end points of [b, c] for any

m, it can be concluded that if x is within [b, c] then Fm(x) is not less than the minimum

between Fm(b) and Fm(c). Therefore, Eq. (5.4) holds.

Since according to the premise a ≤ b ≤ d and a ≤ c ≤ d, it follows from Eq. (5.4)

that min{Fm(a),Fm(d)} ≤ Fm(b) and min{Fm(a),Fm(d)} ≤ Fm(c) which imply

that min{Fm(a),Fm(d)} ≤ min{Fm(b),Fm(c)} holds.

Lemma 5.4 (from Chapter 5). Consider the sporadic task system Γk that is special on

m processors. The following inequality holds for m ≥ 1

min{Fm(δkmin) , Fm(δkmax) } ≤
m2

2m− 1
(5.6)

Proof. We show that the inequality in Eq. (5.6) holds by considering four different cases:

Case (i) m = 1, Case (ii) m = 2, Case (iii) m = 3, and Case (iv) m ≥ 4. Remember

that, according to Property 1 of special task set Γk, we have δkmax ≤ m
2m−1 .

Case (i) m = 1: The function F1(x) is increasing within [0, 1] since F ′
1(x) = 1 −

1
(2−x)2 > 0 within (0, 1). Thus, the maximum of F1(x) within [0, 1] occurs at x = 1,

and F1(1) = 1. Note that δkmin and δkmax are within [0, 1] since each task’s density is as-

sumed to be within [0, 1]. Therefore, we have min{F1(δ
k
min),F1(δ

k
max)}≤ F1(1)= 1 for

m = 1. Because m2

2m−1 = 1 for m = 1, we have min{Fm(δkmin),Fm(δkmax)} ≤ m2

2m−1 .

Case (ii) m = 2: Since m
2m−1 = 2

3 for m = 2 and δkmax ≤ m
2m−1 , both δkmin and

δkmax of are within [0, 23]. The function F2(x) is increasing within [0, 2 −
√
2] since

F ′
2(x) = 1− 2

(2−x)2 > 0 within (0, 2−
√
2) and the function F2(x) is decreasing within

[2−
√
2, 23] since F ′

2(x) = 1− 2
(2−x)2 < 0 within (2−

√
2, 23). Therefore, the function

F2(x) has its maximum at x = (2 −
√
2) within [0, 23], and F2(2−

√
2) = 2(2 −

√
2).

221

Consequently, min{Fm(δkmin) , Fm(δkmax)}≤ F2(2−
√
2). Since F2(2−

√
2) = 2(2−√

2) ≤ 4
3 = m2

2m−1 for m = 2, we have min{Fm(δkmin),Fm(δkmax})} ≤ m2

2m−1 .

Case (iii) m = 3: Since m
2m−1 = 3

5 for m = 3 and δkmax ≤ m
2m−1 , both δkmin and

δkmax of are within [0, 35]. The function F3(x) is increasing within [0, 2 −
√
3] since

F ′
3(x) = 1− 3

(2−x)2 > 0 within (0, 2−
√
3) and the function F3(x) is decreasing within

[2−
√
3, 35] since F ′

3(x) = 1− 3
(2−x)2 < 0 within (2−

√
3, 35). Therefore, the function

F3(x) has its maximum at x = (2 −
√
3) within [0, 35], and F3(2−

√
3) = (5 − 2

√
3).

Consequently, min{Fm(δkmin) , Fm(δkmax)} ≤ F3(2−
√
3). Since F3(2−

√
3) = (5−

2
√
3) ≤ 9

5 = m2

2m−1 for m = 3, we have min{Fm(δkmin),Fm(δkmax})} ≤ m2

2m−1 .

Case (iv)m ≥ 4: The function q(m) = m
2m−1 is decreasing form ≥ 4 because q′(m) =

−1
(2m−1)2 < 0 for m ≥ 4. Therefore, m

2m−1 ≤ 4
7 for m ≥ 4, and both δkmin and δkmax are

within [0, 47]. The function Fm(x) is decreasing within [0, 47] for 0 ≤ x ≤ 4
7 since

F ′
m(x) =1− m

(2−x)2 < 0 within (0, 47) for m ≥ 4. Thus, the maximum of Fm(x) occurs

at x = 0, and Fm(0) = m
2 . Therefore, min{Fm(δkmin) , Fm(δkmax)} ≤ Fm(0). Since

Fm(0)= m
2 < m2

2m−1 for m ≥ 4, we have min{Fm(δkmin) , Fm(δkmax)} ≤ m2

2m−1 .

It is proved for all the cases that if Γk is special on m processors, then the inequality

in Eq. (5.6) holds.

Lemma A.1. The following inequality holds for m ≥ m′ ≥ 1.

B(m) ≤ m

2m− 1
≤ m′

2m′ − 1
(A.1)

where B(m) is the function defined in Eq. (5.12).

Proof. We prove this Lemma considering three cases: Case (i) m = 1, Case (ii) m = 2,

and Case (iii) m ≥ 3.

Case (i) m = 1: For this case, we have m = m′ = 1 since m ≥ m′ ≥ 1. Therefore,
m

2m−1 = m′

2m′−1 = 1 for m = m′ = 1. From Eq. (5.12), we have B(m) = B(1) = 1
for m = 1. Therefore, Eq. (A.1) holds.

Case (ii) m = 2: Using Eq. (5.12), we have B(2) = (2 −
√
2) for m = 2. And

m
2m−1 = 2

3 for m = 2. Because (2−
√
2) < 2

3 , we have B(m) < m
2m−1 for m = 2. The

function q(x) = x
2x−1 is decreasing for x ≥ 1 because q′(x) = −1

(2x−1)2 < 0 for x > 1.

Thus, we have m
2m−1 ≤ m′

2m′−1 for m ≥ m′. Consequently, B(m) < m
2m−1 ≤ m′

2m′−1 .

Therefore, Eq. (A.1) holds.

222 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

Case (iii)m ≥ 3: The following inequality in Eq (A.2) holds for anym such thatm ≥ 3.

0 ≤ m2 − 4m+ 3 (A.2)

≡ 4m2 − 4m+ 1 ≤ 5m2 − 8m+ 4

≡ 2m− 1 ≤
√

5m2 − 8m+ 4

≡ 3m− 2−
√

5m2 − 8m+ 4 ≤ m− 1

≡ 3m− 2−
√
5m2 − 8m+ 4

2m− 2
≤ 1

2

⇒
[

since B(m) =
3m− 2−

√
5m2 − 8m+ 4

2m− 2
according to Eq. (5.12) for m ≥ 3

]

≡ B(m) ≤ 1

2
[

since
1

2
≤ m

2m− 1
≤ m′

2m′ − 1
for m ≥ m′ ≥ 1

]

⇒ B(m) ≤ m

2m− 1
≤ m′

2m′ − 1

Therefore, Eq. (A.1) holds for all the cases.

Lemma A.2. Let m and m′ be two integers such that m ≥ m′ ≥ 1. The following

inequality in Eq. (A.3) holds

B(m) ≤ B(m′) (A.3)

where B(m) is the function defined in Eq. (5.12).

Proof. For m ≥ 2, the first derivative of B(m) = 3m−2−
√
5m2−8m+4

2m−2 is B′(m) =
−2(

√
5m2−8m+4−m)

(
√
5m2−8m+4)(2m−2)2

. Note that we have B′(m) < 0 because
√
5m2 − 8m+ 4 > m

for m ≥ 2. So, B(m) is decreasing for m ≥ 2. Thus, the maximum of B(m) occurs at

m = 2 whenever m ≥ 2, and B(2) = (2 −
√
2). From Eq. (5.12), we have B(1) = 1.

Since 1 > (2−
√
2), we have B(1) > B(m) for any m ≥ 2.

If m = m′, then Eq. (A.3) trivially holds. So, to prove this Lemma, we consider

where m > m′. Note that m ≥ 2 whenever m > m′ because m′ ≥ 1.

Now, if m′ = 1, then B(m′) > B(m). This is because B(1) > B(m) for any

m ≥ 2. Otherwise, if m′ > 1, then m > 2 since we consider m > m′. Because the

function B(m) is decreasing for m ≥ 2, we have B(m′) > B(m) where m > m′.
Therefore, if m ≥ m′ ≥ 1, we have B(m) ≤ B(m′).

223

Theorem 5.5 (from Chapter 5). An implicit-deadline sporadic task set Γ is schedulable

using global FP scheduling under SM-US[
√
2 − 1] priority assignment policy, if the

following condition, for m ≥ 2, holds:

Un ≤ m · (
√
2− 1)

where ui ≤ (1− 1√
2
) or ui > (

√
2− 1) for each τi ∈ Γ.

Proof. Given the taskset Γ and the number of processors m, the two subsets ΓL and

ΓH such that Γ = ΓL ∪ ΓH based on the threshold density or utilization δts = (
√
2 −

1) can be determined. We will show that if the total utilization Un ≤ m · (
√
2− 1),

then the two general conditions C1 and C2 of Lemma 5.6 hold; which guarantees the

schedulability of Γ using global FP scheduling if no task’s utilization is within the range

(1− 1√
2
,
√
2− 1].

Each task in ΓH has utilization greater than (
√
2−1) for the SM-US[

√
2−1] policy.

Since the total utilization of taskset Γ is not greater than (
√
2 − 1)m according to the

premise, the number of tasks that are given the highest priority is less thanm (C1 holds).

To show that C2 of Lemma 5.6 holds, we have to show that ΓL is special on m′

processors where m′ = (m − |ΓH |). Let UL be the total utilization of all the tasks in

ΓL. Also let umaxL and uminL be the maximum and minimum utilization of any task in

set ΓL, respectively. To show that ΓL is special onm′ processors, we show that Property

1 and Property 2 (given in Definition 5.1) of special taskset are satisfied. In other words,

we have to show that the following two inequalities hold.

Property 1 umaxL ≤
m′

2m′ − 1

Property 2 UL ≤ min{Fm′(uminL),Fm′(umaxL)}

(Property 1 holds for ΓL) Since ui ≤ (1− 1/
√
2) or ui > (

√
2− 1) for each task

τi ∈ Γ, no task in ΓL has utilization greater than (1 − 1/
√
2) for the SM-US[

√
2 − 1]

policy. So, umaxL ≤ (1 − 1/
√
2). Note that (1 − 1/

√
2) ≤ m′

2m′−1 for any integer

m′ > 0. Consequently, umaxL ≤ m′

2m′−1 , and thus, Property 1 is satisfied.

(Property 2 holds for ΓL) The total utilization of the tasks in ΓH is greater than

(|ΓH | · (
√
2− 1)) because each task in ΓH has utilization greater than (

√
2− 1) for the

SM-US[
√
2− 1] policy. Since the total utilization of Γ is not greater than m · (

√
2− 1)

according to the premise, the total utilization of the tasks in ΓL is at most m′ · (
√
2− 1)

where m′ = (m− |ΓH |). Therefore, Eq. (A.4) holds.

UL ≤ m′ · (
√
2− 1)} (A.4)

224 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

Since 0 ≤ uminL ≤ umaxL ≤ (1− 1/
√
2) ≤ m′

2m′−1 , from Eq. (5.5), we have

min{Fm′(0) , Fm′(1− 1/
√
2)} ≤ min{Fm′(uminL),Fm′(umaxL)} (A.5)

From the function definition given in Eq. (5.3), we have

Fm′(0) =
m′(1− 0)

2− 0
+ 0 = m′/2 = m′ · 1/2 (A.6)

Fm′(1− 1/
√
2) =

m′(1− (1− 1/
√
2))

2− (1− 1/
√
2)

+ (1− 1/
√
2) (A.7)

= m′(
√
2− 1) + (1− 1/

√
2) > m′ · (

√
2− 1)

It follows from Eq. (A.6) and Eq. (A.7) that

min{Fm′(0), Fm′(1− 1/
√
2)} ≥ m′ · (

√
2− 1) (A.8)

Thus, it now follows from Eq. (A.4) and Eq. (A.8) that

UL ≤ min{Fm′(0), Fm′(1− 1/
√
2) } (A.9)

Finally, from Eq. (A.5) and Eq. (A.9), we have

UL ≤ min{Fm′(uminL), Fm′(umaxL) } (A.10)

Therefore, Property 2 is satisfied for task set ΓL. Consequently, ΓL is special on m′

processors (i.e., C2 holds).

Theorem 6.3 (from Chapter 6). If task set Γ is schedulable using the H-ODA-LC test,

then Γ is also schedulable using the IA-DA test, and not conversely.

Proof. Assume a contradiction that task set Γ does not pass the IA-DA test but passes

the H-ODA-LC test. Note that IA-DA test cannot fail to assign priorities between pri-

ority levels (n−m+1) and n because the IA-DA algorithm in Figure 6.4 assigns these

m highest priority levels in line 12–13 and returns “schedulable” in line 14. Therefore,

the IA-DA test can fail to assign priority only at some priority level between 1 and

(n−m).
Let the IA-DA test first fails to assign priority at some priority level PL, where

1 ≤ PL ≤ (n −m). Thus, when IA-DA test fails at priority level PL, there are total

(PL−1) tasks that are already assigned fixed priorities and there are total (n−PL+1)
priority-unassigned tasks. Consequently, the minimum number of priority-unassigned

tasks when IA-DA fails is (m + 1) since 1 ≤ PL ≤ (n −m). Let F denotes the set of

all priority-unassigned tasks when IA-DA fails. Note that |F| ≥ (m+ 1).
Remember that the H-ODA-LC test assigns the highest fixed priority to the m′

highest-density tasks and the remaining (n−m′) lowest-density tasks are assigned pri-

225

orities based on the ODA-LC test for some m′, where 0 ≤ m′ < m. Since Γ passes the

H-ODA-LC test, there are (n −m′) lowest-density tasks that are successfully assigned

priorities using the ODA-LC test for some m′, 0 ≤ m′ < m. In other words, each of the

(n −m′) lowest-density tasks passes the DA-LC test (because the ODA-LC test essen-

tially applies the DA-LC test in algorithm OPA in Figure 6.1). Let P denotes the set of

these (n−m′) lowest-density tasks. Note that |P| ≥ (n−m+ 1) since 0 ≤ m′ < m.

Because |F| + |P| ≥ (m + 1) + (n − m + 1) = (n + 2) and |Γ| = n, there are

at least two tasks that are common to both sets F and P. Let τx be such a common

task where task τx ∈ (F ∩ P). Without loss of generality assume that each task in set

((F ∩P)−{τx}) has higher priority than that of task τx for the priorities assigned by the

H-ODA-LC test. Therefore, each of the tasks in (F−{τx}) is assigned higher priorities

than that of task τx according to the priorities assigned by the H-ODA-LC test. In other

words, if φ is the set of tasks that are assigned higher priorities than task τx according

to the priorities assigned by the H-ODA-LC test, then (F− {τx}) ⊆ φ.

Since τx ∈ P, task τx passes DA-LC test when assigning the priority using the

H-ODA-LC test. Note that set φ includes the m′ highest-density tasks that are sepa-

rated and assigned the highest fixed-priority in H-ODA-LC test. If task τx passes the

DA-LC test, where m′ highest-density tasks from set φ are separated, then according to

Lemma 6.1, task τx must pass the DA-LC test by separating m′ tasks using algorithm

Select(φ,m′, τx, Dx) from set φ. Consequently, task τx must pass the DA-LC test

by separating m′ or lower number of tasks from set (F − {τx}) using the Select
algorithm since (F − {τx}) ⊆ φ. Therefore, the IA-DA test that uses the Select
algorithm for separation of the tasks can not fail to assign priority to task τx at prior-

ity level PL if Γ passes the H-ODA-LC test. Therefore, any task set that passes the

H-ODA-LC test also passes the IA-DA test. The task set in Example 6.2 passes the

IA-DA test but not the H-ODA-LC test. Therefore, IA-DA test dominates the state-of-

the-art H-ODA-LC test.

Lemma 9.2 (form Chapter 9). The net increase in workload due to any shift of the

problem window in Figure 9.4 is bounded by CHI
k − CLO

k .

Proof. This Lemma is proved by considering any possible shift of the problem window

for the reference pattern in Figure 9.4 both in (i) leftward, and (ii) rightward directions

for α time units, 0 ≤ α ≤ Tk. Shifting the problem window by exactly Tk time units in

any direction results in the same release pattern as in Figure 9.4. For ease of readability,

Figure 9.4 is presented here again in Figure A.1.

Leftward shift: Due to the leftward shift of the problem window in the reference

pattern, the workload in the shifted window may increase in two of the following ways:

• First, the job J
(y−1)
k that was executing for CLO

k time units in the reference pat-

tern may now experience the criticality-switch in the shifted window. Thus, the

workload of job J
(y−1)
k may now increase by (CHI

k − CLO
k) time units within the

shifted window.

226 APPENDIX A. PROOFS OF THEOREMS AND LEMMAS

Figure A.1: The reference pattern. Each job released before r
y

k finishes (Dk − ζk) time units

earlier than its deadline in the reference pattern.

• Second, new workload may enter into the shifted window from the left-hand side

of the window. Note that any job that is released before job Jyk executes for at

most CLO
k time units. Thus, the amount of new workload that may enter from the

left-hand side of the problem window is bounded by CLO
k .

Consequently, a (pessimistic) upper bound on the total increase in workload within the

shifted window is CHI
k time units. However, workload in the reference pattern may also

decrease from the right-hand side of the problem window.

Shifting the problem window left by α time units, where 0 ≤ α ≤ CLO
k , the workload

in the shifted window is decreased byα time units from the right-hand side. In such case,

new workload that may enter into the shifted window from the left-hand side is at most

α. Because the execution time of job J
(y−1)
k may now be increased by (CHI

k − CLO
k)

time units, the net increase in workload within the shifted problem window is at most

(CHI
k − CLO

k), whenever 0 ≤ α ≤ CLO
k .

Shifting the problem window left by α time units, where CLO
k < α ≤ Tk, the

workload in the shifted window decreases by at least CLO
k time units from the right-

hand side of the window. Because an upper bound on the total increase in workload

in the shifted window is CHI
k , the maximum net increase in workload is bounded by

(CHI
k − CLO

k) whenever CLO
k < α ≤ Tk. In summary, the maximum net increase in

workload is upper bounded by (CHI
k − CLO

k) for any left shift of the window in the

reference pattern.

Rightward Shift: The workload in the shifted window due to right shift of the prob-

lem window can increase only if the window is shifted right for more than (Tk − CHI
k)

time units. This is because no job of task τk executes within [rxi + t, rxi + t+ (Tk − CHI
k]

in the reference pattern.

If (Tk − CHI
k) < α ≤ (Tk − CLO

k), then shifting the problem window right by α
time units, the workload in the shifted window increases by (α − (Tk − CHI

k)) time

units. Since α ≤ (Tk − CLO
k), the maximum net increase in workload is (CHI

k − CLO
k),

whenever (Tk − CHI
k) < α ≤ (Tk − CLO

k).

227

Every right shift of the problem window for exactly Tk time units must decrease the

workload from the left-hand side by CLO
k time units. Therefore, the workload within

the shifted window is decreased by at least (α − (Tk − CLO
k)) time units from the

left-hand side for any right shift of the problem window by α time units whenever

(Tk − CLO
k) ≤ α ≤ Tk. Any right shift of the problem window by α time units, where

(Tk − CLO
k) ≤ α ≤ Tk, increases the workload within the shifted window by at most

(α− (Tk − CHI
k)) time units. Consequently, the maximum net increase in workload

within the shifted window is equal to (CHI
k − CLO

k), whenever (Tk − CLO
k) ≤ α ≤ Tk.

In summary, the maximum net increase in workload is upper bounded by (CHI
k − CLO

k)
for any right shift of the window in the reference pattern.

B
Additional Graphs for Iterative Tests

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=4, n=12 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.1: Acceptance ratios for experiments with (m = 4, n = 3m = 12).

229

230 APPENDIX B. ADDITIONAL GRAPHS FOR ITERATIVE TESTS

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=8, n=24 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.2: Acceptance ratios for experiments with (m = 8, n = 3m = 24).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=16, n=48 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.3: Acceptance ratios for experiments with (m = 16, n = 3m = 48).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=4, n=40 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.4: Acceptance ratios for experiments with (m = 4, n = 10m = 40).

231

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=8, n=80 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.5: Acceptance ratios for experiments with (m = 8, n = 10m = 80).

0 %

20 %

40 %

60 %

80 %

100 %

 0.4 0.6 0.8

Ac
ce

pt
an

ce
 R

at
io

Utilization / m

m=16, n=160 (Constrained-Deadline)

IA-RT
IA-DA

H-ODALC
ODALC

Figure B.6: Acceptance ratios for experiments with (m = 16, n = 10m = 160). The task

set generation algorithm failed to generate 1000 task sets at utilization level beyond 70% for the

given discard limit of 1000. So, the algorithm was aborted. However, the acceptance rationof all

the tests are zero at utilization level 70%.

	Abstract
	List of Publications
	Acknowledgments
	Introduction
	Context of this Research
	Contribution Areas
	Timeliness
	Timeliness vs. Fault-Tolerance
	Timeliness vs. Mixed-Criticality

	Applicability of this Research

	Preliminaries
	Real-Time Systems
	Sporadic Task Systems
	Task Priority
	Preemptive Scheduling
	Work-Conserving Scheduling
	Schedulability and Optimality
	Schedulability Test
	Minimum Achievable Density
	Scheduling Algorithms

	Fault-Tolerant Systems
	Failure, Error, and Fault
	Error Detection Techniques

	Mixed-Criticality Systems

	Models
	Task Model
	Resource Model
	Fault Model

	Goals and Contributions
	Density-Bound-Based Test
	Introduction
	Related Work
	Parameters of Task Model
	Constrained-Deadline Tasks: Density-Bound
	Prior Results and Useful Definitions
	``Special'' Task Set and its Schedulability
	Slack-Monotonic Hybrid Priority Assignment
	Density Bound for Policy ISM-DS

	Policy ISM-DS[]: Searching the Threshold
	Empirical Investigation
	Task Sets Generation Algorithm
	Result Analysis

	Implicit-Deadline Tasks: Utilization Bound
	Independent and Scale Invariant Priority Assignment

	Uniprocessor Slack-Monotonic Scheduling
	Summary

	Iterative Tests
	Introduction
	An Analysis Framework
	Audsley's OPA Algorithm

	Related Work
	State-of-the-art Iterative Tests

	The H-ODA-LC Test
	Applying HPA Policy to ODA-LC Test

	The IA-DA Test
	Overview of the IA-DA Test
	New Criterion for Separation
	Priority Assignment Algorithm: the IA-DA Test

	The IA-RT Test
	The D-RTA-LC Test
	Priority Assignment Algorithm: the IA-RT Test

	Empirical Investigation
	Result Analysis

	Summary

	Fault-Tolerant Scheduling on Uniprocessor
	Introduction
	System Model
	Traditional DM Scheduling

	Related Work
	Problem Formulation
	Load Factors and Composability
	Calculation of Load-Factor-i
	Calculation of Load-Factor-HPi

	Exact Schedulability Test
	Algorithm for the FTDM Schedulability Test
	Multiprocessor Scheduling

	Summary

	Fault-Tolerant Scheduling on Multiprocessors
	Introduction
	Related Work
	System Models and the FTGS Scheduling
	Problem Statement
	Analysis for Tolerating Task Errors
	Calculating Interfering Workload
	Workload of task i
	Interfering Workload of task i

	Total Interfering Workload of the Tasks in HPk
	Finding Carry-in Set Q(S,a,,c)
	Total Interfering Workload and Schedulability Test

	Tolerating Processor Failures
	Graceful Degradation
	Direct Rejection
	Criticality-Based Eviction
	Imprecise Computation

	Summary

	Mixed-Criticality Systems
	Introduction
	System Model and The Scheduler
	Schedulability Analysis: an Overview
	Dual-Criticality Systems

	RTA Procedure at LO Criticality Level
	New RTA for Sporadic Task Systems

	RTA Procedure at HI Criticality Level
	Workload of k hpL(i) within [rix, rix+t)
	Workload of k hpH(i) within [rix, rix+t)
	The RTA Test for HI Criticality Level

	Schedulability Analysis for L >2
	Finding Priorities using Audsley's Algorithm

	Empirical Investigation
	Related Works
	Summary

	Conclusion
	Proofs of Theorems and Lemmas
	Additional Graphs for Iterative Tests

