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Abstract 

A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is 

developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for 

an attitude determination system. 

The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the 

International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the 

filter's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaccuracy. One test case, a gravity-gradient stabilized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspacecraft with a pitch momentum wheel and a magnetically-anchored 

damper, is a real satellite on which this attitude determination system will be used. 

This work is similar to that of Heyler zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] .  The application to a nadir pointing satellite and the estimation of disturbance 

torques represent the significant extensions contributed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis paper. Beyond its usefulness purely for attitude determination, this 

system could be used as a part of a low-cost three-axis attitude stabilization system. 
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by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFranFois Martel, Parimal K. Pal, and Mark L. Psiaki 

1 Introduction 

1.1 Objective 

The objective of this work has been to develop a low- 

cost system for estimation of 3-axis spacecraft attitude 

information based solely on 3-axis magnetometer 

measurements from one satellite orbit. Such a system will be 

useful for missions that operate in an inclined, low-Earth 

orbit and require only coarse attitude information. It can also 

serve as the sensor part of a low-cost 3-axis closed-loop 

attitude control system, or as a back-up attitude estimator. 

A single 3-axis magnetometer measurement can give 

only 2-axes worth of attitude information and no attitude rate 

or disturbance torque information. Therefore, this attitude 

determination system must use a sequence of magnetometer 

measurements. It processes these measurements recursively 

in a Kalman filter. This paper, then, describes the design, 

development, analysis, and simulation testing of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Kalman 

filter and reports its expected performance. A follow-on, 

post-launch paper is planned to report actual performance. 

1.2 Backgroundhior Work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Kalman filters have been widely applied to the problem 

of spacecraft attitude determination [l-71. Everything from 

star sensors 12.31 to sun sensors [4], gyroscopes [2], and 

magnetometers [4,5] have been used for filter inputs, and 

accuracies as fine as 2 arc sec. are possible [3]. 

Very few attitude determination systems have 

attempted to use only magnetometer data to estimate attitude. 

Perhaps this is because of the low accuracy of the 

measurements; even with perfect magnetometer 

measurements, inaccuracy of the knowledge of the Earth's 

magnetic field may introduce errors of 0 . 4 O  per axis. 

Perhaps such systems are rare because of the complexity of 

computing the Earth's magnetic field from spherical 

harmonic models [6]. In at least one case the benefits (low 

cost and low weight) have outweighed the costs and such a 

system has been developed. Heyler reports the use of such a 

system on the NOVA program zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  That system was able to 

estimate spin axis attitude with a 2 O  accuracy as well as spin 

rate. These estimates were based on one eighth of an orbit's 

worth of magnetometer readings. 

The K h a n  filter reported in this paper uses 50 to 300 

magnetometer samples distributed evenly over an orbit to 

estimate 3-axis attitude, attitude rate, and disturbance torques 

for a gravity-gradient-stabilized spacecraft. It is similar to the 

filter described by Heyler in that 3-axis information is 

derived purely from magnetometer measurement time 

histories. It differs from Heyler's filter in two respects; it 

estimates the attitude and rates for a different type of 

spacecraft, and it estimates disturbance torques. Also 

presented is a detailed accounting of the various 

contributions to estimation error, including the effects of 

spacecraft dynamic modeling error. 

13 Outline of Approach 

The remainder of this paper contains descriptions of 

the dynamic model of the spacecraft under consideration, the 

filter design, and the filter evaluation criteria and procedures. 

It concludes with the results of the filter evaluation. The 

spacecraft description discusses the type of spacecraft for 

which th is filter will work and presents notation and 

equations necessary to the remaining sections. The filter 

design section presents the overall filter structure and two 

different gain selection techniques. The section on evaluation 

methodology describes the filter accuracy and stability 

performance criteria and the tools that were used to gauge 

these properties. The results of the accuracy and stability 

evaluations are presented in the final section, which includes 

examples of simulation time histories as well as numerical 

measures of performance. 
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2 Spacecrapt Dynamic Model 

2.1 MModOrbit Characteristics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Kalman filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis work is applicable 

to nadir pointing Earth satellites operating at low altitudes in 

inclined orbits. The inclination and low altitude of the orbit 

are necessary to the proper functioning of the filter. The orbit 

must stay close enough to the Earth, within about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Earth 

radii [6], so that a spherical harmonic approximation of the 

Earth's magnetic field gives a reliable attitude reference. 

Some inclination of the orbit is necessary to make the attitude 

of all three axes sufficiently observable. Pitch information in 

a l-orbit magnetometer time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhistory gets poor for low 

inclinations, although theoretically. there is st i l l  some pitch 

information even in equatorial orbits; the Earth's magnetic 

poles do not coincide with its rotational poles. This study 

considers spacecraft in nearly circular orbits at 1.1 to 1.2 

Earth radii. Filter analysis and testing has been done for the 

inclinations 4 3 O  and 57'. 

2.2 Spacecraft Attitude Dynamics Model 

The generic spacecraft (S/C) under consideration is a 

gravity gradient stabilized spacecraft. One model also has a 

pitch momentum wheel for passive yaw stiffening and a 

magnetically anchored damper for passive libration damping. 

The following equations of motion model the spacecraft 

attitude dynamics for purposes of filter state propagation: 

h, = 0 (3) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is the S/C's inertial angular velocity vector, 
I, is the moment and product of inertia matrix, n is the 

total extemal vector torque acting on the S/C, \ is the 

constant vector angular momentum of the pitch wheel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is a 

quaternion that represents the orientation of the S/C-fixed 

coordinate system with respect to an Earth-fmed coordinate 
system, .(uscE is the S/C's Earth-relative angular velocity, 

and nd is the disturbance torque (the net unmodeled external 

torque). All of the above are expressed in S/C-fied 

coordinates except the quaternion. It is expressed in Earth- 

fixed Coordinates. Equation 1 is Euler's equation for rigid 

body rotational dynamics, and eq. 2 is the kinematic 

equation for a quaternion [6]. Equation 3 is special to the 

filter. It represents the mode led  disturbance torques. 

The net external torque acting on the S/C, n, has been 
divided into three components. gravity gradient torque, ngg, 
passive magnetically-anchored damper torque, nhP, and all 

other unmodeled disturbance torques, n,: 

n = ngg+ ndamp+nd (4) 

The first two of these torque components, when present, 

have been explicitly modeled for purposes of filter state and 

covariance propagation. 

The gravity gradient torque depends on the attitude 

quaternion, the ephemeris, and the moments and products of 

inertia: 

where t is the time. The gravity gradient model used in this 
study neglects J effects [6]. 

The magnetically-anchored damper torque depends on 

the SIC-fixed magnetic field unit vector and its time rate of 

change, which in tum. depend on the attitude quaternion, the 

Earth-relative S/C angular velocity, and the ephemeris [6]: 

where c- is the damping factor, 6 is the magnetic field 

unit vector in S/C-fied coordinates, and the derivative with 

respect to time is the total derivative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q is time varying). 

The mode led  disturbance torque, n,, may include the 

effects of atmospheric drag, solar radiation pressure, 

residual magnetic dipole moment, S/C dynamics modeling 

errors, or any other unmodeled extemal torques. No explicit 

physical model of any of these torques is included. Rather, 

this term is retained in an effort to estimate these torques in 

the filter by modeling them as a random walk process. 

The coordinate systems used in this study are a S/C- 

fmed coordinate system, an Earth-fixed coordinate system, 
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and an orbit-following coordinate system. The S/C-fixed 

coordinate system is a Roll-Pitch-Yaw coordinate system; 

the x axis is nominally+ parallel to the velocity vector, the y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
axis is nominally anti-parallel to the orbit normal, and the z 
axis is nominally along nadir. This reference frame is used to 

define the equations of motion and related equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1- 
6, the inertia matrix, I,,, and the pitch wheel angular 

momentum, h,. 

The orbit-following coordinate system defines the 

nominal orientation of the gravity-gradient-stabilized S/C. Its 

z axis is exactly along nadir, its y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxis is exactly anti-parallel 

to orbit normal, and its x axis is approximately parallel to 

velocity (exactly parallel in the case of circular, nondecaying 

orbits), Its only purpose in this study is as a point of 

reference for measuring roll, pitch, and yaw angles in 

reporting attitude results. 

The Earth-fixed coordinate system has its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAorigin at the 

Earth's center. Its x axis passes through the equator at the 

Greenwich meridian, its y axis passes through the Equator at 

90° East Longitude, and its z axis passes through the North 

Pole. It is used to calculate the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/C ephemeris and the 

Earth's magnetic field, which are used in torque modeling 

and fiter update calculations. Because this reference frame 

rotates with the Earth, there is a difference between the S/C's 

inertial angular velocity, yx and its angular velocity with 
respect to this reference frame, %sc/E: 

(7) 

where A is the coordinate transformation matrix from Earth- 
fixed to SIC-fixed coordinates defined by q, and me zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

7.29~10-~ rad/sec is the Earth's rotational angular velocity. 

The angular velocity of the Earth as its revolves about the 

Sun has been neglected in this transformation. 

Table 1 lists the nominal values of the attitude 

dynamics parameters for two S/C examples. Spacecraft 1 is 

stabilized by a long gravity gradient boom with a tip mass, a 

constant momentum pitch wheel, and a magnetically- 

anchored damper. Spacecraft 2 has a gravity-gradient boom, 

but it is left neutrally stable in yaw. The tabulated parameter 

values (sometimes with deliberately introduced 

perturbations) apply to the analyses and simulations 

described below. 

23 Attitude Determination Hardware 

The only attitude determination sensor used by this 

filter is a 3-axis magnetometer. It measures the magnetic 

field vector in S/C-fixed coordinates: 

b =  A b  

where bw the magnetic field in the Earth-Fixed coordinate 

system, depends only on the S/C ephemeris. The A matrix 

depends on q, so eq. 8 defines the nonlinear measurement 

equation used by the extended Kalman filter. 

* In the absence of orbital eccentricity, librational motion, 
disturbance torques, or product of inertia terms. 
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2.4 A Linearized Altitude Dynamics Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Linearized equations of motion and sensor equations 

are useful for filter analysis and design. This involves 

linearization of eq. 1,2,4,5, 6, and 8. They are linearized 

about the nominal S/C attitude time history: z axis along 

nadir, y axis along negative orbit normal, and y-axis angular 

velocity equal to the orbital rate. The orbit is assumed 
circular and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ, effects are neglected. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a further 

simplification, a dipole model of the Earth’s magnetic field is 

used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 6 ] ,  and the field at the S/C is assumed periodic with 

the orbital period (the rotation of the field with the Earth is 

ignored). 

The attitude quaternion has been linearized in a special 

way. Instead if expressing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq in terms of the sum of a 

nominal value plus a perturbation, it is expressed in terms of 

a perturbation quaternion times the nominal quaternion using 

quaternion multiplication: 

r A q l i  

(9) 

where, by definition of the nominal attitude time history, 
qnm defies the attitude of the orbit-following coordinate 

system. The perturbational quaternion is already normalized 
to within f ist order in the Aqi. This perturbational 

expression of the attitude has just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree unknowns; the fourth 

is not needed because angles are small, the equations are 

linear, and no attitude singularity occurs. 

The linearized equations are 

A& = I&[An - AB x (IiNt&&, + h,) 

An = An,,+ An,,+nd (12) 

where A g  is the perturbational S/C angular velocity 

expressed in s/c-futed coordinates, a r b  is the orbital 

angular velocity expressed in orbit-following coordinates (its 

only nonzero element is its y element), p is the geocentric 
gravitational constant, rsc is the S/C geocentric radius, Iij is 

the i j  element of I,, 1 is the identity matrix, and b,, is the 

Earth‘s magnetic field vector at the S/C expressed in orbit- 

following coordinates. 

These equations can be combined in standard state 

vector format to yield a 9th-order system of the form 

AX = F(t) AX + z(t) (16) 

y = H(t) AX (17) 

where the state is defined as AxT = (Ag$,AqT,ndT) and 

where the observation is y = b x b orb. This defiiition of y 

retains all of the attitude information in the magnetometer 

measurements and gives an H(t) matrix consistent with the 

innovation defiition given below (eq. 21). The 9x9 F(t) and 

matrix and the 9-element z(t) vector are derived from eq. 3, 
10-14 and the defiition of Ax. The 3x9 H(t) matrix is 

derived from eq. 15 and the definition of y. F(t), H(t), and 

z(t) are all periodic at the orbital period because the magnetic 

field has been assumed periodic at the orbital period. The 

periodicity of this linear system can be used to advantage in 

filter design and analysis. 

A h  

The presence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz indicates that linearization has not 

been done about the nominal motion. As can be seen from 

eq. 13 and 14, the nonhomogeneous terms result from 

product of inertia terms (a gravity gradient effect) and from 

the time variation of the Earth’s magnetic field as 

experienced in the orbit following reference frame (a 

magnetically-anchored damper effect). Nonzero z means that 

the S/C is not exactly trimmed at its nominal orientation. 

This out-of-trim condition is not vary large (S- lo), and the 

linearized model is a good approximation for small 

perturbations from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtrim. 
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3 Filter Design 

3.1 Filter Mission zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The fiiter's mission is to estimate 3-axis attitude, 

attitude rate, and disturbance torque. The accuracy goal of 

the attitude estimates is on the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk lo. This 

information may be required to run experiments off of a 

passively stabilized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/C or to provide feedback signals for 

active stabilization. For the former mission, the attitude 

estimation may be done in a ground station in batch mode 

once per orbit. When part of a feedback control loop, the 

filter will operate on board the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/C, recursively updating the 

attitude, rate, and torque estimates. 

The filter computer program must execute quickly for 

such missions. When operating in a ground station there is 

only a short time window for magnetometer data 

transmission, one orbit's worth of filtering, and subsequent 

experimentation. Less time spent filtering leaves more time 

for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprimary mission experiments. When operating on 

board, the filter has more time to filter one orbit's worth of 

data, but filtering will be only one of many tasks for the on- 

board computer. Less time spent filtering means more 

computer time left for primary mission usage. 

33 Filter Structure and Gain Computation 

The basic filter structure is that of the typical sampled- 

data extended Kalman Filter: a state/covariance propagation 

phase alternating with a state/covariance update phase once 

for each sensor sample time. Figure 1 gives a block diagram 

of this basic structure and the associated information flow. 

In the figure, tk and are sample times, b,, is the vector 

of magnetometer measurements, j i  is the state estimate, P is 

the state estimate covariance matrix (not always used), and 

the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-) and (+) superscripts on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and Prefer to pre- and post- 

update values, respectively, at a given magnetometer sample 

instant. 

The state propagation portion of the filter is the usual 

nonlinear simulation of the system equations of motion, eq. 

1-3. Therefore, the state estimate in the extended Kalman 

fiiter is a 10-dimensional vector: 

x =  - [:] - 
n d  

where the (-) overstrike indicates an estimate. The state 

propagation algorithm computes 1 7 - ( t ~ + ~ )  as a function of 

?(&)by numerically integrating eq. 1-3 from time tk to time 

&+l starting from the initial conditions: 

Formally, one may consider this procedure the defiition of 

a vector functionJ and a discrete-time system: 

Filter state propagation and evaluation of the functionf are 

equivalent. 

The state update calculation in this filter is slightly 

different from the traditional extended Kalman filter update 

in several respects. The filter innovations, the method of 

updating the quaternion estimate, and the method of 

calculating the filter gain are all slightly different from 

standard extended Kalman filter practice. Each of these 

differences has been introduced in order to handle the 

nonlinearities in a manner better than brute force 

linearization. 

The cross product of the measured magnetic field unit 

vector with its pre-update estimate has been chosen for the 

innovation: 

where y is the innovation and where the (A) overstrike 

indicates a unit vector. The standard extended Kalman filter 
would simply take the difference between b,, and its pre- 

update estimate to form the innovation. The formula in eq. 

21 essentially throws out all of the length information in the 

measured magnetic field. Nothing is lost as there is no 

attitude information in the length. In the linear analysis, 

either innovation formula would give the same update, but 

the eq. 21 formula is to be preferred in the nonlinear case 

because its magnitude and direction both are physically 

significant; they defiie the magnitude and direction of the 

known angular error. 

The update formulas for the attitude rate and 

disturbance torque estimates take the usual form: 
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but the quaternion update uses quaternion multiplication 

instead of addition: 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This form of the quaternion update explicitly recognizes that 

there are only three free variables in the quaternion and 
updates it accordingly. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAsud vector elements constitute 

the three free variables as in the quaternion update method 

described by Lefferts zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe t d .  [l]. The update preserves the 

quaternion's normalization. 

The three K matrices in eq 22.23, and 25 are the 

Kalman filter gain matrices. Because of the form of the 
innovation and the attitude update, the magnitude of the Kq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gain matrix takes on physical significance. If the attitude 

determination system attempted to eliminate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall of the 
measured attitude zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerror at each measurement, & would be 
1/2 times the 3x3 identity matrix. This is because y and Aqd 

are both in the direction of the measured attitude error, but 
the magnitude of is proportional to the sine of the error 
while the magnitude of Aqd is proportional to the sine of 

half the error. 

Two Kalman filter gain selection schemes have been 
tried. One uses, with a few necessary modifications, the 

standard extended Kalman filter covariance propagation, 

gain calculation, and covariance update formulas. The other 
uses futed gains. The traditional extended K h a n  filter was 

used in order to get the best possible filter performance. The 

fixed gain filter was used in the hope of achieving acceptable 

performance at a greatly reduced computational load. 

The extended Kalman filter gain and covariance 

equations perform the necessary bookkeeping to derive 3- 

axis attitude information from the sequence of single-vector 

observations available to this filter. Modifications to these 

equations are necessitated by the nonstandard quaternion 

update, eq. 24 and 25, and by the nonstandard innovation, 

eq. 21. In addition, a discrete-time form of the covariance 

propagation equation is used in the interest of reducing the 

programming complexity; the continuous-time update would 

involve programming covariance differential equations; the 

discrete-time update involves only matrix arithmetic and 

calculation of the state transition matrix via numerical 

differentiation of thefI ] function (eq. 20). 

The discrete-time covariance propagation equation is 

where P is the 9x9 covariance matrix for the perturbation 
vector AxT = (Ag$,AqT,And). 

transition from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAx(&) to 

disturbance input covariance matrix. The Aq perturbation is 
defined in the same way as the Aqd perturbation in eq. 24. 

This use of the 3-element A q  instead of the 4-element Aq 

simplifies the filter because there is no normalization 
constraint on the elements of Aq. Thus, the 9x9 covariance 

is nonsingular, and the standard Kalman filter equations for 

gain computation and covariance update can be used [ 11. 

is the state 

and Q is the discrete-time 

The use of Aq affects the computation of the state 

transition matrix. Normally, it would simply be the 10x10 

matrix aflax. The expression of quaternion perturbations in 

terms of three independent components makes the state 

transition matrix 

which is a 9x9 matrix. The derivative of the quaternion with 
respect Aq is just 

where the Ci are the elements of @. This completes the 

covariance propagation formula. The approach of Lefferts et. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ul. is essentially the same [l]. 
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The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgain computation and covariance update formula: 

are the usual Kalman filter formula: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is the measurement noise covariance matrix and 
Kk+l is the 9x3 filter gain matrix. The calculation of the 

observation matrix, H($+l) (as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeq. 17), accounts for the 

nonstandard innovation and the nonstandard quaternion 

update. The following formula gives the true H in the spirit 

of the extended Kalman filter: 

which is a 3x9 matrix. 

The fied-gain extended Kalman filter avoids the 

complexity of eq. 26-31 and the considerable computational 

burden of calculating the state transition matrix via numerical 

differentiation off[ 1. It can do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis because fixed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgains can 

stabilize the periodic observer associated with the periodic 

linearized system in eq. 16 and 17. Floquet analysis 

confii this assertion. These gains have been calculated 

using a sub-optimal periodic observer theory that is similar 

to the sub-optimal control theory found in Anderson and 

Moore [9]. The algorithm for calculating such gains is very 

complicated and slow, but executes off line. Discussion of 

its theory is omitted, but results using this filter are presented 

below. 

33 Filter Tuning 

Filter tuning has two goals, timely convergence to an 

accurate estimate and maximum accuracy of the estimate. 

Filter tuning is possible through the selection of Q, R, and 
P&). Q and R determine the trade-off between the filtering 

of measurement noise and the rapid tracking of disturbance 
noise-induced state variations. P(t0) determines the rapidity 

of the initial filter convergence. In steady state, Q and R also 

determine the filter stability as a by-product of the 
measurement noise/disturbance noise trade-off. P&) has no 

effect on the steady state performance of the filter. 

The filter needs to have a rapid initial convergence 

because its mission is to accurately determine attitude with 

one orbit's worth of magnetometer data and poor initial 
attitude estimates. This means either a large P(b) compared 

to R or a large Q compared to R. For the extended Kalman 

filter, which is inherently a time-varying filter, the former 

method has been used to achieve rapid initial convergence. 

The latter method has been used for the fixed-gain filter 
because it is a steady-state filter; it has no P(@. This points 

to one advantage of time-varying filters: they allow rapid 

convergence without sacrifice of steady state filtering 

optimality. 

Optimal steady-state tuning of the filter is important to 

achieving the accuracy goal of k lo. The levels of 

measurement noise and disturbance torque that are present in 
a real zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/C system make this a challenging goal. For the 

extended filter, this tuning is achieved by setting Q and R to 

magnitudes representative of the expected disturbance inputs 

and measurement noise. For the one case where detailed 

error analysis has been done, the disturbance torque level 

has been based on models of atmospheric drag torque and 

solar radiation pressure torque. The measurement noise has 

been based on magnetometer digitization error. The 

measurement error is actually much larger due to analog 

magnetometer noise and field model errors, so the filter is 

somewhat over sensitive to measurement noise in this case. 

4 Evaluation of Filter Performance: Objectives and Tools 

4.1 Filter Performance Criteria 

There are two criteria for satisfactory filter 

performance: Does it converge? How accurate are its 

estimates of the S/C attitude? Because the system is 

nonlinear, filter stability is not guaranteed for large initial 

errors in the state estimate. Furthermore, the rate of 

convergence of stable filters is important because of the 

mission requirements; convergence must be achieved within 

one orbit. The importance of estimation accuracy is self 

evident. To evaluate the filter with respect to these two 

criteria is the objective of the test procedures that are outlined 

below. Results are reported in Section 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnalytical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATools for Performance Evaluation 

The linearized model of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/Cs attitude dynamics, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
eq. 16 and 17, provides a valuable tool for analyzing filter 

stability and accuracy. The corresponding discrete-time 

model takes the form 

where N is the number of magnetometer samples per orbit. 

Because the system in eq. 16 and 17 is periodic with the 

orbital period, the above discrete-time system is periodic 

with period N. 

System observability from one orbit's worth of data 

can be analyzed by computation of the 1-orbit observability 

Gramian [lo]. This Gramian is 

N 

k= 1 
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C@T(tk,b)HT(tk)H(tk)@(tk,b) (34) 

If this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9x9 matrix is nonsingular, then the system is 

observable from one orbit's worth of data and there is hope 

for constructing a filter that converges in one orbit. One 

would expect this matrix to approach singularity with 

decreasing orbital inclination. A study of this dependence 

would map out the inclinations where the filters under 

consideration can be applied. The only observability 

Gramians computed for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis study, however, were for the 

two orbital inclinations mentioned in Section 2,43O and 57O. 

Filter stability can be analyzed by applying Floquet 
theory to the discrete-time model of the steady-state filter. 
The steady-state, linear-model filter gains, Kk fork = l...N, 

are periodic with period N; so, the filter itself is periodic. 

The one-orbit state transition matrix of the filter becomes: 

(35) 

where the CL subscript means closed-loop in the sense that 

the open-loop system state transition matrix and the fiter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gains are factored into this expression to give the 1-orbit 

observer error state transition matrix. The eigenvalues of 
@CL(tN&,) must all have magnitudes less than unity for filter 

stability, and the smallness of the eigenvalue magnitudes 

indicates the rate of convergence. 

Accuracy of the filter can also be studied with the 

linearized, steady-state filter model. Given measurement and 

disturbance noise covariance matrices. R and Q, the periodic 
linear-filter covariance, P+(tk) fork = O...N, can be 

determined from the following linear system of equations: 

+ Kk+lR KTk+l for k = 0, ..., N-I 

The Q and R matrices used here must be the best estimates of 

the actual disturbance and noise covariances, whereas those 
used in determining the 

filter calculation may differ from the best estimates for 

various reasons. The 1-orbit average of the covariance yields 

the mean square fiter accuracy: 

in an optimal or sub-optimal 

N-1 

P, = p+(tk) 
k=O 

(37) 

which is a good measure of the effects of random 

disturbances and measurement noise on the filter accuracy. 

4 3  Simulation Testing 

Simulation testing is an important complement to 

analysis for purposes of filter evaluation. Nonlinearities may 

cause the filter to diverge for large initial attitude errors. 

Systematic errors such as parameter uncertainty or biases 

may degrade stability or accuracy or both. Linear analysis 

cannot evaluate these effects, but simulation can. 

Each simulation test has two parts, a simulation and a 
filter. The simulation starts with an "actual" initial state, 

~ ( b ) ,  and integrates the S/C attitude dynamics equations, eq. 

1-3 or eq. 16, to produce a simulated "actual" state time 
history, X(tk) fork = 0,1.2, ... It also simulates the 

magnetometer measurements to produce a measurement time 
history, bm,,(tk) fork = 0,1,2, ... The filter takes these 

simulated magnetometer measurements, combined with 

initial estimates of the state and covariance, and produces an 

estimate of the state time history, ]7+(tk) for k = 0,1,2, ... 
Evaluation of the fiter is accomplished by comparing the 
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"actual" state time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhistory with the estimated state time 

history. Figure 2 depicts this two-part process, the flow of 

information between the parts, and the information used in 

evaluating the fiter. For a good filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc+(Q will converge 

quickly to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(&) and stay near it despite large discrepancies 

between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?(%) and x(%) and despite disturbance torques, 

measurement noise, and modeling error. 

Several properties of the filter have been evaluated with 

this simulation test scheme: the ability of the filter to 

converge from large initial attitude or rate errors, the ability 

of the fiter to estimate constant disturbance torques, filter 

accuracy in the face of random disturbance torques and 

measurement noise, fiter accuracy in the face of parameter 

errors in the S/C attitude dynamics model, and fiter accuracy 

in the face of magnetometer biases. The attitude, rate, and 

torque estimation capabilities have been tested simply by 

running the nonlinear simulation and the filter starting each 

with different initial conditions (remember, disturbance 

torque is treated as a state). Filter accuracy in the face of 

random inputs has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeen evaluated by linear analysis, and for 

verification purposes, by simulation. The latter has been 

done by using time-varying measurement noise and 

disturbance torque models in appropriate parts of the 

simulation. 

Attitude-dynamics parameter mors and measurement 

biases are systematic errors. Evaluation of their effects is 

tricky. They may or may not affect filter stability. They zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill 
certainly affect accuracy. The method used to evaluate these 

effects has been to simulate with one attitude 

dynamics/measurement process model and filter with a 
different model, the difference being the particular systematic 

error under consideration. The filter's stability and accuracy 

are then evaluated by comparison of the simulated "actual" 

state time history with the estimated state time history. 

Convergence is evaluated by comparing these two time 

histories for the first orbit. Accuracy is evaluated by taking 

the root mean square value of the difference between the 

estimated state and the "actual" state for all subsequent 

orbits. Convergence and accuracy are both dependent on the 

magnitude of the modeling errors. They may also be 

dependent on the magnitude of the S/C librations. Therefore, 

correct sizing of the errors and of the S/C libration amplitude 

is critical to correct analysis of these effects. 

5 Filter Performance Results 

5.1 Convergence 

Filter convergence can be achieved if the 9x9 1-orbit 

observabifity Gramian (eq. 34) is nonsingular. This has been 

found to be the case for low Earth orbits at both 43' and 57' 

inclination. For S/C 1 of Table 1 in the 43' orbit, the 50- 

samples-per-orbit Gramian has a ratio of minimum 

eigenvalue to maximum eigenvalue of ~ x I O - ~ .  If the constant 

disturbance torque columns and rows are omitted, then the 

ratio increases to 3x106 for the resulting 6x6 sub-Gramian. 

For S/C 2 operating in the 57O orbit, a full Gramian has a 

minimum to maximum eigenvalue ratio of 6 ~ 1 0 - l ~  (still 

nonzero in double precision arithmetic); whereas, the sub- 

Gramian for observing just the angles and the rates has an 

eigenvalue ratio of 6 ~ 1 8 ~ .  Thus, the filter can be made to 

converge in one orbit. The torques are less observable than 

the angles and rates. All cases are observable, but the second 

S/C case is less observable than the first, probably due more 

to the difference in S/C dynamic properties than to the 

difference in orbit. 

The magnitudes of the eigenvalues of the one-orbit 

filter state transition matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(eq. 35) are direct measures of 

stability. These have been computed for the time-varying 

fiters in steady-state and for the futed-gain filters. The fixed 

gain filter case that has been analyzed in detail involves S/C 
1 operating in the 43O orbit at 50 magnetometer samples per 

orbit. The lowest achievable maximum eigenvalue magnitude 

for the fixed-gain 1-orbit state transition matrix has been 

0.32, which indicates adequate stability but slow 
convergence. The time-varying extended Kalman filters do 

better, even in steady state. Their 1-orbit state transition 

matrices have maximum eigenvalue magnitudes typically less 

than 0.20. The initial convergence of these time-varying 

filters is even better than this steady-state result indicates 

because of the high values selected for the initial covariance 
matrix, P&). 

This rapid initial convergence is indicated clearly in 

Fig. 3 and 4 for S/C 2 in the 57O orbit. The time-varying 

filter used in this case operates on about 300 magnetometer 

samples per orbit; all of the S/C-I cases used 50 samples per 

orbit. In these figures as in most of the remaining figures, 

the "actual" value, the estimated value, and the estimation 

error for a particular quantity are all plotted together on a 

single graph. The orbital period is a little over 5,000 sec, so 
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convergence takes place within about half an orbit. The 

initial error is 15' each in roll, pitch, and yaw with no initial 

rate errors. The initial filter jitter in the rate estimates (Fig. 4) 

arises because of the high initial filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgains. Perhaps these 

are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtoo high. Essentially, the filter is trying to take first and 

second derivatives to get rate and torque information. 

Figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 6 further demonstrate the ability of the 

time-varying extended Kalman filter to converge. In the case 

of Fig. 5, a 0.017 N-m aerodynamic pitch torque is acting 

on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/C 1, which is in the 43' orbit. The filter converges to a 

correct estimate of this disturbance torque in just about one 

orbit (5,700 sec). Figure 6 corresponds to the same S/C- 

orbit case with large initial errors in the attitude estimate; the 

total initial rotational error is 45'. The filter successfully 

converges in about one orbit, despite the increased 

significance of nonlinearities. 

Figure 7 also depicts estimation of the attitude of S/C 1 

in the 43' orbit, but the estimates have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeen generated by a 

fixed-gain filter. These estimates converge from moderate 

initial errors (1 1' in all three axes), but convergence is slow. 

After almost two orbits errors on the order of 1' still persist. 

This makes sense in light of the large maximum filter 

eigenvalue. This convergence rate is too slow for the filter's 

intended purpose. Time-varying fdters are preferable to fixed 

gain filters because of the ability to achieve faster initial 
convergence by increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-(b). 

5.2 Steady-State Error Analysis 

Error analysis has been done for S/C 1 operating in the 

43' orbit. This error analysis combines the linear analysis 

technique described in Section 4.2 with the simulation 

technique described in section 4.3. The linear technique has 

been used for random errors, the simulation technique for 

systematic errors. The final error budget combines the two in 

a square-root-of-the-sum-of-the-squares (RSS) sense. 

The random effects considered are time varying solar 

and atmospheric drag disturbance torques (constant 

disturbance torques do not affect the error because they are 

estimated as part of the filter state vector), random 

magnetometer measurement error and digitization error, and 

random or high-order International Geomagnetic Reference 

Field (IGRF) model error. The disturbance covariance 

matrix magnitude is based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the results of a solar torque 

and aerodynamic torque analysis for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS / C .  The 

magnetometer random error is based on a 5 mGauss spec for 

its accuracy and a 12-bit digitization. The field error was set 

at 0.41' nns per axis based on experience with the IGRF 

model data [6 ] .  

Figure 8 depicts a simulation of the effects of one of 

the random errors, magnetometer digitization error. Initial 

convergence is hardly affected by this random process; 

convergence to within 0.5' still occurs within one orbit. 

Afterwards, random effects dominate the error signal. This 

calls for proper selection of the Q and R filter matrices for 

optimal steady state filter performance. 

The systematic error magnitudes have been derived 

from typical S/C 1 specifications. Errors of 2% in the 

magnitudes of the principal moments of inertia were used. 

This number is based on the possible variability of the boom 

lengths and tip mass weights. Errors of 1.5' for the principal 

axis orientations were used to generate the cross product of 

inertia errors. This magnitude is based on angular accuracy 

specifications for the booms. A 5% error for the pitch wheel 

angular momentum was used. based on hardware 

specifications. A 1.4 N-m-sec mor for the magnetically- 

anchored damping constant was assumed, a typical level of 

variability on orbit. A 3 mGauss bias error per axis for the 

magnetometer was used based on a typical magnetometer 

spec. 

Representative libration magnitudes were used for the 

error budget simulations: 0.4' peak-to-peak roll angle 

oscillations, 4.00 peak-to-peak pitch angle oscillations, and 

1.6' peak-to-peak yaw angle oscillations. These libration 

magnitudes are based on analysis of typical S/C 1 motions 

on orbit. 

Figures 9 and 10 are typical of the simulation/filter time 

histories that have been used to evaluate the effects of 

systematic errors. The simulation in Fig9 corresponds to 

discrepancies between the filter model and the simulation 

model of 1 So in all three principal axes. The discrepancy 

corresponding to Fig. 10 is 1.4 N-m-sec in the passive 

damping constant. The filter converges in both these cases. 

As per the analysis description at the end of Section 4.3, the 

steady state error contributions have been taken to be the 

post-one-orbit rms error values. 

Table 2 summarizes the error budget for this case. 

According to this analysis the filter meets the 1' attitude 
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2% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoll-Axis Moment of Inertia Error 0.015 0.021 0.026 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2% Pitch-Axis Moment of Inertia Error 0.016 0.027 0.033 
2% Yaw-Axis Moment of Inertia Error 0.006 0.011 0.013 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 . 5 O  Principle Axes Skew Error (in all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree axes) 0.017 0.041 0.063 

1.4 N-m-sec Magnetically-Anchored Damping Error 0.056 0.112 0.159 

5% Pitch Wheel Momentum Error 0.008 0.014 0.017 

3 mGauss Magnetometer Bias Error 0.231 0.369 0.568 
Random Measurement and Field Model Error 0.345 0.789 0.816 

Random Disturbance Torque Error 0.009 0.016 0.023 
--- 

RSS Error 0.420 0.880 1.010 

knowledge goals in roll and pitch, but misses slightly in 
yaw. These are 1-0 numbers. 

The main contributors to the errors are uncertainty in 

the IGRF model and magnetometer accuracy limitations. 

Increasing the magnetometer accuracy by a factor of 5 would 

decrease the RSS error by 40 %. Increasing the field model 

accuracy would also have a significant beneficial impact on 

the error budget. Decreasing the error in the knowledge of 

the magnetically-anchored damping constant would further 

improve the filter accuracy. Increasing the R weighting in the 

filter might also improve things. The current low R value 

causes the filter to rely too heavily on each magnetometer 

measurement, hence the large effects on accuracy of 

measurement-type errors and the small effects of disturbance 

torque errors and modeling errors. 

A significant result of this analysis is the relative 

insensitivity of the filter to angular shifts in the S/C principal 

axes. The filter identifies these as disturbance torques and 

continues to achieve attitude accuracy on the order of 0.06O 

or better (neglecting other contributions to error). despite the 

1.5O bias in the spacecraft attitude from that predicted by 

gravity gradient analysis and the modelled products of 

inertia. 

5.3 Notes on Filter Performance 

This filter runs relatively fast. It is able to perform one 

orbit's (50 samples) worth of filtering in about 3 minutes 

when operating on an INTEL 8088/8087-based personal 

computer with an 8 MHz clock rate. This time does not 

include the time to compute the IGRF model from a spherical 

expansion. In this particular filter implementation, the field 

calculation is done offline and the filter gets the resulting data 

from a table look-up. 

Several problems having to do with convergence occur 
with this filter. One problem occurs in covariance 
initialization. For the case of "large" diagonal P&) and 

"small" R, if the initial magnetometer measurement occurs at 
b, then P(b) is immediately updated to yield P+(b) before 

the first covariance propagation, and the filter converges. If 
the fist magnetometer measurement occurs at tl, on the 

other hand, then propagation to P-(tl) occurs first, and the 

filter sometimes fails to converge. This is because @(tl,b) 

has some large elements for long sampling periods, which 
makes P(tl) very high and results in very high filter gains. 

These cause divergence due to nonlinearities. 

Another convergence problem occurs because of the 

quaternion update scheme in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeq. 24 and 25. The argument of 

the square root in eq. 24 becomes negative for very large 
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initial attitude errors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis occurs because the linear update in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
eq. 24 does not recognize when it is asking for more angular 

correction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan makes physical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsense. This problem occurred 

for an initial angular error of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90' (the filter did converge for 
a 60' initial error). It also can occur when filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgains are too 
high -- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(t,,) or Q or both are too large relative to R. A way 

to avoid this would be to add a further nonlinearity to the 

quaternion update to scale down updates that are physically 

unrealizable. 

6 Conclusions 

The modified extended Kalman filter described and 

analyzed in this paper can estimate 3-axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS/C attitude, 

attitude rate, and constant disturbance torques solely h m  3- 

axis magnetometer measurements distributed over one orbit. 

The filter works for gravity-gradient stabilized S/C operating 

in inclined, low-Earth orbits. The filter can converge from 
initial attitude errors as large as 600 and can achieve a 1-0 

attitude accuracy of 1' or better on all three axes. 

Filter performance has been evaluated in two ways: by 

linear analysis of small perturbations from the nominal 

gravity-gradient orientation and by filtering of magnetometer 

data generated by a nonliiear S/C simulation. The linear 

analysis has confirmed the observability of the system and 

the stability of the filter. Also, it has predicted the inaccuracy 

induced by random disturbances and measurement noise. 

The nonlinear simulation has demonstrated the filter's abiity 

to converge from large initial errors and has predicted the 

contributions of systematic errors to inaccuracy. 

For one of the S/C-orbit cases considered, the most 

significant contributors to filter inaccuracy are magnetometer 

inaccuracy and inaccuracy of the knowledge of the Earth's 
magnetic field. Reduction of the filter's 3-0 attitude 

uncertainty to 1' could be achieved by use of a 
magnetometer with 1 mGauss la accuracy in combination 

with a model of the Earth's magnetic field that is accurate to 

0.1' 1-0. The necessary accuracy increases are about 3 times 

for the magnetometer and about 4 times for the field model. 

More accurate predictions of the passive magnetically- 

anchored damping factor would also improve filter accuracy. 

7 Recommendations and Planned Follow-Up Work 

Comparison of these accuracy and convergence results 

with flight test results is planned. There are plans to launch a 

satellite using this filter in the ground station as a back-up 

attitude determination system. The S/C will also carry optical 

attitude determination instruments, which are more accurate 

than the magnetometer. Comparison of filter attitude with the 

attitude determined by the more accurate system will provide 

a bench mark for its evaluation. A post-launch action that 

will be considered for improvement of the filter accuracy is 

on-orbit magnetometer calibration and bias determination 

similar to what was done in Ref. 4. 

A related application for magnetometer data fitering 

could be made on the autonomous satellite navigation 

problem. The observability of the attitude/trajectory system 

should be checked, this time retaining length information fox 

the field vector. The system may be observable. In that case, 

a navigation system based solely on magnetometer 

measurements or on a combination of horizon sensor and 

magnetometer measurements would be theoretically 

possible. 

The filter described in this paper coupled with a 
magnetometer and sufficient computer capacity can be used 

when a low-cost, light-weight, low-accuracy system for 

attitude determination is required. 
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