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Abstract—Recent wavelet research has primarily focused on
real-valued wavelet bases. However, the complex filterbanks
provide much convenience for complex signal processing. For
example, in radar and sonar signal processing, the complex signals
from the receiver can be efficiently processed with complex
filterbanks rather than real filterbanks. Specifically, the positive
and negative Doppler frequencies imply different physical content
in the moving target detector (MTD) and moving target identifica-
tion (MTI); therefore, it is significant to design complex multiband
filterbanks that can partition positive and negative frequencies
into different subbands. In the paper, we design two novel families
of three-band biothogonal interpolating complex filterbanks
and wavelets by using the three-band lifting scheme. Unlike the
traditional three-band filterbanks, the novel complex filterbank
is composed of three channels, including the lowpass channel,
the positive highpass channel whose passband distributes in the
positive frequency region, and the negative highpass channel in
the negative frequency region. Such a filterbank/wavelet naturally
provides the ability to extract positive frequency components and
negative frequency components from complex signals. Moreover,
a novel set of design constraints are introduced to manipulate
the stopband characteristic of highpass filters and are referred to
as the stopband suppression, which strengthens the traditional
constraints of vanishing moments. Finally, a numerical method is
given to further lower stopband sidelobes.

Index Terms—Biorthogonal interpolating complex wavelets,
stopband suppression, three-band lifting scheme.

I. INTRODUCTION

O
VER the last two decades, various methodologies

have been developed to construct real wavelets in the

mathematical analysis and in the signal processing literature.

These methodologies provide abundant real wavelets, including

various types of two-band wavelets, -band wavelets, and

multiwavelets [1]–[8], from which appropriate wavelets can be

selected to apply to special applications. When real signals are

processed, real filterbanks and wavelets are a natural choice

for their symmetric amplitude frequency responses, which just

match the symmetric power spectrums of real signals. However,

complex signals usually have asymmetric power spectrums.
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A typical case is analytic signals that only contain positive

frequency content. In this case, real wavelets and filterbanks

are no longer an efficient tool since the real and imaginary parts

have to be processed separately. Moreover, for some special

applications, complex wavelets are still desired to provide

special characteristics that real wavelets cannot provide. For

example, in radar and sonar signal processing, signals from

the receiver are complex, and specifically, the positive

and negative Doppler frequencies imply different physical

content in the moving target detector (MTD) and moving target

identification (MTI) [9], [10]; therefore, it is significant to

design complex multiband filterbanks that can partition the

positive and negative frequencies into different subbands. In

fact, in the time-frequency analysis, the complex-valued bases

have been widely used to represent complex signals, such as the

short-time Fourier transform (STFT), the Gabor transform, and

the “Chirplet” transform [11]–[14]. Their common advantage is

that the positive frequency components and negative frequency

components can be separately extracted.

Recently, complex-valued filterbanks and wavelets have

been attracting much attention [15]–[26]. The research mainly

focuses on the two-band complex wavelets. By allowing the

complex filter’s coefficients, two-band complex wavelets

can simultaneously possess compact support, symmetry/anti-

symmetry, and orthogonality [15]–[17], which is impossible

for two-band real filterbanks and wavelets. Complex filters

with symmetry or antisymmetry retain symmetric amplitude

frequency responses and thus cannot partition the positive

and negative frequency components in different subbands.

Relaxation of symmetry allows us to obtain two-band complex

filterbanks with asymmetric amplitude frequency responses

[16]; however, the asymmetry is not enough to partition the

positive and negative frequency components into different sub-

bands. The Gabor-like complex filterbanks [20] and modulated

complex filterbanks [21] possess the ability but are without the

perfect reconstruction. Selesnick [23], [24] designed pairs of

two-band wavelets where two wavelets form an approximate

Hilbert transform pair. Such a pair of wavelets can effectively

separate the positive and negative frequency components from

complex signals. Kingsbury and Fernandes [22], [25], [26]

devised two-dimensional (2-D) directional complex wavelets

with redundancy. These 2-D complex wavelets are provided

with the shift-invariance and directional selectivity that the

traditional 2-D real wavelets cannot achieve.

In the paper, we design two novel families of three-band

biorthogonal interpolating complex filterbanks and wavelets
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by using the three-band lifting scheme. Unlike the traditional

three-band filterbanks, such a filterbank has three channels:

1) the lowpass channel;

2) the positive highpass channel whose passband distributes

in the positive frequency region;

3) the negative highpass channel in the negative frequency

region.

Thus, the filterbank and the associated wavelet naturally pro-

vide the ability to extract positive and negative frequency com-

ponents from complex signals.

The lifting scheme is a flexible framework to construct

biorthogonal filterbanks developed recently by Sweldens

[27]–[29]. The early works in [30], [31] were related with

the lifting scheme. Later, the lifting scheme was extended to

the multidimensional and -channel case [32]. The lifting

scheme completely absorbs the biorthogonal constraints into

the filterbank’s structure itself. Thus, starting from a simple

filterbank (e.g., “Lazy” wavelet), one can design various

filterbanks and wavelets by selection of lifting filters. Therein,

the lifting filters are either real-valued or complex-valued. Due

to this flexibility, the lifting idea has been widely utilized in

many applications, such as the adaptive subband coding and

image compression [33]–[35].

In this paper, we first review the three-band lifting scheme

and establish the two structures of three-band biorthogonal

interpolating filterbanks with three pairs of lifting filters. In

the first structure, the interpolating scaling filters are real, but

the dual scaling filters must be complex. The second structure

compensates this deficiency and allows both the interpolating

scaling filter and the dual scaling filter to be real-valued.

In Section III, the novel set of design constraints, namely,

the stopband suppression, are introduced, which strengthen

the traditional constraints of vanishing moments. Then, two

important theorems are proved, which present a sufficient

and necessary condition on moments of lifting filters for the

complex filterbanks to be -regular and of

order stopband suppression. In Section IV, two families of

regular biorthogonal interpolating complex filterbanks and

wavelets are devised. First, we design interpolating complex

filterbanks with symmetric interpolating scaling filters with

minimal length, and these filterbanks have explicit solutions but

suffer from high stopband sidelobes. Therefore, we give up the

demand of minimal length and use part of degrees of freedom

to lower the stopband sidelobes by a numerical method. The

method improves the stopband attenuation of filters but only

obtains the numerical solutions of filters.

Throughout this paper, and denote the -trans-

form and frequency response of a filter , respectively. Let

be a -polynomial; then, represents

the -polynomial , where is the conjugate of a

complex number ; let be a polyphase ma-

trix; then, , where the superscript represents

the transposition of a matrix. .

II. THREE-BAND LIFTING SCHEME

The lifting scheme is a flexible framework to construct

biorthogonal filterbanks, which was proposed by Sweldens

Fig. 1. Flow diagram of type I three-band lifting scheme.

Fig. 2. Flow diagram of type II three-band lifting scheme.

[27], [28] in 1995. The early works in [30] and [31] were related

to the lifting scheme as well. In the two-band lifting scheme,

each step updates one subband decomposition coefficients

using another subband coefficients, and two steps consist

of a total lifting procedure, which have been widely used to

construct two-band biorthogonal filterbanks. Later, the lifting

scheme was extended to the multidimensional and -band

case and was used to construct multidimensional

biorthogonal filterbanks. Unlike the two-band lifting scheme,

the -band lifting scheme includes multifarious patterns. In

what follows, we will present two patterns of the three-band

lifting scheme.

The two-band lifting scheme can be easily extended to the

-band case and multidimensional case [32]. Here,

we only consider the three-band lifting scheme. The type I

three-band lifting scheme is divided into three simple steps, and

in each step, one channel is updated with help of the other two

channels, as shown in Fig. 1. The type I is a direct extension

of the two-band lifting scheme. Operating the type I on the

three-band “Lazy wavelet,” we obtain a family of three-band

biorthogonal interpolating complex filterbanks, and such

filterbanks have real interpolating scaling filters but complex

dual scaling filters. Therefore, the type II three-band lifting

scheme is proposed as illustrated in Fig. 2. It compensates

the deficiency of the type I and allows both the interpolating

scaling filter and the dual scaling filter to be real-valued, which

will be described in the next section.

Definition 1: Let and

be a three-band FIR biorthogonal filterbank and

and be their polyphase matrices; then, the
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type I three-band lifting scheme is defined with polyphase

representation as follows:

(1)

where

and

Similarly, the type II three-band lifting scheme is defined as

follows:

(2)

where is identical to that in the type I, and

and

where are real or complex trigonometric polynomials.

From the above definition, six lifting filters completely

determine three-band lifting procedures. For the type I lifting

scheme, each channel is updated with help of a pair of lifting

filters in turn. From

and for , we have

(3)

Therefore, the new filterbank is biorthogonal. Similarly, the fil-

terbanks generated by the type II lifting scheme are biorthog-

onal as well; this way, one can freely select six lifting filters

(either real or complex), whereas these do not influence on the

biorthogonality. Moreover, from (1) and (2), six new filters in

the type I have the -transforms, shown in (4) and (5) at the

bottom of the page.

Six new filters in the type II have the -transforms as follows:

(6)

(7)

Like the two-band lifting scheme, the above two three-band

lifting patterns provide an efficient approach to construct

three-band biorthogonal filterbanks and wavelets. Besides the

above two patterns, one can also consider other patterns of the

three-band lifting scheme.

III. BIORTHOGONAL INTERPOLATING COMPLEX FILTERBANKS

WITH STOPBAND SUPPRESSION

In continuous-time signal processing, one must consider

the initialization of wavelet transform that converts contin-

uous-time signals into discrete-time signals. The conversion

usually results in the initialization error. In order to reduce or

remove the error, except for the prefiltering techniques, the

interpolating wavelets are a simple and efficient approach. A

filter in an -band filterbank is called the cardinal interpolating

(4)

(5)
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filter if it satisfies . Similarly, a scaling function

in an -band wavelet is the cardinal interpolating

scaling function if it satisfies [36]–[38]. In this

case, the associated wavelet is referred to as an interpolating

wavelet. In the two-band case, by operating the lifting scheme

on the “Lazy wavelet” [27], [37], the biorthogonal interpolating

real wavelets were constructed.

Typically, a three-band “Lazy wavelet” is

(8)

When the type I lifting scheme operates on the “Lazy wavelet,”

we obtain a family of biorthogonal interpolating filterbanks rep-

resented by (9) and (10), shown at the bottom of the page. When

the type II lifting scheme operates on the “Lazy wavelet,” we

obtain another family of biorthogonal interpolating filterbanks

by (11) and (12), also shown at the bottom of the page.

Obviously, , and is a cardinal interpolating

filter. Notice that the filters , , and in the type II are

identical with those in the type I, whereas , , and are

different from those in the type I. After the filterbanks are ob-

tained, the associated scaling functions and wavelets can be de-

rived from the following two-scale difference equations:

A. Design Constraints of Stopband Suppression

Complex signals usually have asymmetric power spectrums

with respect to the zero frequency, and a typical case is

analytic signals that only contain positive frequency content.

When complex signals are processed, complex filterbanks and

wavelets provide more advantages than their real counterparts.

In this case, the real and imaginary parts of signals can been

processed jointly rather than separately, and thus, the inherent

relationship between real and imaginary parts can be suffi-

ciently utilized. Moreover, in special applications, complex

wavelets are desired to provide special characteristics that real

wavelets cannot provide. For example, in radar and sonar signal

processing, signals from the receiver are complex, and

the positive and negative Doppler frequencies have different

physical content in the moving target detector and identifica-

tion (MTD and MTI) [9], [10]; therefore, we desire multiband

complex filterbanks and wavelets that can partition the positive

and negative frequencies into different subbands/channels.

In the time-frequency analysis, most continuous-type trans-

forms such as the short-time Fourier transform (STFT), the

Gabor transform, and the “Chirplet” transform [11]–[14]

possess the ability. Recent research on complex filterbanks

and wavelets mainly focuses on compatibility of compact

support, orthogonality, and symmetry/antisymmetry [15]–[17].

In some applications, multiband complex filterbanks or pairs of

two-band filterbanks have provided this ability [20], [21], [23],

[24]. Therefore, we want the three-band complex filterbanks

to have the amplitude frequency responses, as shown in Fig. 3

in the ideal case. In Fig. 3, is the lowpass channel with the

passband , is the positive highpass channel

with the passband , and is the negative highpass

channel with the passband . Moreover, when

a three-band complex wavelet is provided with the above

frequency segmentation, the associated tree-structural wavelet

(9)

(10)

(11)

(12)
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Fig. 3. Three-band ideal complex wavelet.

Fig. 4. Two-level three-band ideal complex packet.

packet [39] provides a finer frequency segmentation, for ex-

ample, the two-level ideal three-band complex wavelet packet,

as shown in Fig. 4.

However, FIR filterbanks cannot achieve the ideal frequency

responses as in Fig. 3, and thus, we want their amplitude fre-

quency responses to approximate the ideal case. In order to

realize this intention, we introduce a novel set of design con-

straints, namely, stopband suppression. The traditional wavelet

design uses the regularity order and vanishing moments [1], [7]

to handle the passband and stopband of a filter. In the two-band

case, the regularity order manipulates the passband flatness and

stopband attenuation of a scaling filter as well as the approxima-

tion power of the associated multiresolution analysis, and van-

ishing moments manipulate the stopband attenuation of high-

pass filter. However, in the -band case , the van-

ishing moments of bandpass and highpass filters only manipu-

late the attenuation around rather than the total stopband.

A -regular three-band scaling filter satisfies

[7]

(13)

where denotes the th-order derivative with respect to

. has two -degree zero points , which

manipulate its stopband attenuation. A wavelet filter has

vanishing moments if , for

, which only indicates has one ( )-de-

gree zero point , and thus, vanishing moments only ma-

nipulate its attenuation around .

In Fig. 3, three filters have the centers of the passbands ,

, and , respectively. For a three-band FIR com-

plex filterbank, the -order regularity of the lowpass filter

suppresses the positive and negative high-frequency com-

ponents in the lowpass channel owing to two -degree

zero points . Similarly, in the two highpass chan-

nels and , we impose two pairs of -degree zero

points on , , and , , respectively.

These two pairs of zero points suppress low frequency and nega-

tive high-frequency components in the channel and low-fre-

quency and positive high-frequency components in the channel

, respectively. Therefore, we introduce the novel set of design

constraints, namely, the stopband suppression, to manipulate the

stopband characteristics of and .

Definition 2: In a three-band complex filterbank, the high-

pass filters and have the -order stopband suppres-

sion if the frequency responses satisfy: For

(14)

and , .

Obviously, the -order stopband suppression is stricter

than the -order vanishing moments for and .

Below, we show that the stopband suppression also ensures the

passband flatness of highpass filters.

B. Biorthogonal Interpolating Complex Filterbanks With

Stopband Suppression

For the type I filterbanks given in (9) and (10) and the type

II filterbanks given in (11) and (12), the two main theorems are

proved. The two theorems give a sufficient and necessary con-

dition for filterbank to be -order regular

and of -order stopband suppression. Moreover, when

these conditions are satisfied, the dual filterbank

is also -order regular and of -order stopband

suppression. First, we define the moments of lifting filters and

present an important lemma.

Lemma 1: Let the lifting filter , and

define its -order moment

Then

(15)

From , we have

Therefore, for

Similarly, the second formula in (15) can be proved.

Theorem 1: For the type I biorthogonal interpolating com-

plex filterbank given in (9), the scaling filter is -reg-

ular, and the two highpass filters and have -order
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stopband suppression if and only if the three pairs of lifting fil-

ters satisfy the following: For

(16)

where . Moreover, when (16) is satisfied, the dual

scaling filter is also -regular, and the highpass filters

and also have -order stopband suppression.

The proof of Theorem 1 is given in Appendix A.

From Theorem 1, it is easily observed that when the two high-

pass filters are -order stopband suppression, the lifting

filters , , and must be complex, and thus,

must be a complex filter.

Theorem 2: In the type II biorthogonal interpolating com-

plex filterbank given in (11), the scaling filter is -reg-

ular, and the two highpass filters and have -order

stopband suppression if and only if the three pairs of lifting fil-

ters satisfy the following: For

(17)

Moreover, when (17) is satisfied, the dual scaling filter is

also -regular, and the highpass filters and also

have -order stopband suppression.

The proof of Theorem 2 is given in Appendix B.

From (12), the lifting filters , , , and determine

the dual scaling filter . Following the moment conditions

(17), may be a real filter. Utilizing the above results, two

families of three-band biorthogonal interpolating complex fil-

terbanks can be designed with arbitrary order regularity and

stopband suppression by selecting a set solutions of the linear

equations (16) or (17). Moreover, the stopband suppression also

ensures the passband flatness of highpass filters.

Corollary 1: For the types I and II filterbanks in Theorems

1 and 2, when the moment conditions (16) and (17) are sat-

isfied, the two scaling filters satisfy the following: For

(18)

the four highpass filters are -order flat around centers

of their passbands, that is, for

(19)

For the proof, see Appendix C.

Corollary 1 shows that when the moment conditions (16) and

(17) are satisfied, all six filters are flat around the centers of their

passbands. From the proofs of Theorems 1 and 2, we notice that

For convenience, to compare the magnitude frequency re-

sponses of filters, the magnitudes of all filters at their centers

of the passbands are made to be consistent and equal to by

multiplying appropriate factors, in which and are

multiplied by a factor , , and are multiplied

by a factor , whereas and remain invariant.

IV. EXAMPLES

In this section, we first give three-band interpolating com-

plex filterbanks and wavelets with the shortest length. These fil-

terbanks have high stopband sidelobes, and therefore, a numer-

ical method is proposed to lower the stopband sidelobes. By the

numerical method, three-band interpolating complex filterbanks

and wavelets with low stopband sidelobes are designed.

A. Interpolating Complex Filterbanks and Wavelets With

Shortest Length

From the moment conditions (16) and (17), for a three-band

interpolating complex filterbank with -order regularity

and stopband suppression, the shortest length of the lifting filters

is . For a FIR filter , its support set is defined as

: , where :

, and is the integer set. In what follows, we formulize the

-order filterbank with the shortest lifting filters.

The moment conditions (16) and (17) can be rewritten as a

unified form

(20)

where is a complex constant given by (16) and (17). It is easy

to verify that (20) is equivalent to the following:

(21)

When the support set of the lifting filter is

, the unique solution of equations is

(22)

The lifting filter in (22) is identical with the three-band Dubuc

filters, except for a constant factor. As is well-known, the

two-band Dubuc filters [40] have been widely used in [27],

[28], [35], and [37], which are closely related to the Largrange

interpolation.
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Fig. 5. Magnitude frequency responses of three-band complex Haar wavelet.

When , if we set and

to zero, we obtain a three-band complex filterbank with one

order regularity and stopband suppression, and its -transforms

are

(23)

This is an orthogonal filterbank. Referring to the characteristic

of the Haar wavelet, we call it the three-band complex Haar

wavelet. Its amplitude frequency responses are illustrated in

Fig. 5 (the magnitudes of all filters at their centers of passbands

are unified to by multiplying appropriate factors).

When , set

(24)

where rounds to the nearest integer. In this case, the filter-

banks provide satisfactory properties.

Proposition 1: When and satisfy (24),

the interpolating scaling filter is a symmetric filter with

the shortest length, and the type II the dual scaling filter

is also symmetric.

The proof is given in Appendix D.

When is an odd integer, the length of is ; when

is an even integer, the length is . The lifting filter

in (22) is substantially derived from estimating the value

of a function at using its values at

by the Largrange interpolation. The estima-

tors perform well only when the center of the set

is nearest , and , which is de-

termined by (24), is in accordance with this demand. Therefore,

(24) is also used to determine the support sets of the lifting fil-

ters and .

In this way, two families of three-band biorthogonal complex

filterbanks with the shortest length are designed. The scaling

filters and do not vanish on the ,

and thus, the associated complex wavelets are biorthogonal [7].

For example, the type I and type II filterbanks with fourth-order

regularity and stopband suppression are illustrated in Figs. 6

and 7.

In Figs. 6 and 7, the magnitudes of all filters at their centers

of passbands are unified to the same value . The left sides

are the interpolating filterbanks, and the right sides are the dual

filterbanks. Sharp peaks appear between the two adjacent stop-

band zero points, called the stopband sidelobe. This phenom-

enon occurs for all filterbanks with the shortest length. High

stopband sidelobes degrade the performance of the associated

wavelets, and the dual scaling functions have poor smoothness.

Following the result in [41], we estimate the Sobolev exponents

of the scaling functions and the two types of the dual scaling

functions, which are listed in Table I.

B. Complex Filterbanks With Low Stopband Sidelobes

In order to utilize the interpolation, must be

taken as the synthesis filterbank, and thus, is the

analysis filterbank. In many applications, the analysis filterbank

is desired to be provided with good frequency selectivity or low

stopband sidelobes, which makes the analysis procedure effi-

ciently partition different frequency components into different

channels/subbands, whereas the synthesis scaling function is

desired to be smooth enough to ensure the smoothness of re-

covery signals. The smoothness of scaling functions are related

with the stopband sidelobe of the scaling filter. Therefore, we

develop a numerical method to lower the stopband sidelobes of

and .

For the type I and type II filterbanks, we prescribe that the

stopband of and is , the

stopband of and is , and the stopband

of and is . Since the complex filterbanks

with the shortest length suffer from high stopband sidelobes,

we relax the demand of the shortest length and use part of the

degrees of freedom to lower the stopband sidelobes. Without

loss of generality, assume that all lifting filters have length

and that the order of regularity and stopband suppression is

; then, degrees of freedom in each lifting filter

are used to lower the stopband sidelobes by minimization of the

total stopband energy of and . The optimization

problem is described as follows:

s.t.

for and

where (25)

where round , are given

in (16) or (17). In the objective function, the factors in front of

filters make the magnitudes at the centers of their passbands be

consistent and equal to .

The vector is composed of six lifting filters. Due to nonlin-

earity of objective functions, the initial vector is crucial. Here,
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Fig. 6. Type I filterbank with fourth-order regularity and stopband suppression.

Fig. 7. Type II filterbank with fourth-order regularity and stopband suppression.

TABLE I
SOBOLEV EXPONENTS OF SCALING FUNCTIONS

AND DUAL SACLING FUNCTIONS

the initial vector comes from the -regular interpolating

complex filterbank with the shortest length in Section IV-A. For

and , the optimized type I filterbank is illustrated

in Fig. 8. The associated interpolating scaling function (solid

line), the real part (dashed line), and imaginary part (dotted line)

of the dual scaling function is depicted in Fig. 9. The interpo-

lating scaling function achieves the Sobolev exponent 2.7489,

and the total stopband energy of three analysis filters is 0.1339.

For and , the optimized type II filterbank is il-

lustrated in Fig. 10. The associated interpolating scaling (solid

line) and the dual scaling functions (dashed line) are depicted in

Fig. 11. The interpolating scaling function achieves the Sobolev

Fig. 8. Optimized type I filterbank with L = 7 andK = 4.

exponent 2.9192, and the total stopband energy of three anal-

ysis filters is 0.0877. From the two examples, the type II lifting

scheme seems to outperform the type I lifting scheme, as it gen-

erates real and symmetric dual scaling filters and filterbanks

with lower stopband sidelobes.



SHUI et al.: THREE-BAND BIORTHOGONAL INTERPOLATING COMPLEX WAVELETS 1301

Fig. 9. Scaling function and its dual for the filterbank in Fig. 8.

Fig. 10. Optimized type II filterbank with L = 7 andK = 4.

Fig. 11. Scaling function and its dual for the filterbank in Fig. 10.

V. CONCLUSION

In this paper, we give the two types of three-band lifting

schemes, from which two families of three-band interpo-

lating complex filterbanks and wavelets are devised. Unlike

the traditional two-band complex filterbanks and wavelets,

novel three-band complex filterbanks are composed of three

channels: the lowpass channel, the positive highpass channel,

and the negative highpass channel. They provide the ability to

partition positive and negative components in complex signals

into different subbands/channels, which is very attractive in

some applications. Moreover, the stopband suppression are

used to handle the stopband attenuation and the passband

flatness of highpass filters. Two elegant theorems are proved,

and the numerical method may be employed to further lower

the stopband sidelobes and improves smoothness of scaling

functions. Utilizing these results, we can construct interpo-

lating complex filterbanks with arbitrary order regularity and

stopband suppression.

However, we also notice that negative frequency components

may leak into the positive frequency channel and vice versa.

This is an inherent deficiency of three-band complex filterbanks.

For FIR complex filterbanks, the positive highpass filters

and cannot sharply attenuate to zero at the right side of

, and thus, its transition band cannot but extend into the

negative frequency region. In order to overcome this deficiency,

we may consider -band ( ) complex filterbanks via

the -band lifting scheme. For example, in the four-band case,

the ideal complex filterbank includes four channels: the lowpass

channel, the positive bandpass channel, the negative bandpass

channel, and the highpass channel. In this case, for the two band-

pass channels, this phenomena should be avoided. In the future,

we will extend this design method to the general -band case.

APPENDIX A

PROOF OF THEOREM 1

Proof: We first prove that when the filterbank

is -regular and of -order

stopband suppression, the lifting filters satisfy the moment

condition (16). Below, we frequently utilize the relations

, and for the complex

number .

From (9)

where is equivalent to

We obtain

(26)

For and , 1

(27)
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From , for , we derive

(28)

The coefficient matrix in (28) is nonsingular, and thus, this ho-

mogeneous system of linear equations only has a trivial solution,

that is, for

(29)

Combining (26) and (29), we obtain, for

(30)

Moreover, when (30) holds, for

Further, is of -order stopband suppression, that

is

(31)

From (31), we obtain

(32)

Moreover, when (30) and (32) hold

Similarly, from , for

, i.e.,

(33)

we obtain

Contrarily, when the lifting filters satisfy the moment condi-

tion (16), it is easy to verify that the scaling filter is

-regular and that the two highpass filters and have

-order stopband suppression. The first part of Theorem

1 is proved.

Further, from (10), we have

(34)

When (16) is satisfied, for and 1, we have

note:

Obviously

note: (35)

Similarly

note:

Therefore, for

Using the similar method, we can prove the following: For

Therefore, the dual scaling filter is -regular, and the two

dual highpass filters have -order stopband suppression.

Theorem 1 is completed.

APPENDIX B

PROOF OF THEOREM 2

Since the scaling filter in the type II is identical with

that in the type I, Theorem 1 has shown that when is

-regular, the lifting filters and must satisfy the

following: For

(36)
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and for

(37)

When in (11) has -order stopband suppression,

for , and thus

(38)

Therefore, for

(39)

Further, utilizing (39) and and

for , we obtain

that is

(40)

Since in (11) has -order stopband suppression,

we have for

Therefore

(41)

Substitute the first equation in (41) into the second equation in

(40) and then obtain

(42)

Contrarily, when the lifting filters satisfy the moment condi-

tion (17), it is easy to verify that the scaling filter is

-regular and that the two highpass filters and have

-order stopband suppression. Further, since and

in the type II are identical with those in the type I and in (16)

and (17), and satisfy the same moment condi-

tions. From the proof of Theorem 1, we know and have

order stopband suppression. In what follows, we verify

that is -regular. When

For , it is easy to verify that

for and

The proof of Theorem 2 is finished.

APPENDIX C

PROOF OF COROLLARY 1

Property (16) has been proved in Theorems 1 and 2, which

show that two scaling filters are at least -order flat.

In fact, from the proofs of Theorems 1 and 2, we have ob-

served that

For , we have

where is the conjugate of . Therefore, is

-order flat around . Similarly, we can prove

that and are -order flat around the centers

of their passbands.

APPENDIX D

PROOF OF PROPOSITION 1

From (24), when is an even integer, then

According to (22)
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Therefore

When is an odd integer , by

the similar method, we can prove that

(43)

From this equation, we obtain

that is, , and thus, is symmetric.

Additionally

and thus, the length of satisfies

(44)

When is an odd integer, , and achieves the

shortest length . When is an even integer, due to sym-

metry, must be an odd integer, and

makes be minimal and equal to . Conse-

quently, the (24) generates the symmetric interpolating scaling

filter with the shortest length.

For the type II filterbank, from ,

, and (22), we can obtain

(45)

Using (43) and (45), it is easy to verify that ,

and thus, is also symmetric.
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