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Three-body dispersion contributions to the thermodynamic properties
and effective pair interactions in liquid argon
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The contributions of three-body triple dipole and dipole-dipole-quadrupole dispersion interactions to
the thermodynamic properties of liquid argon are examined, using a recently introduced simulation
scheme which contains an explicit, quantum mechanical representation of the underlying electronic
structure@Mol. Phys.94, 417 ~1998!#. The experimental pressure and energy at a series of liquid
densities are shown to be quite accurately reproduced by a combination of the best available pair
potential~Aziz! plus these three-body terms. The extent to which these many-body effects can be
encompassed by an effective pair potential is then discussed. The nonuniqueness of such an
effective potential is reiterated. It is shown that in the dense liquid, the three-body contribution to
the effective pair potential (f(r )) varies approximately linearly with density and is almost
temperature independent. It is shown how the addition off(r ) to the Aziz pair potential moves the
latter toward the widely used Lennard-Jones~12-6! potential. © 1999 American Institute of
Physics.@S0021-9606~99!50527-8#
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I. INTRODUCTION

The rôle of many-body contributions to the interatom
potential in determining the properties of atomic fluids is
subject which has attracted much attention over a long pe
of time, from theory,1–8 simulation9–12 and experiment.13–15

Foremost among the many-body terms are the three-b
contributions to the dispersion interactions, for which t
Axilrod–Teller ~AT! expression16 gives the lowest-orde
~triple dipole, or DDD! contributions:

u123
DDD5C9~113 cosg1 cosg2 cosg3!r 12

23r 13
23r 23

23 , ~1!

whereg1 , g2 , andg3 are the interior angles of the triang
formed by atoms 1, 2, and 3 andr i j is an interatomic sepa
ration. Other many-body effects include higher-order disp
sion terms~dipole-dipole-quadrupole, or DDQ, etc.! as well
as many-body contributions which enter on the range of
overlap of the electron densities of the constituent ato
Explicit expressions for the higher-order dispersion terms
exist, but become increasingly complicated,17–19 and their
effect on liquid-state properties has not been characteri
Very little is known about the short-range terms; in p
these must ‘‘damp’’ the asymptotic expressions for the d
persion interactions at short-range,20 but other effects mus
occur in the repulsive interaction between a collection
three or more atoms.

Recently, we introduced a novel simulation meth
which allows the dispersion effects to be represented. I
the dispersion interaction is not modeled via the class
expressions for the pair- and three-body potential~e.g., the
London and Axilrod–Teller formulas!, but from an explicit
description of the electronic structure in the spirit of t
1520021-9606/99/111(4)/1520/7/$15.00
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Car–Parrinello method.21 The advantage of treating dispe
sion interactions in this way, rather than by use of the a
lytical expression, is that the description at the quantum m
chanical level allows for proper treatment of both dispers
damping and periodic boundary conditions at thethree-body
level. The latter makes this method suitable for perform
simulations of bulk system with full three-body interaction
whereas the use of an explicit three-body potential, like
AT, always introduces problems of truncating the intera
tions.

In the present paper, we apply this method to the cla
cal problem of the many-body dispersion contributions to
properties of argon. In it we will examine these contributio
to the energy, equation-of-state~EoS! and radial distribution
function ~RDF!. We will then also consider how the many
body potential terms contribute to a~temperature and densit
dependent! effective pair potentialand, ultimately, discuss
how the combination of this with the ‘‘exact’’22 pair poten-
tial compares with the much studied Lennard-Jones pair
tential.

A partial motivation for this first application of the cod
is to validate it on a well-studied problem. However, com
pared to previous studies our work contains a number
additional features. First, we characterize the significance
the DDQ terms, in addition to the DDD ones and there
hint at the convergence of the three-body dispersion term
the level of properties. Second, we are using a liquid str
ture which is fully consistent with the implicit many-bod
potential we are using, rather than evaluating the three-b
effects using structures deduced with a pair potential, or
ing a perturbation calculation. Third, we evaluate the eff
0 © 1999 American Institute of Physics
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tive pair potentials at a wider range of temperature and d
sity than has been done previously. We note that, altho
the problem has been much studied, there remains a g
deal of ignorance about what has been learned from th
studies. For example, although it is well-recognized that
effective potential must depend on the thermodynamic st
it is little appreciated that there is no such thing astheeffec-
tive pair potential at a given state point—two different p
potentials are required to reproduce energy and EoS. In
face of this, perhaps some repetition of long-standing res
can be tolerated.

II. SIMULATIONS OF THE TWO- AND THREE-BODY
DISPERSION EFFECTS

A. The simulation model

In this section, we will briefly describe the simulatio
model that is being used: for full details we refer to Ref.

The method rests on a simplified representation of
internal electronic structure of the atoms by asinglequantum
particle in an effective three-level system: ans-type ground
state, threep-type excited states, and fived-type excited
states. This system is then handled in a fully quantum m
chanical way, using anN-atom wave function which is ex
panded~configuration interaction! about the noninteracting
ground state over all possible pairs of excited states, wh
the N-atom functions are constructed from the single at
states by simple product. If combined with an electro
Hamiltonian containing all dipole-dipole, dipole-quadrupo
and quadrupole-quadrupole interactions, we may derive
analytical expression for the energyeCPA($c%,$r%) depending
on all the coefficients$c% in the expansion of the wave func
tion, and all the coordinates$r% of the atoms, in the so-calle
Coupled-Pair Approximation~CPA!.23 It has been shown nu
merically that the minimum ofeCPA with respect to the co-
efficients, provides the correct two- and three-body disp
sion energy, up to triple-quadrupole. With this simple mo
of the electronic structure, known values for the pair- a
three-body dispersion of a wide range of atoms can be re
duced with the choice of a few parameters.

We have incorporated this quantum mechanical sche
into a conventional molecular dynamics program via a Ca
Parrinello type approach; in this, the coefficients are trea
as extra degrees of freedom, which are updated in the s
lation from timet to t1dt by integrating the correspondin
forces on the coefficients, in complete analogy with the
date of the ‘‘real’’ degrees of freedom~i.e., the coordinates!,
and with the same timestep. Such a scheme requires the
efficient’’ forces, which are calculated as minus the deriv
tive of eCPA with respect to the coefficient, and an inert
parameter, which connects the forces to the accelerati
Under suitable simulation conditions, the coefficients rem
close to the adiabatic ground state~provided they were in
this state initially!, thereby avoiding a minimization proce
dure every timestep in the simulation.

The average dispersion energy and pressure can
evaluated as the average overeCPA and a corresponding
virial functional wCPA, respectively, during the course of
simulation run:
loaded 18 Oct 2010 to 131.155.151.251. Redistribution subject to AIP licen
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Udisp5^eCPA&r,T, 3PdispV5^wCPA&r,T . ~2!

B. Simulation details

We have performed simulations of argon at densit
ranging fromr* 50.1 to r* 50.9 and at temperaturesT*
51.1, T* 51.6 andT* 52.0, where we have used reduce
LJ units (e/k5119.8 K,s50.3412 nm! to indicate the state
point. We stress that this is purely for convenience, as
corresponding state relations hold in the presence of th
body forces.

The purpose of the calculations is to characterize
effects of the three-body interactions, with respect to
structure and properties predicted for thetrue pair potential,
as represented by the Aziz HFD-B potential.22 In practice,
we have used a simpler form:

u~r 12!5a exp~2br12!1C6r 12
261~C81c!r 12

28 ~3!

with a5400.1, b51.927, c51454, C6564.3, C851169.9
~all values in atomic units!, where theC6 andC8 coefficients
were set equal to the best literature values,24 and the other
three parameters~a, b and c!, where chosen such thatu(r )
fits the Aziz potential for all relevant distances.

The dispersive parts of the two- and three-body inter
tions were taken care of by the two-level quantum mecha
cal model described in Sec. II A. The remaining part of t
potential (a exp(2br)1cr28) was added as a classical pote
tial in the molecular dynamics simulation. Four paramete
a1 ,a2 ,u1 ,u2 , determine the magnitude of the various d
persion terms~see Ref. 19!. They were determined from val
ues of the classical dispersion parametersC6 , C8 , C9 @Eqs.
~1! and ~3!# and C11 ~the coefficient of the classical DDQ
term17–19! by means of relations~23! and ~30! in Ref. 19.
Values forC6 andC8 are given above, and a value forC9 of
518.3 a.u. was found by Kumar and Meath.24 The coefficient
C11 was chosen equal to 668.16 au, which follows from t
best estimates for theC6 andC8 coefficients and the dipole
and quadrupole polarizabilities~see Ref. 19!. This value was
found to be within a few percent of the best literature va
from Ref. 25. The resulting values ofa1 ,a2 ,u1 andu2 were
10.748, 48.2, 0.742 and 0.5067 a.u., respectively, yield
the proper numerical values forC6 , C8 , C9 and C11 by
means of relations~23! and~30! in Ref. 19. Test runs showe
that the DQQ and QQQ contributions are negligible co
pared to the DDD and DDQ, and therefore we did not co
sider any interaction beyond DDQ.

The systems studied contained 125 particles, and
used a timestep of 2.5 fs, which is about 4 times smaller t
in conventional Lennard-Jones simulations. After equilib
tion the total production runs lasted 30 000 timesteps, dur
which pressure, energy and RDFs were measured, as we
the effective pair interactions discussed in Sec. III.

C. Results for the pressure, energy and g „r …

We begin by showing in Fig. 1 results for the RDF
three different reduced densities~0.1, 0.3, 0.8! and at a re-
duced temperature of 1.1. RDFs have been calculated fo
full simulation model, including the three-body DDD an
DDQ terms, and for a simulation with the Aziz pair potenti
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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where these three-body terms are omitted; the differen
Dg(r ), between the RDFs of these calculations are show
the bottom part of the figure. The results show that at
relatively low density of 0.3~similar to the expected critica
density!, the three-body terms have a noticeable effect on
RDF. At the higher density of 0.8, close to the triple po
density, and at the lowest density of 0.1, the difference
tween the RDFs obtained with and without the three-bo
effects is very small. At the high density, the liquidstructure
is dominated by packing effects,26 and the dispersion term
are of little importance. At low density, the three-body co
tribution becomes small because of the relatively small nu
ber of three-atom encounters. The largest effects are fo
for densities around 0.3, which is in the vicinity of the cri
cal density.

The reduction of the RDF by the three-body forces
still much larger than reported by Levesque and Weis11 for
krypton ~which has stronger three-body effects than argo!.
They found that the RDF was reduced by about 0.02 i
small region aboutr 51.1s, at a reduced density of 0.55. Fo
this density, we find that the reduction is about 0.1 in t
region of r.

Figure 2 shows the excess pressure and energy as a
tion of the density at a fixed temperature of 1.1.27,28 Results
are shown for the full three-body potential, as well as for
Aziz pair potential, and for the usual argon Lennard-Jo
pair potential. The results show that the three-body te
strongly modify the pressure and energy predicted with
true pair potential, bringing the predicted values into mu
closer agreement with experiment. The DDQ three-bo
terms are found to have a very small effect on the ene
Their effect on the pressure is small but nonnegligible,
shown in Table I.

The results obtained show that the energy and pres

FIG. 1. Radial distribution function~RDF! of argon calculated at reduce
densities of 0.1, 0.3 and 0.8 and a reduced temperature of 1.1. In th
figures the solid lines represent the RDF in the the presence of full two-
three-body interactions (g(3)(r )); the dashed lines~almost indistinguishable
from the solid lines except atr* 50.3) represent the RDF in the presence
the two-body Aziz potential only (g(2)(r )). The difference Dg(r )
5g(3)(r )2g(2)(r ) is shown in the bottom figures.
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predicted by combining the Aziz pair potential with the co
responding three-body dispersion terms are in good ag
ment with experiment. A similar agreement with experime
for Krypton was found by Barker,10 for a slightly different
pair potential~K2 by Barker, Klein, Bobetic!29 plus AT. In a
more recent study by Meroniet al.7 the three-body AT terms
were evaluated from a pair HNC theory for krypton. A
though their results showed the same trend as in our sim
tions, the three-body contributions were not large enough
get the Aziz1 AT results into good agreement with exper
ment. The conclusion from our simulations fully undersco
Barker’s statement in Ref. 10: ‘‘the net contribution of oth
many-body interactions to the properties of solid and de
fluid argon, krypton, xenon must be very small.’’ A simila
conclusion was drawn more recently by Antaet al.8 with
regard to the phase-equilibrium properties of argon.

III. THE REPRESENTATION OF THREE-BODY
EFFECTS IN AN EFFECTIVE PAIR POTENTIAL

A question of general interest is the way in which t
three-body effects contribute to an effective pair poten
which might be used in a simulation or theoretical calcu
tion to reproduce some property of the simulated fluid e
actly. It is not generally recognized that this requires adif-
ferent potential for each property calculated. In order
emphasize this point, we begin by obtaining in a unified w
the relationship between the effective potentials which rep

op
d

FIG. 2. Excess pressure and energy per particle of liquid argon, as a f
tion of density, at a fixed temperature ofT* 51.1. All values are in~LJ!
reduced units (e/k5119.8 K,s50.3412 nm!. The symbols are the simula
tion results for the full three-body potential~black circles! and the two-body
Aziz potential only~pluses!; the solid and dashed lines are the results fro
the Lennard-Jones potential~Ref. 27! and experiment~Ref. 28!, respec-
tively.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Various contributions to the simulation results for the total energy per particle (u) and the total excess pressure (Pex), at a temperatureT*
51.1. u(2) andPex

(2) are the contributions from the Aziz potential. All values are in LJ units, and are inclusive of a long-range correction.

r* u(2) uDDD uDDQ u ~total! Pex
(2) Pex

DDD Pex
DDQ Pex ~total!

0.1 20.930 0.007 0.002 20.921 20.048 0.002 0.000 20.046
0.2 21.795 0.010 0.006 21.780 20.168 0.004 0.003 20.160
0.3 22.658 0.306 0.009 22.342 20.315 0.011 0.008 20.296
0.4 23.103 0.148 0.014 22.941 20.496 0.012 0.017 20.468
0.5 23.640 0.187 0.018 23.435 20.740 0.066 0.027 20.646
0.6 24.205 0.151 0.026 24.029 20.884 0.114 0.046 20.724
0.7 24.881 0.183 0.037 24.660 20.820 0.294 0.077 20.449
0.8 25.557 0.243 0.053 25.261 20.119 0.463 0.125 0.469
0.9 26.135 0.307 0.075 25.753 1.730 0.693 0.200 2.624
y
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duce the energy and EoS of the liquid with the full man
body potential, as has previously been done by Barker,3 and
Rowlinson and co-workers,4 among others.

A. Nonuniqueness of the effective pair potential

We start from the exact expressions for the poten
energyU and the excess pressurePex in a fluid at a particular
state point (r,T), where the particles interact via a two-bod
potential u125u(r 12) and a three-body potentialu123

5u(r 12,r 13,r 23):

U5
1

2
r2E E dr1 dr2g12u12

1
1

6
r3E E E dr1 dr2 dr3g123u123, ~4!

3PexV5
1

2
r2E E dr1 dr2g12w12

1
1

6
r3E E E dr1 dr2 dr3g123w123, ~5!

with

w1252r 12

]u12

]r 12
,

~6!

w12352S r 12

]

]r 12
1r 13

]

]r 13
1r 23

]

]r 23
Du123,

and whereg125g(r 12) andg1235g(r 12,r 13,r 23) are the pair-
and three-body radial distribution functions, respectively.
writing g123 in the following form ~which definesg1238 )

g1235g12g13g23g1238 , ~7!

we can evaluate the three-body part of Eq.~5! as

33
1

6
r3E E dr1 dr2g12r 12

2]

]r 12
F E dr3g13g23g1238 u123G , ~8!

where the factor of 3 follows from the three terms whi
constitutew123. As a final result, we may write the exce
pressure in the following form:

3PexV5
1

2
r2E E dr1 dr2g12r 12

2]

]r 12
@u121w12#, ~9!

with
loaded 18 Oct 2010 to 131.155.151.251. Redistribution subject to AIP licen
-

l

y

w125w~r 12;r,T5rE dr3g13g23g1238 u123. ~10!

In same way we can rewrite the potential energy Eq.~4! as

U5
1

2
r2E E dr1 dr2g12@u121f12# ~11!

with

f125f~r 12;r,T!5
1

3
rE dr3g13g23g1238 u123. ~12!

From Eqs.~9! and ~11! follows that we may definetwo ef-
fective pair potentialsu121w(r ;r,T) and u121f(r ;r,T),
where the corrections to the true pair potential differ by
factor of 3:

w~r ;r,T!53f~r ;r,T!, ~13!

and yield the correct three-body pressure and energy, res
tively. In other words, the effective pair potential deduc
from three-body interactions is not a unique quantity. In t
following we will consider the three-body contribution to th
effective pair potential,f, relevant for the energy. Note tha
such terms are defined as an average over the radial d
bution functions and are thereforestate dependent. In the
limit of r→`, the AT form may be used to show tha
fDDD(r ;r,T) can be written as an explicit function of th
distance and density:2,4,30

lim
r→`

fDDD~r ;r,T!5 f ~r ;r!5
8p

9
C9rr 26. ~14!

B. Effective pair potentials from the simulation

In Ref. 19 it is shown that the dispersion energyeCPA in
our simulation model can be written in the following way

eCPA~$c%,$r%!5(
i j

ei j
(2)1(

i j
ei j

(3) , ~15!

where ( i j ei j
(2) is a two-body type energy, and( i j ei j

(3) is a
three-body type energy. From Eq.~15! we can thus evaluate
the three-body contributions to an effective pair potential
the simulation:

f8~r ;r,T!5K 1

2 (
i j

d~r 2r i j !ei j
(3)L

r,T,3B

, ~16!
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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where the subscript 3B indicates that this average is obtain
over the course of an MD simulation in the presence of
three-body forces. We have to add a small correctionDf to
this term because of the fact that a strict separation into p
two- and three-body terms as indicated in Eq.~15! cannot be
made in our variational equations, due to the CPA norm
ization factor which appears both in two- and three-bo
type terms; a detailed comparison with perturbation the
shows that alsoei j

(2) contains some~small! three-body con-
tributions. The corresponding correctionDf can be esti-
mated from a comparison with a true two-body run, i.e.,
evaluating

Df~r ;r,T!5K 1

2 (
i j

d~r 2r i j !ei j
(2)L

r,T,3B

2K 1

2 (
i j

d~r 2r i j !ei j
(2)L

r,T,2B

. ~17!

The final three-body contribution to the effective pair pote
tial measured is then given by

f~r ;r,T!5f8~r ;r,T!1Df~r ;r,T!. ~18!

We note that the RDF is measured in the simulation
g(r )5^( i j d(r 2r i j )&/2prr 2N, from the same data as Eq
~16!; therefore,by constructionf yields the exact three-bod
energy, when integrated over the radial distribution functi
and is therefore directly comparable with the effective p
potential defined by Eq.~11!. As shown in Ref. 19, DDD,
DDQ appear as separate terms inei j

(3) so the corresponding
effective pair potentials measured via Eq.~16! might also be
specified as

f5fDDD1fDDQ. ~19!

C. Results for the effective pair potential

In Fig. 3 we show results for the three-body correction
the effective pair potential at several densities and fixed t
perature of 1.1. The results showf normalized by the
asymptotic form f (r ;r)5 (8p/9) C9rr 26 and indicates a
nontrivial density dependence due to the changing local
uid structure. The results may be compared with theoret
estimates offDDD obtained by use of

bf1252
1

3
rE dr3@exp~2bu123!21#g13g23 ~20!

which ~without the factor 1/3! yields the correct RDF to lin-
ear order in the density.1,2 Note that to lowest order in the
expansion of the exponential, Eq.~20! is equivalent to Eq.
~11!, if the Kirkwood superposition approximation (g1238
51) is used. Applications of~20! can be found in the litera
ture, using approximate expressions for the pair distribut
function. In Refs. 2,4, g(r ) is estimated from g(r )
5exp(2bu12(r )), i.e., the lowest density approximation
The resultingfDDD ~dashed line! is compared with the simu
lation results in the figure, and seen to agree well with th
at sufficiently low density~r;0.1!. In Ref. 6,g(r ) is calcu-
lated from a pair-hypernetted chain approximation. The
loaded 18 Oct 2010 to 131.155.151.251. Redistribution subject to AIP licen
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sult of this approximation atr50.7 ~open squares! compares
very well with the simulation results at the correspondi
density.

Figure 4 illustrates the temperature dependence offDDD,
which is seen to be very low at liquid densities and only
become appreciable at low densities where the tempera
dependence of the liquid structure becomes noticeable.

D. A thermodynamically consistent EPP

For simulation or theory it might be of interest to co
struct an effective pair potentialf̃DDD which is thermody-
namically consistent, i.e., a single effective potential wh
reproduces both the correct three-body energyand three-

FIG. 3. Effective DDD pair potentialfDDD(r ) normalized by its functional

form at infinity f (r )5
8
9pC9rr 26, at a reduced temperature of 1.1. Sol

lines: simulation results for densities ranging from 0.1~top curve! to 0.9
~bottom curve!, with an increment of 0.1. Dashed line: theoretical res
obtained from Eq. ~20! with the low-density estimateg(r )5exp
(2buref(r )) for the RDF~Ref. 4!; open squares: theoretical result where t
RDF is estimated from a pair HNC approximation at density 0.7~Ref. 6!.

FIG. 4. Simulation results for the effective DDD pair potentialfDDD(r )

normalized by its functional form at infinityf (r )5
8
9pC9rr 26, at reduced

temperatures of 1.1~solid lines!, 1.6 ~dashed lines! and 2.0~gray lines!, at
reduced densities 0.3~left!, 0.6 ~middle! and 0.9~right!.
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body pressure, at the DDD level. As was suggested
Barker,12 such a potential should be a homogeneous func
of the same degree~29! in the coordinates as the Axilrod
Teller energy, i.e., we should try a potential

f̃DDD~r ;r,T!5C9
eff~r,T!r 29 ~21!

and determine theC9
eff coefficient such that

UDDD5
1

2
r2E E dr1 dr2g12C9

effr 12
29, ~22!

3Pex
DDDV5

1

2
r2E E dr1 dr2g129C9

effr 12
29. ~23!

If the potential is thermodynamically consistent, theC9
eff co-

efficient determined from Eqs.~22! should be equivalent to
the one determined from Eq.~23!. This was found to be true
for all densities and temperatures studied, as shown in T
II, in which we show the ratio of the coefficients of an e
fective potential of the formr 2N determined both from the
total DDD pressure (CN

eff,P) and the total DDD energy
(CN

eff,U), as a function of the powerN, for various reduced
densities and temperature 1.1. It is shown that the two c
ficients coincide atN59, which was also found for all othe
densities and temperatures studied.

In Fig. 5 we show the resultingC9
eff determined from Eq.

~22! @or Eq. ~23!# as a function of the reduced density, f
temperaturesT* 51.1, T* 51.6 andT* 52.0. An extensive
range of simulations would be required to determine a fit
the functional form ofC9

eff(r,T); still, from the figure a
simple estimate of the coefficient could be obtained in
density range @0.021.0# and the temperature rang
@1.022.0#.

It should be stressed, however, that such a poten
would only reproduce the exact three-body energy and p
sure if averaged over the RDF of thefull three-body system.
In order to see how well this effective pair potential wou
reproduce the structure of the 3B-fluid, we have performe
simulation with a potential obtained by combining the Az
and the effectiver 29 potential discussed above, at dens
r* 50.3 and temperatureT* 51.1, and compared~Fig. 6!
the result with those obtained from the Aziz potential alo
and from the full three-body simulation~both as in Fig. 1!. It
can be seen that the Aziz1 effective r 29 potential repro-

TABLE II. Ratio of the value of theCN
eff coefficient obtained from the

pressure equation~22!, to the value obtained from the energy equation~23!,
as a function of the powerN for three different densities, at a reduce
temperature ofT* 51.1. For all densities studied, the two values coincide
N59, indicating the an effective pair potential of the formr 29 would give
a consistent three-body energy and pressure.

CN
eff,P/CN

eff,U

PowerN r* 50.3 r* 50.6 r* 50.9

6 1.495 1.487 1.484
7 1.288 1.282 1.278
8 1.128 1.123 1.120
9 1.003 0.999 0.996

10 0.903 0.899 0.896
11 0.821 0.817 0.815
12 0.752 0.749 0.747
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duces the full three-body RDF very well, a much larger d
crepancy is found with the pure Aziz potential. Neverthele
the small difference in structure causes the three-body en
and pressure from this simulation to be slightly differe
from those of the full three-body calculation. In principle, th
C9

eff coefficient could be re-evaluated in the two-body sim
lation via Eq.~22!, the value of which could then be used
a new two-body simulation, etc., until convergence

t

FIG. 5. Density and temperature dependence of theC9
eff coefficient of an

r 29 representation of the effective DDD pair potential, normalized by
C9 Axilrod–Teller coefficient. TheC9

eff is constructed such as to yield th
correct three-body DDD energyand pressure.

FIG. 6. RDF from a simulation with an Aziz1 C9
effr 29 potential~circles!

compared with those from a simulation with the Aziz potential only~dashed
curve! and with the full three-body potential~solid curve! at density 0.3 and
temperature 1.1; it is shown that theC9

effr 29 potential gives a good repre
sentation of the ‘‘true’’ structure from full three-body forces.
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reached; the difference with the present estimate for theC9
eff

coefficient is expected to be small, however.
The C9

effr 29 potential is not thetrue three-body correc-
tion to the effective pair potential; the latter is shown in F
3, and will not fit to a simple functional form; ther 29 po-
tential should be viewed as a practical alternative for mod
ing three-body DDD interactions, reproducing the ener
pressureand RDF with reasonable accuracy. It should
emphasized that ther 29 potential has been fitted tobulk
thermodynamic properties, and will fail at surfaces and
terfaces, as has been shown by Barker.12 In his paper, Barker
demonstrated that ther 29 potential results in a surface fre
energy which disagrees by as much as 19%~argon! to 35%
~xenon! with the experimental data. Inclusion of the fu
three-body interaction brought the disagreement down
2%.

IV. DISCUSSION—RELATIONSHIP OF THE TRUE AND
LENNARD-JONES PAIR POTENTIALS

We conclude by showing in Fig. 7 a comparison of the
true pair potential@u12, Eq. ~3!#, the much studied Lennard
Jones potential (e/k5119.8 K,s50.3412 nm! and the effec-
tive pair potentials u121wDDD(r ;r,T) and u12

1wDDD(r ;r,T)1wDDQ(r ;r,T) at r50.9 and T51.1 ~i.e.,
close to the triple point!. Including the three-body effect

FIG. 7. A comparison of the true pair potential~Aziz!, the Lennard-Jones
potential and the effective pair potentials at the DDD and DDD1DDQ
levels for argon atr* 50.9 andT* 51.1.
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progressively reduces the depth of the effective pair poten
with increasing density, without shifting the position of th
minimum, so that in the dense fluid the depth of the effect
pair potential corresponds quite well with that of th
Lennard-Jones potential. The relative importance of
DDD and DDQ effects is illustrated by the figure, whic
indicates a rapid convergence of the multipole series for
gon. Note that we have shown the effective pair potential
the pressure, which would lead to an overestimate of th
three-body effects on the energy@cf. Eq. ~13!#. The Lennard-
Jones potential, which gives a reasonable compromise po
tial for the pressureandenergy, while agreeing well with the
effective potential in the region of the repulsive wall and t
minimum, is significantly deeper than the effective potenti
at largerr and closer to the pair potential there.
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