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A method of treating weak interaction processes involving composite particles is for­

mulated on the basis of the theory of bound states of quantum field theory. The method 

is applied to the analysis of the decay K+__,no+ft.v. And it is shown that under a possible 

set of assumptions ~-value of this decay must lie between -1 and + 1 irrespective of the 

structure of n and K-meson. 

Then the method is applied to the leptonic decays of hyperons and it is shown that if 

we take K-baryon model for hyperons there is a possibility of understanding the smallness 

of the decay rates compared to the ones expected from the universal coupling theory. 

~ l. · Introduction 

At the time of the proposal of composite model of elementary particles by 

S. Sakata, it was pointed out that present status of the theory of elementary 

particles should be compared to the early days of the theory of atomic nuclei.l) 

After that, many investigations have been done along this line of thought. 

In 1956, K. Matumotdl proposed the mass formula of composite particles, which 

corresponds to Weizsacker's empirical mass formula for nucleus, and Z. Maki3
l 

examined the possibility of the formation of n-meson with a nucleon and an anti­

nucleon from field theoretical viewpoints, which corresponds to the deuteron 

problem in the nuclear theory. In 1959, Ikeda, Ogawa and Ohnuki4l have deve­

loped group theoretical investigations based on the assumption of the symmetry 

among a proton, a neutron and a A-particle in the strong interaction,5l which 

corresponds to the group theoretical investigations of nucleus. Furthermore, 

the analysis of various weak processes have been done from the viewpoints of 

composite particles by Z. Maki, Y. Ohnuki, M. Nakagawa and other authors.6
l 

Some of these investigations, especially the search for mass formula and 

group theoretical investigations based on some symmetries were inherited by a 

great many authors,7
l although from somewhat different viewpoints. 

But if we take more seriously the above mentioned analogy between present 

status of the theory of elementary particles and early days of the nuclear theory, 

we should remember the various aspects of the developments of the nuclear 

theory. When we review the developments of the nuclear theory, we will im­

mediately be aware of the roles played by quantum mechanics as the dynamics 
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788 T. J(aneko 

of nucleons, and also the roles played by weak interaction phenomena (/3-

decay). 

Here we want to notice on these points, that is, weak interactions may play 

important roles in revealing the structures of elementary particles, and also the 

current quantum field theory may play the role of the dynamics of fundamental 

particles. 

From these points we believe that the investigations of weak interactions 

based on composite model, with the use of quantum field theory, might have 

very important meaning in the present days. Several authors have made some 

works on weak interactions from such a viewpoint, for example, the above men­

tioned works by Z. Maki, Y. Ohnuki, M. Nakagawa and other authors. 

But in these works, methods of treating composite particles were not so 

general ones, and so, processes treated there were very limited ones. So we 

intend in this paper to formulate more general method of treating composite 

particles in weak interactions with the use of the quantum field theory and to 

apply the method to the investigations of the real processes. 

In § 2, we take up the decay J(-t- ->n° + l + v as an example, and try to 

formulate such a method on the basis of the theory of bound states of quantiz­

ed field. 8
l The method we formulate here is general enough to treat various 

weak processes involving composite particles. Also in § 2, we show that our 

analysis based on the composite model leads in some approximations and under 

a possible set of assumptions to the results which are essentially equivalent to 

the ones derived from the conventional local interactions. In § 3, we treat the 

leptonic decays of hyperons with the use of the method formulated in § 2, and 

show that if we take recently proposed .P;-baryon model for hyperons
9
l we might 

be able to understand the smallness of the hyperon leptonic decay rates (LJS = 0 

and 1) compared to the ones expected from universal coupling theory. In the 

Appendix we will derive the recursion formula for spin 1/2 composite particles. 

§ 2. On Kz3-decays 

In this section we treat K-!- ~n° + l + v decays from the viewpoints of com­

posite model. 

In the lowest order of weak interactions, S-matrix of this decay is given as 

where P, Q, Pz and Pv are four-momenta of K+, n°, land v respectively. A, P, 

l and v are the field operators of A-particle, proton, lepton (electron or ,u-meson) 

and neutrino respectively. G is the universal weak coupling constant, and 

v>- = r:,., (1 + r 5). n° and K+ -meson are considered to be composite particles of the 

following configurations : 
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Three-Body Leptonic Decays of K-Mesons and Hyperons 789 

n°= 
1

:_: [PP-N.iJ], 
t/2 

K+=[AP], 

where P and N denote proton and neutron respectively. 

With the use of the recursjon formula for spin 0 composite particle/0
) the 

matrix element (n°: QIX(O)v~P(O) JK+: P) in Eq. (1) can be expressed as 

(n°: OJA(O) v~P(O) IK+: P) 

(' (' 

·= ( -i) 2j ···jdxl dx2 dy1 dy2 fQrr
0

(X: ~) Kx" KvK 

1 - - - -
x (OIT: 1/

2 
{P(x1) P(x2)- N(x1) N(x2)} A (0) v~P(O) ·A ( Y1) P( y2) IO) 

(2) 

where 

K 7t_D 2 x - x-rn"', K K D 2 v = v-1nK, 

and fQn:o (X: ~), fPK+ (Y: r;) are quite arbitrary except for the normalization con­

dition, 

(' - + 1 
jdr;(K+: PIT: A(yl)P(y2) JO)fpK (Y: r;) =--------. 

2 (2n) 3 

For such fQ"'o (X:~) and fpK+ (Y: r;), we can take as follows: 

(4) 

fQ"
0

( X: ~) =-----~~- --
1
-(n°: QiT: _ _1_-={P(xl) P(x2)- N(x1) I\TCx2)} IO) (5) 

' 2 (2n) 3 C"o(Q) t/2 ' 

+ . 1 1 -
fpK (Y: r;) = z (

2
n) 3 CK-:;_-(P) (01 T: A (yl) P( Y2) IK+ : P), (6) 

where C"'o (Q) and CK+ (P) are defined by 

- l 1 • 1 5 ,-- ( ~ ) ( ~ ) ·- ( ~ ) ( ~ ) } o • Cn:o(Q)- Jd~(O,T "1/:2lp --
2
- P --

2
-- -N -2- N --

2
- In . Q) 

x(n°:QIT: 0
2

{P(--{--)i>( --~-)-N(-; )~v( ---~--)}10), (7) 

CK+(P) = fdr;(OJT: X ( -~- )P(- ~-) JK+: P)(K+: pIT: A(~-)P ( --;,) IO). (8) 
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790 T. Kaneko 

vVith the use of Eqs. (5) and (6), Eq. (2) is expressed as 

<reo: Q[A(O)v>.P(O) [K+ :P) 

= L~c~:) 3 -J C"o(Q)b;~i_;) 1··-Jdxl dx2 dy1 dy2 

1 ,.--- -
x<re0

: O[T: 
172

{P(x1)P(x2) ~N(x1).~.V(x2)}[0) 

X Kx"KyK<OlT: --
1

--= {P(xl) P(x2)- N(x1)lV(x2)} A(O) v>.P(O) ·A ( y1) l>( y2) [0) 
V2 . 

(9) 

1 - --- . 
In Eq. (9), we can interpret the factors <re0

: O[T: 
1
/ 

2
{P(xl)P(x2)- N(x1)N(x2)} jO) 

and <OIT: A(y1)P(y2)iK+: P) as the wave functions of re0 and K+-meson re­

spectively. The factor 

can be interpreted as the contribution from weak vertex part involving the 

corrections of the strong interactions. 

Now we proceed to calculate the right-hand side of Eq. (9) approximately. 

First we consider the vacuum expectation value 

We decompose T-products into N-products and pick up only the terms with the 

simplest configurations. Then we get 

where 1llp, mN and mA are masses of proton, neutron and A-particle respectively. 

SF' (x) is a total propagator for spin 1/2 particle. 
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Three-Body Leptonic Decays of K-Mesons and Hyperons 791 

In Eq. (10), the first and the third terms do not contribute to the matrix 

element (re0
: QIA (0) v>-P(O) JK+: P) by virtue of the parity conservation in 

strong interactions. 

From the transformation properties under Lorentz transformations, Eq. (10) 

can be expressed as follows : 

where r (xl- y2)' ryl and rx2 are scalar products of two four-vectors, for example 

r"' and (x1 -y2)"'. Z/1)(x2), zp<2!(x2
), Z}1)(x2

) and .E/2)(x2) are defined by 

(12) 

(13) 

Here we assume that i) Z P(i) (x2
) and Z}i) (x2

) have non-zero finite value 

at x= 0 (for £ = 1 and 2) ,*) ii) the space time region in which the decay 

process K+ ~re 0 + l + v occurs is ·very small, and therefore, in Eq. (11), terms 

proj)ortional to X1, x 2, y 1 and y 2 give negligibly s-mall contributions to the 

matrix elenzent compared to the terms Z p< 2
) and J:A< 2

). 

If we accept these assumptions, Eq. (11) can be approximated as 

, (OJT: _1_ {P(xl) P(x2)- N(x1) i\!Cx2)} A(O) v>-P(O) ·A (yl) PCy2) JO) v2 
-6 =- :.::_1: /2) ( (x1- Yz) 2) ];A<2) (y12) 'lhl: P(2) (x22). v2 · (14) 

Next we consider the wave functions (re
0

: QIT: v:\~~ {P(xl) P(x2)- N(xl) 

X .1V(x2)} IO) and (OjT: A (y1) P(y2) jK+: P) in Eq. (9). From the transformation 

properties under Lorentz transformations, T-invariance and C-invariance in strong 

interactions, these can be expressed in the following form: ll) 

(re0
: QJT: _J={P(x1)P(x2) -N(x1)N(x2)} jO) v2 

=exp( -iQX)rdft"-rQJ;~-r~·Q~fs"- Cr~·rQ-rQ·r~)f/'}, (15) 

*l Apparently the assumption i) in the text is not valid in the field theory, but we suppose 

here that the field theory will be modified violently in the very small space time region and we 

should like to take the above assumption as the working hypothesis. 
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792 T. Kaneko 

<OIT: A( Y1) P( Y2) ]K+: P) 

= exp (iPY) r5 {flK + r Pf2K + rr;. Pr;fsK + (rr; ·r P- r P·rr;)f4K}' (16) 

where f/ 's are functions of ~ 2 and (Q~) 
2

, f/0 s are functions of 7J
2 and (Pr;) 2

• 

Here we assume that K-meson is a pseudoscalar particle and the relative parity 

'Of N and A is even. 

Then we consider the case in which the extensions of the wave functions of 

n° and K+ -meson are negligibly small. In the conventional theory, these particles 

are always considered to be point particles. But, in our theory, wave functions 

of these particles include relative coordinates of the constituents. This fact 

gives us a possibility to investigate the structure of these particles, but here, as 

the first step, we consider only the case where the terms proportional to the 

relative coordinate can be neglected compared to the other terms. 

In this approximation, Eqs. (15) and (16) give 

1 - -
<n°: Q IT: - =- {P(xl) P Cx2) - N Cx1) lv(x~)} l 0) 

V2 

~exp( -iOX)r5{fl"'-ft·rQ}, 

<OIT: A( y1) P( Y2) IK+: P) 

~exp (iPY) r5 {f/( + f2K ·r P}. 

(17) 

(18) 

It should be noted here that even in the above approximation f/"s and 

f/0 s are not constants but functions of relative coordinate and center of mass 

momentum. 

With the use of Eqs. (14), (17) and (18), Eq. (9) can be approximated as 

<n°: Q!A(O)v>-P(O) ]K+: P) 

X [f17rf2KP>-+f2"'flKQ>-]Kx"'KvKJ:P(2)((xl-y2) 2)1:}2l(y12)l'p(2)(x22). (19) 

Here we define the weak form factors f+ (s) and f- (s) in the usual way, that 

lS 

<no: QiX(O) v>-P(O) ]K+ : P) --= f~- (s) (P+ Q) >- + f- (s) (P- Q) >-, (20) 

s=- (P-Q) 2
• 

Then we get from Eq. (19) 
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Three-Body Leptonic Decays of K-Mesons and Hyperons 793 

I~'urthermore, in order to see the magnitude of s-dependence of these weak 

form factors, we take derivatives of f± (s) with respect to s, then we get 

-5; f± c s) = ~ [z c~n~•J v2c..-c~~t ~(r) 2 (P~ Q) ~ J- · -J dx, dx, dy, dy, 

X exp (iPY -iOX) {2~" ·Q~[f~"f/(±f~"flK] -2r;" ·Pr;[f/'f~K±ftf~K] 

- i (X+ Y) "[ftf2K ±fz"f1K]} Kx"KyK];P<2) ( Cx1- y2) 2) J:A<2
> ( Y12) J;p<

2) Cx22), 
(22) 

where 1--:,. 's and J-:10s are derivatives of f/' 's and j/0 s with respect to (Q~) 2 

and (Pr;) \ respectively. 

From these results we can derive the following conclusions: 

i) If we assume that pion and K-meson have similar structures and we can put 

f/'·----fiK, then, in Eq. (21) we have ft'tf2K- j;"'f/(~o, and therefore f-lf+~o. 

ii) The integrands of Eq. (22) are all proportional to ~ or r; or (X+ Y), 

therefore we can infer that df± (s) / ds < f± (s), according to the assumptions 

stated below Eqs. (12) and (13). In other words, we get the result 

df± (s) lf±~o. 
· ds 

iii) From i) and ii), we gee 2
) 

I__(fSP:_~2--~0.5 ,_ 1 . 
T(Kea) 

These three results are quite analogous to the ones where we consider K+ 

and n°-meson as elementary particles, and introduce I JSI = 1 weak current 

JA = i {-%;~-K *- n° 
0
~~~-} . 

In this case we get the following results : 

i) f-lf+ =0.' 

ii) f± are constants. 

iii) T(K" 3) /T(Kea) ~0.7. 

From these similarity, we may infer that physical meaning of the approx­

imations hitherto we adopted are essentially to reduce the composite particles 

to the elementary particles. 

On the other hand, experiments show the following results: 13
) 

i) f-lf+~o--2 or -6....., -9. 

ii) 

iii) 

When we express f± (s) as f± (s) = f± (0) [ 1 + A±--·~ 2 -] , A±= 0.036 ± 0.045. 
1Jl,. 

[_(~~ 3 2_=0.79±0.19. 
T(Kes) 
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794 T. Kaneko 

If we make the following approximations : 

ftC~
2

, CQn 2
) =f/C~=o), 

j~K (r/, (Pr;) 2) = f/>: (r; = 0), 

then we get the following expression for the ~-value : 

f_ f/'fzK_f27(f/( l-ab 
~ = ..... -· = -· . .. . . ·-· ······- -· .. -· = .. --- --·· 

f+ ftfzK + fz7(f/( 1 + ab ' 

where a=fz"'/fzK and b=f/(/1~7(. 

(23) 

In Eq. (23) we can expect that both a and b are positive. Because f~"' 

and f 1K can be interpreted as the renormalization Z-factor of n and K-meson
14

) 

and therefore they are both positive. 15
) As to the value a, Z. Maki have already 

estimated14
l this value in the chain approximation and have got a 2

~0.8 ,...__ 0.9, and 

a= 1 in the full symmetry limit. So negative value for a seems unreasonable. 

On these arguments, here we assume that both a and b are positive, then 

we get immediately the following limitation on the ~-value: 

In other words, in our approximations, the ~-value should lie in the region 

-1 to + 1 irrespective of the structures of n and K-meson, so this limitation 

seems to be very stringent one. Therefore according to our arguments, 

~~- 6 ,...__ -9 is very hard to understand. The value ~~0.66 (D. Luers et al., 

Phys. Rev. 133 (1964), Bl276) seems to accord with our limitations on ~-value. 

The problem of what the effects of compositness of the particles are is 

very interesting, but it is not so easy to derive clear-cut conclusions even in 

our method of treating composite particles. 

§ 3. On leptonic decays of hyperons 

In this section we discuss the leptonic decay of hyperons. From the point 

of view of Sakata model, l'-particle is considered to be three body composite 

particle and A-particle is an elementary particle. But, we may consider these 

particles as effective two-body composite particles, that is, l'-particle may be 

considered as [An] or [KN] bound state, and A-particle as [KN] bound state. 

From these viewpoints, in this section, first we discuss .;r+ ~A+ l + v decay on 

the basis of !(-baryon model for hyperons. This model was adopted recently 

by Z. Maki and M. Nakagawa in the analysis of nonleptonic decays of hyperons. 9
l 

They have shown that this model can offer a successful prospect of explaining 

the decay of hyperons. Hence we also adopt this modeP6
l to discuss z+ ->A+ l + v 

process, and consider nucleon as elementary particle. 

In this model Z and A-particle are composite particles with the following 

configurations : 
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Three-Body Lepton£c Decays of 1?:.-Mesons and Hyperons 

z+ = [I<:0P], 

A =--!~~[KP+ I<:oN]. 
1/2 

795 

(24) 

(25) 

We consider S-matrix of the above process In the lowest order of weak 

interaction. This is given as follows : 

We apply the recursion formulas for spin 1/2 composite particles composed of 

two particles (see the Appendix) to the matrix element <A : Q/ J>- (0) /Z+ : P) in 

Eq. (26). Then we get 

<A: Q/ J>-(0) /Z+: P) 

~ 

x <O/T: A (X:~) J"' (0) f(Y: r;) /O)Dz(Y) [ir P- m1-,]hpz (Y: r;), (27) 

where hQA (X: ~) and h1/ (Y: r;) are quite arbitrary except for the normalization 

condition. 

fd~hQA (X:~) <O/T: )z {J(* (.r1) P(x2) + Ko* (x1) N(x2)} /A: Q) = z(lrr)-3-, (28) 

j ·d~<z+ : P / T: f(o (x1) P Cx2) / O)hPz (X: ~) = ___ L_~ . (29) 
2 (2n) 3 

We take as hQA (X:~) and hPz (X:~) which satisfy Eqs. (28) and (29) the 

following: 

hQA (X:~)= 2(2
1
n)3 c:{Q)<A: Q/T: :2 {K(xl) P(x2) + Ko(xl) iV(x2)} /0), (30) 

hpz(X:~) =----1
--- __ } ____ <OIT: Ko*Cx1)P(x2) /Z+: P) (31) 

2 (2n) 3 Cz (P) ' 

where we define CA (Q) and Cz (P) as 

CA(Q) = fd~<A: Q/T: : 2 {x(-~ )F( -~~-) +Ka(--~ )~v(--~-)} /O) 

x<OIT: J2{K*(--{--)P( ---~-) +l(o*(-;-)N( --~--)}/A: Q), (32) 

Cz (P) = Jd~<z+: P/T: Ko (~-)P (- ~) /O)<O/T: Ka*(~--)P(- ~-) /Z+ :P). 

(33) 

With the use of Eqs. (30) and (31), Eq. (27) is rewritten as 
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796 T. Kaneko 

(A: OJ J)L (0) )I+: P) 

= J-··Jdx1dx2dy1dy{z(2~) 3 -J -cAcQ)~;(P) 

X (A: OJT: __ l~{K(xl)P(x 2 ) +K0 (xl)iV(x2)} !O) 
y2 

X [irQ- :mA] DA (X) (O!T: -~= {K*(x1)P(x2) + Ko*Cx1)N(x2)} J)L (O) Ka(yl)P(y2)j0) v2 
(-

XDz(Y) [irP-:mz](OJT: Ko*Cy1)P(y2) j.J,'+: P), (34) 

where 

As in § 2, the wave functions of ];+ and A-particles in Eq. (34) can be ex­

pressed in the following form : 

(O!T: Ko* (yl) P(y2) ji+: P) 

=exp (iPY)rdf/ + r Pf/ + rr;·Pr;f/ + (rr;·r P-r P·rr;)f/}uz(P) 

= exp (iPY) r5 {f/ + imsf/" + rr; · Pr;f/ + 2 (imsrr;- Pr;)f/} u1,· (P), (35) 

1 - --
<A: OJT: 1/z{K(x1)P(x2) +KoCx1)1V(x2)} JO) 

=exp ( -iQX) uA(Q)r5{f/ -rQf2A -r~ ·Q~f/- Cr~ ·rQ -rQ ·r~)f/} 

= exp ( -iQX) ~ (Q) r5 {flA + imAf2A -r~ ·Q~fsA- 2 (imAr~ + Q~)f4A}. (36) 

Here we assumed that relative parity of A and nucleon is even, and relative 

parity of I and A is also even.17) 

In Eqs. (35) and (36) we can consider that the last two terms (propor­

tional to ~ or r;) give negligibly small contributions in the integral in Eq. (34) 

compared to the first two terms, according to the assumptions in § 2. There­

fore we may use the following approximations: 

1 - --
<A: OJT: -1/z{K(x1)P(x2) +Ko(xl)iV(x2)} IO)[irQ-mA] 

~exp (- iQX) UA (Q) r 5 {fl A+ imAf2 A} [irQ -JnA] = 0, (37) 

[ir P- mz] (OJ T :Ka* ( y1) P( Y2) JZ+ : P) 

~[irP-ms]exp(iPY)r5{f/+imzf/}uz(P) =0, (38) 

where the last equality is derived from the relation 

[ir P-mz]r5uz(P) =0, 

~(Q)r5[irQ-mA] =0. 

(39) 

(40) 
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Three-Body Leptonic Decays o/ K-Mesons and 1--lyperons 797 

From Eqs. (37) and (38), we can conclude that, in our approximations, matrix 

element <A: Ql J>-127+ : P) is equal to zero. This result is due to the factor 

(ir P- m2:) and (irQ- mA) in Eq. (34). If we consider z+ and A-particle to be 

elementary particles, these factors do not appear in Eq. (34), therefore we may 

consider that the origin of the fact that main parts of the above matrix element 

vanish is the compositeness of 27+ and A-particle.*l 

This fact suggests that, if we assume the universal coupling theory, the 

matrix element of the decay _E+ ->A+ l + v is considerably small compared to 

that of nucleon beta decay, in the composite model adopted here, because in the 

ordinary beta decay there do not appear any composite particles. Furthermore, 

we can show that even if we take another model for 27+ and A-particle (we 

may consider the model in which A-particle is elementary and _E+ is [An+] com­

posite particle and also the model in which A is elementary and 27+ is [K0P] 

composite particle) the main parts of the matrix element <A: QIJ>-(0) 127+: P) 

vanish as far as we assume PAN= PAs= + 1 witb the use of the method for­

mulated in this paper. 

On the other hand, in the usually accepted theory of 27+ ->A + l + v decay / 8
) 

where contributions from vector current are negligibly small because of the con­

served vector current hypothesis and contributions from axial vector current 

are estimated with the use of Goldberger-Treiman relation, decay rates of the 

above process is about factor 3 smaller than that expected from universal coupl­

Ing theory without corrections of strong interactions. 

Next we should like to point out that this viewpoint may be extended to 

the other leptonic decays of hyperons. 

Experimentally, rates of leptonic decays of hyperons seem to be about one 

order small compared to tbe value expected from the universal coupling theory. 19
) 

In order to understand this discrepancy, it is believed in general that strangeness 

changing weak interaction coupling constants are about one order smaller than 

the one which does not change strangeness. 

Recently several authors 20
) succeeded in constructing such a theory of weak 

interactions. But here we show, in quite a different way, that if we take an 

appropriate composite model for hyperons, we might be able to understand 

above mentioned discrepancy between universal coupling theory and experiments. 

Here we consider ](-baryon model for hyperons. According to this model, 

nucleon can be considered to be elementary, A-particle is [KN] I=o composite 

particle, 27 is [I<N] I=l composite particle and E-particle is the superposition of 

[K27] I=l/2 bound state and [KA] I=l/2 bound state, that IS 

A= [I<N]I=O' 27= [KN]I=l' 

E=a[D]r=ll2+b[KA]I=ll2, (41) 

*) It will be necessary to make clear the physical meaning of these points. We shall now 

study this point. 
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798 T. Kaneko 

where we suppress the various factors which emerge from the isotopic sp1n 

space and represent the configurations symbolically. 

In this model, matrix elements of the leptonic decays of A, .I: and E-particles 

necessarily contain the following factors respectively: 

[iy P- mA] <OIA (Y: r;) lA: P) 

= [iy P-nzAJ<OIT: K* (yl)N(yz) !A: P) 

for the decays of A-particles, 

[ir P- :~nz] <OIZ (Y: r;) ll. : P) 

= [irP-mzJ<OIT: K*(y1)N(y2) IZ: P) 

for the decays of Z-particles, 

[ir P- ms] <OJE(Y: r;) IE: P) 

(42) 

(43) 

= [irP-JnsJ<OIT: {aK*(yl)Z(yz) +bK*(yl)A(y2)}1E: P) 

for the decays of E-particles. ( 44) 

It should be noted here that an ordinary nucleon beta-decay matrix element 

does not contain the factor [iy P- mN]. 

If we assume that PAN (relative parity of N and A), PzA and PsA are all 

even, wave functions of A, .I: and E-particles in Eqs. ( 42), ( 43) and ( 44) can 

be expressed in the following way : 

<OIT: K* (yl)N(yz) lA: P) 

= exp (iPY) r5{f/ + imAf/ + rr;. Pr;fsA + (rr; ·r P-r P·rr;)f/} UA (P)' (45) 

<OIT: K* (yl)N(yz) IZ: P) 

=exp (iPY) r5 {f/ + imzf/ + rr;· Pr;f/ + (rr; ·r P-r P·rr;)f/}uz (P), (46) 

<OIT:{aK*(y1)2(yz) +bK*(yl)A(yz)}IE: P) 

=exp (iPY) r5 {f/ + imsf/ + rr;. Pr;fs
8 + (rr; ·r P-r P·rr;)f/} Us(P). (47) 

In these equations, we may consider that the first two terms form the main 

terms according to the assumptions in § 2. Then Eqs. ( 45), ( 46) and ( 47) are 

approximated as 

[ir P- mA] exp (iPY) r5 {f/ + imAf/} UA (P) = 0, 

[irP-mz]exp(iPY)r5{f/+imzf/}uz(P) =0, 

[ir P-nls] exp (iPY) r5 {f/ + imsfz
8

} Us (P) = 0. 

(48) 

(49) 

(50) 

T'herefore we may conclude that the main parts of the matrix elements of 

leptonic decays of these hyperons vanish in K-baryon model for hyperons. 

Combining with these results we may infer that matrix elements of the 
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Three-Body Leptonic Decays of K-Mesons and Hyperons 799 

leptonic decays of baryons (JS = 0 and I JSI = 1) are much smaller than that 

expected from the universal coupling 'theory, with the only exception of the 

ordinary beta-decay of nucleon. 

Since the numerical estimations of these decay rates cannot be made in 

this stage of our theory, in some sense the above statements might be only a 

conjecture. 

§ 4. Conclusions and discussions 

In this paper we have formulated a method of treating weak processes 

where composite particles are involved. Our rnethod is based on the bound 

state theory of quantum field theory and therefore it can be constructed rigorous­

ly on the axioms of quantum field theory. (See the Appendix.) 

In § 2 we took up K+ ->n° + l + v decay as an example and made approx­

imations that can be considered to diminish the properties of compositeness of 

the particles, and we get the results that are essentially equivalent to the 

conventional elementary particle theory. This result seems to give a support 

to our treatment of composite particles. But our method of approximations are 

not well-examined ones and further improvements are hoped. 

In § 3 we discussed the problem of leptonic decays of hyperons. The method 

of treatment is essentially equivalent to the one adopted in § 2. And we got 

promising results to understand these experiments. It should be noted here 

that the results of § 3 are independent of the method of calculation of contri­

butions from weak vertex part. Therefore we may consider that these results 

are the more reliable ones. 

On the other hand, the analogous results to ours in § 3 were derived by 

various authors, as was mentioned in § 3, in quite different ways. Therefore it 

is very interesting to explore the relations between these methods and ours, 

but up to now this has not been done. We, however, should like to note here 

the following point. 

In § 2 we adopted the Sakata model and in § 3 we adopted the K-baryon. 

model for hyperons. Therefore it might be objected the inconsistency with our 

arguments. But we should like to remember that in the history of nuclear 

theory a-particle model for nucleus played important roles as well as the in­

dependent particle model. We believe that such a flexible viewpoint will be 

needed also in the present stage of the elementary particle theory. The re­

lations between the Sakata model and the K-baryon model should be searched 

for in the course of such investigations. 
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Appendix 

Derivation of recursion formula for spin 1/2 composite particle 

Recursion formula for spin 1/2 composite particle can be derived in a 

quite analogous way to that of spin 0 composite particle (see reference 9), 

especially K. Nishijima: Phys. Rev. 111 (1958), 995). 

First we assume asymptotic conditions in the following way (in the sense 

of weak convergence): 

Ain(X: 0 =A(X: ~) + JdX'Sn(X-X': mA)DA(.Y')A(X': ~), (A·1) 

f' 

Aout (X:~) =A (X:~)+ jdX' SA(X- X': mA) DA(X')A(X': ~)' (A·2) 

fin(X: ~) =I(X: ~)- \dx'f(.)(': ODz(X')SA(X'-X: mz), (A·3) 
.; 

(A·4) 

where X is coordinate of center of mass of composite particle and ~ is relative 

coordinate, SR and SA are retarded and advanced functions for spin 1/2 particles, 

and 

DA (X) = r p_!}~ + mA ' Dz (X) = r p~ 8 - -1nz . 
aXP aXP 

From Eqs. (A ·1) and (A ·2) we get 

{T: A (X: ~) cjJ (Z) · · ·} 

= {T: A in (X: ~) cjJ (Z) ... } - Jdx' sn (X- X' : mA) DA (X') {T: A (X' : 0 cjJ (Z) ... }' 

(A·5) 

{T : A (X: ~) cjJ (Z) · · ·} 

= {T: Aout(X: ~)cp(Z) ···}- JdX' SA(X- X': mA) DA (X') {T: A (X':~) cjJ(Z) ···}, 

(A·6) 

where cjJ (Z) · · · is the product of arbitrary kinds of field operators including 

fermion fields of even number, and {T: · · ·} means T-product of field operators. 

Then we subtract Eq. (A ·5) from Eq. (A ·6) and get 

Ao" t (X : ~) { T : cjJ ( Z) · · ·} - { T : cjJ ( Z) · · ·} A in (X : ~) 

= JdX'[SA(X-X': mA) -sncx -X': mA)]DA(X') {T: A(X': ~)cf;(Z) ···} 

(A·7) 
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Three-Body Leptonic Decays of K-M esons and Hyperons 801 

= JdX'S(X-X': mA)DA(X') {T: A(X': ~)¢(Z) ... }, 

where 

S(X- X': mA) ==SA(X- X': mA) -SR(X- X': mA). 

We take the vacuum expectation value of Eq. (A ·7) and devide it into the 

positive and the negative frequency parts, then we get 

~n(OjA(X: ~) JB)(BJ {T: ¢(Z) ···} jO) 

(' 

= jdX' s<+) (X- X': mA) DA (X') (01 {T: A (X': ~)cjJ(Z) ···} jO), (A·8) 

where !B) represents physical one particle state corresponding to the field 

operator A (X:~), and Zn means the summation over these states if there exist 

many such states. Furthermore, in deriving Eq. (A ·8), we have used the 

equation for one particle states 

(OjAout (X:~) jB) = (OjA (X:~) jB). 

For s<+) (X- X' : rnA) in Eq. (A· 8), it is convenient to use the following 

expresswns : 

S(+)(X X'. ) -[ 8 . J A(+)()( X'. ) - · 'InA - r ~tf;(5(=-5f):- mA k.1 - . • rnA 

= [r ft 
8 
(X~- X');- rnA ] 2 -(~:) 3 -j -~ exp (iP(X --X')) (P

2 

+ m
2

A O) 

= [r p,'8(X ~ x'),.- m~A 1z-ci~)-3};B exp (iPn(X- X')) (Pn
2 

+'In/= 0) 

=---=--z-.En[ir Pn- rnA]exp(iPn(X- X')). (Pn2 + rnA2 =0) 
2 (2n) 3 

With the use of this expression, from Eq. (A ·8) we get the following relation: 

(OjA(X: ~) jA: Q)(A: Ql {T: ¢(Z) ···} jO) 

. (' 

=---=L ___ \dX'[irQ-rnA]exp(iQ(X- X'))DA(X')(Oj {T: A(X': ~)¢(Z)···} jO), 
2 (2n) 3 J 

(A·9) 

where lA : Q) means the physical one particle state of A-particle with four­

momentum Q. Next we define hQA (X:~) which satisfies the following normaliza­

tion condition: 

~d~hQA(X: ~)(OjA(X: ~) jA: Q)= ___ ! ___ . · 
J 2(2n) 3 

(A·10) 

From the translation in variance of the theory, we can proof that hQA (X: ~) which 

satisfies condition (A ·10) has the following properties : 
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802 T. Kane!w 

(A ·11) 

Here we multiply Eq. (A ·9) with hQA (X: ~) from the left-hand side and 

integrate with ~' and use the properties (A ·11), then we get the following 

recursion formula : 

<A: QJ {T: cjJ(Z) ···} JO) 

= -i \d~Yd~ hQA(X: ~) UrQ-mA]DA(X)<Ol {T: A(X: ~)cjJ(Z) ···} JO) . 
.; 

(A ·12) 

In quite analogous way, from Eqs. (A ·3) and (A ·4) we obtain the recur­

sion formula of the following form: 

<OJ {T: cjJ(Z) ···}IX: P) 

=i \dXd~<OI {T: f(X :~) cfJ(Z) ···} IO)Z\(X) [ir P- mx]hi' (X:~), (A ·13) 
.; 

where hps (X: n satisfies the following normalization condition : 

(A ·14) 

and has the property 

(A ·15) 

Equations (A ·12) and (A ·13) are desired recursion formula for spin 1/2 com­

posite particles composed of two fundamental particles. 
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