Three Chapters of Measure Theory in
Isabelle/HOL

Johannes Holzl* and Armin Heller

Technische Universitat Miinchen
Institut fiir Informatik, Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany
http://home.in.tum.de/ hoelzl/

Abstract. Currently published HOL formalizations of measure theory
concentrate on the Lebesgue integral and they are restricted to real-
valued measures. We lift this restriction by introducing the extended
real numbers. We define the Borel o-algebra for an arbitrary type forming
a topological space. Then, we introduce measure spaces with extended
real numbers as measure values. After defining the Lebesgue integral and
verifying its linearity and monotone convergence property, we prove the
Radon-Nikodym theorem (which shows the maturity of our framework).
Moreover, we formalize product measures and prove Fubini’s theorem.
We define the Lebesgue measure using the gauge integral available in Is-
abelle’s multivariate analysis. Finally, we relate both integrals and equate
the integral on Euclidean spaces with iterated integrals. This work covers
most of the first three chapters of Bauer’s measure theory textbook.

1 Introduction

Measure theory plays an important role in modeling the physical world, and in
particular is the foundation of probability theory. Current HOL formalizations
of measure theory mostly concentrate on the Lebesgue integral [2,10,11]. We
extend this by a number of fundamental concepts:

Lebesgue measure To use the Lebesgue integral for functions on a real domain
we need to introduce a measure on R. The Lebesgue measure A assigns the
length b — a to every interval [a,b], and is closed under countable union
and difference. The Lebesgue integral on A is an extension of the Riemann
integral.

Product measure Defines a measure on the product of two or more measure
spaces. We can also represent Euclidean spaces as products of the Lebesgue
measure on R. This is also necessary to prove Fubini’s theorem, i.e., the
commutativity of integrals.
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Extended real numbers The introduction of Lebesgue measure requires infi-
nite measure values, hence we introduce the extended real numbers and use
them as measure values.

Radon-Nikodym derivative Given two measures v and pu, we can represent
v with density f with respect to u, under certain assumptions.

VA:_LfdM

This density f is called the Radon-Nikodym derivative. The existence of such
a density is used in information theory to define mutual information and in
probability theory to define conditional expectation.

Restricted forms of these concepts where already formalized in HOL theorem
provers [2,5,6,8,10,11]. By formalizing these concepts in a more generic way, it is
now possible to combine the results of these works. With the Lebesgue measure,
the Radon-Nikodym theorem and the product measure we formalize most of the
first three chapters (~ 70 pages) of Bauer’s textbook about measure theory [1].
We only show the theorem statements, but the full proofs are publicly available
in the current development version of Isabelle.!

2 Preliminaries

We use the following concepts and notations: We write the power set as P(A) =
{B | B € A}, the universe for type o as U :: o set, L:: a is an arbitrary element
of type «, the image of A under f is f[A] = {f z|z € A}, the range of f
is rng f = f[U], the preimage of B under f is f~[B] = {z| f = € B}, the
cartesian product is A x B = {(a,b) | a € A,b € B}, and the dependent product
isIlTreA. Bx ={f|Vexe A. fxre Bz}and A > B = ITxe A. B. The indicator
function y4 x = 1 if x € A otherwise x4 * = 0. With f T = we state that f
converges monotonically from below to x, this is defined for functions with range
R and sets. Hilbert choice is SOME x. P z, i.e. (3x.Px) — P(SOME x.P z)
holds. For the product spaces we also use the extensional dependent product

IDxe A Brx={f|(VexeA faeBax)ar (Ve ¢ A fo=1)}

We need to enforce having exactly one value outside of the domain, otherwise
there is more than one function with the same values on A. We use t :: a to
annotate types and a = S for function types. These should not be confused
with set membership x € A or the dependent function space A — B, which are
predicates and not type annotations. We use t :: (« :: type_class) to annotate
type classes.

The locale-command introduces a new locale [4]. We use it to define the
concept of algebras, o-algebras, measure spaces etc.

locale [ = bs + fixes x::«« assumes P, x and ... and P, x

! http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Probability



This introduces the locale [ with a variable x and the assumptions Pi,..., P,.
It inherits the context like variables and assumptions, but also theorems, abbre-
viations, definitions, setup for the proof methods and more from bs. We get the
theorems about a specific instantiation [ x by proving P, x A -+ A P, z. When
we prove a theorem in a locale we have access to the theorems of bs, i.e. a lemma
in algebra is immediately available in the sigma_algebra locale.

3 Extended Reals

The Lebesgue measure A takes infinite values, as there is no real number we can
reasonably assign to A(R). So we need a type containing the real numbers and a
distinct value for infinity. We introduce the type R as the reals extended with a
positive and a negative infinite element.

Definition 1 (Extended reals R).

datatype R =0 | (R),, | — o real :: R =R

real (ro) =7 real 00 = 0 real (—o0) =0

The conversion function real restricts the extended reals to the real numbers
and maps 00 to 0. For the sake of readability we hide this conversion function.

Definition 2 (Order and arithmetic operations on R).

T K Pp «— T <P r < 00 —0<T
—(re) = (=7), —(=0) =
Tw +De = (r+p), 0+ x =0 T+ 00 =0
0 if ©=0
T Pr = (1p), x'iw:ioo'x:{sgnx-ioo otherwise

For measure theory it is suitable to define oo - 0 = 0. Using min and max as
join and meet, we get that Ris a complete lattice where bot is —co and top is cc.

Our next step is to define the topological structure on R . This is an extension
of the topological structure on real numbers. However we need to take care of
what happens when +00 is in the set.

Definition 3. open A «— open {r| ro, € A} A
(vceAd—JzNy>z. ypoe A)A(—0eA— JxVy <z y, €A

From this definition the continuity of -, follows directly. The definition of
limits of sequences in Isabelle/HOL is based on topological spaces. This allows
us to reuse these definitions and also some of the proofs such as uniqueness of
limits. We also verify that the limits and infinite sums on real numbers are the
same as the limits and sums on extended reals:

Lemma 1. (An.(f n),) —— 7« —> (M. fn)——>r
- n—oo n—>a0



Corollary 1. If f is summable, then >, (f n), =, fn), -

Hurd [7] formalizes similar positive extended reals and also defines a complete
lattice on them. Our R includes negative numbers and we not only show that it
forms a complete lattice but also that it forms a topological space. The complete
lattice is used for monotone convergence and the topological space is used to
define a Borel o-algebra on R.

4 Measure Theory

We largely follow Bauer’s textbook [1] for our formalization of measure theory.
An exception is the definition of the Lebesgue integral which is taken from
Schilling [12].

4.1 The o-algebra

We use records to represent (o-)algebras and measure spaces. We define measure
spaces as extensions to algebras, hence we can use measure spaces as algebras.

record « algebra = space :: a set
sets 1 o set set

To represent the algebra M = (£2,.A) we write M = (space = (2, sets = A). We
use this type to introduce the concept of (o-)algebras. The set (2 is typically but
not necessarily the universe Y. For probability theory in particular, it is often
[0,1] instead of R. The sets in A are the measurable sets.

Definition 4 (o-algebra).

locale algebra =
fixes M ::« algebra
assumes sets M S P(space M)
and J € sets M
and Va € sets M. space M — a € sets M
and Va,b € sets M. a u b€ sets M

locale sigma_algebra = algebra +
assumes VF ::nat=a set. rng F' € sets M — (|J, F' ©) € sets M

The easiest way to define a o-algebra (other than the power set) is to give a
generator G and use the smallest o-algebra containing G (called its o-closure).

Definition 5 (o-closure). sigma_sets G §2 denotes the smallest superset of G
containing & and is closed under £2-complement and countable union.

inductive sigma_sets for G and {2 where
a € G — a € sigma_sets 2 G
O € sigma_sets 2 G
a € sigma_sets 2 G — (2 — a € sigma_sets 2 G
rng (F::nat= o« set) € sigma_sets 2 G — (|J, F 1) € sigma_sets 2 G

sigma M = (space = space M, sets = sigma_sets (space M) (sets M))



We define the o-closure inductively to get a nice induction rule. Then we
show that it actually is the smallest o-algebra containing G.

Lemma 2. The sigma operator generates a o-algebra.
sets M < P(space M) — sigma_algebra (sigma M)

Lemma 3. If G € P(2) then
sigma_sets 2 G = {B D G| sigma_algebra (space = (2, sets = B[)}

Measurable functions. When preimages of measurable sets in My under f are
measurable sets in My we say [ is M1-Ms-measurable. We use the function-type
to represent them, but restrict it to the functions from space M; to space Ms.
We also need to intersect the preimage under f with space M;.

Definition 6 (Measurable). measurable My My =
{f € space My — space Ms| VA € sets Ma. f~1[A] n space M; € sets M}

When M, is generated by a o-closure it is enough to show that it is measur-
able on the generator:

Lemma 4. If sets G € P(space G) and f € measurable My G then
f € measurable My (sigma G).

Borel o-algebra. The o-algebra generated by the open sets of a topological
space is called a Borel o-algebra. In Isabelle/HOL topological spaces form a type
class defining the open sets. Instances are Euclidean spaces (hence R) and R.

Definition 7 (Borel sets).
borel = sigma (space = U :: (« :: topological_space) set, sets = {S| open S})

As a first step we show that the Borel sets on real numbers are not only
generated by all the open sets, but also by all the intervals | — o0, a[. Then we
show the Borel measurability of arithmetic operations, min, max, etc. To show
the measurability of these operations on R we first show that -, and real are
Borel-Borel-measurable (which follows from their continuity). The operations
on R are compositions of -, and real with operations on real numbers. We use
“M-measurable” as abbreviation for “M-Borel-measurable.”

Dynkin systems. We use Dynkin systems to prove the uniqueness of measures.
Compared with o-algebras, they are only closed under countable unions if the
sets are disjoint.

Definition 8. disjoint F «— (Vi,j.i#j— FinF j =)



Definition 9 (Dynkin system).

locale dynkin_system =
fixes D::« algebra
assumes sets D € P(space D)
and J € sets D
and Va € sets D. space D — a € sets D
and VF. disjoint F A tng F € sets D — (|, F i) € sets D

Definition 10 (Closed under intersection).
N-stable G «— (YA, B € sets G. A n B € sets G)

Dynkin systems are now used to prove Dynkin’s lemma, which helps to gen-
eralize statements about all sets of a n-stable set to the o-closure of that set.
We use Dynkin’s lemma to prove the uniqueness of measures.

Theorem 1 (Dynkin’s lemma). For any Dynkin system D and n-stable sys-
tem G, if sets G C sets D C sets (sigma G), then sigma G = D.

4.2 Measure spaces

A measure space is a o-algebra extended with a measure which maps measurable
sets to nonnegative, possibly infinite measure values. We introduce a new type
measure_space which extends the algebra record. We represent measure values
with R, and abbreviate 2 = space M, A = sets M, and p = measure M.

Definition 11 (Measure space).

record measure_space = o algebra + measure :: (o set) =R
locale measure_space = sigma_algebra M for M :: a measure_space +
assumes i & =0
andVAe A 0<p A
and VF. disjoint F Arng F € A— p (|, F i) =, p (F 1)

In the remaining sections we fix the measure space M. We prove the ad-
ditivity, monotonicity, and continuity from above and below for measures. For
proving the existence of a measure we provide Caratheodory’s theorem, which
was ported from Hurd [6] and Coble [2].

Theorem 2 (Caratheodory). Assume G is an algebra, and let be f a function
such that f is nonnegative on A, f & =0, and is f countably additive, i.e.,

VF. disjoint F A rng F C sets G — f (ULF Z) =>,f (Fi)

then there exists a v s.t. YA€ sets G.v A = f A and sigma G(measure := v
is a measure space.

For our purposes to formalize product measures and to equate the products
of the Lebesgue measure, we prove the uniqueness of measures.



Theorem 3 (Uniqueness of measures). Assume

— w and v are two measures on sigma G

— G is n-stable

— Cis a o-finite cover of G: rng C € sets G, C 1 space G, and Vi. u(C i) < o0
— wand v are equal on G: VX € sets G.uy X =v X

then p and v are equal on sigma G.

An important class of measure spaces are o-finite measure spaces. It requires
a sequence of finitely measurable sets which cover the entire space. The product
measure and the Radon-Nikodym theorem assume a o-finite measure.

Definition 12 (o-finite measure space).

locale sigma_finite-measure = measure_space +
assumes 3IF. tng F S AAF 102 AVi.op (F i) <o

Almost everywhere. Often predicates on measure spaces do not hold for all
elements in a measure space, but the elements where they do not hold form
a subset of a null set. In textbooks this is often written without an explicitly
quantified variable but rather with an appended “a.e.” (standing for “almost
everywhere”). We use a syntax with an explicit binder.

Definition 13 (Almost everywhere).
(AEx. Px)«—INeA {ze2| - Pz} S NApuN=0

The definition of almost everywhere in [6] and [10] assumes that {x € 2| = P x}
is a null set, i.e. it is also measurable.

Theorem 4 (AE modus ponens).
(AEx. P x) — (AFx. P2z — Q z) — (AEz. Q x)

Our relaxed definition requires no measurability of @ in the modus ponens
rule of almost everywhere.

Theorem 5. (Vx € 2. P z) — (AE x. P )

Let us take a look at the statement (AE z. f x < g x) — (AFz. f x < g x).
This can be directly solved by AE modus ponens and theorem 5. The measura-
bility of f and g is not required.

4.3 Lebesgue Integral

The definition of the Lebesgue integral requires the concept of simple functions.
A simple function is a Borel-measurable step function (i.e. its range is a finite
set), or equivalently a step function where the preimage of every singleton set
containing an element of the range is measurable. The second formulation has the
advantage that the definition does not require the notion of Borel o-algebras and
is thus more general, as it allows arbitrary ranges. The predicate simple_function
is defined as follows:



Definition 14 (Simple function).
simple_function f «— finite f[2] A¥x € f[2]. f '[{z}]n e A

While we use this definition only for functions f :: a=R, this is a nice
characterisation for finite random variables in probability theory. When the range
of f is R it is also representable as sum:

Lemma 5.
Yz € £2. f xr = Z Y Xf1[{y}ln2 T
yefl£]

This already suggests the definition of the integral SS of a simple function f
with respect to the measure space M:

Definition 15 (Simple integral). Let f be a simple function.

§FdM =X, oy (w0 2)

To state the definition of the integral of functions f :: =R, simple functions
have to be used as approximations from below of f. Then the integral is defined
as the supremum of all the simple integrals of the approximations.

Definition 16 (Positive integral).
S+ f dM = sup {SSg dM ‘ g < ft A simple_function g}

The function f* is the nonnegative part of f, i.e. f* is zero when f is
negative, otherwise it is equal to f. Hence the positive integral is equal when
the integrating functions are almost everywhere equal. Finally integration can
be defined for functions f :: a=R as usual.

Definition 17 (Lebesgue Integrability and Integral).

integrable M f «—— f € measurable M borel A
(Y. (f2), dM) <o A (S+x (—f 2), dM) <@

§fav = (§fo (f ), am) = (§fe (=f @), am)

(Note that explicit type conversions from R to R have been omitted in this defi-
nition for the sake of readability.)

Remark: Textbooks usually write § fdu(z), where we instead specify the
entire measure space M and optionally bind the variable x directly after the
integral symbol, {z. fzdM. If no variable is needed we write { fdM, and a
restricted integral is abbreviated as {x € A.f  dM = {z.f z- xa x dM.

Many proofs of properties about the integral follow the scheme of the defini-
tions and first establish the desired property for SS, then for S+, and eventually
for S The monotonicity of the integral is proven this way, for example.



Lemma 6 (Monotonicity). If f and g are measurable functions, then
(ABz. fe<gz)— §fdM < ({gdM

Another way of constructing proofs about Borel-measurable functions u ::
a =R is: first, prove the desired property about finite simple functions, then,
prove that the property is preserved under the pointwise monotone limit of
functions. For this to work, we need a lemma stating that every Borel-measurable
function u :: @« = R can be seen as the limit of a monotone sequence of finite
simple functions.

Lemma 7. Let u be a nonnegative and measurable function.
3f. (Vi. simple_function (f i) A(Vx e 2.0< fixz #x0))Aflu

To use this with the Lebesgue integral, there is a compatibility theorem,
called the monotone convergence theorem, which allows switching the supremum
operator and the positive integral.

Lemma 8 (Monotone convergence theorem). Let f : N=a =R be a
sequence of nonnegative Borel-measurable functions, such that
ViVee 2. fia<f (i+1)x. Then it holds that:

sup . S+f idM = S+(sup i. fi)dM

The Monotone convergence theorem is used in the proof of Fubini’s theorem.
Another useful convergence theorem is the dominated convergence theorem. It
can be used when the monotonicity of the function sequence does not hold.

Lemma 9 (Dominated convergence theorem). Let u :: N = o = R be
a sequence of integrable functions, w :: a = R be an integrable function, and
v a=R be a function. If (Vi. |u i x| < w x) and (M. v i x) —4 v x for all
x € {2 then integrable M v and (/\i. Yui dM) — o Jv dM.

To transfer results about integrals from one measure space to another one,
the following transformation lemma can be used.

Lemma 10. IfT is M-M'-measurable and measure M' A equals i (T~ 1[A]n(2)
for all A€ sets M' and f is M'-integrable, then f o T is M'-integrable and

(fdM' =(foT dM

4.4 Radon-Nikodym derivative

The Radon-Nikodym theorem states that for each measure v that is absolutely
continuous on M there exists an a.e.-unique density function to represent v on
M. This is needed to define conditional expectation in probability theory and
mutual information in information theory. In this section we assume that M is
o-finite.



Definition 18 (Radon-Nikodym derivative).

RN_deriv M v = SOME f € measurable M borel.
(VzeR. 0< fz)n <VX6A.VX= (g*xex.fde))

To work with this definition we need to prove the existence of such a function.

Theorem 6 (Radon-Nikodym). If v is a measure on M and v is absolutely
continuous w.r.t. M, i.e., VAe A.y A=0— v A =0 then

RN_deriv M v € measurable M borel
AVX e A v X = (['v e X. RN.deriv M v @ dM)

The next theorem shows that two functions are a.e.-equal when they are
equal on all measurable sets, hence follows the uniqueness of RN_deriv.

Theorem 7. If f and g are nonnegative and M -measurable and
VA e A. (VweA.fde) = (SereA.gmdM) then (AEx. f x = g x)

4.5 Product Measure and Fubini’s theorem

We first introduce the binary product of measure spaces, and later extend this
to arbitrary, finite products of measure spaces.

Binary product measure. The definition of a measure on a binary prod-
uct o-algebra is straightforward. All we need to do is compose the integrals of
both measure spaces. With Fubini’s theorems we later show that the result is
independent of the order of integration.

Definition 19.

bin_algebras :: o measure_space=> 3 measure_space
= (a x ) measure_space
bin_algebrag, My My = (space = space My x space M,
sets = {A x B|A € sets My, B € sets My},
measure = S+m. (S+y Xaxs (T,Y) dMg) dM)
My Q),, My = sigma(bin_algebrag My Ma)

In this section we assume that M; and M, are o-finite measure spaces. We
verify the definition of the binary product measure by applying the measure to
an element A x B from the generating set of M; (), Mo.

Lemma 11. If A€ sets My and B € sets My then
measure (My ), M2) (A x B) = measure My A - measure My B .

10



Lemma 12. Show the measurability of the cut {y|(z,y) € Q}
for all Q € sets (M1 &),,, M2) and all z.

{yl(z,y) € Q} € sets My (1)
(Ax. measure Ms {y|(x,y) € Q}) € measurable My borel (2)

measure (My ), M2) Q = S+ac. measure Ms {y|(z,y) € Q} dM; (3)

Theorem 8. sigma_finite_measure (M; X),, Ma)

Fubini’s theorem. From the product measure we get directly to the fact that
integrals on o-finite measure spaces are commutative.

Lemma 13. If f is My ),, Ma-measurable then

()\x. S+y. f (z,v) dMg) € measurable My borel and

o (v f (@) dd) dMy = §° f d(My @, Ma) -
With theorem 3 we show that the pair swap function (A(z,y).(y,x)) is mea-
sure preserving between M; ), M and M ),,, Mi. This allows us to get sym-

metric variants of (1), (2), and (3) without reproducing a symmetric proof.

Corollary 2 (Fubini’s theorem on R). If f is M; ),, Ma-measurable then

o, (§%. f (@) i) adn = §%y. (5. f (o,y) db) db,
Lemma 13 can be extended to integrability on real numbers.
Lemma 14. If f is M; X),, Ma-integrable then
M, -AE x. integrable Ms (My. f (x,y)) and
Sz (§y. f(z,y) dMs) dMy = § f d(M: ®),, Ma) -
Finally, we prove Fubini’s theorem by this lemma and its symmetric variant.

Corollary 3 (Fubini’s theorem). If f is My (X),, Ma-integrable then

Sz.(Sy. f (z,y) dMy) dMy =§y. (§z. f (z,y) dMy) dM; .

Product measures. Product spaces are modeled as function space, i.e. the
space of dependent products. In this section we assume M ¢ is a o-finite measure
space for all 7. Product spaces can also be defined on arbitrary index sets I,
however this holds only on probability spaces. We assume a finite index set I.

11



Definition 20.

prod_algebrag i L set= (1=« algebra) = (1= ) algebra
prod_algebrac I M = (space = (ILi € I. space (M 7)),
sets = {(HEi €el.Ei)|E.Viel. Eiesets (M i)}[)
,iel.Mi = sigma (prod_algebrac I M)(measure := SOME v.
sigma_finite_measure (sigma (prod_algebrag I M)(measure := v)) A
VE. (Viel. E i€ sets (M 1))

—s v (ILjieI. E i) =[],.; measure (M i) (E 1))

icl

We abbreviate Py = (II,, i € I. M i) and n; = measure Pr. The defi-
nition of P; takes sigma (prod_algebra, I M) and extends it with some mea-
sure v which forms a o-finite measure space and which is uniquely defined on
prod_algebrag I M, i.e., the generating set. These properties only holds for Py
when such a measure function exists, we prove the existence by induction over
the finite set I.

Theorem 9. If I is a finite set then sigma_finite_measure Pr and
VE. (Vi. E i€ sets (M i) — ny (ILjie I. E i) = [[,.; measure (M i) (E i)

We use merge I J = (A (z,y) i. ifi € I thenx i else ifi € J theny i else 1) as
measure preserving function from Py ),, Py to Pry..

Lemma 15. If I and J are two disjoint finite sets and A € sets Py then
mrog A = measure (Pr ), Py) ((merge I J)~'[A] U space (Pr®),, Pr))
A finite index set I’ is either represented as I' = I u J, wih I and J finite,
or I' = {i}. We give rules how to handle integrals in both cases, this allows us

to iterate the Lebesgue integral on nonnegative functions in an inductive proof.
Lemma 16. If I and J are disjoint finite sets and f is Pr j-measurable then
S+f AP,y = S+x. (S+y f (merge I J (z,y)) dPJ) dPy
Lemma 17. If f is M i-measurable then
§Ta. f (x i) dPgy = §" f d(M 4)

We extend these two lemmas to Lebesgue integrable functions. This helps us
to prove the distributivity of multiplication and integration by induction on I.

Corollary 4. If I # & is finite and f i is M i-integrable for all i € I then

S (Iier £ i (2 ) dPr = [ 1, (§(f 0) d(M 0))

12



4.6 Lebesgue Measure

We have now formalized the concepts of measure spaces, Lebesgue integration
and product spaces. An important measure space is the one on R, where each
interval [a, b] has as measure value the length of the interval, b — a. The Borel
o-algebra is generated by these intervals. The corresponding measure is called
the Lebesgue-Borel measure, its completion is the Lebesgue measure.

Instead of following the usual construction of the Lebesgue measure as the
o-extension of an interval measure we use the gauge integral? available in the
multivariate analysis in Isabelle/HOL.?> The gauge integral is an extension of
the Riemann and also of the Lebesgue integral on Euclidean vector spaces. In
Isabelle/HOL the predicate integrable_on A f states that the function f is gauge
integrable on the set A, in which case the gauge integral of f on the set A has
the real value integral A f. The gauge measure of a set A is the gauge integral
of the constant 1 function on A.

Since the gauge measure is restricted to finitely measurable sets, it cannot
be used directly as Lebesgue measure. However we can measure the indicator
function x4 on the intervals [—n, n] for all natural numbers n. When x 4 is mea-
surable on all intervals, we define it as Lebesgue measurable and the Lebesgue
measure is the supremum of the gauge measures for all intervals [—n,n]. To
define the Lebesgue measure on multidimensional Euclidean spaces we use hy-
percubes {z|Vi. |x;| < n}. The o-algebra of the Lebesgue measure on a Euclidean
space « consists of all A::« set which are gauge measurable on all intervals.

Definition 21 (Lebesgue measure).
lebesgue,, = ( space = U,
sets = {A|Vn. integrable_on {x|V i.|z;| < n} (xa)}
measure = sup n. integral {x|V i.|z;] < n} (xa))

Theorem 10. The Lebesgue measure forms a o-finite measure space.
sigma_finite_measure lebesgue,,

From the definition of the Lebesgue measure it is easy to see that all Lebesgue
measurable simple functions whose integral is finite are also gauge integrable.
With the monotone convergence of the gauge integral we show that all nonneg-
ative Lebesgue measurable functions with a finite integral are gauge integrable.
And finally we show that all Lebesgue integrable functions are gauge integrable.

Theorem 11. If f is Lebesgue integrable then integrable_.on U f and
integral Uf = § f d(lebesgue,) .

We know that lebesgue, is a o-algebra, and since all intervals [a,b] are
Lebesgue measurable all Borel sets are Lebesgue measurable.

Lemma 18. A € sets borel — A € sets lebesgue,,

2 The gauge integral is also called the Henstock-Kurzweil integral.
3 The multivariate analysis in Isabelle/HOL is ported from a later version of [5].

13



We introduce the Lebesgue-Borel measure by changing the measurable sets
from the Lebesgue sets to the Borel sets.

Definition 22 (Lebesgue-Borel measure). A,=lebesgue,, (sets := sets borel)
Theorem 12. sigma_finite_measure A,

With theorem 3 we know that A, is equal to other measures introduced on
the Borel sets and based on the interval length. The Lebesgue-Borel measure
is defined as a sub-c-algebra of the Lebesgue measure, hence Lebesgue-Borel
integrability induces gauge integrability.

Theorem 13. If f is Ay-integrable then integrable_on Uf and
integral U f = § fd,.

Euclidean vector spaces and product measures. We relate the Euclidean
space a with the n-dimensional Lebesgue measure A" = (II,,, i € {1,...,n}. Ag).
The function p2e:: (N=R) =« maps functions to vectors with (p2e f); = f 1.
Theorem 3 helps us to show that it is measure preserving between AP(®) and .4

Lemma 19. Any A,-measurable set A satisfies
measure Ay A = measure XP(®) (p2e™1[A] n space XP(¥)),
From this follows the equivalence of integrals.

Theorem 14. If f is Ay-measurable then

(" fdx = §Tz. f (p2e x) dNP(@
integrable A, f «— integrable AP(®) (f o p2e)
§ fd, = [z f (p2 z) dAP®

The Euclidean vector space formalizations in Isabelle/HOL include the di-
mensionality in the vector type. Here it is not possible to use induction over the
dimensionality of the Euclidean space. With theorems 13 and 14 we equate the
gauge integral to the Lebesgue integral over A", we then use induction over n.

5 Discussion

Most measure theory textbooks assume that product spaces are built by iterating
binary products and that the Euclidean space is equivalent to the product of the
Lebesgue measure. In our case these are three different types, which we need
to relate. Using theorem 3 we show the equivalence of measure spaces of theses
types. This not only helps us to transfer between different types but also to avoid
repeated proofs. For example Fubini’s theorem needs the symmetric variant of

* D(a) is the dimension of the euclidean space a.
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some theorems. Instead of repeating these proofs as the text books suggest we
show that the measure is equal under the pair swap function.

We also diverge from text books by directly constructing the binary product
measure and the Lebesgue measure. Usually text books show the existence of
a measure and then choose one meeting the specification. This is difficult in
theorem provers as the definition is not usable until the existence is proven.
Otherwise, we prefer to stay close to the standard formalizations of measure
theory concepts. Sometimes this requires more work if we only want to prove one
specific lemma, but it is easier to find textbook proofs usable for formalization.

Locales as mechanism for theory interpretation are convenient when proving
the Radon-Nikodym theorem and product measures. We instantiate measure
spaces restricted to sets obtained in the proof. By interpretation inside the proof
we have full access to the automation and lemmas provided by the locale.

Type classes simplify the introduction of R as it allows us to reuse syntax and
some theorems about lattices, arithmetic operations, topological spaces, limits,
and infinite series. We use the topological space type class to define the Borel
o-algebra. This allows us to state theorems about Borel sets for R and R.

6 Related Work

Our work started as an Isabelle/HOL port of the HOL4 formalization done by
Coble [2]. We later reworked most of it to use the extended reals as measure
values and open sets as generator for the Borel o-algebra. We also changed the
definition of the Lebesgue integral to the one found in Schilling’s textbook [12].
We define the integral of f as the supremum of all simple functions bounded
by f. Coble used the limit of the simple functions converging to f.

Hurd Richter Coble Mhamdi Lester| PVS Mizar HOL-Light|Isabelle
R v v v v
Borel (open) v v v v
Integral v v v v v v v v
A [0,1] v v v v
Products v RP@FA) v
Dynkin v v

Table 1. Overview of the current formalizations of measure theory.

Table 1 gives an overview of the current formalizations of measure theory
we are aware of. The columns list first the work of Hurd [6], Richter [11],
Coble [2], Mhamdi et al. [10], and Lester [8]. The second part of the columns
list theorem provers or libraries formalizing measure theory. Beginning with the
PVS-NASA library,> the Mizar Mathematical Library (MML), the multivari-

® http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
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ate analysis found in HOL Light and finally the work presented in this paper.
Mhamdi et al. represents the current state of HOL4, hence HOL4 is not listed.
The rows correspond to different measure theoretic concepts and features.

Hurd [6] formalizes a measure space on infinite boolean streams isomorphic
to the Lebesgue measure on the unit interval [0, 1]. His positive extended re-
als [7] are unrelated to this. Richter [11] formalizes the Lebesgue integral in
Isabelle/HOL and uses it together with Hurd’s bitstream measure. Richter in-
troduces the Borel o-algebra, but only on right-bounded intervals in R.

Coble [2] uses product spaces and the Radon-Nikodym derivative on finite
sets to define mutual information for his formalization of information theory. He
ports Richter’s formalization of the Lebesgue integral to HOL4 and generalizes
the definition of o-algebras to be defined on arbitrary spaces {2 # U. While his
formalizations of the Lebesgue integral is on arbitrary measure spaces, he states
the Radon-Nikodym theorem and the product measure for finite sets only.

The work by Mhamdi et. al [10] extends Coble’s [2]. Their definitions of the
Lebesgue integral and Borel o-algebra are comparable to the ones in this paper.
However, they do not formalize measure values as extended real numbers, but
only as plain reals. They define a more restricted version of the almost every-
where predicate, and do not give rules for the interaction with logical connectives.
They prove Markov’s inequality and the weak law of large numbers.

There is also the PVS formalization of topology by Lester [8]. He gives a
short overview of the formalized measure theory, which includes measures using
extended real numbers, a definition of almost everywhere, Borel o-algebras on
topological spaces, and the Lebesgue integral. In recent developments the PVS-
NASA library contains binary product spaces and the proof that the Lebesgue
integral extends the Riemann integral. In PVS, abstract reasoning is performed
using parametrized theories, similar to our usage of locales.

Endou et. al. [3] proves monotone convergence of the Lebesgue integral in
the MML. It also contains measure spaces with extended real numbers, and the
Lebesgue measure. Merkl [9] formalized Dynkin systems and Dynkin’s lemma in
MML, however without a concrete application.

In HOL Light an extended version of Harrison’s work [5] introduces gauge in-
tegration on finitely-dimensional Fuclidean spaces which is similar to the product
space of Lebesgue measures. This is then used to define a subset of the Lebesgue
measure, missing infinite measure values. The definition of Euclidean spaces
RP(®) and RP@) allows to create the product RP(*+5) His theories are now
available in Isabelle/HOL and we use them to introduce the Lebesgue measure
and to show that Lebesgue integrability implies gauge integrability and that in
this case both integrals are equal.

7 Conclusion

The formalizations presented in this paper form the foundations of measure
theory. Looking at the table of contents of Bauer’s textbook [1] we formalized
almost all of the first three chapters. What is missing are the function spaces
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LP stochastic convergence, and the convolution of finite Borel measures. Isabelle
supported us with its type classes allowing to reuse definitions and theorems for
limits and arithmetic operations on R. We used Isabelle’s locales to introduce
the concepts of the different set systems and spaces used in measure theory.

With product spaces and the Radon-Nikodym derivative it is possible to
combine the concepts introduced by Hurd [6] and Coble [2]. We can now verify
information theoretic properties of probabilistic programs.

This paper is the first to derive the Radon-Nikodym theorem and the multi-
dimensional version of Fubini’s theorem. Our next step concerns the development
of probability theory. We already formalized conditional expectation, Kullback-
Leibler divergence, mutual information, and infinite products measure using the
measure theory presented in this paper. The details are available at the URL
given on page 2. The future goals concern the formalization of infinite sequences
of independent random variables and the central limit theorem as well as Markov
chains and Markov decision processes.
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