
Three Classes of Deep Learning Architectures and 

Their Applications: A Tutorial Survey  

Li Deng 
Microsoft Research, Redmond, WA 98052, USA 

E-mail: deng@microsoft.com, Tel: 425-706-2719 

 
Abstract— In this invited paper, my overview material on the 

same topic as presented in the plenary overview session of 

APSIPA-2011 and the tutorial material presented in the same 

conference (Deng, 2011) are expanded and updated to include 

more recent developments in deep learning. The previous and 

the updated materials cover both theory and applications, and 

analyze its future directions. The goal of this tutorial survey is to 

introduce the emerging area of deep learning or hierarchical 

learning to the APSIPA community.  Deep learning refers to a 

class of machine learning techniques, developed largely since 

2006, where many stages of nonlinear information processing in 

hierarchical architectures are exploited for pattern classification 

and for feature learning.  In the more recent literature, it is also 

connected to representation learning, which involves a hierarchy 

of features or concepts where higher-level concepts are defined 

from lower-level ones and where the same lower-level concepts 

help to define higher-level ones. In this tutorial, a brief history of 

deep learning research is discussed first. Then, a classificatory 

scheme is developed to analyze and summarize major work 

reported in the deep learning literature. Using this scheme, I 

provide a taxonomy-oriented survey on the existing deep 

architectures and algorithms in the literature, and categorize 

them into three classes: generative, discriminative, and hybrid. 

Three representative deep architectures --- deep auto-encoder, 

deep stacking network, and deep neural network (pre-trained 

with deep belief network) --- one in each of the three classes, are 

presented in more detail. Next, selected applications of deep 

learning are reviewed in broad areas of signal and information 

processing including audio/speech, image/vision, multimodality, 

language modeling, natural language processing, and 

information retrieval. Finally, future directions of deep learning 

are discussed and analyzed.  

I. INTRODUCTION 

Signal processing research nowadays has a significantly 

widened scope compared with just a few years ago. It has 

encompassed many broad areas of information processing 

from low-level signals to higher-level, human-centric 

semantic information (Deng, 2008). Since 2006, deep 

structured learning, or more commonly called deep learning 

or hierarchical learning, has emerged as a new area of 

machine learning research (Hinton et al., 2006; Bengio, 2009). 

Within the past few years, the techniques developed from 

deep learning research have already been impacting a wide 

range of signal and information processing work within the 

traditional and the new, widened scopes including machine 

learning and artificial intelligence (Hinton et al., 2012; Deng, 

2011; Yu and Deng, 2011; Arel et al., 2010; Bengio et al., 

2013); see the recent New York Times media coverage of this 

progress in (Markoff, 2012). A series of workshops, tutorials, 

and special issues or conference special sessions have been 

devoted exclusively to deep learning and its applications to 

various classical and expanded signal processing areas. These 

include: the 2013 ICASSP’s special session on New Types of 

Deep Neural Network Learning for Speech Recognition and 

Related Applications, the 2013 ICML Workshop for Audio, 

Speech, and Language Processing, the 2012, 2011, and 2010 

NIPS Workshops on Deep Learning and Unsupervised 

Feature Learning, the 2012 ICML Workshop on 

Representation Learning, the 2011 ICML Workshop on 

Learning Architectures, Representations, and Optimization 

for Speech and Visual Information Processing, the 2009 

ICML Workshop on Learning Feature Hierarchies, the 2009 

NIPS Workshop on Deep Learning for Speech Recognition 

and Related Applications, the 2008 NIPS Deep Learning 

Workshop, the 2012 ICASSP deep learning tutorial, the 

special section on Deep Learning for Speech and Language 

Processing in IEEE Transactions on Audio, Speech, and 

Language Processing (January 2012), and the special issue on 

Learning Deep Architectures in IEEE Transactions on Pattern 

Analysis and Machine Intelligence (2013). The author has 

been directly involved in the research and in organizing 

several of the events and editorials above, and has seen the 

emerging nature of the field; hence the need for providing a 

tutorial survey article here.  

 

Deep learning refers to a class of machine learning techniques, 

where many layers of information processing stages in 

hierarchical architectures are exploited for pattern 

classification and for feature or representation learning.  It is 

in the intersections among the research areas of neural 

network, graphical modeling, optimization, pattern 

recognition, and signal processing. Three important reasons 

for the popularity of deep learning today are drastically 

increased chip processing abilities (e.g., GPU units), the 

significantly lowered cost of computing hardware, and recent 

advances in machine learning and signal/information 

processing research.  Active researchers in this area include 

those at University of Toronto, New York University, 

University of Montreal, Microsoft Research, Google, IBM 

Research, Stanford University, University of Michigan, 

Massachusetts Institute of Technology, University of 

Washington, and numerous other places. These researchers 

have demonstrated successes of deep learning in diverse 

applications of computer vision, phonetic recognition, voice 

search, conversational speech recognition, speech and image 



feature coding, semantic utterance classification, hand-writing 

recognition, audio processing, visual object recognition, 

information retrieval, and even in the analysis of molecules 

that may lead to discovering new drugs as reported recently in 

(Markoff, 2012). 

 

This paper expands my recent overview material on the same 

topic as presented in the plenary overview session of 

APSIPA-ASC2011 as well as the tutorial material presented 

in the same conference (Deng, 2011).  It is aimed to introduce 

the APSIPA Transactions’ readers to the emerging 

technologies enabled by deep learning. I attempt to provide a 

tutorial review on the research work conducted in this 

exciting area since the birth of deep learning in 2006 that has 

direct relevance to signal and information processing. Future 

research directions will be discussed to attract interests from 

more APSIPA researchers, students, and practitioners for 

advancing signal and information processing technology as 

the core mission of the APSIPA community.  

 

The remainder of this paper is organized as follows: 

 Section II: A brief historical account of deep learning 

is provided from the perspective of signal and 

information processing. 

 Sections III: A three-way classification scheme for a 

large body of the work in deep learning is developed. 

A growing number of deep architectures are 

classified into 1) generative, 2) discriminative, and 3) 

hybrid categories, and high-level descriptions are 

provided for each category a literature survey. 

 Sections IV, V, VI:  For each of the three categories, 

a tutorial example is chosen to provide more detailed 

treatment. The examples chosen are: 1) deep 

autoencoders for the generative category (Section 

IV); 2) DNNs pre-trained with DBN for the hybrid 

category (Section V); and 3) Deep stacking networks 

for the discriminative category (Section VI). 

 Sections VII:  A set of typical and successful 

applications of deep learning in diverse areas of 

signal and information processing are reviewed. 

 Section VIII: A summary and future directions are 

given. 

II.      A BRIEF HISTORICAL ACCOUNT OF DEEP LEARNING 

Until recently, most machine learning and signal processing 

techniques had exploited shallow-structured architectures. 

These architectures typically contain a single layer of 

nonlinear feature transformations and they lack multiple 

layers of adaptive non-linear features. Examples of the 

shallow architectures are conventional, commonly used 

Gaussian mixture models (GMMs) and hidden Markov 

models (HMMs), linear or nonlinear dynamical systems, 

conditional random fields (CRFs), maximum entropy 

(MaxEnt) models, support vector machines (SVMs), logistic 

regression, kernel regression, and multi-layer perceptron 

(MLP) neural network with a single hidden layer including 

extreme learning machine. A property common to these 

shallow learning models is the relatively simple architecture 

that consists of only one layer responsible for transforming 

the raw input signals or features into a problem-specific 

feature space, which may be unobservable. Take the example 

of a SVM and other conventional kernel methods. They use a 

shallow linear pattern separation model with one or zero 

feature transformation layer when kernel trick is used or 

otherwise. (Notable exceptions are the recent kernel methods 

that have been inspired by and integrated with deep learning; 

e.g. Cho and Saul, 2009; Deng et al., 2012; Vinyals et al., 

2012). Shallow architectures have been shown effective in 

solving many simple or well-constrained problems, but their 

limited modeling and representational power can cause 

difficulties when dealing with more complicated real-world 

applications involving natural signals such as human speech, 

natural sound and language, and natural image and visual 

scenes. 

 

Human information processing mechanisms (e.g., vision and 

speech), however, suggest the need of deep architectures for 

extracting complex structure and building internal 

representation from rich sensory inputs. For example, human 

speech production and perception systems are both equipped 

with clearly layered hierarchical structures in transforming the 

information from the waveform level to the linguistic level 

(Baker et al., 2009, 2009a; Deng, 1999, 2003). In a similar 

vein, human visual system is also hierarchical in nature, most 

in the perception side but interestingly also in the “generative” 

side (George, 2008; Bouvrie, 2009; Poggio, 2007).  It is 

natural to believe that the state-of-the-art can be advanced in 

processing these types of natural signals if efficient and 

effective deep learning algorithms are developed. Information 

processing and learning systems with deep architectures are 

composed of many layers of nonlinear processing stages, 

where each lower layer’s outputs are fed to its immediate 
higher layer as the input. The successful deep learning 

techniques developed so far share two additional key 

properties: the generative nature of the model, which typically 

requires adding an additional top layer to perform 

discriminative tasks, and an unsupervised pre-training step 

that makes an effective use of large amounts of unlabeled 

training data for extracting structures and regularities in the 

input features. 

 

Historically, the concept of deep learning was originated from 

artificial neural network research. (Hence, one may 

occasionally hear the discussion of “new-generation neural 

networks”.) Feed-forward neural networks or MLPs with 

many hidden layers are indeed a good example of the models 

with a deep architecture. Back-propagation, popularized in 

1980’s, has been a well-known algorithm for learning the 

weights of these networks. Unfortunately back-propagation 

alone did not work well in practice for learning networks with 

more than a small number of hidden layers (see a review and 

analysis in (Bengio, 2009; Glorot and Bengio, 2010). The 

pervasive presence of local optima in the non-convex 

objective function of the deep networks is the main source of 



difficulties in the learning. Back-propagation is based on local 

gradient descent, and starts usually at some random initial 

points. It often gets trapped in poor local optima, and the 

severity increases significantly as the depth of the networks 

increases. This difficulty is partially responsible for steering 

away most of the machine learning and signal processing 

research from neural networks to shallow models that have 

convex loss functions (e.g., SVMs, CRFs, and MaxEnt 

models), for which global optimum can be efficiently 

obtained at the cost of less powerful models. 

 

The optimization difficulty associated with the deep models 

was empirically alleviated when a reasonably efficient, 

unsupervised learning algorithm was introduced in the two 

papers of (Hinton et al., 2006; Hinton and Salakhutdinov, 

2006).  In these papers, a class of deep generative models was 

introduced, called deep belief network (DBN), which is 

composed of a stack of Restricted Boltzmann Machines 

(RBMs). A core component of the DBN is a greedy, layer-by-

layer learning algorithm which optimizes DBN weights at 

time complexity linear to the size and depth of the networks. 

Separately and with some surprise, initializing the weights of 

an MLP with a correspondingly configured DBN often 

produces much better results than that with the random 

weights. As such, MLPs with many hidden layers, or deep 

neural networks (DNN), which are learned with unsupervised 

DBN pre-training followed by back-propagation fine-tuning is 

sometimes also called DBNs in the literature (e.g., Dahl et al., 

2011; Mohamed et al., 2010, 2012). More recently, 

researchers have been more careful in distinguishing DNN 

from DBN (Dahl et al., 2012; Hinton et al., 2012), and when 

DBN is used the initialize the training of a DNN, the resulting 

network is called DBN-DNN (Hinton et al., 2012). 

 

In addition to the supply of good initialization points, DBN 

comes with additional attractive features. First, the learning 

algorithm makes effective use of unlabeled data. Second, it 

can be interpreted as Bayesian probabilistic generative model. 

Third, the values of the hidden variables in the deepest layer 

are efficient to compute. And fourth, the over-fitting problem, 

which is often observed in the models with millions of 

parameters such as DBNs, and the under-fitting problem, 

which occurs often in deep networks, can be effectively 

addressed by the generative pre-training step. An insightful 

analysis on what speech information DBNs can capture is 

provided in (Mohamed et al. 2012a). 

 

The DBN training procedure is not the only one that makes 

effective training of DNNs possible. Since the publication of 

the seminal work in (Hinton et al., 2006; Hinton and 

Salakhutdinov, 2006), a number of other researchers have 

been improving and applying the deep learning techniques 

with success. For example, one can alternatively pre-train 

DNNs layer by layer by considering each pair of layers as a 

de-noising auto-encoder regularized by setting a subset of the 

inputs to zero (Bengio, 2009; Vincent et al., 2010). Also, 

“contractive” autoencoders can be used for the same purpose 

by regularizing via penalizing the gradient of the activities of 

the hidden units with respect to the inputs (Rifai et al., 2011). 

Further, Ranzato et al. (2007a) developed the Sparse 

Encoding Symmetric Machine (SESM), which has a very 

similar architecture to RBMs as building blocks of a DBN. In 

principle, SESM may also be used to effectively initialize the 

DNN training. 

 

Historically, the use of the generative model of DBN to 

facilitate the training of DNNs plays an important role in 

igniting the interest of deep learning for speech feature coding 

and for speech recognition (Deng et al., 2010; Dahl et al., 

2011, 2012; Hinton et al., 2012). After this effectiveness was 

demonstrated, further research showed many alternative but 

simpler ways of doing pre-training. With a large amount of 

training data, we now know how to learn a DNN by starting 

with a shallow neural network (i.e., with one hidden layer).  

After this shallow network has been trained discriminatively, 

a new hidden layer is inserted between the previous hidden 

layer and the softmax output layer and the full network is 

again discriminatively trained. One can continue this process 

until the desired number of hidden layers is reached in the 

DNN. And finally, full backpropagation fine-tuning is carried 

out to complete the DNN training.  

In the next section, an overview is provided on the various 

architectures of deep learning, including and beyond the 

original DBN published in (Hinton et al. 2006). 

III.    THREE BROAD CLASSES OF DEEP ARCHITECTURES: AN 

OVERVIEW 

As described earlier, deep learning refers to a rather wide 

class of machine learning techniques and architectures, with 

the hallmark of using many layers of non-linear information 

processing stages that are hierarchical in nature. Depending 

on how the architectures and techniques are intended for use, 

e.g., synthesis/generation or recognition/classification, one 

can broadly categorize most of the work in this area into three 

classes:  

 

1) Generative deep architectures, which are intended to 

characterize the high-order correlation properties of the 

observed or visible data for pattern analysis or synthesis 

purposes, and/or characterize the joint statistical distributions 

of the visible data and their associated classes. In the latter 

case, the use of Bayes rule can turn this type of architecture 

into a discriminative one.  

 

2) Discriminative deep architectures, which are intended to 

directly provide discriminative power for pattern 

classification, often by characterizing the posterior 

distributions of classes conditioned on the visible data; and  

 

3) Hybrid deep architectures, where the goal is discrimination 

but is assisted (often in a significant way) with the outcomes 

of generative architectures via better optimization or/and 

regularization, or discriminative criteria are used to learn the 



parameters in any of the deep generative models in category 1) 

above. 

 

Note the use of “hybrid” in 3) above is different from that 
used sometimes in the literature, which refers to the hybrid 

pipeline systems for speech recognition feeding the output 

probabilities of a neural network into an HMM (Bengio et al., 

1991; Bourlard and Morgan, 1993; Morgan, 2012). 

 

By the machine learning tradition (e.g., Deng and Li, 2013), it 

may be natural to use a two-way classification scheme 

according to discriminative learning (e.g., neural networks) vs. 

deep probabilistic generative learning (e.g., DBN, DBM, etc.). 

This classification scheme, however, misses a key insight 

gained in deep learning research about how generative models 

can greatly improve DNNs and other deep discriminative 

models via better optimization and better regularization. Also, 

deep generative models may not necessarily need to be 

probabilistic, e.g., the deep auto-encoder. Nevertheless, the 

two-way classification points to important differences 

between DNNs and deep probabilistic models. The former is 

usually more efficient for training and testing, more flexible 

in its construction, less constrained (e.g., no normalization by 

the difficult partition function which can be replaced by 

sparsity), and is more suitable for end-to-end learning of 

complex systems (e.g., no approximate inference and 

learning). The latter, on the other hand, is easier to interpret 

and to embed domain knowledge, is easier to compose and to 

handle uncertainty, but is typically intractable in inference 

and learning for complex systems. This distinction, however, 

is retained also in the proposed three-way classification which 

is adopted throughout this paper. 

 

Below we review representative work in each of the above 

three classes, where several basic definitions will be used as 

summarized in Table 1. Applications of these deep 

architectures are deferred to Section VII. 

 

Table 1:  Some basic deep learning terminologies 

 

1. Deep Learning: a class of machine learning 

techniques, where many layers of information 

processing stages in hierarchical architectures are 

exploited for unsupervised feature learning and for 

pattern analysis/classification. The essence of deep 

learning is to compute hierarchical features or 

representations of the observational data, where the 

higher-level features or factors are defined from 

lower-level ones.  

2. Deep belief network (DBN): probabilistic 

generative models composed of multiple layers of 

stochastic, hidden variables. The top two layers have 

undirected, symmetric connections between them. 

The lower layers receive top-down, directed 

connections from the layer above.  

3. Boltzmann machine (BM): a network of 

symmetrically connected, neuron-like units that 

make stochastic decisions about whether to be on or 

off.  

4. Restricted Boltzmann machine (RBM): a special 

BM consisting of a layer of visible units and a layer 

of hidden units with no visible-visible or hidden-

hidden connections.  

5. Deep Boltzmann machine (DBM): a special BM 

where the hidden units are organized in a deep 

layered manner, only adjacent layers are connected, 

and there are no visible-visible or hidden-hidden 

connections within the same layer.  

6. Deep neural network (DNN): a multilayer network 

with many hidden layers, whose weights are fully 

connected and are often initialized (pre-trained) 

using stacked RBMs or DBN. (In the literature, DBN 

is sometimes used to mean DNN) 

7. Deep auto-encoder: a DNN whose output target is 

the data input itself, often pre-trained with DBN or 

using distorted training data to regularize the 

learning. 

8. Distributed representation: a representation of the 

observed data in such a way that they are modeled as 

being generated by the interactions of many hidden 

factors. A particular factor learned from 

configurations of other factors can often generalize 

well. Distributed representations form the basis of 

deep learning.  

 

A. Generative architectures 

Associated with this generative category, we often see 

“unsupervised feature learning”, since the labels for the data 
are not of concern. When applying generative architectures 

for pattern recognition (i.e., supervised learning), a key 

concept here is (unsupervised) pre-training. This concept 

arises from the need to learn deep networks but learning the 

lower levels of such networks is difficult due to the gradient 

dilution problem; see (Bengio, 2009).  Therefore, it is 

desirable to learn each lower layer without relying on all the 

layers above and to learn all layers in a greedy, layer-by-layer 

manner from bottom up. This is the gist of “pre-training” 
before subsequent learning of all layers together. 

 

Among the various subclasses of generative deep architecture, 

the energy-based deep models including autoencoders are the 

most common (e.g., LeCun et al., 2007; Ranzato et al., 2006; 

Ngiam et al., 2011a; Bengio, 2009). The original form of the 

deep autoencoder (Hinton and Salakhutdinov, 2006; Deng et 

al., 2010), which we will give more detail about in Section IV, 

is a typical example of the generative model category. Most 

other forms of deep autoencoders are also generative in nature, 

but with quite different properties and implementations. 

Examples are transforming auto-encoders (Hinton et al., 

2010), predictive sparse coders and their stacked version, and 

de-noising autoencoders and their stacked versions (Vincent 

et al., 2010).  

 



Specifically, in de-noising autoencoders, the input vectors are 

first corrupted; e.g., randomizing a percentage of the inputs 

and setting them to zeros. Then one designs the hidden 

encoding nodes to reconstruct the original, uncorrupted input 

data using criteria such as KL distance between the original 

inputs and the reconstructed inputs. Uncorrupted encoded 

representations are used as the inputs to the next level of the 

stacked de-noising autoencoder.  

 

Another prominent type of generative model is deep 

Boltzmann machine or DBM (Salakhutdinov and Hinton, 

2009, 2012; Srivastava and Salakhudinov, 2012). A DBM 

contains many layers of hidden variables, and has no 

connections between the variables within the same layer. This 

is a special case of the general Boltzmann machine (BM), 

which is a network of symmetrically connected units that 

make stochastic decisions about whether to be on or off. 

While having very simple learning algorithm, the general 

BMs are very complex to study and very slow to compute in 

learning. In a DBM, each layer captures complicated, higher-

order correlations between the activities of hidden features in 

the layer below. DBMs have the potential of learning internal 

representations that become increasingly complex, highly 

desirable for solving object and speech recognition problems. 

Further, the high-level representations can be built from a 

large supply of unlabeled sensory inputs and very limited 

labeled data can then be used to only slightly fine-tune the 

model for a specific task at hand. 

 

When the number of hidden layers of DBM is reduced to one, 

we have Restricted Boltzmann Machine (RBM). Like DBM, 

there are no hidden-to-hidden and no visible-to-visible 

connections. The main virtue of RBM is that via composing 

many RBMs, many hidden layers can be learned efficiently 

using the feature activations of one RBM as the training data 

for the next. Such composition leads to Deep Belief Network 

(DBN), which we will describe in more detail, together with 

RBMs, in Section V.  

 

The standard DBN has been extended to the factored higher-

order Boltzmann machine in its bottom layer, with strong 

results for phone recognition obtained (Dahl et al., 2010).  

This model, called mean-covariance RBM or mcRBM, 

recognizes the limitation of the standard RBM in its ability to 

represent the covariance structure of the data. However, it is 

very difficult to train mcRBM and to use it at the higher levels 

of the deep architecture. Further, the strong results published 

are not easy to reproduce. In the architecture of (Dahl et al., 

2010), the mcRBM parameters in the full DBN are not easy to 

be fine-tuned using the discriminative information as for the 

regular RBMs in the higher layers. However, recent work 

showed that when better features are used, e.g. cepstral speech 

features subject to linear discriminant analysis or to fMLLR 

transformation, then the mcRBM is not needed as covariance 

in the transformed data is already modeled (Mohamed et al., 

2012b). 

 

Another representative deep generative architecture is the 

sum-product network or SPN (Poon and Domingo, 2011; 

Gens and Domingo, 2012). An SPN is a directed acyclic 

graph with the data as leaves, and with sum and product 

operations as internal nodes in the deep architecture. The 

“sum” nodes give mixture models, and the “product” nodes 
build up the feature hierarchy. Properties of “completeness” 
and “consistency” constrain the SPN in a desirable way. The 

learning of SPN is carried out using the EM algorithm 

together with back-propagation. The learning procedure starts 

with a dense SPN. It then finds a SPN structure by learning its 

weights, where zero weights remove the connections. The 

main difficulty in learning is found to be the common one --- 

the learning signal (i.e., the gradient) quickly dilutes when it 

propagates to deep layers. Empirical solutions have been 

found to mitigate this difficulty reported in (Poon and 

Domingo, 2011), where it was pointed out that despite the 

many desirable generative properties in the SPN, it is difficult 

to fine tune its weights using the discriminative information, 

limiting its effectiveness in classification tasks. This difficulty 

has been overcome in the subsequent work reported in (Gens 

and Domingo, 2012), where an efficient backpropagation-

style discriminative training algorithm for SPN was presented. 

It was pointed out that the standard gradient descent, 

computed by the derivative of the conditional likelihood, 

suffers from the same gradient diffusion problem well known 

for the regular deep networks. But when marginal inference is 

replaced by inferring the most probable state of the hidden 

variables, such a “hard” gradient descent can reliably estimate 
deep SPNs’ weights.  Excellent results on (small-scale) image 

recognition tasks are reported.              

 

Recurrent neural networks (RNNs) can be regarded as a class 

of deep generative architectures when they are used to model 

and generate sequential data (e.g., Sutskever et al., 2011). The 

“depth” of an RNN can be as large as the length of the input 

data sequence. RNNs are very powerful for modeling 

sequence data (e.g., speech or text), but until recently they had 

not been widely used partly because they are extremely 

difficult to train properly due to the well-known “vanishing 
gradient” problem. Recent advances in Hessian-free 

optimization (Martens, 2010) have partially overcome this 

difficulty using second-order information or stochastic 

curvature estimates. In the recent work of (Martens and 

Sutskever, 2011), RNNs that are trained with Hessian-free 

optimization are used as a generative deep architecture in the 

character-level language modeling tasks, where gated 

connections are introduced to allow the current input 

characters to predict the transition from one latent  state 

vector to the next. Such generative RNN models are 

demonstrated to be well capable of generating sequential text 

characters. More recently, Bengio et al. (2013) and Sutskever 

(2013) have explored new optimization methods in training 

generative RNNs that modify stochastic gradient descent and 

show these modifications can outperform Hessian-free 

optimization methods. Mikolov et al. (2010) have reported 



excellent results on using RNNs for language modeling, 

which we will review in Section VII.C. 

 

As examples of a different type of generative deep models, 

there has been a long history in speech recognition research 

where human speech production mechanisms are exploited to 

construct dynamic and deep structure in probabilistic 

generative models; for a comprehensive review, see book 

(Deng, 2006). Specifically, the early work described in (Deng 

1992, 1993; Deng et al., 1994; Ostendorf et al., 1996, Deng 

and Sameti, 1996) generalized and extended the conventional 

shallow and conditionally independent HMM structure by 

imposing dynamic constraints, in the form of polynomial 

trajectory, on the HMM parameters. A variant of this 

approach has been more recently developed using different 

learning techniques for time-varying HMM parameters and 

with the applications extended to speech recognition 

robustness (Yu and Deng, 2009; Yu et al., 2009). Similar 

trajectory HMMs also form the basis for parametric speech 

synthesis (Zen et al., 2011; Zen et al., 2012; Ling et al., 2013; 

Shannon et al., 2013). Subsequent work added a new hidden 

layer into the dynamic model so as to explicitly account for 

the target-directed, articulatory-like properties in human 

speech generation (Deng and Ramsay, 1997; Bridle et al., 

1998; Deng, 1999; Picone et al., 1999; Deng, 2003; Minami et 

al., 2002; Deng and Huang, 2004). More efficient 

implementation of this deep architecture with hidden 

dynamics is achieved with non-recursive or FIR filters in 

more recent studies (Deng et al., 2006, 2006a; Deng and Yu, 

2007). The above deep-structured generative models of 

speech can be shown as special cases of the more general 

dynamic Bayesian network model and even more general 

dynamic graphical models (Bilmes and Bartels, 2005; Bilmes, 

2010). The graphical models can comprise many hidden 

layers to characterize the complex relationship between the 

variables in speech generation. Armed with powerful 

graphical modeling tool, the deep architecture of speech has 

more recently been successfully applied to solve the very 

difficult problem of single-channel, multi-talker speech 

recognition, where the mixed speech is the visible variable 

while the un-mixed speech becomes represented in a new 

hidden layer in the deep generative  architecture (Rennie et al., 

2010; Wohlmayr et al., 2011). Deep generative graphical 

models are indeed a powerful tool in many applications due to 

their capability of embedding domain knowledge. However, 

in addition to the weakness of using non-distributed 

representations for the classification categories, they also are 

often implemented with inappropriate approximations in 

inference, learning, prediction, and topology design, all 

arising from inherent intractability in these tasks for most 

real-world applications. This problem has been partly 

addressed in the recent work of (Stoyanov et al., 2011), which 

provides an interesting direction for making deep generative 

graphical models potentially more useful in practice in the 

future. 

 

The standard statistical methods used for large-scale speech 

recognition and understanding combine (shallow) hidden 

Markov models for speech acoustics with higher layers of 

structure representing different levels of natural language 

hierarchy. This combined hierarchical model can be suitably 

regarded as a deep generative architecture, whose motivation 

and some technical detail may be found in Chapter 7 the 

recent book (Kurzweil, 2012) on “Hierarchical HMM” or 
HHMM. Related models with greater technical depth and 

mathematical treatment can be found in (Fine et al., 1998) for 

HHMM and (Oliver et al., 2004) for Layered HMM. These 

early deep models were formulated as directed graphical 

models, missing the key aspect of “distributed representation” 

embodied in the more recent deep generative architectures of 

DBN and DBM discussed earlier in this section. 

 

Finally, dynamic or temporally recursive generative models 

for non-speech applications based on deep neural network 

architectures can be found in (Taylor et al., 2007) for human 

motion modeling, and in (Socher et al., 2011) for natural 

language and natural scene parsing. The latter model is 

particularly interesting because the learning algorithms are 

capable of automatically determining the optimal model 

structure.  This contrasts with other deep architectures such as 

DBN where only the parameters are learned while the 

architectures need to be pre-defined. Specifically, as reported 

in (Socher et al., 2011), the recursive structure commonly 

found in natural scene images and in natural language 

sentences can be discovered using a max-margin structure 

prediction architecture. Not only the units contained in the 

images or sentences are identified but so is the way in which 

these units interact with each other to form the whole. 

 

B. Discriminative architectures 

Many of the discriminative techniques in signal and 

information processing apply to shallow architectures such as 

HMMs (e.g., Juang et al., 1997; Povey and Woodland, 2002; 

He et al., 2008; Jiang and Li, 2010; Xiao and Deng, 2010; 

Gibson and Hain, 2010) or conditional random fields or CRFs 

(e.g., Yang and Furui, 2009; Yu et al., 2010a; Hifny and 

Renals, 2009; Heintz et al., 2009; Zweig and Nguyen, 2009; 

Peng et al., 2009). Since a CRF is defined with the conditional 

probability on input data as well as on the output labels, it is 

intrinsically a shallow discriminative architecture. (Interesting 

equivalence between CRF and discriminatively trained 

Gaussian models and HMMs can be found in Heigold et al., 

2011). More recently, deep-structured CRFs have been 

developed by stacking the output in each lower layer of the 

CRF, together with the original input data, onto its higher 

layer (Yu et al., 2010a). Various versions of deep-structured 

CRFs are usefully applied to phone recognition (Yu and Deng, 

2010), spoken language identification (Yu et al., 2010), and 

natural language processing (Yu et al., 2010a). However, at 

least for the phone recognition task, the performance of deep-

structured CRFs, which is purely discriminative (non-



generative), has not been able to match that of the hybrid 

approach involving DBN, which we will take on shortly. 

 

The recent article of (Morgan, 2012) gives an excellent 

review on other major existing discriminative models in 

speech recognition based mainly on the traditional neural 

network or MLP architecture using back-propagation learning 

with random initialization. It argues for the importance of 

both the increased width of each layer of the neural networks 

and the increased depth. In particular, a class of deep neural 

network models forms the basis of the popular “tandem” 
approach, where a discriminatively learned neural network is 

developed in the context of computing discriminant emission 

probabilities for HMMs. For some representative recent work 

in this area, see (Pinto et al., 2011; Ketabdar and Bourlard, 

2010). The tandem approach generates discriminative features 

for an HMM by using the activities from one or more hidden 

layers of a neural network with various ways of information 

combination, which can be regarded as a form of 

discriminative deep architectures (Morgan et al., 2005; 

Morgan 2012).  

 

In the most recent work of (Deng et al, 2011; Deng et al., 

2012a; Tur et al., 2012; Lena et al., 2012; Vinyals et al., 2012), 

a new deep learning architecture, sometimes called Deep 

Stacking Network (DSN), together with its tensor variant 

(Hutchinson et al, 2012, 2013) and its kernel version (Deng et 

al., 2012), are developed that all focus on discrimination with 

scalable, parallelizable learning relying on little or no 

generative component. We will describe this type of 

discriminative deep architecture in detail in Section V. 

 

Recurrent neural networks (RNNs) have been successfully 

used as a generative model when the “output” is taken to be 

the predicted input data in the future, as discussed in the 

preceding sub-section. They can also be used as a 

discriminative model where the output is a label sequence 

associated with the input data sequence. Note that such 

discriminative RNNs were applied to speech a long time ago 

with limited success (e.g., Robinson, 1994). For training 

RNNs for discrimination, pre-segmented training data are 

typically required. Also, post-processing is needed to 

transform their outputs into label sequences. It is highly 

desirable to remove such requirements, especially the costly 

pre-segmentation of training data. Often a separate HMM is 

used to automatically segment the sequence during training, 

and to transform the RNN classification results into label 

sequences (Robinson, 1994). However, the use of HMM for 

these purposes does not take advantage of the full potential of 

RNNs.  

 

An interesting method was proposed in (Graves et al., 2006, 

2013; Graves, 2012) that enables the RNNs themselves to 

perform sequence classification, removing the need for pre-

segmenting the training data and for post-processing the 

outputs. Underlying this method is the idea of interpreting 

RNN outputs as the conditional distributions over all possible 

label sequences given the input sequences. Then, a 

differentiable objective function can be derived to optimize 

these conditional distributions over the correct label 

sequences, where no segmentation of data is required.  

 

Another type of discriminative deep architecture is 

convolutional neural network (CNN), with each module 

consisting of a convolutional layer and a pooling layer. These 

modules are often stacked up with one on top of another, or 

with a DNN on top of it, to form a deep model. The 

convolutional layer shares many weights, and the pooling 

layer subsamples the output of the convolutional layer and 

reduces the data rate from the layer below. The weight 

sharing in the convolutional layer, together with appropriately 

chosen pooling schemes, endows the CNN with some 

“invariance” properties (e.g., translation invariance). It has 

been argued that such limited “invariance” or equi-variance is 

not adequate for complex pattern recognition tasks and more 

principled ways of handling a wider range of invariance are 

needed (Hinton et al., 2011). Nevertheless, the CNN has been 

found highly effective and been commonly used in computer 

vision and image recognition (LeCun et al., 1998; Ciresan et 

al., 2012; Le et al., 2012; Dean et al., 2012; Krizhevsky et al., 

2012). More recently, with appropriate changes from the 

CNN designed for image analysis to that taking into account 

speech-specific properties, the CNN is also found effective 

for speech recognition (Abdel-Hamid et al., 2012, 2013; 

Sainath et al., 2013; Deng et al., 2013). We will discuss such 

applications in more detail in Section VII.  

 

It is useful to point out that time-delay neural networks 

(TDNN, Lang et al., 1990) developed for early speech 

recognition are a special case of the CNN when weight 

sharing is limited to one of the two dimensions, i.e., time 

dimension. It was not until recently that researchers have 

discovered that time is the wrong dimension to impose 

“invariance” and frequency dimension is more effective in 

sharing weights and pooling outputs (Abdel-Hamid et al., 

2012, 2013; Deng et al., 2013). Analysis and the underlying 

reasons are described in (Deng et al., 2013), together with a 

new strategy for designing the CNN’s pooling layer 
demonstrated to be more effective than nearly all previous 

CNNs in phone recognition. 

  

It is also useful to point out that the model of hierarchical 

temporal memory (HTM, Hawkins and Blakeslee, 2004; 

Hawkins et al., 2010; George, 2008) is another variant and 

extension of the CNN. The extension includes the following 

aspects: 1) Time or temporal dimension is introduced to serve 

as the “supervision” information for discrimination (even for 
static images); 2) Both bottom-up and top-down information 

flow are used, instead of just bottom-up in the CNN; and 3) A 

Bayesian probabilistic formalism is used for fusing 

information and for decision making. 

 

Finally, the learning architecture developed for bottom-up, 

detection-based speech recognition proposed in (Lee, 2004) 



and developed further since 2004, notably in (Yu et al, 2012a; 

Siniscalchi et al., 2013, 2013a) using the DBN-DNN 

technique, can also be categorized in the discriminative deep 

architecture category. There is no intent and mechanism in 

this architecture to characterize the joint probability of data 

and recognition targets of speech attributes and of the higher-

level phone and words. The most current implementation of 

this approach is based on multiple layers of neural networks 

using back-propagation learning (Yu et al, 2012). One 

intermediate neural network layer in the implementation of 

this detection-based framework explicitly represents the 

speech attributes, which are simplified entities from the 

“atomic” units of speech developed in the early work of 
(Deng and Sun, 1994). The simplification lies in the removal 

of the temporally overlapping properties of the speech 

attributes or articulatory-like features. Embedding such more 

realistic properties in the future work is expected to improve 

the accuracy of speech recognition further. 

 

C. Hybrid generative-discriminative architectures 

The term “hybrid” for this third category refers to the deep 

architecture that either comprises or makes use of both 

generative and discriminative model components. In many 

existing hybrid architectures published in the literature (e.g., 

Hinton and Salakhutdinov, 2006; Mohamed et al., 2010; Dahl 

et al., 2012; Sainath et al., 2012), the generative component is 

exploited to help with discrimination, which is the final goal 

of the hybrid architecture. How and why generative modeling 

can help with discrimination can be examined from two 

viewpoints:  

 

1) The optimization viewpoint where generative 

models can provide excellent initialization points in 

highly nonlinear parameter estimation problems 

(The commonly used term of “pre-training” in deep 

learning has been introduced for this reason); and/or 

 

2) The regularization perspective where generative 

models can effectively control the complexity of the 

overall model.  

 

The study reported in (Erhan et al., 2010) provided an 

insightful analysis and experimental evidence supporting both 

of the viewpoints above. 

 

When the generative deep architecture of DBN discussed in 

Subsection III.A is subject to further discriminative training, 

commonly called “fine-tuning” in the literature, we obtain an 
equivalent architecture of deep neural network (DNN, which 

is sometimes also called DBN or deep MLP in the literature). 

In the DNN or the hybrid DBN with fine tuning, the weights 

of the network are “pre-trained” from stacked RBMs or DBN 

instead of the usual random initialization. See (Mohamed et 

al., 2012) for a detailed explanation of the equivalence 

relationship and the use of the often confusing terminology. 

We will review details of the DNN in the context of 

RBM/DBN pre-training as well as its interface with the most 

commonly used shallow generative architecture of HMM 

(DNN-HMM) in Section IV. 

 

Another example of the hybrid deep architecture is developed 

in (Mohamed et al., 2010), where again the generative DBN is 

used to initialize the DNN weights but the fine tuning is 

carried out not using frame-level discriminative information 

(e.g., cross-entropy error criterion) but sequence-level one. 

This is a combination of the static DNN with the shallow 

discriminative architecture of CRF. Here, the overall 

architecture of DNN-CRF is learned using the discriminative 

criterion of the conditional probability of full label sequences 

given the input sequence data. It can be shown that such 

DNN-CRF is equivalent to a hybrid deep architecture of DNN 

and HMM whose parameters are learned jointly using the 

full-sequence maximum mutual information (MMI) between 

the entire label sequence and the input vector sequence. A 

closely related full-sequence training method is carried out 

with success for a shallow neural network (Kingbury, 2009) 

and for a deep one (Kingbury et al., 2012). 

 

Here, it is useful to point out a connection between the above 

hybrid discriminative training and a highly popular MPE 

(minimum phone error) training technique for the HMM 

(Povey and Woodland, 2002). In the iterative MPE training 

procedure using extended Baum-Welch, the initial HMM 

parameters cannot be arbitrary. One commonly used initial 

parameter set is that previously trained generatively using 

Baum-Welch algorithm for maximum likelihood. Further, an 

interpolation term taking the values of generatively trained 

HMM parameters is needed in the extended Baum-Welch 

updating formula, which may be analogous to “fine tuning” in 
the DNN training discussed earlier. Such I-smoothing (Povey 

and Woodland, 2002) has a similar spirit to DBN pre-training 

in the “hybrid” DNN learning. 
 

Along the line of using discriminative criteria to train 

parameters in generative models as in the above HMM 

training example, we here briefly discuss the same method 

applied to learning other generative architectures. In 

(Larochelle and Bengio, 2008), the generative model of RBM 

is learned using the discriminative criterion of posterior 

class/label probabilities when the label vector is concatenated 

with the input data vector to form the overall visible layer in 

the RBM. In this way, RBM can be considered as a stand-

alone solution to classification problems and the authors 

derived a discriminative learning algorithm for RBM as a 

shallow generative model. In the more recent work of 

(Ranzato et al., 2011), the deep generative model of DBN 

with the gated MRF at the lowest level is learned for feature 

extraction and then for recognition of difficult image classes 

including occlusions. The generative ability of the DBN 

model facilitates the discovery of what information is 

captured and what is lost at each level of representation in the 

deep model, as demonstrated in (Ranzato et al., 2011). A 

related work on using the discriminative criterion of empirical 



risk to train deep graphical models can be found in (Stoyanov 

et al., 2011). 

 

A further example of the hybrid deep architecture is the use of 

the generative model of DBN to pre-train deep convolutional 

neural networks (deep DNN) (Lee et al., 2009, 2010, 2011; 

Abdel-Hamid et al., 2013). Like the fully-connected DNN 

discussed earlier, the DBN pre-training is also shown to 

improve discrimination of the deep CNN over random 

initialization. 

 

The final example given here of the hybrid deep architecture 

is based on the idea and work of (Ney, 1999; He and Deng, 

2011), where one task of discrimination (speech recognition) 

produces the output (text) that serves as the input to the 

second task of discrimination (machine translation). The 

overall system, giving the functionality of speech translation -

-- translating speech in one language into text in another 

language --- is a two-stage deep architecture consisting of 

both generative and discriminative elements.  Both models of 

speech recognition (e.g., HMM) and of machine translation 

(e.g., phrasal mapping and non-monotonic alignment) are 

generative in nature. But their parameters are all learned for 

discrimination. The framework described in (He and Deng, 

2011) enables end-to-end performance optimization in the 

overall deep architecture using the unified learning 

framework initially published in (He et al., 2008). This hybrid 

deep learning approach can be applied to not only speech 

translation but also all speech-centric and possibly other 

information processing tasks such as speech information 

retrieval, speech understanding, cross-lingual speech/text 

understanding and retrieval, etc. (e.g., Yamin et al., 2008; Tur 

et al., 2012; He and Deng, 2012, 2013; Deng et al., 2012; 

Deng et al., 2013a; He et al., 2013). 

 

After briefly surveying a wide range of work in each of the 

three classes of deep architectures above, in the following 

three sections, I will elaborate on three prominent models of 

deep learning, one from each of the three classes. While 

ideally they should represent the most influential architectures 

giving state of the art performance, I have chosen the three 

that I am most familiar with as being responsible for their 

developments and that may serve the tutorial purpose well 

with the simplicity of the architectural and mathematical 

descriptions. The three architectures described in the 

following three sections may not be interpreted as the most 

representative and influential work in each of the three classes. 

For example, in the category of generative architectures, the 

highly complex deep architecture and generative training 

methods developed  by and described in Le et al. (2002), 

which is beyond the scope of this tutorial, performs extremely 

well in image recognition. Likewise, in the category of 

discriminative architectures, the even more complex 

architecture and learning described in Kingsbury et al. (2012) 

gives the state of the art performance in large-scale speech 

recognition. 

IV.       GENERATIVE ARCHITECTURE: DEEP AUTOENCODER 

A. Introduction 

Deep autoencoder is a special type of DNN whose output is 

the data input itself, and is used for learning efficient 

encoding or dimensionality reduction for a set of data. More 

specifically, it is a nonlinear feature extraction method 

involving no class labels; hence generative. An autoencoder 

uses three or more layers in the neural network:  

 An input layer of data to be efficiently coded (e.g., pixels 

in image or spectra in speech); 

 One or more considerably smaller hidden layers, which 

will form the encoding. 

 An output layer, where each neuron has the same 

meaning as in the input layer. 

When the number of hidden layers is greater than one, the 

autoencoder is considered to be deep. 

 

An auto-encoder is often trained using one of the many 

backpropagation variants (e.g., conjugate gradient method, 

steepest descent, etc.) Though often reasonably effective, 

there are fundamental problems with using back-propagation 

to train networks with many hidden layers. Once the errors 

get back-propagated to the first few layers, they become 

minuscule, and quite ineffective. This causes the network to 

almost always learn to reconstruct the average of all the 

training data. Though more advanced backpropagation 

methods (e.g., the conjugate gradient method) help with this 

to some degree, it still results in very slow learning and poor 

solutions. This problem is remedied by using initial weights 

that approximate the final solution. The process to find these 

initial weights is often called pretraining. 

 

A successful pretraining technique developed in (Hinton et al., 

2006) for training deep auto-encoders involves treating each 

neighboring set of two layers like an RBM for pre-training to 

approximate a good solution and then using a 

backpropagation technique to fine-tune so as the minimize the 

“coding” error. This training technique is applied to construct 

a deep autoencoder to map images to short binary code for 

fast, content-based image retrieval. It is also applied to coding 

documents (called semantic hashing), and to coding 

spectrogram-like speech features which we review below. 

B. Use of deep autoencoder to extract speech features 

Here we review the more recent work of (Deng et al., 2010) in 

developing a similar type of autoencoder for extracting 

bottleneck speech instead of image features. Discovery of 

efficient binary codes related to such features can also be used 

in speech information retrieval. Importantly, the potential 

benefits of using discrete representations of speech 

constructed by this type of deep autoencoder can be derived 

from an almost unlimited supply of unlabeled data in future-

generation speech recognition and retrieval systems.  

 

http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Conjugate_gradient_method
http://en.wikipedia.org/wiki/Steepest_descent


A deep generative model of patches of spectrograms that 

contain 256 frequency bins and 1, 3, 9, or 13 frames is 

illustrated in Fig. 1. An undirected graphical model called a 

Gaussian-binary restricted Boltzmann machine (RBM) is built 

that has one visible layer of linear variables with Gaussian 

noise and one hidden layer of 500 to 3000 binary latent 

variables. After learning the Gaussian-Binary RBM, the 

activation probabilities of its hidden units are treated as the 

data for training another binary-binary RBM. These two 

RBM’s can then be composed to form a deep belief net (DBN) 
in which it is easy to infer the states of the second layer of 

binary hidden units from the input in a single forward pass. 

The DBN used in this work is illustrated on the left side of 

Fig. 1, where the two RBMs are shown in separate boxes. 

(See more detailed discussions on RBM and DBN in the next 

section.)

 
Fig. 1: The architecture of the deep autoencoder used in (Deng et al., 

2010) for extracting “bottle-neck” speech features from high-

resolution spectrograms. 

 

The deep autoencoder with three hidden layers is formed by 

“unrolling” the DBN using its weight matrices. The lower 
layers of this deep autoencoder use the matrices to encode the 

input and the upper layers use the matrices in reverse order to 

decode the input. This deep autoencoder is then fine-tuned 

using back-propagation of error-derivatives to make its output 

as similar as possible to its input, as shown on the right side of 

Fig. 1. After learning is complete, any variable-length 

spectrogram can be encoded and reconstructed as follows. 

First, N consecutive overlapping frames of 256-point log 

power spectra are each normalized to zero-mean and unit-

variance to provide the input to the deep autoencoder. The 

first hidden layer then uses the logistic function to compute 

real-valued activations. These real values are fed to the next, 

coding layer to compute “codes”. The real-valued activations 

of hidden units in the coding layer are quantized to be either 

zero or one with 0.5 as the threshold. These binary codes are 

then used to reconstruct the original spectrogram, where 

individual fixed-frame patches are reconstructed first using 

the two upper layers of network weights. Finally, overlap-

and-add technique is used to reconstruct the full-length speech 

spectrogram from the outputs produced by applying the deep 

autoencoder to every possible window of N consecutive 

frames. We show some illustrative encoding and 

reconstruction examples below.  

C. Illustrative examples 

At the top of Fig. 2 is the original speech, followed by the 

reconstructed speech utterances with forced binary values 

(zero or one) at the 312 unit code layer for encoding window 

lengths of  N=1, 3, 9, and 13, respectively. The lower coding 

errors for N=9 and N=13 are clearly seen. 

 

 
 

Fig. 2. Top to Bottom: Original spectrogram; reconstructions using 

input window sizes of N= 1, 3, 9, and 13 while forcing the coding 

units to be zero or one (i.e., a binary code). The y-axis values 

indicate FFT bin numbers (i.e. 256-point FFT is used for 

constructing all spectrograms). 

 

Encoding accuracy of the deep autoencoder is qualitatively 

examined to compare with the more traditional codes via 

vector quantization (VQ). Fig. 3 shows various aspects of the 

encoding accuracy. At the top is the original speech 

utterance’s spectrogram. The next two spectrograms are the 
blurry reconstruction from the 312-bit VQ and the much more 

faithful reconstruction from the 312-bit deep autoencoder. 

Coding errors from both coders, plotted as a function of time, 

are shown below the spectrograms, demonstrating that the 

auto-encoder (red curve) is producing lower errors than the 

VQ coder (blue curve) throughout the entire span of the 

utterance. The final two spectrograms show the detailed 

coding error distributions over both time and frequency bins.  



Fig 3. Top to bottom: Original spectrogram from the test set; 

reconstruction from the 312-bit VQ coder; reconstruction from the 

312-bit auto-encoder; coding errors as a function of time for the VQ 

coder (blue) and auto-encoder (red); spectrogram of the VQ coder 

residual; spectrogram of the deep autoencoder’s residual. 

D. Transforming Auto-encoder 

The deep auto-encoder described above can extract a compact 

code for a feature vector due to its many layers and the non-

linearity. But the extracted code would change unpredictably 

when the input feature vector is transformed. It is desirable to 

be able to have the code change predictably that reflects the 

underlying transformation invariant to the perceived content. 

This is the goal of transforming auto-encoder proposed in for 

image recognition (Hinton et al., 2011). 

 

The building block of the transforming auto-encoder is a 

“capsule”, which is an independent sub-network that extracts 

a single parameterized feature representing a single entity, be 

it visual or audio.  A transforming auto-encoder receives both 

an input vector and a target output vector which is related to 

the input vector by a simple global transformation; e.g., the 

translation of a whole image or frequency shift due to vocal 

tract length differences for speech. An explicit representation 

of the global transformation is known also. The bottleneck or 

coding layer of the transforming autoencoder consists of the 

outputs of several capsules.  

 

During the training phase, the different capsules learn to 

extract different entities in order to minimize the error 

between the final output and the target.  
 

In addition to the deep autoencoder architectures described 

above in detail in this section, there are many other types of 

generative architectures in the literature, all characterized by 

the use of data alone (i.e., free of classification labels) to 

automatically derive higher-level features. Although such 

more complex architectures have produced state of the art 

results (e.g., Le et al., 2012), their complexity does not permit 

detailed treatment in this tutorial paper; rather I have included 

a brief survey of a broader range of the generative deep 

architectures in Section III.A.  

V.       HYBRID ARCHITECTURE: DEEP NEURAL NETWORK PRE-

TRAINED WITH DEEP BELIEF NETWORK 

A. Basics 

In this section, we present the most widely studied hybrid 

deep architecture of deep neural networks (DNN), consisting 

of both pre-training (using generative deep belief network or 

DBN) and fine-tuning stages in its parameter learning. Part of 

this review is based on the recent publication of (Hinton et al., 

2012; Yu and Deng, 2011) and (Dahl et al., 2012). 

 

As the generative component of the DBN, it is a probabilistic 

model composed of multiple layers of stochastic, latent 

variables. The unobserved variables can have binary values 

and are often called hidden units or feature detectors. The top 

two layers have undirected, symmetric connections between 

them and form an associative memory. The lower layers 

receive top-down, directed connections from the layer above. 

The states of the units in the lowest layer, or the visible units, 

represent an input data vector.  

 

There is an efficient, layer-by-layer procedure for learning the 

top-down, generative weights that determine how the 

variables in one layer depend on the variables in the layer 

above. After learning, the values of the latent variables in 

every layer can be inferred by a single, bottom-up pass that 

starts with an observed data vector in the bottom layer and 

uses the generative weights in the reverse direction. 

 

DBNs are learned one layer at a time by treating the values of 

the latent variables in one layer, when they are being inferred 

from data, as the data for training the next layer. This efficient, 

greedy learning can be followed by, or combined with, other 

learning procedures that fine-tune all of the weights to 

improve the generative or discriminative performance of the 

full network. This latter learning procedure constitutes the 

discriminative component of the DBN as the hybrid 

architecture. 

 

Discriminative fine-tuning can be performed by adding a final 

layer of variables that represent the desired outputs and back-

propagating error derivatives. When networks with many 

hidden layers are applied to highly-structured input data, such 

as speech and images, back-propagation works much better if 

the feature detectors in the hidden layers are initialized by 

learning a DBN to model the structure in the input data as 

originally proposed in (Hinton and Salakhutdinov, 2006). 

 

A DBN can be viewed as a composition of simple learning 

modules via stacking them. This simple learning module is 



called restricted Boltzmann machines (RBMs) that we 

introduce next. 

B. Restricted Boltzmann Machine 

An RBM is a special type of Markov random field that has 

one layer of (typically Bernoulli) stochastic hidden units and 

one layer of (typically Bernoulli or Gaussian) stochastic 

visible or observable units. RBMs can be represented as 

bipartite graphs, where all visible units are connected to all 

hidden units, and there are no visible-visible or hidden-hidden 

connections. 

 

In an RBM, the joint distribution p(𝐯, 𝐡; θ) over the visible 

units 𝐯 and hidden units 𝐡, given the model parameters θ, is 

defined in terms of an energy function E(𝐯, 𝐡; θ) of 

 p(𝐯, 𝐡; θ) = 𝑒𝑥𝑝(−E(𝐯, 𝐡; θ))𝑍 , 
 

where 𝑍 = ∑ ∑ 𝑒𝑥𝑝(−E(𝐯, 𝐡; θ))𝐡𝐯  is a normalization factor 

or partition function, and the  marginal probability that the 

model assigns to a visible vector 𝐯 is 

 p(𝐯; θ) = ∑ 𝑒𝑥𝑝(−E(𝐯, 𝐡; θ))𝒉 𝑍 . 
 

For a Bernoulli (visible)-Bernoulli (hidden) RBM, the energy 

function is defined as  E(𝐯, 𝐡; θ) = − ∑ ∑ 𝑤𝑖𝑗𝐽
𝑗=1 𝑣𝑖ℎ𝑗𝐼

𝑖=1 − ∑ 𝑏𝑖𝑣𝑖𝐼
𝑖=1 − ∑ 𝑎𝑗ℎ𝑗𝐽

𝑗=1 , 
 

where 𝑤𝑖𝑗 represents the symmetric interaction term between 

visible unit 𝑣𝑖  and hidden unit ℎ𝑗 , 𝑏𝑖  and 𝑎𝑗  the bias terms, 

and 𝐼 and 𝐽 are the numbers of visible and hidden units. The 

conditional probabilities can be efficiently calculated as 

 𝑝(ℎ𝑗 = 1|𝐯; θ) = 𝜎 (∑ 𝑤𝑖𝑗𝐼
𝑖=1 𝑣𝑖 + 𝑎𝑗), 

𝑝(𝑣𝑖 = 1|𝐡; θ) = 𝜎 (∑ 𝑤𝑖𝑗𝐽
𝑗=1 ℎ𝑗 + 𝑏𝑖), 

 

where 𝜎(𝑥) = 1 (1 + 𝑒𝑥𝑝(𝑥))⁄ .  

 

Similarly, for a Gaussian (visible)-Bernoulli (hidden) RBM, 

the energy is  E(𝐯, 𝐡; θ) = − ∑ ∑ 𝑤𝑖𝑗𝐽
𝑗=1 𝑣𝑖ℎ𝑗𝐼

𝑖=1 − 12 ∑(𝑣𝑖 − 𝑏𝑖)2𝐼
𝑖=1− ∑ 𝑎𝑗ℎ𝑗𝐽

𝑗=1 , 
 

The corresponding conditional probabilities become 𝑝(ℎ𝑗 = 1|𝐯; θ) = 𝜎 (∑ 𝑤𝑖𝑗𝐼
𝑖=1 𝑣𝑖 + 𝑎𝑗), 

𝑝(𝑣𝑖|𝐡; θ) = 𝒩 (∑ 𝑤𝑖𝑗𝐽
𝑗=1 ℎ𝑗 + 𝑏𝑖 , 1), 

where 𝑣𝑖 takes real values and follows a Gaussian distribution 

with mean ∑ 𝑤𝑖𝑗𝐽𝑗=1 ℎ𝑗 + 𝑏𝑖  and variance one. Gaussian-

Bernoulli RBMs can be used to convert real-valued stochastic 

variables to binary stochastic variables, which can then be 

further processed using the Bernoulli-Bernoulli RBMs. 

 

The above discussion used two most common conditional 

distributions for the visible data in the RBM --- Gaussian (for 

continuous-valued data) and binomial (for binary data). More 

general types of distributions in the RBM can also be used. 

See (Welling et al., 2005) for the use of general exponential-

family distributions for this purpose. 

 

Taking the gradient of the log likelihood log 𝑝(𝐯; θ) we can 

derive the update rule for the RBM weights as: 

 ∆𝑤𝑖𝑗 = 𝐸𝑑𝑎𝑡𝑎(𝑣𝑖ℎ𝑗) − 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗), 
 

where 𝐸𝑑𝑎𝑡𝑎(𝑣𝑖ℎ𝑗) is the expectation observed in the training 

set and 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗)  is that same expectation under the 

distribution defined by the model. Unfortunately, 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗)  is intractable to compute so the contrastive 

divergence (CD) approximation to the gradient is used where 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗)  is replaced by running the Gibbs sampler 

initialized at the data for one full step. The steps in 

approximating 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗) is as follows: 

 

 Initialize 𝐯𝟎 at data 

 Sample 𝐡𝟎 ∼ 𝒑(𝐡|𝐯𝟎) 

 Sample 𝐯𝟏 ∼ 𝒑(𝐯|𝐡𝟎) 

 Sample 𝐡𝟏 ∼ 𝒑(𝐡|𝐯𝟏) 

 

Then (𝐯𝟏 , 𝐡𝟏) is a sample from the model, as a very rough 

estimate of 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗) = (𝐯∞, 𝐡∞), which is a true sample 

from the model. Use of (𝐯𝟏, 𝐡𝟏) to approximate 𝐸𝑚𝑜𝑑𝑒𝑙(𝑣𝑖ℎ𝑗) 

gives rise to the algorithm of CD-1. The sampling process can 

be pictorially depicted as below in Fig. 4 below. 

 

 

 
Fig. 4. A pictorial view of sampling from a RBM during the 

“negative” learning phase of the RBM (courtesy of G. Hinton) 



 

Careful training of RBMs is essential to the success of 

applying RBM and related deep learning techniques to solve 

practical problems. See the Technical Report (Hinton 2010) 

for a very useful practical guide for training RBMs. 

 

The RBM discussed above is a generative model, which 

characterizes the input data distribution using hidden 

variables and there is no label information involved. However, 

when the label information is available, it can be used 

together with the data to form the joint “data” set. Then the 
same CD learning can be applied to optimize the approximate 

“generative” objective function related to data likelihood. 

Further, and more interestingly, a “discriminative” objective 
function can be defined in terms of conditional likelihood of 

labels. This discriminative RBM can be used to “fine tune” 
RBM for classification tasks (Larochelle and Bengio, 2008). 

 

Note the SESM architecture by Ranzato et al. (2007a) 

surveyed in Section III is quite similar to the RBM described 

above. While they both have a symmetric encoder and 

decoder, and a logistic non-linearity on the top of the encoder. 

the main difference is that RBM is trained using (approximate) 

maximum likelihood, but SESM is trained by simply 

minimizing the average energy plus an additional code 

sparsity term. SESM relies on the sparsity term to prevent flat 

energy surfaces, while RBM relies on an explicit contrastive 

term in the loss, an approximation of the log partition function. 

Another difference is in the coding strategy in that the code 

units are “noisy” and binary in RBM, while they are quasi-

binary and sparse in SESM.  

C.  Stacking up RBMs to form a DBN/DNN architecture 

Stacking a number of the RBMs learned layer by layer from 

bottom up gives rise to a DBN, an example of which is shown 

in Fig. 5. The stacking procedure is as follows. After learning 

a Gaussian-Bernoulli RBM (for applications with continuous 

features such as speech) or Bernoulli-Bernoulli RBM (for 

applications with nominal or binary features such as black-

white image or coded text), we treat the activation 

probabilities of its hidden units as the data for training the 

Bernoulli-Bernoulli RBM one layer up. The activation 

probabilities of the second-layer Bernoulli-Bernoulli RBM are 

then used as the visible data input for the third-layer 

Bernoulli-Bernoulli RBM, and so on. Some theoretical 

justification of this efficient layer-by-layer greedy learning 

strategy is given in (Hinton et al., 2006), where it is shown 

that the stacking procedure above improves a variational 

lower bound on the likelihood of the training data under the 

composite model. That is, the greedy procedure above 

achieves approximate maximum likelihood learning. Note 

that this learning procedure is unsupervised and requires no 

class label. 

 

 
 

Fig. 5. Illustration of a DBN/DNN architecture. 

 

When applied to classification tasks, the generative pre-

training can be followed by or combined with other, typically 

discriminative, learning procedures that fine-tune all of the 

weights jointly to improve the performance of the network. 

This discriminative fine-tuning is performed by adding a final 

layer of variables that represent the desired outputs or labels 

provided in the training data. Then, the back-propagation 

algorithm can be used to adjust or fine-tune the DBN weights 

and use the final set of weights in the same way as for the 

standard feed-forward neural network. What goes to the top, 

label layer of this DNN depends on the application. For 

speech recognition applications, the top layer, denoted by “l1, 

l2,… lj,… lL,” in Fig. 5, can represent either syllables, phones, 

sub-phones, phone states, or other speech units used in the 

HMM-based speech recognition system.  

 

The generative pre-training described above has produced 

excellent phone and speech recognition results on a wide 

variety of tasks, which will be surveyed in Section VII. 

Further research has also shown the effectiveness of other 

pre-training strategies. As an example, greedy layer-by-layer 

training may be carried out with an additional discriminative 

term to the generative cost function at each level. And without 

generative pre-training, purely discriminative training of 

DNNs from random initial weights using the traditional 

stochastic gradient decent method has been shown to work 

very well when the scales of the initial weights are set 

carefully and the mini-batch sizes, which trade off noisy 

gradients with convergence speed, used in stochastic gradient 

decent are adapted prudently (e.g., with an increasing size 

over training epochs). Also, randomization order in creating 

mini-batches needs to be judiciously determined. Importantly, 

it was found effective to learn a DNN by starting with a 

shallow neural net with a single hidden layer. Once this has 

been trained discriminatively (using early stops to avoid 

overfitting), a second hidden layer is inserted between the first 



hidden layer and the labeled softmax output units and the 

expanded deeper network is again trained discriminatively.  

This can be continued until the desired number of hidden 

layers is reached, after which a full backpropagation ``fine 

tuning’’ is applied. This discriminative “pre-training” 

procedure is found to work well in practice (e.g., Seide et al., 

2011).  

 

This type of discriminative “pre-training” procedure is closely 

related to the learning algorithm developed for the deep 

architectures called deep convex/stacking network, to be 

described in Section VI, where interleaving linear and 

nonlinear layers are used in building up the deep architectures 

in a modular manner, and the original input vectors are 

concatenated with the output vectors of each module 

consisting of a shallow neural net. Discriminative “pre-

training” is used for positioning a subset of weights in each 

module in a reasonable space using parallelizable convex 

optimization, followed by a batch-mode “fine tuning” 
procedure which is also parallelizable due to the closed-form 

constraint between two subsets of weights in each module.  

 

It is useful to point out that historically the use of the 

generative model of DBN to facilitate the training of DNNs 

played an important role in igniting the interest of deep 

learning for speech feature coding and for speech recognition 

(Deng et al., 2010; Dahl et al., 2011, 2012; Hinton et al., 

2012). After this effectiveness was demonstrated, however, 

further research showed many other alternative, simpler ways. 

With a large amount of training data, we can now effectively 

learn a DNN by starting with a shallow neural network (i.e., 

with one hidden layer).  After this net has been trained 

discriminatively, a new hidden layer is inserted between the 

previous hidden layer and the softmax output layer. Then the 

full network can be again discriminatively trained. This 

process can be continued until the desired number of hidden 

layers is reached. And finally, full backpropagation fine-

tuning is carried out to complete the DNN training. This 

procedure is sometimes referred to as “discriminative pre-

training” as reviewed and discussed in some recent papers 
including (Hinton et al., 2012). 

 

Further, purely discriminative training of the full DNN from 

random initial weights is now known to work much better 

than had been thought in early days, provided that the scales 

of the initial weights are set carefully, a large amount of 

labeled training data is available, and mini-batch sizes over 

training epochs are set appropriately. Nevertheless, generative 

pretraining still improves test performance, sometimes by a 

significant amount especially for small tasks. Layer-by-layer 

generative pretraining was originally done using RBMs, but 

various types of autoencoder with one hidden layer can also 

be used. 

D. Interfacing DNN with HMM 

A DBN/DNN discussed above is a static classifier with input 

vectors having a fixed dimensionality. However, many 

practical pattern recognition and information processing 

problems, including speech recognition, machine translation, 

natural language understanding, video processing and bio-

information processing, require sequence recognition. In 

sequence recognition, sometimes called classification with 

structured input/output, the dimensionality of both inputs and 

outputs are variable. 

 

 
 
Fig. 6. Interface between DBN-DNN and HMM to form a DNN-

HMM. This architecture has been successfully used in speech 

recognition experiments reported in (Dahl et al., 2012). 

 

The HMM, based on dynamic programing operations, is a 

convenient tool to help port the strength of a static classifier 

to handle dynamic or sequential patterns. Thus, it is natural to 

combine DBN/DNN and HMM to bridge the gap between 

static and sequence pattern recognition. An architecture that 

shows the interface between a DNN and HMM is provided in 

Fig. 6. This architecture has been successfully used in speech 

recognition experiments as reported in (Dahl et al., 2012). 

 

It is important to note that the unique elasticity of temporal 

dynamic of speech as elaborated in (Deng, 2006) would 

require temporally-correlated models better than HMM for 

the ultimate success of speech recognition. Integrating such 

dynamic models having realistic co-articulatory properties 

with the DNN and possibly other deep learning models to 

form the coherent dynamic deep architecture is a challenging 

new research. 

VI.       DISCRIMINATIVE ARCHITECTURE:  DEEP STACKING 

NETWORK AND ITS TENSOR VERSION 



A.  Introduction  

While the DNN just reviewed has been shown to be extremely 

powerful in connection with performing recognition and 

classification tasks including speech recognition and image 

classification, training a DBN has proven to be more difficult 

computationally. In particular, conventional techniques for 

training DNN at the fine tuning phase involve the utilization 

of a stochastic gradient descent learning algorithm, which is 

extremely difficult to parallelize across machines. This makes 

learning at large scale practically impossible. For example, it 

has been possible to use one single, very powerful GPU 

machine to train DNN-based speech recognizers with dozens 

to a few hundreds of hours of speech training data with 

remarkable results. It is very difficult, however, to scale up 

this success with thousands or more hours of training data.  

 

Here we describe a new deep learning architecture, Deep 

Stacking Network (DSN), which attacks the learning 

scalability problem. This section is based in part on the recent 

publications of (Deng and Yu, 2011; Deng et al., 2012; 

Hutchinson et al., 2012, 2013) with expanded discussions. 

 

The central idea of DSN design relates to the concept of 

stacking, as proposed originally in (Wolpert, 1992), where 

simple modules of functions or classifiers are composed first 

and then they are “stacked” on top of each other in order to 
learn complex functions or classifiers. Various ways of 

implementing stacking operations have been developed in the 

past, typically making use of supervised information in the 

simple modules. The new features for the stacked classifier at 

a higher level of the stacking architecture often come from 

concatenation of the classifier output of a lower module and 

the raw input features. In (Cohen and de Carvalho, 2005), the 

simple module used for stacking was a conditional random 

field (CRF). This type of deep architecture was further 

developed with hidden states added for successful natural 

language and speech recognition applications where 

segmentation information in unknown in the training data (Yu 

et al., 2010a). Convolutional neural networks, as in (Jarrett, 

2009), can also be considered as a stacking architecture but 

the supervision information is typically not used until in the 

final stacking module.  

 

The DSN architecture was originally presented in (Deng and 

Yu, 2011), which also used the name Deep Convex Network 

or DCN to emphasize the convex nature of the principal 

learning algorithm used for learning the network, and 

discussed in this section makes use of supervision information 

for stacking each of the basic modules, which takes the 

simplified form of multilayer perceptron. In the basic module, 

the output units are linear and the hidden units are sigmoidal 

nonlinear. The linearity in the output units permits highly 

efficient, parallelizable, and closed-form estimation (a result 

of convex optimization) for the output network weights given 

the hidden units’ activities. Due to the closed-form constraints 

between the input and output weights, the input weights can 

also be elegantly estimated in an efficient, parallelizable, 

batch-mode manner. 

 

The name “convex” used in (Deng and Yu, 2011) accentuates 

the role of convex optimization in learning the output network 

weights given the hidden units’ activities in each basic 

module. It also points to the importance of the closed-form 

constraints, derived from the convexity, between the input and 

output weights. Such constraints make the learning the 

remaining network parameters (i.e., the input network weights) 

much easier than otherwise, enabling batch-mode learning of 

DSN that can be distributed over CPU clusters. And in more 

recent publications, DSN was used when the key operation of 

stacking is emphasized. 

 

B.  An architectural overview of deep stacking network 

A DSN, shown in Fig. 7, includes a variable number of 

layered modules, wherein each module is a specialized neural 

network consisting of a single hidden layer and two trainable 

sets of weights. In Fig. 7, only four such modules are 

illustrated, where each module is shown with a separate color. 

(In practice, up to a few hundreds of modules have been 

efficiently trained and used in image and speech classification 

experiments.) 

 

The lowest module in the DSN comprises a first linear layer 

with a set of linear input units, a non-linear layer with a set of 

non-linear hidden units, and a second linear layer with a set of 

linear output units. For instance, if the DSN is utilized in 

connection with recognizing an image, the input units can 

correspond to a number of pixels (or extracted features) in the 

image, and can be assigned values based at least in part upon 

intensity values, RGB values, or the like corresponding to the 

respective pixels. If the DSN is utilized in connection with 

speech recognition, the set of input units may correspond to 

samples of speech waveform, or the extracted features from 

speech waveforms, such as power spectra or cepstral 

coefficients.  

 

The hidden layer of the lowest module of a DSN comprises a 

set of non-linear units that are mapped to the input units by 

way of a first, lower-layer weight matrix, which we denote by 

W. For instance, the weight matrix may comprise a plurality 

of randomly generated values between zero and one, or the 

weights of an RBM trained separately. The non-linear units 

may be sigmoidal units that are configured to perform non-

linear operations on weighted outputs from the input units 

(weighted in accordance with the first weight matrix W). 

  

The second, linear layer in any module of a DSN includes a 

set of output units that are representative of the targets of 

classification. For instance, if the DSN is configured to 

perform digit recognition, then the plurality of output units 

may be representative of the values 1, 2, 3, and so forth up to 

10 with a 0-1 coding scheme. If the DSN is configured to 

perform speech recognition, then the output units may be 



representative of phones, HMM states of phones, or context-

dependent HMM states of phones. The non-linear units in 

each module of the DSN may be mapped to a set of the linear 

output units by way of a second, upper-layer weight matrix, 

which we denote by U. This second weight matrix can be 

learned by way of a batch learning process, such that learning 

can be undertaken in parallel. Convex optimization can be 

employed in connection with learning U. For instance, U can 

be learned based at least in part upon the first weight matrix 

W, values of the coded classification targets, and values of the 

input units.  

 

As indicated above, the DSN includes a set of serially 

connected, overlapping, and layered modules, wherein each 

module includes the aforementioned three layers -- a first 

linear layer that includes a set of linear input units whose 

number equals the dimensionality of the input features, a 

hidden layer that comprises a set of non-linear units whose 

number is a tunable hyper-parameter, and a second linear 

layer that comprises a plurality of linear output units whose 

number equals that of the target classification classes (e.g., the 

total number of context-dependent phones clustered by a 

decision tree used in). The modules are referred to herein as 

being layered because the output units of a lower module are 

a subset of the input units of an adjacent higher module in the 

DSN. More specifically, in a second module that is directly 

above the lowest module in the DSN, the input units can 

include the output units of the lower module(s). The input 

units can additionally include the raw training data – in other 

words, the output units of the lowest module can be appended 

to the input units in the second module, such that the input 

units of the second module also include the output units of the 

lowest module.  

 

The pattern discussed above of including output units in a 

lower module as a portion of the input units in an adjacent 

higher module in the DBN and thereafter learning a weight 

matrix that describes connection weights between hidden 

units and linear output units via convex optimization can 

continue for many modules. A resultant learned DSN may 

then be deployed in connection with an automatic 

classification task such as frame-level speech phone or state 

classification. Connecting DSN’s output to an HMM or any 
dynamic programming device enables continuous speech 

recognition and other forms of sequential pattern recognition. 

 

 

 
 

 
Fig. 7: A DSN architecture. Only four modules are illustrated, each 

with a distinct color. Dashed lines denote copying layers. 

 

 

C.  Tensorized deep stacking network 

The above DSN architecture has recently been generalized to 

its tensorized version, which we call TDSN (Hutchinson et al., 

2012, 2013). It has the same scalability as DSN in terms of 

parallelizability in learning, but it generalizes DSN by 

providing higher-order feature interactions missing in DSN. 

 

The architecture of TDSN is similar to that of DSN in the way 

that stacking operation is carried out. That is, modules of the 

TDSN are stacking up in a similar way to form a deep 

architecture. The differences of TDSN and DSN lie mainly in 

how each module is constructed. In DSN, we have one set of 

hidden units forming a hidden layer, as denoted at the left 

panel of Fig. 8. In contrast, each module of a TDSD contains 

two independent hidden layers, denoted as “Hidden 1” and 
“Hidden 2” in the middle and right panels of Fig. 8. As a 

result of this different, the upper-layer weights, denoted by “U” 
in Fig. 8, changes from a matrix (a two dimensional array) in 

DSN to a tensor (a three dimensional array) in TDSN, shown 

as a cube labeled by “U” in the middle panel. 

... ...

... ...

...

W2

U2

... ...

... ...

...

W1

U1

Wrand

... ... ...

... ...

...

W3
Wrand

U3

...... ... ...

... ...

...

Wrand
W4

U4



 

Fig. 8: Comparisons of one single module of a DSN (left) and that of 

a tensorized-DSN (TDSN). Two equivalent forms of a TDSN 

module are shown to the right. 

 

The tensor U has a three-way connection, one to the 

prediction layer and the remaining to the two separate hidden 

layers. An equivalent form of this TDSN module is shown in 

the right panel of Fig. 8, where the implicit hidden layer is 

formed by expanding the two separate hidden layers into their 

outer product. The resulting large vector contains all possible 

pair-wise products for the two sets of hidden-layer vectors.  

This turns tensor U into a matrix again whose dimensions are 

1) size of the prediction layer; and 2) product of the two 

hidden layers’ sizes. Such equivalence enables the same 

convex optimization for learning U developed for DSN to be 

applied to learning tensor U.  Importantly, higher-order 

hidden feature interactions are enabled in TDSN via the outer 

product construction for the large, implicit hidden layer. 

 

Stacking TDSN modules to form a deep architecture pursues 

in a similar way to DSN by concatenating various vectors. 

Two examples are shown in Figs. 9 and 10.  Note stacking by 

concatenating hidden layers with input (Fig. 10) would be 

difficult for DSN since its hidden layer tends to be too large 

for practical purposes. 

           
 
Fig. 9: Stacking of TDSN modules by concatenating prediction 

vector with input vector. 

 

Fig. 10: Stacking of TDSN modules by concatenating two hidden-

layers’ vectors with the input vector. 

VII.        APPLICATIONS OF DEEP LEARNING TO SIGNAL AND 

INFORMATION PROCESSING 

In the expanded technical scope of signal processing, the 

signal is endowed with not only the traditional types such as 

audio, speech, image and video, but also text, language, and 

document that convey high-level, semantic information for 

human consumption. In addition, the scope of processing has 

been extended from the conventional coding, enhancement, 

analysis, and recognition to include more human-centric tasks 

of interpretation, understanding, retrieval, mining, and user 

interface (Deng, 2008). Signal processing researchers have 

been working on one or more of the signal processing areas 

defined by the matrix constructed with the two axes of signal 

and processing discussed here. The deep learning techniques 

discussed in this article have recently been applied to a large 

number of traditional and extended signal processing areas, 

with the most recent interesting application of predicting 

protein structure (Lena et al., 2012, which we will not cover 

here). We now provide a brief survey of this body of work in 

four main categories pertaining closely to signal and 

information processing. 

A. Speech and audio 

The traditional neural network or MLP has been in use for 

speech recognition for many years. When used alone, its 

performance is typically lower than the state-of-the-art HMM 

systems with observation probabilities approximated with 

Gaussian mixture models (GMMs). Recently, the deep 

learning technique was successfully applied to phone 

recognition (Mohamed et al., 2009, 2010, 2012; Sivaram and 

Hermansky, 2012) and large vocabulary speech recognition 

tasks (Yu et al., 2012; Seide et al., 2011, 2011a; Dahl et al., 

2011, 2012; Kubo et al., 2012) by integrating the powerful 

discriminative training ability of the DNNs with the 

sequential modeling ability of the HMMs.  

 

More specifically, in the work of (Mohamed et al., 2009), a 

five-layer DNN (called DBN in the paper) was used to replace 



the Gaussian mixture component of the GMM-HMM and the 

monophone state was used as the modeling unit. Although 

monophones are generally accepted as a weaker phonetic 

representation than triphones, the DBN-HMM approach with 

monophones was shown to achieve higher phone recognition 

accuracy than the state-of-the-art triphone GMM-HMM 

systems. 

 

The technique of (Mohamed et al., 2009) was improved in the 

later work reported in (Mohamed et al., 2010) by using the 

CRF instead of the HMM to model the sequential speech data 

and by applying the maximum mutual information (MMI) 

training technique successfully developed in speech 

recognition to the resultant DBN-CRF training. The 

sequential discriminative learning technique developed jointly 

optimizes the DBN weights, transition weights, and phone 

language model and achieved higher accuracy than the DBN-

HMM phone recognizer with the frame-discriminative 

training criterion implicit in the DBN’s fine tuning procedure 

implemented in (Mohamed et al., 2009). 

 

Here we elaborate on the method of (Mohamed et al., 2010). 

The early phonetic recognition experiments made use of the 

standard frame-based objective function in static pattern 

classification, cross-entropy, to optimize the DNN weights. 

The transition parameters and language model scores were 

obtained from an HMM-like approach and were trained 

independently of the DNN weights. However, it has been 

known during the long history of HMM research that 

sequence classification criteria can be very helpful in 

improving speech and phone recognition accuracy This is 

because the sequence classification criteria are more directly 

correlated with the performance measure (e.g., the overall 

word or phone error rate) than cross entropy. 

 

The benefit of using such sequence classification criteria was 

shown on shallow neural networks in (Kingsbury 2009; 

Prabhavalkar and Fosler-Lussier, 2010). In more recent work 

of (Mohamed et al., 2010), one popular type of sequence 

classification criterion, maximum mutual information or MMI, 

was successfully applied to learn DNN weights for the TIMIT 

phone recognition task. Use of cross entropy to train DNN for 

phone sequence recognition does not explicitly take into 

account the fact that the neighboring frames have smaller 

distances between the assigned probability distributions over 

phone class labels. To overcome this deficiency, one can 

optimize the conditional probability of the whole sequence of 

labels, given the whole visible feature utterance or equivalent 

the hidden feature sequence extracted by DNN. To optimize 

the log conditional probability on the training data, we take 

the gradient over the activation parameters, transition 

parameters and lower-layer weights, and then pursue back-

propagation of the error defined at the sentence level. 

 

In implementing the above learning algorithm for MMI-DNN, 

the DNN weights can be initialized using the frame-based 

training with cross entropy as the objective. The transition 

parameters can be initialized from the combination of the 

HMM transition matrices and the “phone language” model 
scores, and can be further optimized by tuning the transition 

features while fixing the DNN weights before the joint 

optimization. Using the joint optimization with careful 

scheduling, it was shown that MMI-DNN can outperform the 

DNN trained with cross entropy by approximately 5% relative. 

 

In (Dahl et al., 2011, 2012), the DNN-HMM was extended 

from the monophone phonetic representation to the triphone 

or context-dependent counterpart and from phone recognition 

to large vocabulary speech recognition. Experiments on the 

Bing mobile voice search dataset collected under the real 

usage scenario demonstrate that the triphone DNN-HMM 

significantly outperforms the state-of-the-art HMM system. 

Three factors contribute to the success: the use of triphones as 

the DNN modeling units, the use of the best available tri-

phone GMM-HMM to generate the alignment with each state 

in the tri-phones, and the tuning of the transition probabilities. 

Experiments also indicate that the decoding time of a five-

layer DNN-HMM is almost the same as that of the state-of-

the-art triphone GMM-HMM.  

 

In other large vocabulary speech recognition tasks including 

those defined on Google voice search and YouTube, and in 

the Switchboard  and Broadcast News databases, DNN-HMM 

also produces strong results (Seide et al., 2011; Sainath et al., 

2011; Jaitly et al., 2012; Hinton et al., 2012). 

 

A similar strength of DNN (called DBN in the paper) was 

reported in (Vinyals and Ravuri, 2011) in a somewhat 

different setup called Tandem approach and for mis-matched 

noisy speech. It was reported that DNNs outperform the 

MLPs with a single hidden layer under the clean condition, 

but the gains slowly diminish as the noise level is increased. 

Furthermore, using MFCCs in conjunction with the posteriors 

computed from DNNs outperforms using single DNNs alone 

in low to moderate noise conditions. 

 

In (Deng et al., 2010), a type of deep auto-encoder developed 

originally for image feature coding was explored and 

modified to solve the speech feature coding problem, which 

we reviewed in Section IV. The goal is to extract “bottle-neck” 
speech features by compressing the high-resolution speech 

spectrogram data to a pre-defined number of bits with 

minimal reproduction error. DBN pre-training is found to be 

crucial for high coding efficiency. When the DBN pre-

training is used, the deep auto-encoder is shown to 

significantly outperform a traditional vector quantization 

technique. If the weights in the deep auto-encoder are 

randomly initialized, the performance is observed to be 

substantially degraded. The architecture of the deep auto-

encoder used in that work was shown in Fig. 1 earlier. 

 

The more recent work of (Deng and Yu, 2011; Yu and Deng, 

2011; Deng, Yu, and Platt, 2012), which we reviewed in 

Section VI, makes use of the discriminative DSN architecture 



to perform frame-level phone classification as well as phone 

recognition. Higher accuracy than DBN/DNN is reported, 

especially after a discriminative “fine-tuning” technique 
developed in (Yu and Deng, 2011) is exploited. The 

effectiveness of DSN is particularly enabled by convex 

optimization for discriminative ``pre-training’’, and is 
recently found to beat strong baseline results also in a speech 

understanding task (Tur et al., 2012).  

 

The basic DSN architecture has recently been extended to its 

tensor version, TDSN, as reviewed in Section VI, to 

incorporate correlation structure in the hidden layer activities 

with promising results on phone recognition and 

computational properties reported in (Hutchinson et al., 2012). 

While the work reported in these papers has not fully 

developed parallel implementation of the basic learning 

algorithm in the DSN and TDSN architectures, research is 

currently underway to enable high scalability of learning DSN 

and TDSN via parallelization, with initial results shown in 

(Deng et al., 2012). 

 

In the work reported in (Lee et al., 2009) and the follow-up 

work, the convolutional structure is imposed on the RBM 

while building up a DBN.  Convolution is made in time by 

sharing weights between hidden units in an attempt to detect 

the same “invariant” feature over different times. Then a max-

pooling operation is performed where the maximal activations 

over small temporal neighborhoods of hidden units are 

obtained, proving some local temporal invariance. The 

resulting convolutional DBN is applied to audio and speech 

data for a number of tasks including music artist and genre 

classification, speaker identification, speaker gender 

classification, and phone classification, with promising results 

presented.  

 

As discussed in Section III.B, the concept of convolution in 

time in the above work was originated in TDNN as a shallow 

neural net (Lang et al., 1990) developed in early speech 

recognition. Only recently and when deep architectures (e.g. 

deep CNN) are used, it has been found that frequency-

dimension weight sharing is more effective for high-

performance phone recognition than time domain as in the 

previous TDNN (Abdel-Hamid et al., 2012, 2013; Deng et al., 

2013). These studies also show that designing the pooling in 

deep CNN to properly trade-off between invariance to vocal 

tract length and discrimination between speech sounds 

(together with a regularization technique of “dropout” (Hinton 
et al., 2012a) leads to even better phone recognition 

performance. This set of work also points to the direction of 

trading-off between trajectory discrimination and invariance 

expressed in the whole dynamic pattern of speech defined in 

mixed time and frequency domains using convolution and 

pooling. Moreover, the most recent work of (Sainath et al., 

2013) shows that CNNs are also useful for large vocabulary 

continuous speech recognition and further demonstrates that 

multiple convolutional layers provide even more 

improvement when the convolutional layers use a large 

number of convolution kernels or feature maps.   

 

The more recent work reported in (Jaitly and Hinton, 2011) 

makes use of speech sound waves as the raw input feature to 

an RBM with a convolutional structure as the classifier. With 

the use of rectifier linear units in the hidden layer (Glorot et 

al., 2011), it is possible to automatically normalize the 

amplitude variation in the waveform signal, thus overcoming 

the difficulty encountered in the earlier attempt of using the 

same raw feature in the HMM-based approach (Sheikhzadeh 

and Deng, 1994). 

 

In addition to RBM, DBN, and DSN, other deep models have 

also been developed and reported in the literature for speech 

processing and related applications. For example, the deep-

structured CRF, which stacks many layers of CRFs, have 

been successfully used in the task of language identification 

(Yu et al., 2010), phone recognition (Yu and Deng, 2010), 

sequential labeling in natural language processing (Yu et al., 

2010a), and confidence calibration in speech recognition (Yu 

et al., 2010b). Further, while RNN has early success in phone 

recognition (Robinson, 1994), it was not easy to duplicate due 

to the intricacy in training, let alone to scale up for larger 

speech recognition tasks. Learning algorithms for RNN have 

been dramatically improved since then, and much better 

results have been obtained recently using RNN (Graves, et al., 

2006; 2013; Maas et al., 2012). RNN has also been recently 

applied to music processing applications (Bengio et al., 2013), 

where the use of rectified linear hidden units instead of 

logistic or tanh nonlinearities is explored in RNN. Rectified 

linear units compute y = max(x, 0), and lead to sparser 

gradients, less diffusion of credit and blame in the RNN, and 

faster training. 

B. Image, video, and multimodality 

The original DBN and deep auto-encoder were developed and 

demonstrated with success on the simple image recognition 

and dimensionality reduction (coding) tasks (MNIST) in 

(Hinton and Salakhutdinov, 2006). It is interesting to note that 

the gain of coding efficiency using the DBN-based auto-

encoder on the image data over the conventional method of 

principal component analysis as demonstrated in (Hinton and 

Salakhutdinov, 2006) is very similar to the gain reported in 

(Deng et al., 2010) on the speech data over the traditional 

technique of vector quantization. 

 

In (Nair and Hinton, 2009), a modified DBN is developed 

where the top-layer model uses a third-order Boltzmann 

machine. This type of DBN is applied to the NORB database 

– a 3-dimensional object recognition task. An error rate close 

to the best published result on this task is reported. In 

particular, it is shown that the DBN substantially outperforms 

shallow models such as SVMs. 

 

In (Tang and Eliasmith, 2010), two strategies to improve the 

robustness of the DBN are developed. First, sparse 



connections in the first layer of the DBN are used as a way to 

regularize the model. Second, a probabilistic de-noising 

algorithm is developed. Both techniques are shown to be 

effective in improving robustness against occlusion and 

random noise in a noisy image recognition task.  

 

DBNs have also been successfully applied to create compact 

but meaningful representations of images (Taralba et al., 2008) 

for retrieval purposes. On this large collection image retrieval 

task, deep learning approaches also produced strong results. 

 

Deep architectures with convolution structure have been 

found highly effective and been commonly used in computer 

vision and image recognition (Bengio and LeCun, 1995; 

LeCun et al., 1998; Jarrett et al., 2009; Kavukcuoglu et al., 

2010; Ciresan et al., 2012; Le et al., 2012; Dean et al., 2012; 

Krizhevsky et al., 2012). The most notable advance was 

recently achieved in the 2012 ImageNet LSVRC contest, 

where 1000 different image classes are the targets with 1.2 

million high-resolution images in the training set. On the test 

set consisting of 150,000 images, the deep CNN approach 

described in (Krizhevsky et al., 2012) achieved the error rates 

considerably lower than the previous state-of-the-art. Very 

large deep CNNs are used, consisting of 60 million weights, 

and 650,000 neurons, and five convolutional layers together 

with max-pooling layers. Additional three fully-connected 

layers as in the DNN described previously are used on top of 

the deep CNN layers. Although all the above structures were 

developed separately in earlier work, their best combination 

accounted for part of the success.  Additional factors 

contributing to the final success are: 1) a powerful 

regularization technique called “dropout” (see details in 
Hinton et al., 2012); and 2) use of non-saturating neurons or 

rectified linear units (ReLU) that compute y = max(x, 0), 

significantly speeding up the training process especially with 

a very efficient GPU implementation.  

 

The use of a temporally conditional DBN for video sequence 

and human motion synthesis is reported in (Taylor et al., 

2007). The conditional DBN makes the DBN weights 

associated with a fixed time window conditioned on the data 

from previous time steps. The computational tool offered in 

this type of temporal DBN and the related recurrent networks 

may provide the opportunity to improve the DBN-HMMs 

towards efficient integration of temporal-centric human 

speech production mechanisms into DBN-based speech 

production model. 

 

A very interesting study appeared in (Ngiam et al., 2011), 

where the authors propose and evaluate a novel application of 

deep networks to learn features over both audio and video 

modalities. A similar deep auto-encoder architecture that we 

described in Section IV and in (Deng et al., 2010) is used but 

it can be considered as a generalization from a single modality 

to two modalities. Cross modality feature learning has been 

demonstrated --- better features for video can be learned if 

both audio and video information sources are available at 

feature learning time. The authors further show how to learn a 

shared audio and video representation, and evaluate it on a 

fixed task, where the classifier is trained with audio-only data 

but tested with video-only data and vice-versa. The work 

concludes that deep learning architectures are generally 

effective in learning multimodal features from unlabeled data 

and in improving single modality features through cross 

modality learning. One exception is the cross-modality setting 

using the CUAVE dataset. The results presented in (Ngiam et 

al., 2011) show that there is an improvement by learning 

video features with both video and audio compared to 

learning features with only video data. However, the same 

paper also shows that a model of (Papandreou, 2009) in which 

a sophisticated signal processing technique for extracting 

visual features, together with the uncertainty-compensation 

method developed originally from robust speech recognition 

(Deng et al., 2005), gives the best classification accuracy in 

the cross-modeling learning task, beating the features derived 

from the generative deep architecture designed for this task. 

 

While the deep generative architecture for multimodal 

learning described in (Ngiam et al., 2011) is based on non-

probabilistic auto-encoder neural nets, a probabilistic version 

based on deep Boltzmann machine (DBM) has appeared more 

recently for the same multimodal application. In (Srivastava 

and Salakhutdinov, 2012), a DBM is used to extract a unified 

representation integrating separate modalities, useful for both 

classification and information retrieval tasks. Rather than 

using the “bottleneck” layers in the deep auto-encoder to 

represent multimodal inputs, here a probability density is 

defined on the joint space of multimodal inputs, and states of 

suitably defined latent variables are used for the 

representation. The advantage of this probabilistic 

formulation, lacking in the deep auto-encoder, is that the 

missing modality’s information can be filled in naturally by 
sampling from its conditional distribution. For the bi-modal 

data consisting of image and text, the multimodal DBM is 

shown to outperform deep multimodal auto-encoder as well as 

multimodal DBN in classification and information retrieval 

tasks. 

C. Language modeling 

Research in language, document, and text processing has seen 

increasing popularity recently in the signal processing 

community, and has been designated as one of the main focus 

areas by the society’s audio, speech, and language processing 
technical committee. There has been a long history (e.g., 

Bengio et al., 2000; Zamora et al., 2009) of using (shallow) 

neural networks in language modeling (LM) – an important 

component in speech recognition, machine translation, text 

information retrieval, and in natural language processing. 

Recently, deep neural networks have been attracting more and 

more attention in statistical language modeling. 

 

An LM is a function that captures the salient statistical 

characteristics of the distribution of sequences of words in a 

natural language. It allows one to make probabilistic 

http://www.scholarpedia.org/article/Language


predictions of the next word given preceding ones. A neural 

network LM is one that exploits the neural network ability to 

learn distributed representations to reduce the impact of the 

curse of dimensionality. 

 

A distributed representation of a symbol is a vector of features 

which characterize the meaning of the symbol. With a neural 

network LM, one relies on the learning algorithm to discover 

meaningful, continuous-valued features. The basic idea is to 

learn to associate each word in the dictionary with a 

continuous-valued vector representation, where each word 

corresponds to a point in a feature space. One can imagine 

that each dimension of that space corresponds to a semantic or 

grammatical characteristic of words. The hope is that 

functionally similar words get to be closer to each other in 

that space, at least along some directions. A sequence of 

words can thus be transformed into a sequence of these 

learned feature vectors. The neural network learns to map that 

sequence of feature vectors to the probability distribution over 

the next word in the sequence.  

 

The distributed representation approach to LM has the 

advantage that it allows the model to generalize well to 

sequences that are not in the set of training word sequences, 

but that are similar in terms of their features, i.e., their 

distributed representation. Because neural networks tend to 

map nearby inputs to nearby outputs, the predictions 

corresponding to word sequences with similar features are 

mapped to similar predictions.  

 

The above ideas of neural network LM have been 

implemented in various studies, some involving deep 

architecture. In (Mnih and Hinton, 2007), temporally factored 

RBM was used for language modeling. Unlike the traditional 

N-gram model the factored RBM uses distributed 

representations not only for context words but also for the 

words being predicted. This approach is generalized to deeper 

structures as reported in (Mnih and Hinton, 2008). 

 

More recent work on neural network LM with deep 

architectures can be found in (Le et al., 2010, 2011a; Mikolov 

et al., 2010; Mikolov et al., 2011; Mikolov, 2012). In 

particular, the work described in (Mikolov et al., 2011) and 

(Mikolov, 2012) makes use RNNs to build large scale 

language models. It achieves stability and fast convergence in 

training, helped by capping the growing gradient in training 

RNNs. It also develops adaptation schemes for the RNN-

based LM by sorting the training data with respect to their 

relevance and by training the model during processing of the 

test data. Empirical comparisons with other LM state-of-the-

art show much better performance of RNN especially in the 

perplexity measure.  A separate work on applying RNN as an 

LM on the unit of characters instead of words can be found in 

(Sutskever et al., 2011). Very interesting properties such as 

predicting long-term dependency (e.g. making open and 

closing quotes in a paragraph) are demonstrated. But its 

usefulness in practical applications has not been clear because 

word is such a powerful representation for natural language 

and changing word to character in LM limits most practical 

application scenarios. 

 

Further, the use of hierarchical Bayesian priors in building up 

deep and recursive structure in LM appeared in (Huang and 

Renals, 2010). Specifically, Pitman-Yor process is exploited 

as the Bayesian prior, from which a deep (four layers) 

probabilistic generative model is built. It offers a principled 

approach to LM smoothing by incorporating the power-law 

distribution for natural language. As discussed in Section III, 

this type of prior knowledge embedding is more readily 

achievable in the probabilistic modeling setup than in the 

neural network one. 

D. Natural language processing  

In the well-known and sometimes debatable work on natural 

language processing, Collobert and Weston (2008) developed 

and employed a convolutional DBN as the common model to 

simultaneously solve a number of classic problems including 

part-of-speech tagging, chunking, named entity tagging, 

semantic role identification, and similar word identification. 

More recent work reported in (Collobert, 2010) further 

developed a fast purely discriminative approach for parsing 

based on the deep recurrent convolutional architecture called 

Graph Transformer Network. Collobert et al., (2011) provides 

a comprehensive review on this line of work, specifically on 

ways of applying a unified neural network architectures and 

related deep learning algorithms to solve natural language 

processing problems from “scratch”. The theme of this line of 
work is to avoid task-specific, “man-made” feature 
engineering while providing versatility and unified features 

constructed automatically from deep learning applicable to all 

natural language processing tasks. The system described in 

(Collobert et al., 2011) automatically learns internal 

representation from vast amounts of mostly unlabeled training 

data.  

 

One most important aspects of the work described in 

(Collobert and Weston, 2008) and (Collobert et al., 2011) is 

the transformation of raw word representations in terms of 

sparse vectors with a very high dimension (vocabulary size or 

its square or even its cubic) into low-dimensional, real-valued 

vectors for processing by subsequent neural network layers. 

This is known as “word embedding”, widely used in natural 
language processing and language modeling nowadays. 

Unsupervised learning is used where “context” of the word is 
used as the learning signal in neural networks. An excellent 

tutorial was recently given (Socher et al, 2012) that explains 

how the neural network is trained to perform word embedding 

originally proposed in (Collobert and Weston, 2008). More 

recent work proposes new ways of doing word embedding 

that better capture the semantics of words by incorporating 

both local and global document context and better account for 

homonymy and polysemy by learning multiple embeddings 

per word (Huang et al., 2012). Also, there is evidence that the 

http://www.scholarpedia.org/article/Neural_Networks
http://www.scholarpedia.org/article/Neural_Networks
http://www.scholarpedia.org/article/Neural_net_language_models#Distributed_Representations


use of RNN can also provide empirically good performance in 

word embedding (Mikolov, 2012). 

 

Another study on applying multi-task learning techniques 

with DBN is provided in (Deselaers et al., 2009) to attack a 

machine transliteration problem. This type of deep 

architectures and learning may be generalized to the more 

difficult machine translation problem. 

 

In the work of (Sarikaya et al., 2011), DNNs (called DBNs in 

the paper) are used to perform a natural language call–routing 

task. The DNNs use unsupervised learning to discover 

multiple layers of features that are then used in a feed-forward 

neural network and fine-tuned to optimize discrimination. 

Unsupervised feature discovery is found to make DBNs far 

less prone to overfitting than the neural networks initialized 

with random weights. It also makes it easier to train neural 

networks with many hidden layers. DBNs are found to 

produce better classification results than several other widely 

used learning techniques, e.g., Maximum Entropy and 

Boosting based classifiers.  

 

An interesting recent work on applying deep learning to 

natural language processing appears in (Socher et al., 2011), 

where a recursive neural network is used to build a deep 

architecture. The network is shown to be capable of 

successful merging of natural language words based on the 

learned semantic transformations of their original features. 

This deep learning approach provides an excellent 

performance on natural language parsing. The same approach 

is also demonstrated by the same authors to be successful in 

parsing natural scene images. In related studies, a similar 

recursive deep architecture is used for paraphrase detection 

(Socher et al., 2011a), and for predicting sentiment 

distributions from text (Socher et al., 2011b). 

E. Information Retrieval 

Here we discuss very interesting applications of the DBN and 

the related deep auto-encoder to document indexing and 

information retrieval as published in (Salakhutdinov and 

Hinton, 2007; Hinton and Salakhutdinov, 2010). It is shown 

that the hidden variables in the final layer of a DBN not only 

are easy to infer but also give a much better representation of 

each document, based on the word-count features, than the 

widely used latent semantic analysis and the traditional TF-

IDF approach for information retrieval. Using the compact 

code produced by deep networks, documents are mapped to 

memory addresses in such a way that semantically similar text 

documents are located at nearby address to facilitate rapid 

document retrieval. And the mapping from a word-cound 

vector to its compact code is highly efficient, requiring only a 

matrix multiplication and a subsequent sigmoid function 

evaluation for each hidden layer in the encoder part of the 

network. 

 

A deep generative model of DBN is exploited for the above 

purpose, with details provided in (Hinton and Salakhutdinov, 

2010). Briefly, the lowest layer of the DBN represents the 

word-count vector of a document and the top layer represents 

a leaned binary code for that document. The top two layers of 

the DBN form an undirected associative memory and the 

remaining layers form a Bayesian (also called belief) network 

with directed, top-down connections. This DBN, composed of 

a set of stacked RBMs as we reviewed in Section V, produces 

a feed-forward “encoder” network that convers word-count 

vectors to compact codes. By composing the RBMs in the 

opposite order, a “decoder” network is constructed that maps 

compact code vectors into reconstructed word-count vectors. 

Combining the encoder and decoder, one obtains a deep auto-

encoder (subject to further fine-tuning as discussed in Section 

IV) for document coding and subsequent retrieval. 

 

After the deep model is trained, the retrieval process starts 

with mapping each query document into a 128-bit binary code 

by performing a forward pass through the model with 

thresholding. Then, the similarity, with Hamming distance, 

between the query binary code and all other documents’ 128-

bit binary codes are computed efficiently.  

 

The same idea above for coding text documents for 

information retrieval has been explored for audio document 

retrieval and speech feature coding problems with some initial 

exploration reported in (Deng et al., 2010) discussed in 

Section IV.  

VIII. SUMMARY AND DISCUSSIONS  

This paper presents a brief history of deep learning, and 

develops a categorization scheme to analyze the existing deep 

architectures in the literature into generative, discriminative, 

and hybrid classes. The deep auto-encoder, DSN, and DBN-

DNN architectures, one in each of the three classes, are 

discussed and analyzed in detail, as they appear to be popular 

and promising approaches with author’s personal research 
experience. Applications of deep learning in five broad areas 

of information processing are then reviewed.  

 

The literature on deep learning is vast, mostly coming from 

the machine learning community. The signal processing 

community embraced deep learning only within the past four 

years or so and the momentum is growing fast. This overview 

paper is written mainly from the signal processing perspective. 

Beyond just surveying existing deep learning work, a 

classificatory scheme based on the architecture and the nature 

of learning algorithms is developed and in-depth analysis with 

concrete examples conducted. This will hopefully provide 

insight for readers to better understand the capability of the 

various deep learning systems discussed in the paper, the 

connection among different but similar deep learning methods, 

and how to design proper deep learning algorithms under 

different circumstances. 

 

Throughout this review, the important message is conveyed 

that building/learning deep architectures and hierarchies of 

features is highly desirable. We have discussed the difficulty 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sarikaya:Ruhi.html


of learning parameters in all layers at once due to pervasive 

local optimum and gradient dilution. The generative, pre-

training method in the hybrid architecture of DBN-DNN, 

which we reviewed in detail in Section V in this paper, 

appears to have offered a useful, albeit empirical, solution to 

poor local optima in optimization and to regularization for the 

deep model containing massive parameters.  

 

Deep learning is an emerging technology. Despite the 

empirical promising results reported so far, much needs to be 

developed. Importantly, it has not been the experience of deep 

learning researchers that a single deep learning technique can 

be successful for all classification tasks. For example, while 

the popular learning strategy of generative pre-training 

followed by discriminative fine-tuning seems to work well 

empirically for many tasks, it failed to work for some other 

tasks that have been explored (e.g., language identification). 

For these tasks, the features extracted at the generative pre-

training phase seem to describe the underlining speech 

variations well but do not contain sufficient information to 

distinguish between different languages. A learning strategy 

that can extract discriminative yet also invariant features is 

expected to provide better solutions. Extracting discriminative 

features may also greatly reduce the model size needed in the 

many current deep learning systems. Also, domain knowledge 

such as what kind of invariance is useful for a specific task in 

hand (e.g., vision, speech, or language) and what kind of 

regularization in terms of parameter constraints is key to the 

success of applying deep learning methods.  

 

Recent published work shows that there is vast room to 

improve the current optimization techniques for learning deep 

architectures (Martens, 2010; Le et al., 2011; Martens and 

Sutskever, 2011; Dean et al., 2012; Sutskever, 2013). To what 

extent pre-training is essential to learning the full set of 

parameters in deep architectures has been currently under 

investigation, especially when very large amounts of labeled 

training data are available which reduces or even obliterates 

the need for model regularization. Some preliminary results 

have been discussed in this paper and in (Hinton et al., 2012).  

 

Effective and scalable parallel algorithms are critical for 

training deep models with very large data, as in many 

common information processing applications such as speech 

recognition and machine translation. The popular mini-batch 

stochastic gradient technique is known to be difficult to be 

parallelized over computers. The common practice nowadays 

is to use graphical processing units (GPUs) to speed up the 

learning process, although recent advance in developing 

asynchronous stochastic gradient learning has shown 

promises by using large-scale CPU clusters (e.g. Le et al., 

2011; Dean et al., 2012).  In this interesting computing 

architecture, many different replicas of the DNN to compute 

gradients on different subsets of the training data in parallel. 

These gradients are communicated to a central parameter 

server that updates the shared weights. Even though each 

replica typically computes gradients using parameter values 

not immediately updated, stochastic gradient descent is robust 

to the slight errors this has introduced. To make deep learning 

techniques scalable to very large training data, theoretically 

sound parallel learning algorithms or novel architectures need 

to be further developed (e.g., Bottou and LeCun, 2004; Dean 

et al., 2012; Hutchinson et al., 2013; Sutskever, 2013; Bengio 

et al., 2013).  

 

One major barrier to the application of DNNs and related 

deep models is that it currently requires considerable skill and 

experience to choose sensible values for hyper-parameters 

such as the learning rate schedule, the strength of the 

regularizer, the number of layers and the number of units per 

layer, etc.  Sensible values for one hyper-parameter may 

depend on the values chosen for other hyper-parameters and 

hyper-parameter tuning in DNNs is especially expensive. 

Some interesting methods for solving the problem have been 

developed recently, including random sampling (Bergstra et 

al., 2012) and Bayesian optimization procedure (Snoek et al., 

2012). Further research is needed in this important area. 

 

Finally, solid theoretical foundations of deep learning need to 

be established in a myriad of aspects. As an example, the 

success of deep learning in unsupervised learning has not 

been demonstrated as much as for supervised learning; yet the 

essence and major motivation of deep learning lie right in 

unsupervised learning for automatically discovering data 

representation. What are the appropriate objectives for 

learning effective representations? How may the deep 

learning architectures and algorithms use distributed 

representations to effectively disentangle the hidden 

explanatory factors of variation in the data? How can 

computational neuroscience models about hierarchical brain 

structure and learning style help improve engineering deep 

learning architectures and algorithms? All these important 

questions will need intensive research in order to further push 

the frontier of deep learning. 

 

REFERENCES 

Abdel-Hamid, O., Mohamed, A., Jiang, H., and G. Penn, “Applying 
convolutional neural networks concepts to hybrid NN-HMM 

model for speech recognition,” ICASSP, 2012. 
Abdel-Hamid, O., Deng, L., and Yu. D. “Exploring convolutional 

neural network structures and optimization for speech 

recognition,” Interspeech, 2013.. 

Arel, I., Rose, C., and Karnowski, T. “Deep Machine Learning - A New 

Frontier in Artificial Intelligence,” IEEE Computational 
Intelligence Mag., Nov., 2010. 

Baker, J., et al. “Research developments and directions in speech 

recognition and understanding,” IEEE Sig. Proc. Mag., vol. 26,  
no. 3, May 2009, pp. 75-80. 

Baker, J., et al. “Updated MINS report on speech recognition and 

understanding,” IEEE Sig. Proc. Mag., vol. 26, no. 4, July 2009a.  

Bengio, Y., Boulanger, N., and Pascanu. R. “Advances in optimizing 
recurrent networks,” Proc. ICASSP, 2013.  

Bengio Y., Courville, A., and Vincent, P. “Representation learning: A 
review and new perspectives,” IEEE Trans. PAMI, 2013a. 

http://arxiv.org/find/cs/1/au:+Courville_A/0/1/0/all/0/1


Bengio Y. “Learning deep architectures for AI,” in Foundations and 
Trends in Machine Learning, Vol. 2, No. 1, 2009, pp. 1-127. 

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. “A neural 

probabilistic language model,” Proc. NIPS, 2000, pp. 933-938. 

Bengio, Y., De Mori, R., Flammia, G. and Kompe, F. “Global 
optimization of a neural network—Hidden Markov model 

hybrid,” in Proc. Proc. Eurospeech, 1991. 
Bergstra J. and Bengio, Y. “Random search for hyper-parameter 

optimization,” J. Machine Learning Research,” Vol. 3, pp. 281-

305, 2012.   

Bottou L. and LeCun. Y. “Large scale online learning,” Proc. 
NIPS, 2004. 

Bilmes, J. “Dynamic graphical models,” IEEE Signal Processing Mag., 
vol. 33, pp. 29–42, 2010. 

Bilmes, J. and Bartels, C. “Graphical model architectures for speech 
recognition,” IEEE Signal Processing Mag., vol. 22, pp. 89–100, 

2005. 

Bourlard H. and Morgan, N., Connectionist Speech Recognition: A 

Hybrid Approach, Norwell, MA: Kluwer, 1993. 

Bouvrie, J. “Hierarchical Learning: Theory with Applications in 
Speech and Vision,” Ph.D. thesis, MIT, 2009. 

Bridle, J., L. Deng, J. Picone, H. Richards, J. Ma, T. Kamm, M. 

Schuster, S. Pike, and R. Reagan, “An investigation of segmental 

hidden dynamic models of speech coarticulation for automatic 

speech recognition,” Final Report for 1998 Workshop on 
Language Engineering, CLSP, Johns Hopkins, 1998. 

Cho Y. and Saul L. “Kernel methods for deep learning,” NIPS, pp. 
342–350, 2009. 

Ciresan D., Giusti, A., Gambardella, L., and Schidhuber, J. “Deep 
neural networks segment neuronal membranes in electron 

microscopy images,” Proc. NIPS, 2012. 
Cohen W. and R. V. de Carvalho. Stacked sequential learning. In 

Proc. IJCAI, pp. 671–676, 2005. 

Collobert R. “Deep learning for efficient discriminative parsing,” 
Proc. NIPS Workshop on Deep Learning and Unsupervised 

Feature Learning, 2010. 

Collobert R. and Weston J. “A unified architecture for natural 
language processing: Deep neural networks with multitask 

learning,” Proc. ICML, 2008.  
Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and 

Kuksa, P. “Natural language processing (almost) from scratch,” 
J. Machine Learning Research, Vo. 12, pp. 2493-2537, 2011. 

Dahl, G., Yu, D., Deng, L., and Acero, A. “Context-dependent DBN-

HMMs in large vocabulary continuous speech recognition,” 
Proc. ICASSP, 2011. 

Dahl, G., Yu, D., Deng, L., and Acero, A. “Context-dependent DBN-

HMMs in large vocabulary continuous speech recognition,” 
IEEE Trans. Audio, Speech, & Language Proc. Vol. 20 (1), 

January 2012. 

Dahl, G., Ranzato, M., Mohamed, A. and Hinton, G. “Phone 
recognition with the mean-covariance restricted Boltzmann 

machine,” Proc. NIPS, vol. 23, 2010, 469-477. 

Dean, J., Corrado, G., R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, 

M. Ranzato, A. Senior, P. Tucker, K. Yang, A. Ng " Large Scale 

Distributed Deep Networks". Proc. NIPS, 2012. 

Deng, L. and Li, X. “Machine learning paradigms in speech 
recognition: An overview,” IEEE Trans. Audio, Speech, & 

Language, July 2013. 

Deng, L., Abdel-Hamid, O., and Yu, D. “A deep convolutional neural 
network using heterogeneous pooling for trading acoustic 

invariance with phonetic confusion,” Proc. ICASSP, 2013. 
Deng, L., He, X, and Gao, J. “Deep stacking networks for information 

retrieval,” Proc. ICASSP, 2013a. 
Deng, L., Tur, G, He, X, and Hakkani-Tur, D. “Use of Kernel Deep 

Convex Networks and End-To-End Learning for Spoken 

Language Understanding,” Proc. IEEE Workshop on Spoken 
Language Technologies, December 2012. 

Deng, L., Yu, D., and Platt, J. “Scalable stacking and learning for 
building deep architectures,” Proc. ICASSP, 2012a. 

Deng, L., Hutchinson, B., and Yu, D. “Parallel training of deep 

stacking networks,” Proc. Interspeech, 2012b. 

Deng, L. “An Overview of Deep-Structured Learning for Information 

Processing, in Proceedings of Asian-Pacific Signal & Information 

Processing Annual Summit and Conference  (APSIPA-ASC), 

October 2011. 

Deng, L. and Yu, D. “Deep Convex Network: A scalable architecture 
for deep learning,” Proc. Interspeech, 2011.  

Deng, L., Seltzer, M., Yu, D., Acero, A., Mohamed, A., and Hinton, G.  

“Binary coding of speech spectrograms using a deep auto-

encoder,” Proc. Interspeech, 2010.  

Deng, L.  “Expanding the scope of signal processing,” IEEE Signal 
Processing Magazine, vol. 25, no. 3, May 2008. 

Deng, L. and Yu, D. “Use of differential cepstra as acoustic features 

in hidden trajectory modeling for phonetic recognition, Proc. 

ICASSP, April 2007. 

Deng, L. DYNAMIC SPEECH MODELS --- Theory, Algorithm, and 

Application,  Morgan & Claypool, December 2006. 

Deng, L., Yu, D. and Acero, A. “Structured speech modeling,” IEEE 
Trans. on Audio, Speech and Language Processing, vol. 14, no. 

5, pp. 1492-1504, September 2006. 

Deng, L., Yu, D. and Acero, A. “A bidirectional target filtering model 

of speech coarticulation: Two-stage implementation for 

phonetic recognition,” IEEE Transactions on Audio and Speech 
Processing, vol. 14, no. 1, pp. 256-265, January 2006a. 

Deng, L., Wu, J., Droppo, J., and Acero, A.  “Dynamic Compensation 

of HMM Variances Using the Feature Enhancement Uncertainty 

Computed From a Parametric Model of Speech Distortion,” 
IEEE Transactions on Speech and Audio Processing, vol. 13, no. 

3, pp. 412–421, 2005. 

Deng, L. and Huang, X.D. “Challenges in Adopting Speech 

Recognition, Communications of the ACM, vol. 47, no. 1, pp. 

11-13, January 2004. 

Deng, L. and O'Shaughnessy, D. SPEECH PROCESSING --- A Dynamic 

and Optimization-Oriented Approach, Marcel Dekker, 2003. 

Deng, L. “Switching dynamic system models for speech articulation 

and acoustics,” in Mathematical Foundations of Speech and 
Language Processing, pp. 115–134. Springer-Verlag, New York, 

2003. 

Deng, L. “Computational Models for Speech Production,” in 
Computational Models of Speech Pattern Processing, pp. 199-

213, Springer Verlag, 1999. 

Deng, L., Ramsay, G., and Sun, D. “Production models as a structural 
basis for automatic speech recognition,” Speech 
Communication, vol. 33, no. 2-3, pp. 93–111, Aug 1997. 

Deng, L. and Sameti, H. “Transitional speech units and their 
representation by regressive Markov states: Applications to 

speech recognition,” IEEE Transactions on speech and audio 
processing, vol. 4, no. 4, pp. 301–306, July 1996. 

http://www.iro.umontreal.ca/~lisa/pointeurs/BengioDucharmeVincentJauvin_jmlr.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/BengioDucharmeVincentJauvin_jmlr.pdf
http://dl.acm.org/citation.cfm?id=2078186
http://www.cs.toronto.edu/~ranzato/publications/DistBeliefNIPS2012_withAppendix.pdf
http://www.cs.toronto.edu/~ranzato/publications/DistBeliefNIPS2012_withAppendix.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=172597
http://research.microsoft.com/apps/pubs/default.aspx?id=172597
http://research.microsoft.com/apps/pubs/default.aspx?id=172597
http://research.microsoft.com/apps/pubs/default.aspx?id=173301
http://research.microsoft.com/apps/pubs/default.aspx?id=173301
http://research.microsoft.com/apps/pubs/default.aspx?id=155609
http://research.microsoft.com/apps/pubs/default.aspx?id=155609
http://research.microsoft.com/apps/pubs/default.aspx?id=135405
http://research.microsoft.com/apps/pubs/default.aspx?id=135405
http://research.microsoft.com/apps/pubs/default.aspx?id=79366
http://research.microsoft.com/apps/pubs/default.aspx?id=78305
http://research.microsoft.com/apps/pubs/default.aspx?id=78305
http://research.microsoft.com/apps/pubs/default.aspx?id=74476
http://research.microsoft.com/apps/pubs/default.aspx?id=74476
http://research.microsoft.com/apps/pubs/default.aspx?id=78820
http://research.microsoft.com/apps/pubs/default.aspx?id=75852
http://research.microsoft.com/apps/pubs/default.aspx?id=75852
http://research.microsoft.com/apps/pubs/default.aspx?id=75852
http://research.microsoft.com/apps/pubs/default.aspx?id=58990
http://research.microsoft.com/apps/pubs/default.aspx?id=58990
http://research.microsoft.com/apps/pubs/default.aspx?id=58990
http://research.microsoft.com/apps/pubs/default.aspx?id=75861
http://research.microsoft.com/apps/pubs/default.aspx?id=75861
http://research.microsoft.com/apps/pubs/default.aspx?id=78249
http://research.microsoft.com/apps/pubs/default.aspx?id=78249


Deng, L., Aksmanovic, M., Sun, D., and Wu, J. “Speech recognition 

using hidden Markov models with polynomial regression 

functions as nonstationary states,” IEEE Transactions on Speech 
and Audio Processing, vol. 2, no. 4, pp. 507-520, 1994. 

Deng L. and Sun, D. “A statistical approach to automatic speech 

recognition using the atomic speech units constructed from 

overlapping articulatory features,” Journal of the Acoustical 
Society of America, vol. 85, no. 5, pp. 2702-2719, 1994. 

Deng, L. “A stochastic model of speech incorporating hierarchical 

nonstationarity,” IEEE Transactions on Speech and Audio 
Processing, vol. 1, no. 4, pp. 471-475, 1993.   

Deng, L. “A generalized hidden Markov model with state-

conditioned trend functions of time for the speech signal,” 
Signal Processing, vol. 27, no. 1, pp. 65–78, 1992. 

Deselaers, T., Hasan, S., Bender, O.  and Ney, H. “A deep learning 

approach to machine transliteration,” Proc. 4th Workshop on 
Statistical Machine Translation , pp. 233–241, Athens, Greece, 

March 2009.  

Erhan, D., Bengio, Y., Courvelle, A., Manzagol, P., Vencent, P., and 

Bengio, S. “Why does unsupervised pre-training help deep 

learning?” J. Machine Learning Research, 2010, pp. 201-208. 

Fine, S., Singer, Y. and Tishby, N. “The Hierarchical Hidden Markov 
Model: Analysis and Applications,” Machine Learning, vol. 32, p. 
41-62, 1998. 

Gens R. and Domingo, P. “Discriminative learning of sum-product 

networks,” NIPS, 2012. 
George, D. “How the Brain Might Work: A Hierarchical and 

Temporal Model for Learning and Recognition,” Ph.D. thesis, 
Stanford University, 2008. 

Gibson, M. and Hain, T. “Error approximation and minimum phone 

error acoustic model estimation,” IEEE Trans. Audio, Speech, 
and Language Proc., vol. 18, no. 6, August 2010, pp. 1269-1279. 

Glorot, X., Bordes, A., and Bengio, Y. “Deep sparse rectifier neural 
networks,” Proc. AISTAT, April 2011. 

Glorot, X. and Bengio, Y. “Understanding the difficulty of training 
deep feedforward neural networks” Proc. AISTAT, 2010.  

Graves, A., Fernandez, S., Gomez, F., and Schmidhuber, J. 

“Connectionist temporal classification: Labeling unsegmented 
sequence data with recurrent neural networks,” Proc. ICML, 
2006. 

Graves, A. “Sequence Transduction with Recurrent Neural 

Networks,” Representation Learning Worksop, ICML 2012.  

Graves, A., Mahamed, A., and Hinton, G. “Speech recognition with 
deep recurrent neural networks,” Proc. ICASSP, 2013. 

Hawkins, J. and Blakeslee, S. On Intelligence: How a New 

Understanding of the Brain will lead to the Creation of Truly 

Intelligent Machines, Times Books, New York, 2004. 

Hawkins, G., Ahmad, S. and Dubinsky, D. “Hierarchical Temporal 
Memory including HTM Cortical Learning Algorithms,” 
Numenta  Tech. Report, December 10,  2010. 

He, X., Deng, L., Tur, G., and Hakkani-Tur, D. “Multi-style adaptive 

training for robust cross-lingual spoken language 

understanding,” Proc. ICASSP, 2013. 

He, X., Deng, L., Chou, W. “Discriminative learning in sequential 
pattern recognition --- A unifying review for optimization-

oriented speech recognition,” IEEE Sig. Proc. Mag., vol. 25, 
2008, pp. 14-36.  

He, X. and Deng, L. “Speech recognition, machine translation, and 
speech translation --- A unifying discriminative framework,” 
IEEE Sig. Proc. Magazine, Vol. 28, November, 2011. 

He, X. and Deng, L. “Optimization in speech-centric information 

processing: Criteria and techniques,” Proc. ICASSP, 2012. 
He, X. and Deng, L. “Speech-centric information processing: An 

optimization-oriented approach,” Proc. of the IEEE, 2013. 

Heigold, G., Ney, H., Lehnen, P., Gass, T., Schluter, R. “Equivalence 
of generative and log-liner models,” IEEE Trans. Audio, Speech, 
and Language Proc., vol. 19, no. 5,  February 2011, pp. 1138-

1148. 

Heintz, I., Fosler-Lussier, E., and Brew, C. “Discriminative Input 

Stream Combination for Conditional Random Field Phone 

Recognition,” IEEE Trans. Audio, Speech, and Language Proc., 

vol. 17, no. 8,  Nov. 2009, pp. 1533-1546. 

Hifny, Y. and Renals, S. “Speech recognition using augmented 

conditional random fields,” IEEE Trans. Audio, Speech, and 
Language Proc., vol. 17, no. 2,  February 2009, pp. 354-365. 

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, 

A., Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B., 

“Deep Neural Networks for Acoustic Modeling in Speech 

Recognition,” IEEE Signal Processing Magazine, vol. 29, no. 6, 

pp. 82-97, November 2012. 

Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., and 

Salakhutdinov, R. “Improving neural networks by preventing 
co-adaptation of feature detectors,” arXiv: 1207.0580v1, 2012a. 

Hinton, G., Krizhevsky, A., and Wang, S. “Transforming auto-

encoders,” Proc. Intern. Conf. Artificial Neural Networks, 2011. 

Hinton, G. “A better way to learn features,” Communications of the 
ACM,” Vol. 54, No. 10, October, 2011, pp. 94. 

Hinton, G. and Salakhutdinov, R. “Discovering binary codes for 
documents by learning deep generative models,” Topics in 
Cognitive Science, pp. 1-18, 2010. 

Hinton, G. “A practical guide to training restricted Boltzmann 
machines,” UTML Tech Report 2010-003, Univ. Toronto, August 

2010. 

Hinton, G., Osindero, S., and Teh, Y. “A fast learning algorithm for 
deep belief nets,” Neural Computation, vol. 18, pp. 1527-1554, 

2006. 

Hinton, G. and Salakhutdinov, R. “Reducing the dimensionality of 
data with neural networks,” Science, vol. 313. no. 5786, pp. 504 
- 507, July 2006. 

Huang, S. and Renals, S. “Hierarchical Bayesian language models for 

conversational speech recognition,” IEEE Trans. Audio, Speech, 
and Language Proc., vol. 18, no. 8, November 2010, pp. 1941-

1954. 

Huang, E., Socher, R., Manning, C, and Ng, A. “Improving Word 

Representations via Global Context and Multiple Word 

Prototypes,” Proc. ACL, 2012. 
Hutchinson, B., Deng, L., and Yu, D. “A deep architecture with 

bilinear modeling of hidden representations: Applications to 

phonetic recognition,” Proc. ICASSP, 2012. 

Hutchinson, B., Deng, L., and Yu, D. “Tensor deep stacking networks,” 
IEEE Trans. Pattern Analysis and Machine Intelligence, 2013. 

Jaitly, N. and Hinton, G. “Learning a better representation of speech 
sound waves using restricted Boltzmann machines,” Proc. 
ICASSP, 2011.  

 Jaitly, N., Nguyen, P., and Vanhoucke, V. “Application of pre-trained 

deep neural networks to large vocabulary speech recognition,” 
Proc. Interspeech, 2012. 

Jarrett, K., Kavukcuoglu, K. and LeCun, Y. “What is the best 

multistage architecture for object recognition?” Proc. Intl. Conf. 
Computer Vision, pp. 2146–2153, 2009.  

http://research.microsoft.com/apps/pubs/default.aspx?id=78745
http://research.microsoft.com/apps/pubs/default.aspx?id=78745
http://research.microsoft.com/apps/pubs/default.aspx?id=78745
http://research.microsoft.com/apps/pubs/default.aspx?id=78746
http://research.microsoft.com/apps/pubs/default.aspx?id=78746
http://research.microsoft.com/apps/pubs/default.aspx?id=78746
http://research.microsoft.com/apps/pubs/default.aspx?id=78747
http://research.microsoft.com/apps/pubs/default.aspx?id=78747
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4909058&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DFosler
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4909058&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DFosler
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4909058&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DFosler
http://research.microsoft.com/apps/pubs/default.aspx?id=171498
http://research.microsoft.com/apps/pubs/default.aspx?id=171498
http://www.socher.org/uploads/Main/HuangSocherManning_ACL2012.pdf
http://www.socher.org/uploads/Main/HuangSocherManning_ACL2012.pdf
http://www.socher.org/uploads/Main/HuangSocherManning_ACL2012.pdf


Jiang, H. and Li, X. “Parameter estimation of statistical models using 
convex optimization: An advanced method of discriminative 

training for speech and language processing,” IEEE Signal 
Processing Magazine, vol. 27, no. 3, pp. 115–127, 2010. 

Juang, B.-H., Chou, W., and Lee, C.-H. “Minimum classification error 
rate methods for speech recognition,” IEEE Trans. On Speech 
and Audio Processing, vol. 5, pp. 257–265, 1997. 

Kavukcuoglu, K., Sermanet, P., Boureau, Y., Gregor, K., Mathieu M., 

and LeCun, Y. “Learning Convolutional Feature Hierachies for 

Visual Recognition,” Proc. NIPS, 2010. 

Ketabdar, H.  and Bourlard, H. “Enhanced phone posteriors for 
improving speech recognition systems,” IEEE Trans. Audio, 
Speech, and Language Proc., vol. 18, no. 6, August 2010, pp. 

1094-1106. 

Kingsbury, B. “Lattice-based optimization of sequence classification 

criteria for neural-network acoustic modeling,” Proc. ICASSP, 
2009. 

Kingsbury, B., Sainath, T., and Soltau, H. “Scalable minimum Bayes 

risk training of deep neural network acoustic models using 

distributed Hessian-free optimization,” Proc. Interspeech, 2012. 
Krizhevsky, A., Sutskever, I. and Hinton, G. 

“ImageNet classification with deep convolutional neural 

Networks,” Proc. NIPS 2012. 
Kubo, Y., Hori, T., and Nakamura, A. “Integrating deep neural 

networks into structural classification approach based on 

weighte finite-state transducers,” Proc. Interspeech, 2012. 
Kurzweil R. How to Create a Mind. Viking Books, Dec., 2012. 

Lang, K., Waibel, A., and Hinton, G. “A time-delay neural network 

architecture for isolated word recognition,” Neural Networks, 
Vol. 3(1), pp. 23-43, 1990. 

Larochelle, H. and Bengio, Y. “Classification using discriminative 

restricted Boltzmann machines,” Proc. ICML, 2008. 
Le, H., Allauzen, A., Wisniewski, G., and Yvon, F. “Training 

continuous space language models: Some practical issues,” in 
Proc. of EMNLP, 2010, pp. 778–788. 

Le, H., Oparin, I., Allauzen, A., Gauvain, J., and Yvon, F. “Structured 
output layer neural network language model,” Proc. ICASSP, 
2011a. 

Le, Q., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng, A. “On 
optimization methods for deep learning,” Proc. ICML, 2011. 

Le, Q., Ranzato, M., Monga, R., Devin, M., Corrado, G., Chen, K., 

Dean, J., Ng, A. “Building High-Level Features Using Large Scale 

Unsupervised Learning,” Proc. ICML 2012. 

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 

“Gradient-based learning applied to document recognition,” 

Proceedings of the IEEE, Vol. 86, pp. 2278-2324, 1998. 

LeCun, Y. and Bengio, Y. “Convolutional networks for images, 
speech, and time series," in The Handbook of Brain Theory and 

Neural Networks (M. A. Arbib, ed.), pp. 255- 258, Cambridge, 

Massachusetts: MIT Press, 1995. 

LeCun Y., Chopra S., Ranzato, M., and Huang, F. “Energy-based 

models in document recognition and computer vision,” Proc. 
Intern. Conf. Document Analysis and Recognition, (ICDAR), 

2007.  

Lee, C.-H. “From knowledge-ignorant to knowledge-rich modeling: A 

new speech research paradigm for next-generation automatic 

speech recognition,” Proc. ICSLP, 2004, p. 109-111. 

Lee, H., Grosse, R., Ranganath, R., and Ng, A. “Unsupervised 

learning of hierarchical representations with convolutional 

deep belief networks,” Communications of the ACM,” Vol. 54, 
No. 10, October, 2011, pp. 95-103.  

Lee, H., Grosse, R., Ranganath, R., and Ng, A. “Convolutional Deep 

Belief Networks for Scalable Unsupervised Learning of 

Hierarchical Representations,” Proc. ICML, 2009. 

Lee, H., Largman, Y., Pham, P., Ng, A. “Unsupervised feature 
learning for audio classification using convolutional deep belief 

networks,” Proc. NIPS, 2010. 
Lena, P., Nagata, K., and Baldi, P. “Deep spatiotemporal 

architectures and learning for protein structure prediction,” 
Proc. NIPS, 2012. 

Ling, Z., Richmond, K., and Yamagishi, J. “Articulatory control of 
HMM-based parametric speech synthesis using feature-space-

switched multiple regression,” IEEE Trans. Audio, Speech, and 
Language Proc., Vol. 21, Jan, 2013. 

Maas, A., Le, Q., O'Neil, R., Vinyals, O., Nguyen, P., and Ng, Y.  

“Recurrent Neural Networks for Noise Reduction in Robust 
ASR,” Proc. Interspeech, 2012 

Markoff. J. “Scientists See Promise in Deep-Learning Programs,” 
New York Times, Nov 24, 2012. 

Martens J. “Deep learning with Hessian-free optimization,” Proc. 
ICML, 2010. 

Martens J. and Sutskever, I. “Learning recurrent neural networks 
with Hessian-free optimization,” Proc. ICML, 2011. 

Mikolov, T. “Statistical Language Models based on Neural Networks,” 
PhD thesis, Brno University of Technology, 2012. 

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Cernocky, J. 

“Strategies for training large scale neural network language 

models,” Proc. IEEE ASRU, 2011. 

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. 

“Recurrent neural network based language model,” Proc. 

ICASSP, 2010, 1045–1048. 

Minami, Y., McDermott, E. Nakamura, A. and Katagiri, S. “A 
recognition method with parametric trajectory synthesized 

using direct relations between static and dynamic feature 

vector time series,” Proc. ICASSP, pp. 957-960, 2002. 

Mnih A. and Hinton G. “Three new graphical models for statistical 
language modeling,” Proc. ICML, 2007, pp. 641-648. 

Mnih A. and Hinton G. “A scalable hierarchical distributed language 

model” Proc. NIPS, 2008, pp. 1081-1088.  

Mohamed A., Yu, D., and Deng, L. “Investigation of full-sequence 

training of deep belief networks for speech recognition,” Proc. 

Interspeech, Sept. 2010.  

Mohamed, A., Dahl, G., and Hinton, G. “Deep belief networks for 
phone recognition,” in Proc. NIPS Workshop Deep Learning for 
Speech Recognition and Related Applications, 2009. 

Mohamed, A., Dahl, G. and Hinton, G. “Acoustic modeling using 

deep belief networks”, IEEE Trans. Audio, Speech, & Language 

Proc. Vol. 20 (1), January 2012. 

Mohamed, A., Hinton, G., and Penn, G., “Understanding how deep 
belief networks perform acoustic modelling,” Proc. ICASSP, 
2012a. 

Mohamed, A., Hinton, G., Penn, G. “Understanding how deep belief 
networks perform acoustic modeling,” Proc. ICASSP, 2012b. 

Morgan, N. “Deep and Wide: Multiple Layers in Automatic Speech 
Recognition,” IEEE Trans. Audio, Speech, & Language Proc. Vol. 
20 (1), January 2012.  

Morgan, N., Q. Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shinozaki, 

M. Ostendorf, P. Jain, H. Hermansky, D. Ellis, G. Doddington, B. 

Chen, O. Cretin, H. Bourlard, , and M. Athineos, “Pushing the 

http://yann.lecun.com/exdb/publis/pdf/koray-nips-10.pdf
http://yann.lecun.com/exdb/publis/pdf/koray-nips-10.pdf
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4960445&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DKingsbury+2009
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4960445&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DKingsbury+2009
http://www.cs.toronto.edu/~kriz/imgnet-paper-2012.pdf
http://www.cs.toronto.edu/~kriz/imgnet-paper-2012.pdf
http://www.cs.toronto.edu/~ranzato/publications/le_icml2012.pdf
http://www.cs.toronto.edu/~ranzato/publications/le_icml2012.pdf
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=WLN3QrAAAAAJ&citation_for_view=WLN3QrAAAAAJ:u5HHmVD_uO8C
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf


envelope - aside [speech recognition],” IEEE Signal Processing 
Magazine, vol. 22, no. 5, pp. 81–88, Sep 2005. 

Nair, V. and Hinton, G. “3-d object recognition with deep belief nets,” 
Proc. NIPS, 2009.  

Ney, H. “Speech translation: Coupling of recognition and translation,” 
Proc. ICASSP, 1999. 

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. 

“Multimodal deep learning,” Proc. ICML, 2011. 
Ngiam, J., Chen, Z., Koh, P., and Ng, A. “Learning deep energy 

models,” Proc. ICML, 2011. 
Oliver, N., Garg, A., and Horvitz, E. “Layered Representations for 

Learning and Inferring Office Activity from Multiple Sensory 

Channels,” Computer Vision and Image Understanding,” vol. 96, 
pp. 163-180, 2004. 

Ostendorf, V. Digalakis, and O. Kimball, “From HMM’s to segment 
models: A unified view of stochastic modeling for speech 

recognition,” IEEE Trans. Speech and Audio Proc., vol. 4, no. 5, 

September 1996. 

Papandreou, G., Katsamanis, A., Pitsikalis, V., and Maragos, P. 

“Adaptive multimodal fusion by uncertainty compensation with 
application to audiovisual speech recognition,” IEEE Trans. 
Audio, Speech, and Lang. Processing, Vol. 17(3), pp. 423-435, 

2009. 

Peng, J., Bo, L., and Xu, J. “Conditional neural fields,” Proc. NIPS, 
2009. 

Picone, P., S. Pike, R. Regan, T. Kamm, J. bridle, L. Deng, Z. Ma, H. 

Richards, and M. Schuster, “Initial evaluation of hidden 
dynamic models on conversational speech,” Proc. ICASSP, 1999. 

Pinto, J., Garimella, S., Magimai-Doss, M., Hermansky, H., and 

Bourlard, H. “Analysis of MLP-based hierarchical phone 

posterior probability estimators,” IEEE Trans. Audio, Speech, 
and Language Proc., vol. 19, no. 2, Feb. 2011. 

Poggio. T. “How the Brain Might Work: The Role of Information and 

Learning in Understanding and Replicating Intelligence,” In: 
Information: Science and Technology for the New Century, 

Editors: G. Jacovitt, A. Pettorossi, R. Consolo and V. Senni, 

Lateran University Press, pp. 45-61, 2007. 

Poon, H. and Domingos, P. “Sum-product networks: A new deep 

architecture,” Proc. Twenty-Seventh Conference on 

Uncertainty in Artificial Intelligence, 2011. Barcelona, Spain.  

Povey, D. and Woodland, P. “Minimum phone error and i-
smoothing for improved discriminative training,” Proc. ICASSP, 
2002, pp. 105–108. 

Prabhavalkar, R. and Fosler-Lussier, E. “Backpropagation training for 
multilayer conditional random field based phone recognition”, 
Proc. ICASSP 2010, pp. 5534-5537. 

Ranzato, M., Poultney, C., Chopra, S. and LeCun, Y. “Efficient 

learning of sparse representations with an energy-based 

model,” Proc. NIPS, 2006. 
Ranzato, M., Boureau, Y., and LeCun, Y. “Sparse Feature Learning 

for Deep Belief Networks,” Proc. NIPS, 2007a. 

Ranzato, M., Susskind, J., Mnih, V., and Hinton, G. “On deep 
generative models with applications to recognition,” Proc. 

CVPR, 2011. 

Rennie, S., Hershey, H., and Olsen, P. “Single-channel multitalker 

speech recognition — Graphical modeling approaches,” IEEE 
Signal Processing Mag., vol. 33, pp. 66–80, 2010. 

Rifai, S., Vincent, P., X. Muller, X. Glorot, and Y. Bengio, “Contractive 
autoencoders: Explicit invariance during feature extraction,” 
Proc. ICML, 2011, pp. 833-840. 

Robinson, A. “An application of recurrent nets to phone probability 
estimation,” IEEE Trans. Neural Networks, Vol. 5, pp. 298-305, 

1994. 

Sainath, T., Mohamed, A., Kingsbury, B., and Ramabhadran, B. 

“Convolutional neural networks for LVCSR,” Proc. ICASSP, 2013.  
Sainath, T., Kingbury, B., Ramabhadran, B., Novak, P., and Mohamed, 

A. “Making deep belief networks effective for large vocabulary 

continuous speech recognition,” Proc. IEEE ASRU, 2011. 
Sainath, T., Kingsbury, B., and Ramabhadran, B. “Improving training 

time of deep belief networks through hybrid pre-training and 

larger batch sizes,” Proc. NIPS Workshop on Log-linear Models, 

Dec. 2012 

Salakhutdinov R. and Hinton, G. “Semantic hashing,” Proc. SIGIR 
Workshop on Information Retrieval and Applications of 

Graphical Models, 2007.  

Salakhutdinov R. and Hinton, G. “Deep Boltzmann machines,” Proc. 
AISTATS, 2009. 

Salakhutdinov R. and Hinton, G. “A better way to pretrain deep 
Boltzmann machines,” Proc. NIPS, 2012. 

Sarikaya, R., Hinton, G., Ramabhadran, B. “Deep belief nets for 
natural language call-routing,” Proc.  ICASSP, pp.  5680-5683, 

2011. 

Seide, F., Li, G., and Yu, D. “Conversational Speech Transcription 

Using Context-Dependent Deep Neural Networks,” Interspeech 
2011, pp. 437-440.  

Seide, F., Li, G., Chen, X., and Yu, D. “Feature engineering in context-

dependent deep neural networks for conversational speech 

transcription,” Proc. ASRU 2011a, pp. 24-29. 

Shannon, M., Zen, H., and Byrne W. “Autoregressive models for 
statistical parametric speech synthesis,” IEEE Trans. Audio, 

Speech, Language Proc., Vol. 21, No. 3, 2013, pp. 587-597. 

Sheikhzadeh, H. and Deng, L. “Waveform-based speech recognition 

using hidden filter models: Parameter selection and sensitivity 

to power normalization,” IEEE Trans. on Speech and Audio 
Processing, Vol. 2, pp. 80-91, 1994.  

Siniscalchi, M., Yu, D., Deng, L., and Lee, C.-H. “Exploiting deep 

neural networks for detection-based speech recognition,” 
Neurocomputing, 2013. 

Siniscalchi, M., T. Svendsen, and Lee, C.-H. “A bottom-up modular 

search approach to large vocabulary continuous speech 

recognition,” IEEE Trans. Audio, Speech, Language Proc., Vol. 

21, 2013a. 

Sivaram G. and Hermansky, H. “Sparse Multilayer Perceptron for 
Phoneme Recognition,” IEEE Trans. Audio, Speech, & Language 
Proc. Vol. 20 (1), January 2012. 

Snoek, J., Larochelle, H., and Adams, R. “Practical Bayesian 

Optimization of Machine Learning Algorithms,” Proc. NIPS, 
2012. 

Socher, R., Lin, C., Ng, A., and Manning, C. “Learning continuous 

phrase representations and syntactic parsing with recursive 

neural networks,” Proc. ICML, 2011. 
 Socher, R., Pennington, J., Huang, E., Ng, A., and Manning, C. “Semi-

Supervised Recursive Autoencoders for Predicting Sentiment 

Distributions,” Proc. EMNLP, 2011a. 

Socher, R., Pennington, J., Huang, E., Ng, A., and Manning, C. 

“Dynamic Pooling and Unfolding Recursive Autoencoders for 
Paraphrase Detection, Proc. NIPS 2011b. 

Socher, R., Bengio, Y., and Manning, C. “Deep learning for NLP,” 
Tutorial at ACL, 2012, http://www.socher.org/index.php/Deep 

         LearningTutorial/DeepLearningTutorial.  

http://cbcl.mit.edu/projects/cbcl/publications/ps/poggio-chapter-book-4-07.pdf
http://cbcl.mit.edu/projects/cbcl/publications/ps/poggio-chapter-book-4-07.pdf
http://www.cs.toronto.edu/~ranzato/publications/ranzato-nips07.pdf
http://www.cs.toronto.edu/~ranzato/publications/ranzato-nips07.pdf
https://sites.google.com/site/tsainath/tsainath_nips2012.pdf?attredirects=0
https://sites.google.com/site/tsainath/tsainath_nips2012.pdf?attredirects=0
https://sites.google.com/site/tsainath/tsainath_nips2012.pdf?attredirects=0
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sarikaya:Ruhi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Ramabhadran:Bhuvana.html
http://research.microsoft.com/apps/pubs/?id=153169
http://research.microsoft.com/apps/pubs/?id=153169
http://research.microsoft.com/apps/pubs/?id=157341
http://research.microsoft.com/apps/pubs/?id=157341
http://research.microsoft.com/apps/pubs/?id=157341
http://research.microsoft.com/apps/pubs/default.aspx?id=177448
http://research.microsoft.com/apps/pubs/default.aspx?id=177448
http://hips.seas.harvard.edu/content/practical-bayesian-optimization-machine-learning-algorithms-0
http://hips.seas.harvard.edu/content/practical-bayesian-optimization-machine-learning-algorithms-0
http://nlp.stanford.edu/~manning/


Stoyanov, V., Ropson, A. and Eisner, J. “Empirical Risk Minimization 
of Graphical Model Parameters Given Approximate Inference, 

Decoding, and Model Structure,” Proc. AISTAT, 2011. 

Srivastava, N. and Salakhutdinov R. “Multimodal learning with deep 
Boltzmann machines,” Proc. NIPS, 2012. 

Sutskever. I. “Training Recurrent Neural Networks,” Ph.D. Thesis, 
University of Toronto, 2013. 

Sutskever, I., Martens J., and Hinton, G. “Generating text with 

recurrent neural networks”, Proc. ICML, 2011. 
Taylor, G., Hinton, G. E., and Roweis, S. “Modeling human motion 

using binary latent variables.” Proc. NIPS, 2007. 
Tang, Y. and Eliasmith, C. “Deep networks for robust visual 

recognition,” Proc. ICML, 2010. 
Taralba, A, Fergus R, and Weiss, Y. “Small codes and large image 

databases for recognition,” Proc. CVPR, 2008.  
Tur, G., Deng, L., Hakkani-Tür, D., and X. He.  “Towards deep 

understanding: Deep convex networks for semantic utterance 

classification,” Proc. ICASSP, 2012. 

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. 

“Stacked denoising autoencoders: Leaning useful 
representations in a deep network with a local denoising 

criterion,” J. Machine Learning Research, Vol. 11, 2010, pp. 
3371-3408. 

Vinyals, O., Jia, Y., Deng, L., and Darrell, T. “Learning with recursive 

perceptual representations,” Proc. NIPS, 2012. 
Vinyals O., and Ravuri, S. “Comparing multilayer perceptron to deep 

belief network tandem features for robust ASR,” Proc. ICASSP, 
2011. 

Welling, M., Rosen-Zvi, M., and Hinton, G. “Exponential family 
harmoniums with an application to information retrieval,” Proc. 
NIPS, Vol. 20, 2005. 

Wohlmayr, M., Stark, M., Pernkopf, F. “A probabilistic interaction 
model for multipitch tracking with factorial hidden Markov 

model,” IEEE Trans. Audio, Speech, and Language Proc., vol. 19, 
no. 4, May. 2011. 

Wolpert, D. “Stacked generalization,” Neural Networks, 5(2), pp 
241-259, 1992. 

Xiao, L. and Deng, L. “A geometric perspective of large-margin 

training of Gaussian models,” IEEE Signal Processing Magazine, 

vol. 27, no. 6, pp. 118-123, IEEE, November 2010. 

Yamin, S., Deng, L., Wang, Y., and Acero, A. “An integrative and 
discriminative technique for spoken utterance classification,” 
IEEE Trans. Audio, Speech, and Language Proc., 2008.  

Yang, D., Furui, S. “Combining a two-step CRF model and a joint 

source channel model for machine transliteration,” Proc. ACL, 
Uppsala, Sweden, 2010, pp. 275-280. 

Yu, D., Deng, L., and Seide, F. “The deep tensor neural network with 

applications to large vocabulary speech recognition,” IEEE 
Trans. Audio, Speech, Lang. Proc., 2013. 

Yu, D. and Deng, L. “Efficient and effective algorithms for training 
single-hidden-layer neural networks,” Pattern Recognition 
Letters, 2012.  

Yu, D., Seide, F., Li, G., Deng, L. “Exploiting sparseness in deep 
neural networks for large vocabulary speech recognition,” Proc. 
ICASSP 2012. 

Yu, D., Siniscalchi, S., Deng, L., and Lee, C. “Boosting attribute and 
phone estimation accuracies with deep neural networks for 

detection-based speech recognition”, Proc. ICASSP 2012a. 

Yu, D. and Deng, L. “Deep learning and its applications to signal and 
information processing,” IEEE Signal Processing Magazine, 
January 2011, pp. 145-154. 

Yu, D. and Deng, L. “Accelerated parallelizable neural networks 
learning algorithms for speech recognition,” Proc. Interspeech 
2011a. 

Yu, D., Wang, S., Karam, Z., Deng, L. “Language recognition using 

deep-structured conditional random fields,” Proc. ICASSP, 2010, 
pp. 5030-5033. 

Yu, D., Wang, S., Deng, L., “Sequential labeling using deep-

structured conditional random fields”, J. of Selected Topics in 
Signal Processing, 2010a.  

Yu, D., Li, J.-Y., and Deng, L. “Calibration of confidence measures in 
speech recognition,” IEEE Trans. Audio, Speech and Language, 
2010b. 

Yu, D. and Deng, L. “Deep-structured hidden conditional random 

fields for phonetic recognition,” Proc. Interspeech, Sept. 2010. 

Yu, D, Deng, L., Gong, Y. and Acero, A. “A novel framework and 

training algorithm for variable-parameter hidden Markov 

models,” IEEE Transactions on Audio, Speech and Language 

Processing, vol. 17, no. 7, September 2009, pp. 1348-1360. 

Yu, D. and Deng, L. “Solving nonlinear estimation problems using 

Splines,” IEEE Signal Processing Magazine, vol. 26, no. 4, pp. 86-

90, July 2009. 

Zamora-Martínez, F., Castro-Bleda, M., España-Boquera, S. “Fast 

evaluation of connectionist language models,” Intern. Conf. 
Artificial Neural Networks, 2009, pp. 144-151. 

Zen, H., Nankaku, Y., and Tokuda, K. “Continuous stochastic feature 
mapping based on trajectory HMMs,” IEEE Trans. Audio, 
Speech, and Language Proc., vol. 19, no. 2, Feb. 2011, pp. 417-

430. 

Zen, H. Gales, M. J. F. Nankaku, Y. Tokuda, K. “Product of experts for 

statistical parametric speech synthesis,” IEEE Trans. Audio, 
Speech, and Language Proc., vol. 20, no. 3, March, 2012, pp. 

794-805. 

Zweig, G. and Nguyen, P. “A segmental CRF approach to large 

vocabulary continuous speech recognition,” Proc. ASRU, 2009. 
 

 

 

 

 

http://research.microsoft.com/apps/pubs/default.aspx?id=175603
http://research.microsoft.com/apps/pubs/default.aspx?id=175603
http://research.microsoft.com/apps/pubs/default.aspx?id=141580
http://research.microsoft.com/apps/pubs/default.aspx?id=141580
http://research.microsoft.com/apps/pubs/default.aspx?id=177443
http://research.microsoft.com/apps/pubs/default.aspx?id=177443
http://research.microsoft.com/apps/pubs/default.aspx?id=81512
http://research.microsoft.com/apps/pubs/default.aspx?id=81512
http://research.microsoft.com/apps/pubs/default.aspx?id=81512
http://research.microsoft.com/apps/pubs/default.aspx?id=81200
http://research.microsoft.com/apps/pubs/default.aspx?id=81200
http://dx.doi.org/10.1007/978-3-642-02478-8_5
http://dx.doi.org/10.1007/978-3-642-02478-8_5
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6012516
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6012516

