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Multicomponent coupling reactions can effect sequential bond constructions and rapidly

increase molecular complexity in a single synthetic operation. In this context, acylsilanes1 have

found broad utility as reagents that act as a center of reactivity for both nucleophiles and

electrophiles by virtue of a [1,2]-Brook rearrangement.2 Metallocyanide3,4 and

metallophosphite5,6 nucleophiles reveal latent (silyloxy)carbanions of acylsilanes following a

nucleophilic addition/[1,2]-Brook rearrangement sequence (Scheme 1). Because silyl

migration is facilitated by the stabilization of the nascent anion by the nitrile or phosphonate

groups, one might conjecture that extant electron-withdrawing functionality in the acylsilane

moiety may also promote silyl migration. For this reason silylglyoxylates7 (1), a class of

acylsilanes that possess an embedded anion stabilizing group, captured our attention. Herein

we report three-component coupling reactions of silylglyoxylates (1), terminal alkynes, and

aldehydes to furnish glycolate aldols that bear two contiguous stereocenters (eq 1, Table 1).

Kuwajima8 and Reich9 have shown that alkynylation of aliphatic or vinylic acylsilanes initiates

[1,2]-Brook rearrangement to furnish propargyl anions that can engage a variety of

electrophiles (H+, DMF, 1° iodides, and disulfides) to give substituted silyloxyallenes. A

constraint in this chemistry that is common to multicomponent couplings is reagent

incompatibility: the high reactivity of the alkali and alkaline earth acetylides employed by

Kuwajima and Reich necessitate a stepwise introduction of the acylsilane and terminating

electrophiles. We were interested in testing the feasibility of a single-pot process in which the

metal acetylide was generated in the presence of both electrophilic components. This would

be viable only if the metal acetylide was a highly discriminating nucleophile; in situ metal

acetylide formation with a Lewis acid and amine base as described by Carreira and Yamaguchi

was the projected method of choice.10,11

An evaluation of zinc salts confirmed the underlying premise and revealed ZnI2 as the optimal

Lewis acid to promote the desired three-component coupling.12 The silylglyoxylate structure

was initially optimized for conversion and diastereoselectivity by variation of the ester

functionality.13 A screen of trimethylsilylglyoxylates indicated that tert-butyl

trimethylsilylglyoxylate (1a) furnished the desired adducts in the highest levels of conversion

and diastereocontrol.

Employing tert-butyl trimethylsilylglyoxylate (1a), we explored the scope of the reaction. The

initial silyl ether adducts were found to be susceptible to O–O silyl migration during the course
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of the reaction and therefore were isolated as their derived acetonides. A variety of alkynes

(alkyl, aryl, trimethylsilyl, and heteroatom-substituted) were tolerated, affording the intended

adducts (2/3) in moderate to good yield (48–81%) and approximately 75:25 diastereoselectivity

when benzaldehyde was the coupling partner (entries 1–5, Table 1). Substituted aromatic

aldehydes also exhibited good reactivity and diastereoselectivity (75:25 to 80:20; entries 6–8,

Table 1); disappointingly, aliphatic aldehydes were not suitable substrates. Cinnamaldehyde

and 2-furaldehyde also provided the desired adducts in good yield, albeit with no

diastereoselectivity (53:47; entries 9 and 10, Table 1).

A second round of modifications to the silylglyoxylate structure was undertaken to further

improve the diastereocontrol.13 Systematic variation of the silyl group revealed that by using

tert-butyl tert-butyldimethylsilylglyoxylate (1b), a marked increase in diastereoselectivity

could be achieved (cf. Table 2, entries 1–3 with Table 1, entries 1, 2, and 6). The use of 1b

allows for the isolation of silyl-protected adducts (4/5) as differentially protected glycols.

Furthermore, deprotection of (4/5) with TBAF (1.1 equiv) followed by a single recrystallization

from hexanes afforded the diol in diastereomerically pure form (entry 2).

Although the zinc acetylide appears to react in a chemoselective manner with the

silylglyoxylate, we also considered the possibility of initial reversible alkynylation of the

aldehyde. To test this hypothesis, a suspension of phenylacetylene, benzaldehyde, Et3N, and

ZnI2 in toluene was allowed to stir for 48 h at −30 °C, giving rise to an undefined intermediate

A (presumably a zinc alkoxide, Scheme 2). Aqueous ammonium chloride was added, and

propargyl alcohol 6 was isolated in 99% yield. If intermediate A was instead treated with 1a,

after 24 h propargyl alcohol 6 was obtained 77% yield, whereas 2a and 3a were formed in ≤8%

yield (employing the aforementioned deprotection/ketalization protocol).14 Because the

propargyl alcohol is formed in high yield and only trace amounts of 2a/3a were observed, we

are inclined to believe that zinc acetylide addition to the silylglyoxylate occurs as the result of

a kinetic preference.

Initial experiments suggest that asymmetric induction may be realized in this tandem process.

Using Carreira’s conditions (Zn-(OTf)2/(+)-N-methylephedrine),11 diol 7 was isolated after

HCl/MeOH workup in 30% yield, 89:11 dr, and 64% ee (eq 3).

(3)

Not only was there a marked increase in diastereoselectivity relative to the ZnI2 system (75:25

dr; cf. entry 1, Table 1), but it has been demonstrated, using unoptimized conditions, that an

enantioselective version of the title reaction is possible.15
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We have extended this three-component coupling concept to include aliphatic aldehydes (eq

4). Treatment of a solution of cyclohexanecarboxaldehyde and 1b in THF at −78 °C with vinyl

Grignard results in the formation of glycol 8 in 76% yield and complete diastereoselectivity.

(4)

In summary, a tandem alkynylation/Brook rearrangement/aldol reaction of silylglyoxylates has

been reported. This mode of reactivity is divergent from that of the Kuwajima and Reich

systems, affording glycolate aldols rather than silyloxyallene aldols. The reaction exhibits

exquisite chemoselectivity at every potential branch point in the reaction sequence. The identity

of the silylglyoxylate (1) is crucial for diastereocontrol; however, diastereomerically pure diols

of 4 can be isolated following a single recrystallization. Additionally, it has been shown that

enantioselective variants are possible using simple enantiopure amino alcohols to mediate

chirality transfer. It is noteworthy that the identical functional group arrays present in 416 and

817 have been utilized in natural product synthesis, illustrating the potential value of these

processes.
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Scheme 1.
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Scheme 2.

Mechanistic Study
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Table 1

Reaction Scope with 1aa

(1)

entry R′ R yield (%)b 2:3c

1 Ph Ph 77 78:22

2 n-C6H13 Ph 77 74:26

3 BnOCH2 Ph 60 72:28

4 PhthNCH2 Ph 48 71:29

5 Me3Si Ph 81 76:24

6 Me3Si 2-(Me)C6H4 65 80:20

7 Me3Si 4-(MeO)C6H4 73 80:20

8 Me3Si 4-(Cl)C6H4 76 78:22

9 Me3Si 2-furyl 66 47:53

10 Me3Si (E)-PhCHd=CH 77 53:47

a
Reaction carried out using 1.0 equiv of 1a, 3.0 equiv of alkyne, 1.5 equiv of PhCHO, 3.0 equiv of ZnI2, and 3.3 equiv of Et3N for 24–48 h.

b
Average of two isolated yields. All reported yields are for two steps.

c
Determined by 1H NMR analysis of the crude reaction. See Supporting Information for determination of relative stereochemistry.
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Table 2

Reaction Scope with 1ba

(2)

entry R′ R yield (%) 4:5b

1 Ph Ph 73 83:17

2 n-C6H13 Ph 73 (53) 90:10 (>99:1)

3 Me3Si 2-(Me)C6H4 70c 91:9

4 n-C6H13 4-(MeO)C6H4 72c 90:10

5 n-C6H13 2-(Me)C6H4 68c 92:8

a
1.0 equiv of 1b, 4.0 equiv of alkyne, 1.5 equiv of PhCHO, 4.0 equiv of ZnI2, and 4.4 equiv of Et3N for 48 h.

b
Determined by 1H NMR analysis of the crude reaction.

c
5.0 equiv of alkyne, 5.0 equiv of ZnI2, and 5.5 equiv of NEt3 used. Parenthetical yield and dr refers to the diol, revealed after TBAF deprotection

and recrystallization (two-step yield).
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