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Abstract

Background: A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives

from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a

nanocatalyst is reported.

Results: Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of

pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three

compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease

activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring,

showed good inhibitory activity (19.45-279.14 μM).

Discussion: The compounds with electron donating group and higher hydrophobic interaction with active site of

enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and

meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl

group will convert inhibitor to activator.

Keywords: SBA-Pr-SO3H, Barbituric acid, Pyrano[2,3-d]pyrimidine diones, Multicomponent reaction (MCRs),

Urease inhibitory

Introduction
Pyran derivatives are ordinary structural subunits in a
variety of important natural products, including car-
bohydrates, alkaloids, polyether antibiotics, pheromones,
and iridoids [1]. Uracil and its fused derivatives, such
as pyrano[2,3-d]pyrimidines, pyrido[2,3-d]pyrimidines

or pyrimido[4,5-d]pyrimidines are well recognized by
synthesis as well as biological chemists.
These annelated uracils have received considerable at-

tention over the past years due to their wide range of
biological activity. Compounds with these ring systems
have diverse pharmacological properties such as antial-
lergic [2], antihypertensive [3], cardiotonic [4], bronchio-
dilator [5], antibronchitic [6], or antitumour activity [7].
The synthesis of the mentioned compounds containing a
pyran and an uracil ring poses significant synthetic chal-
lenges. Therefore, for the preparation of these complex
molecules large efforts have been directed towards the
synthetic manipulation of uracils. As a result, a number
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of reports have described in literature [8-12] which usu-
ally require drastic conditions, long reaction times and
complex synthetic pathways and the yields are poor. Thus
new routes for the synthesis of these molecules have at-
tracted considerable attention in search for a rapid entry
to these heterocycles.
The general procedures for the preparation of pyrano

[2,3-d] pyrimidine-2,4(1H,3H)-diones include the reaction
of arylidenemalononitriles with barbituric acid under
traditional hot reaction conditions [13,14] or microwave
irradiation [15]. In these methods the arylidenemalono-
nitriles are previously derived from malononitrile and
aldehydes. Recently, direct condensation of aldehydes, ma-
lononitrile and barbituric acid in aqueous media has been
reported under ultrasound irradiation [16], or catalyzed by
diammonium hydrogen phosphate [17].
Different catalysts such as L-proline [18], N-methyl-

morpholine [19], [BMIm]BF4 [20], 1,4-dioxane [13,21],
H14[NaP5W30O110] [22] and [K Al(SO4)2] [23] under
heating also 3-deoxy-D-arabino-heptulosonate 7-phospha-
te (DAHP) [17] and L-proline [24] under room tempe-
rature condition have been researched for the synthesis
of pyrano[2,3-d]pyrimidine diones derivatives. In addition,
Et3N was examined under microwave irradiation [25]. The
catalyst free procedures for the preparation of the pyrano
pyrimidine diones were also investigated using microwave
irradiation [15], ultrasonic [16], heating with water [26]
and ball-milling technique [27].
Mesoporous materials are a special type of nanomater-

ials with ordered arrays of uniform nanochannels. These
materials have important applications in a wide variety
of fields such as separation, catalysis, adsorption, advanced
nanomaterials, etc [28-33]. SBA-15 has many advantages
such as: largest pore-size mesoporous material with highly
ordered hexagonally arranged meso-channels, with thick
walls, adjustable pore size from 3 to 30 nm, and high
hydrothermal and thermal stability [34-38], therefore it is
expected to be an useful catalyst in the synthesis of or-
ganic compounds.
The surface of SBA-15 was modified by acidic func-

tional groups (e.g., -SO3H) to prepare nano-solid acid
catalyst which can use in the synthesis of various hetero-
cyclic compounds [35]. Recently, we have also reported
the use of this catalyst for the synthesis of quinoxaline

derivatives [39], polyhydroquinolines [40], triazoloquina-
zolinones and benzimidazoquinazolinones [41].
Moreover, to the best of our knowledge there is no re-

port on the use of these materials as nanoreactors in the
synthesis of pyrano pyrimidine diones derivatives. In the
present work, we report our results on the research of
convenient and green way for the synthesis of pyrano
[2,3-d]pyrimidine diones derivatives using SBA-Pr-SO3H
as a nanocatalyst and their urease inhibitory activity was
investigated.

Material and methods
Gc-Mass analysis was performed on a Gc-Mass model:
5973 network mass selective detector, Gc 6890 Agilent.
IR spectra were recorded from KBr disk using a FT-IR
Bruker Tensor 27 instrument. Melting points were mea-
sured by using the capillary tube method with an electro
thermal 9200 apparatus. The 1H-NMR (250 MHZ) was
run on a Bruker DPX, 250 MHZ. Nitrogen adsorption and
desorption isotherms were measured at -196°C using a
Japan Belsorb II system after the samples were vacuum
dried at 150°C overnight. Surface areas were calculated by
the Brunauer-Emmett-Teller (BET) method, and pore si-
zes were calculated by the Barrett-Joyner-Halenda (BJH)
method. Thermogravimetry analysis (TGA) was carried
out in Perkin Elmer Pyris Diamond instrument from am-
bient temperature to 800°C using 20°C/min ramp rate.

Preparation of catalyst

Synthesis and functionalization of SBA-15

The nanoporous compound SBA-15 was synthesized and
functionalizaed according to our previous report and the
modified SBA-15-Pr-SO3H was used as nanoporous solid
acid catalyst in the following reactions [40-43].

General procedure for the preparation pyrano[2,3-d]

pyrimidine diones

The SBA-Pr-SO3H (0.02 g) was activated in vacuum
at 100°C and then after cooling to room temperature,
barbituric acid (0.265 g, 2 mmol), 4-nitrobenzaldehyde
(0.362 ml, 2.4 mmol) and malonitrile (0.132 g, 2 mmol)
was added to the catalyst in a reaction vessel (Scheme 1).
The reaction mixture was heated for 15 min in bath oil
at 140°C. After the completion of reaction as indicated

Scheme 1 Three-component synthesis of pyrano[2,3-d]pyrimidine dione derivatives.
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by TLC, the generated solid was recrystallized in DMF
and ethanol to afford pure product 4. The resulting
solid product was solved in DMF, and then filtered for
removing the unsolvable catalyst and then the filtrate
was cooled to afford the pure product as a solid.

The spectroscopic and analytical data for selected
compounds are presented in the following part. The
catalyst was washed subsequently with acetonitrile,
diluted acid solution, distilled water and then acetone,
dried under vacuum and re-used for several times without
loss of significant activity.

Spectral data for product

7-Amino-6-cyano-5-(3-methylphenyl)-5H-pyrano[2,3-d]

pyrimidine-2,4(1H,3H)-diones 4f: IR (KBr): υmax= 3411
and 3320 (NH2), 2961 and 2740 (CN), 1733 and 1700
(C=O) cm-1. 1H NMR (250 MHz, CDCl3): δ = 2.47 (s, 3H,
CH3), 4.13 (s, 1H, CH), 6.95-7.17 (m, 6H, ArH & NH2),
11.09 (s, 1H, NH) 12.00 (s, 1H, NH) ppm. Mass (m/z):
296 (M+), 285, 149 (100).
7-Amino-6-cyano-5-(3-methoxylphenyl)-5H-pyrano[2,3-d]

pyrimidine-2,4(1H,3H)-diones 4h: IR (KBr): υmax= 3183
and 2834 (NH2), 2246 and 2200 (CN), 1690 and 1538
(C=O), 1459, 1375 cm-1. 1H NMR (250 MHz, CDCl3): δ

Table 1 Optimization of the reaction conditions in the

synthesis of 4i

Entry Solvent Time Yield (%) Catalyst

1 H2O 7 h 32 SBA-Pr-SO3H

2 EtOH 5 h 31 SBA-Pr-SO3H

3 EtOH (1:1)/H2O 6 h 28 SBA-Pr-SO3H

4 CH3CN 5 h 50 SBA-Pr-SO3H

5 neat (140°C) 15 min 90 SBA-Pr-SO3H

6 neat (140°C) 20 min 30 -

a Reaction conditions: barbituric acid (2 mmol), 4-nitrobenzaldehyde (2.4 mmol),

malonitrile (2 mmol) and catalyst (0.02 g).
b Isolated yields.

Scheme 2 Plausible mechanism for the formation of pyrano[2,3]pyrimidine dione derivatives 4.
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Table 2 Synthesis of pyrano[2,3-d]pyrimidine diones derivatives 4 under optimized conditions

Entry Ar R1, R2 Product Structurea Time (min) Yieldb (%) M.p. (°C)

Found Reported

1 Ph Me, Me 5 65 236–238 260–262 [26]

2 2,4-(Cl)2-Ph H, H 20 61 242–243 243–246 [16]

3 4-Me-Ph H, H 25 62 226–227 225 [18]

4 3-NO2-Ph H, H 15 80 255–226 255–257 [18]

5 4-Cl-Ph H, H 45 30 234–235 234–237 [15]

6 3-Me-Ph H, H 30 80 224–225 –
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Table 2 Synthesis of pyrano[2,3-d]pyrimidine diones derivatives 4 under optimized conditions (Continued)

7 4-OMe-Ph H, H 35 71 280–284 280 [18]

8 3-OMe-Ph H, H 10 75 200–206 –

9 4-NO2-Ph H, H 15 90 227–228 227–229 [15]

10 4-Br-Ph H, H 15 81 235–236 229–230 [24]

11 2,6-(Cl)2-Ph H, H 15 72 227–228 –
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= 3.35 (s, 3H, OCH3), 4.16 (s, 1H, CH), 6.96-7.78 (m,
4H, ArH), 8.48 (s, 2H, NH2) 11.03 (s, 1H, NH), 11.77 (s,
1H, NH) ppm. Mass (m/z): 312 (M+), 276, 230, 215.
7-Amino-6-cyano-5-(2,6-dichlorophenyl)-5H-pyrano

[2,3-d]pyrimidinone 4k: IR (KBr): υmax= 3368, 3337, 3148
and 3038 (NH2), 2930 and 2196 (CN), 1703 and 1664
(C=O), 1102, 1283, 763 cm-1. 1H NMR (250 MHz, CDCl3):
δ = 5.28 (s, 1H, CH), 7.94 (s, 2H, NH2), 7.24- 7.36 (m, 5H,
-ArH & NH2), 11.05 (s, 1H, NH), 12.20 (s, 1H, NH) ppm.
Mass (m/z): 352 (M+), 316, 282, 267, 257, 191, 167, 122, 82.
7-Amino-6-cyano-1,3-dimethyl-5-(4-Hydroxyphenyl)-

1,5-dihydro-pyrano[2,3-d]pyrimidine-2,4-dione 4l: IR
(KBr): υmax= 3415, 3315, 3203 and 3020 (NH2), 2192
(CN), 1688, 1659 and 1529 (C=O), 1348 cm-1. 1H NMR
(250 MHz, CDCl3): δ = 3.17 (s, 3H, CH3), 3.40 (s, 3H,

CH3), 4.40 (s, 1H, CH), 6.83-8.25 (m, 6H, ArH, & NH2)
ppm. Mass (m/z): 326 (M+), 327(M+1), 306, 281, 149 (100).

Docking approach

AutoDockTools 1.5.4 (ADT) [44], Autogrid 4.2 [45] and
Autodock 4.2 [45] were used to prepare input files, cal-
culate grid box and docking experiments. A grid map
consisted of 40 × 40 × 40 Å points around the active site
was used. The center of the grid was set to the average
coordinates of the two Ni2+ ions in the α chain of H. pyl-
ori urease (pdb ID: 3LA4). A Lamarckian genetic algo-
rithm (LGA) was used for the conformational search.
The reliability of the applied docking protocol was as-
sessed by re-docking acetohydroxamic acid (AHA) into
the active site of the H. pylori urease. Each Lamarckian

Table 2 Synthesis of pyrano[2,3-d]pyrimidine diones derivatives 4 under optimized conditions (Continued)

12 4-OH-Ph Me, Me 20 70 289 (dec) –

a All the compounds were characterized by IR, NMR, MS, and Mp.
b Isolated yields.

Table 3 Comparison of SBA-Pr-SO3H and various catalysts in the synthesis of pyrano[2,3-d]pyrimidine diones

derivatives 4

Entry Catalyst Solvent Condition Time Yield Year/Ref.

1 Et3N DMF MW 10–12 min 65–70 2003 [25]

2 L-proline EtOH Reflux 30 min–12 h 80–92 2010 [18]

3 N-methylmorpholine [bmim][PF6] 70°C 15 min 85–89 2004 [19]

4 - H2O MW 3–5 min 86–94 2004 [15]

5 H14[NaP5W30O110] EtOH Reflux 30–60 min 85–90 2010 [22]

6 - 1,4-dioxane/H2O 80°C 18 min 65–87 1984 [13]

7 [BMIm]BF4 [BMIm]BF4 90°C 3–5 h 82–95 2005 [20]

8 - H2O 80°C 7.5–11 h 72–81 2007 [26]

9 - 1,4-dioxane/H2O Reflux 1–2 min 60–70 1997 [21]

10 L-proline EtOH r.t 30–150 min 68–88 2009 [24]

11 - Ball-milling r.t 15–90 min 94–99 2009 [27]

12 - H2O US 1–3 h 62–78 2005 [16]

13 DAHP EtOH r.t 2 h 71–81 2008 [17]

14 [KAl(SO4)2] H2O 80°C 40–50 min 80–90 2010 [23]

15 SBA-Pr-SO3H - 140°C 5–45 min 91 This work

[BMIm]BF4: 1-Butyl-3-methylimidazolium Tetrafluoroborate.

DAHP: 3-deoxy-D-arabino-heptulosonate 7-phosphate.
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job consisted of 250 runs. The initial population was
150 structures, and the maximum number of energy
evaluations and generations was 2.5 × 107. The other pa-
rameters were set to default values. The final structures
were clustered and ranked according to the most favorable
docking energy. This protocol was then similarly applied
to all synthesized compounds [46].

Computational resources

The computational studies were carried out on a com-
puter cluster comprising four sets of HP Prolient ML370-
G5 tower servers equipped with two quad-core Intel Xeon
E5355 processors (2.66 GHz) and 4 GB of RAM, running
a Linux platform (SUSE 10.2).

Urease inhibitory assay

All the chemicals used were of analytical grade from
Merck Co., Germany. All aqueous solutions were pre-
pared in MilliQ (Millipore, USA) water. Jack-bean urease
was obtained from Merck (5 units/mg). After proper di-
lution, the concentration of enzyme solution adjusts at
2 mg/ml which is determined by UV spectroscopy at
λ = 280 nm. Urease activity was measured by rapid phe-
nol red urease test contains phenol red 0.1% (w/v) and
100 mM urea in 10 mM phosphate buffer, pH 7.0. Based
on this method, the colour change from yellow (pH 6.8)
to bright pink (pH 8.2) of phenol red pH indicator as a
result of urea hydrolysis to ammonia was measured. The
urease activity of the synthesized compounds (10 μl in
DMSO) was monitored spectrophotometrically at 560
nm after incubation at 37°C for 30 min [47].

Results and discussion
In this article, we want to report the use of SBA-Pr-SO3H
as a nano and green solid acid catalyst and nano- reactor
in the synthesis of 7-amino-6-cyano-5-aryl-5H-pyrano
[2,3-d]pyrimidinones by the Knoevenagel–Michael con-

densation reaction. The procedure consisted of the mix-
ture of malonitrile, aromatic aldehydes, and barbituric
acid derivatives. The reaction proceeded in high yields
in the presence of SBA-Pr-SO3H as catalyst at room
temperature and solvent free conditions to obtain our
desired products 4a-4l (Scheme 1).
First the suitable conditions for the above transform-

ation are examined with various solvents in different tem-
peratures in the presence of SBA-Pr-SO3H as nanocatalyst
as shown in Table 1. The results revealed when the re-
action proceeds in the absence of solvent, the desired
product was obtained in high yield (90%) and very short
reaction time. By increasing the temperature of the media
to 130°C, the reaction time decreases to 15 minutes so the
best reaction conditions were obtained (entry 5, Table 1).
The same reaction was done without using any catalyst
and a very low yield of product was obtained.
A reasonable mechanism for the formation of the prod-

uct 4 is outlined in Scheme 2. First the oxygen of carbonyl
group in benzaldehyde 2 was protonated and malonitrile
3 tautomerized to 6. The Knoevenagel condensation of
compounds 5 and 6 was occurred to form the cyano-
olefin 8. Subsequently, the tautomerized barbituric acid 7

endures nucleophilic attack to 8 and gives the Michael ad-
duct 9. The intermediate 9 tautomerizes in the presence
of acidic catalyst to generate intermediate 10 which cycli-
zes to give compound 11 which subsequently tautomer-
ized to afford the fully aromatized compound 4.
Table 2 shows the obtained results in the reaction of a

series of representative aldehydes with malononitrile and
barbituric derivatives. The most derivatives were obtained
in short reaction time ranging 5-45 minutes in high to
very high yields. The effect of substituents on the aromatic
ring did not show special effects in terms of yields under
these reaction conditions.
Literature surveys revealed that various conditions have

been employed in this reaction as demonstrated in Table 3.

Figure 1 (a) SEM and (b) TEM images of SBA-Pr-SO3H.
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Table 4 Urease inhibitory activities (IC50 in μM) and interaction energies (kcal mol−1) of pyrano[2,3-d]pyrimidine

diones derivatives 4

Entry Product Docking energy
(kcal/mol)

IC50 (μM) Structure

1 4a −5.46 98.77

2 4b −6.43 19.45

3 4c −5.65 71.92

4 4d −5.46 98.93
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Table 4 Urease inhibitory activities (IC50 in μM) and interaction energies (kcal mol−1) of pyrano[2,3-d]pyrimidine

diones derivatives 4 (Continued)

5 4e −5.87 49.65

6 4f −5.98 41.13

7 4g −5.73 62.92

8 4h −5.42 106.29
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Table 4 Urease inhibitory activities (IC50 in μM) and interaction energies (kcal mol−1) of pyrano[2,3-d]pyrimidine

diones derivatives 4 (Continued)

9 4i −4.85 279.14

10 4j −5.85 51.31

11 4k −5.99 41.0
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The results illustrated that SBA-Pr-SO3H was an efficient
catalyst in the synthesis of these compounds.

Preparation of catalyst

Pure Nanoporous compound SBA-15 was synthesized
according to the well-established method designed by
Zhao & coworkers [42] with triblock poly(ethylene oxide)-
b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer
(Pluronic, EO20PO70EO20, P123) as the template. The
SBA-15 silica was functionalized with (3-mercaptopropyl)
trimethoxysilane (MPTS) and then, the thiol groups were
oxidized to sulfonic acid by hydrogen peroxide. Analyzing
of the catalyst surface was performed by various methods
such as TGA, BET and CHN methods which demon-
strated that the propylsulfonic acids were immobilized
into the pores. Calculating average pore diameter of the
surface area was performed by the BET method and pore

volume of SBA-Pr-SO3H are 440 m2 g-1, 6.0 nm and 0.660
cm3 g-1, respectively, which are smaller than those of
SBA-15 due to the immobilization of sulfonosilane
groups into the pores [40]. The TGA analysis of SBA-
Pr-SO3H confirmed the amount of organic groups on
SBA-15. The weight reduction of SBA-Pr-SO3H in the
temperature range between 200-600°C indicated that
the amount of organic group was 1.2 mmol/g. SEM
image of SBA-Pr-SO3H (Figure 1a) shows uniform
particles about 1μm. The same morphology was ob-
served for SBA-15. It can be concluded that morph-
ology of acid catalyst was saved without change during the
surface modifications. On the other hand, the TEM image
(Figure 1b) reveals the parallel channels, which resemble
to the pores configuration of SBA-15. This indicates that
the pore of SBA-Pr-SO3H was not collapsed during two
steps reactions.

Figure 2 SBA-Pr-SO3H act as a nano-reactor in this reaction.

Table 4 Urease inhibitory activities (IC50 in μM) and interaction energies (kcal mol−1) of pyrano[2,3-d]pyrimidine

diones derivatives 4 (Continued)

12 4l −5.41 107.62

13 −3.98 21.0 Thiourea
a Green and red arrows are presented H-bond donor and acceptor interactions, respectively.
b Yellow areas are parts with hydrophobic interactions.
c Blue lines depict the electrostatic interactions.
* The IC50 values for activator.

Mohammadi Ziarani et al. DARU Journal of Pharmaceutical Sciences 2013, 21:3 Page 11 of 13

http://www.darujps.com/content/21/1/3



The pyrano[2,3-d]pyrimidine diones structurally simi-
lar to barbituric acids. The antibacterial and urease inhibi-
tory activity of barbituric acid derivatives were reported
[46,48,49]. Many urease inhibitors have been synthesized
and tested, but because of their toxicity and instability use
of them in vivo is impossible [48-50]. Thus, the search is
still on for finding strong and specific urease inhibitors.
As shown in Table 4, all prepared pyrano[2,3-d]pyrimi-

dine diones are demonstrated different profile of activity.
This might be due to similarity of synthesised compounds
to substrate of enzyme. While compounds 4a, 4d and 4l

were not active in urease inhibition test, compound 4a

displayed slight urease activation properties. Compounds
4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes
on phenyl ring, show good inhibitory activity (Table 4).
These compounds with electron donating group and sub-
sequent hydrophobic interaction with active site of
enzyme prevents the hydrolysis of substrate. Electron
withdrawing groups such as nitro, 3-methoxy reduced
urease inhibitory activity due to decreasing partial charge
on nitrogen atoms of barbiturate moiety on pyrano[2,3-d]
pyrimidine ring which is essential for inhibitory activity.
Substitution of both hydrogen of barbituric acid with me-
thyl groups will convert the inhibitor to activator.

Conclusions
In conclusion we have developed a nano-catalyzed mul-
ticomponent synthesis of pyrano pyrimidine diones in
good to very good yields. In comparison with previous
investigations (Table 3), we presented SBA-Pr-SO3H as
an efficient and active nano-reactor (Figure 2). Our me-
thod is simple as no special apparatus, reagents or chemi-
cals, and work up are required, and the formed compound
is filtered and purified just by simple crystallization. This
synthesis is also advantageous in terms of atom econo-
my as well as is devoid of any hazardous chemicals. The
urease inhibitory activity of pyrano[2,3-d]pyrimidine dione
derivatives were reported for first time.
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