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Abstract

This thesis introduces a Three-Cornered Coevolution System that is capable of

addressing classification tasks through coevolution (coadaptive evolution)

where three different agents (i.e. a generation agent and two classification

agents) learn and adapt to the changes of the problems without human

involvement.

In existing pattern classification systems, humans usually play a major

role in creating and controlling the problem domain. In particular, humans

set up and tune the problem’s difficulty. A motivation of the work for this

thesis is to design and develop an automatic pattern generation and classifica-

tion system that can generate various sets of exemplars to be learned from

and perform the classification tasks autonomously. The system should be

able to automatically adjust the problem’s difficulty based on the learners’

ability to learn (e.g. determining features in the problem that affect the

learners’ performance in order to generate various problems for classifica-

tion at different levels of difficulty). Further, the system should be capable

of addressing the classification tasks through coevolution (coadaptive evo-

lution), where the participating agents learn and adapt to the changes of

the problems without human participation. Ultimately, Learning Classi-

fier System (LCS) is chosen to be implemented in the participating agents.

LCS has several potential characteristics, such as interpretability, general-

isation capability and variations in representation, that are suitable for the

system.

The work can be broken down into three main phases. Phase 1 is to

develop an automated evolvable problem generator to autonomously generate

various problems for classification, Phase 2 is to develop the Two-Cornered



Coevolution System for classification, and Phase 3 is to develop the Three-

Cornered Coevolution System for classification.

Phase 1 is necessary in order to create a set of problem domains for

classification (i.e. image-based data or artificial data) that can be generated

automatically, where the difficulty levels of the problem can be adjusted

and tuned.

Phase 2 is needed to investigate the generation agent’s ability to au-

tonomously tune and adjust the problem’s difficulty based on the classi-

fication agent’s performance. Phase 2 is a standard coevolution system,

where two different agents evolve to adapt to the changes of the problem.

The classification agent evolves to learn various classification problems,

while the generation agent evolves to tune and adjust the problem’s diffi-

culty based on the learner’s ability to learn.

Phase 3 is the final research goal. This phase develops a new coevo-

lution system where three different agents evolve to adapt to the changes

of the problem. Both of the classification agents evolve to learn various

classification problems, while the generation agent evolves to tune and

adjust the problem’s difficulty based on the classification agents’ ability to

learn. The classification agents use different styles of learning techniques

(i.e. supervised or reinforcement learning techniques) to learn the prob-

lems. Based on the classification agents’ ability (i.e. the difference in per-

formance between the classification agents) the generation agent adjusts

and creates various problems for classification at different levels of diffi-

culty (i.e. various ‘hard’ problems).

The Three-Cornered Coevolution System offers a great potential for au-

tonomous learning and provides useful insight into coevolution learning

over the standard studies of pattern recognition. The system is capable of

autonomously generating various problems, learning and providing in-

sight into each learning system’s ability by determining the problem do-

mains where they perform relatively well. This is in contrast to humans

having to determine the problem domains.
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Chapter 1

Introduction

1.1 Scope

Pattern recognition is concerned with the capability of machines to observe

the environment, learn to distinguish patterns of interest from their back-

ground and make a reasonable decision about the categories of the pat-

terns [20]. Here, the recognition problem is a classification or categoriza-

tion task. Automatic machine recognition, description, classification, and

grouping of patterns are important problems in a variety of engineering

and scientific disciplines such as biology, psychology, medicine, market-

ing, computer vision, artificial intelligence, and remote sensing [20]. Re-

cently demands on automatic pattern recognition systems have increased

due to rapidly growing and available computing power, which has en-

abled the production of various datasets in large volumes and faster pro-

cessing of these large datasets.

Learning from a set of examples that has desired features is crucial and

important for most pattern recognition systems. Traditionally, research in

pattern recognition involves choosing a domain, creating a source of ex-

emplars, and trying out learning algorithms that seem likely to work in

that domain [124]. Previous studies in [73, 39] have shown that a learner’s

performance (algorithm) depends on either the constraint of the method

1
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or the complexity of the data. Consequently, a public repository (e.g. the

UCI repository [5]), has become the most used method in attempting to

find a suitable domain. However, relying on the available data in the pub-

lic repository has the following disadvantages [73]. First, if one hundred

percent performance is not reached, the learner’s true capability in the

domain is unknown, e.g. whether it has achieved the maximum perfor-

mance or if there is still a room for performance improvements. Secondly,

sometimes the critique of the learner’s performance is misleading, for ex-

ample when the characteristics of the problem under study are unknown.

Thirdly, identifying these problem characteristics is not easy as there are

many factors affecting the problem’s difficulty in the real-world problems,

such as inconsistency, uncertainty, missing values, and sampling sparsity.

One way of creating the source of exemplars is guided by humans’

expert knowledge. However, humans might make a mistake in classifica-

tion and fail to produce thousands or millions of exemplars within a lim-

ited amount of time. Again, identifying the problem’s characteristics are

not easy as there are many factors affecting the problem’s difficulty in the

real-world problems. Thus, humans might produce incomplete and noisy

exemplars. Nevertheless, the process of creating the exemplars based on

humans’ expert knowledge incurs another additional cost, i.e. labour cost.

In order to learn from the available exemplars, it is very important to pro-

duce a reliable source of examples that can easily be extracted and learned

from.

In this case, an automatic pattern generation system would be valuable to

provide the following advantages over the traditional methods: 1) gener-

ation of a large set of examples automatically (i.e. a library of problems),

2) capability of producing examples of each class that are diverse and nu-

merous, 3) manipulation of the states related to a particular class through

flexible methods, 4) encoding deterministic characteristics into the data,

and 5) less human involvement, which can reduce overall cost.

Further, if the pattern generation system can link with a pattern classi-
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fication system, then the learner’s capability in the domain can be further

investigated systematically. Here, the classification system learns the gen-

erated examples or problems, whereas the pattern generation system dis-

covers the types of the problem that fall in the domain of the classification

system’s competence automatically.

1.2 Motivation

Although, autonomous learning of patterns by machines has advanced re-

cently, it still requires humans to set up the problem at an appropriate

level of complexity for the learning technique to learn. In existing artifi-

cial classification systems, the problem domain is created and controlled

by humans. If the problem is too complex the system does not learn. Con-

versely, if the problem is too simple, the system does not reach its full po-

tential. If humans can set up the problem appropriately then machines can

extract beneficial knowledge to solve classification tasks. Furthermore, the

limit of the learner’s or technique’s capability can be assessed. Therefore,

the challenge is to develop a computer based program, i.e. an autonomous

pattern generation and classification system that learns to identify whether or

not a pattern belongs to a specific class by producing various examples to

be learned from autonomously.

Furthermore, the creation of an automated pattern classification system is

itself a considerably complex problem. Firstly, machines usually have to

recognize a pattern characteristic from a large search space and a huge

number of examples (or datasets) to build a reliable recognition system.

The amount of irrelevant and redundant data might be too large compared

to the amount of knowledge available (i.e. important and interesting infor-

mation) that needs to be learnt. Secondly, machines often perceive incom-

plete pattern characteristics from the repository as there is inconsistency,

uncertainty, missing values, and sampling sparsity, in order to build a for-

mative knowledge representation. Finally, there is no clear guidance for
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the selection of a classification system to address classification problems

effectively where the cause of the problem’s difficulty is unknown.

The main advantage of the automated pattern generation and classifi-

cation system is to be able to generate a set of more comprehensive exem-

plars than humans can generate and learn useful knowledge to capture all

the pattern characteristics accurately, showing the capability of the system.

There are a number of machine learning methods that are available to

improve the design and development of existing pattern recognition sys-

tems. A class of computer algorithms called evolutionary computation

(EC) can be used. For example, Genetic Algorithm (GA) is used to explore

the search space in order to find an interesting problem in the domain (e.g.

pattern). Once these problems are found, a set of exemplars is produced.

Thus, GA could enable the pattern generation system to automatically cre-

ate the exemplars associated with the problems in less time than a human.

Millions of exemplars can be produced and created under various circum-

stances. Next, GA can also be used to learn the set of exemplars for classifi-

cation, where the classification system’s performance can be further tested

and investigated.

Learning Classifier Systems (LCSs) appear to be a widely applicable

agents’ model that can provide a framework for a diversity of learning

and practical applications [116]. Hence, in this work for the thesis, LCSs

are mainly applied as the learning systems. Here, LCSs have been adopted

in the learning system based on the potential characteristics, such as inter-

pretability, generalisation capability and variations in representation.

Recently, a theoretical framework of Three-Cornered Coevolution [124]

was proposed by Wilson in the paper ‘Coevolution of Pattern Generators

and Recognizers’. The author proposed an automatic system for image

transformation with a pattern generator and pattern recognizers. This is

to be a human-independent system that may provide a new insight into

the pattern recognition problem. However, this theoretical framework had

not yet been implemented and tested. It is therefore unclear how well
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the framework will work to drive the coevolution within the system (e.g.

how the coevolutionary process will actually work between the pattern

generator and the pattern recognizers).

Therefore, the Three-Cornered Coevolution System will be implemented

in order to automate the process of pattern classification, with the aim to

autonomously create various problems for classification tasks at different

levels of complexity. The Three-Cornered Coevolution System will be based

on the Three-Cornered Coevolution Framework as suggested by Wilson

through implementing LCSs as the participating agents within the system.

1.3 Thesis Statement

The thesis makes the following statement:

The Three-Cornered Coevolution System that consists of three main agents

(i.e. the generation agent and two classification agents) is capable of ad-

dressing the classification tasks through coevolution (coadaptive evolu-

tion) where three different agents learn and adapt to the changes of the

problems without human involvement.

The potential benefits of utilising the Three-Cornered Coevolution Sys-

tem are that the system is able to: 1) determine the learner’s capability in

the domain, 2) determine the features in the problem that effect the prob-

lem’s difficulty in order to explore the methods of the learners, 3) maxi-

mize the difficulty levels of the problem in relation to the features in the

problem in order to investigate the learner’s capability within certain fea-

ture domains.

1.4 Research Goals

Based on Wilson’s proposal, the overall goal of the work is to develop

and implement the novel Three-Cornered Coevolution System for addressing
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classification tasks for the first time. The main focus is to develop a sys-

tem that autonomously creates various problems for the classification task

at different levels of complexity, where the problem’s difficulty can be ad-

justed and tuned, based on the agent’s ability to learn. Ultimately, LCSs

are implemented in the participating agents to evolve their rules and im-

prove their performance.

Given a variety of patterns where the agents need to perform a classifi-

cation task, the work has to find possible answers to the following research

question:

How can the pattern classification tasks be addressed effectively using a Three-

Cornered Coevolution System that automatically adjusts the problem’s difficulty

based on the agents’ ability to learn?

In order to execute the overall goal above, a set of research objectives

have been established to guide this research.

1. Develop an automated evolvable problem generator for generating dif-

ferent types of problems for classification. Here, two new problem

domains will be created and can be manipulated autonomously (i.e.

scalable and evolvable image-based data, and artificial data). This

system is needed in order to establish an appropriate problem do-

main for the classification tasks that can be evolved and tuned auto-

matically.

2. Develop a new Two-Cornered Coevolution System for addressing the

classification tasks that consists of two main agents (i.e. the gen-

eration agent and the classification agent). The classification agent

evolves to learn various problems, while the generation agent evolves

to tune and adjust the problem’s difficulty based on the classification

agent’s ability to learn. This system is needed to investigate the co-

evolutionary approach between the participating agents within the
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system in order to establish a framework for the Three-Cornered Co-

evolution System.

3. Develop a new Three-Cornered Coevolution System that consists of three

main agents (i.e. the generation agent and two classification agents)

for addressing the classification tasks. Here, two classification agents

learn and adapt to the changes of the problems using different types

of learning technique (i.e. supervised learning or reinforcement learn-

ing). Based on the classification agents’ ability (i.e. the difference in

performance between the classification agents) the generation agent

adjusts and creates various problems for classification at different

levels of difficulty (i.e. various ‘hard’ problems).

1.5 Major Contributions

The thesis has made the following major contributions to pattern recogni-

tion and classification utilising Learning Classifier Systems (LCSs):

1. The thesis has introduced an automated evolvable problem generator

that can create various problems for the classification tasks; a new

human-independent system for the creation of various classification

problems. A novel set of problem domains has been created which

can be manipulated autonomously to generate scalable and evolv-

able problems (i.e. image-based data or artificial data). In addition,

the created problem domain can be tuned at various levels of diffi-

culty, such that various exemplars at different levels of difficulty for

the classification tasks can be generated autonomously. All of the

generated problems provide a convenient way to help in empirically

testing the learning bounds of the learners (algorithms).

Part of this contribution has been published in:
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Syahaneim Marzukhi, Will N. Browne and Mengjie Zhang, “Devel-

oping An Evolvable Pattern Generator Using Learning Classifier Sys-

tems”, Proceedings of the 5th International Conference on Automa-

tion, Robotics and Applications (ICARA 2011), pages 163-168, IEEE

Xplore.

2. The thesis has introduced a new technique for addressing the classi-

fication tasks using the Two-Cornered Coevolution System. This is the

first effort to develop a new human-independent adjustable system

for the classification tasks using LCSs. The Two-Cornered Coevolu-

tion System was a baseline of coevolution LCSs, where two differ-

ent agents (the generation agent and the classification agent) interact

with each other to adapt to the changes of the problem. The clas-

sification agent evolves to learn various problems, while the genera-

tion agent evolves to tune and adjust the problem’s difficulty based

on the classification agent’s ability to learn. Both the problem do-

main (i.e. the generation agent) and the learner (i.e. the classifica-

tion agent) evolve in parallel (coadaptive evolution) to adapt to the

changes of the problem. Here, various problems for classification at

different levels of difficulty can be generated. Further, the problem

domain was tuned autonomously based on the learner’s ability to

learn, i.e. the problem made ‘hard’ or ‘easy’ to specified limits or

‘harder’ or ‘easier’ based on a certain threshold value. The system

was able to tune the problem domain autonomously such that the

problem’s difficulty can be tuned efficiently to empirically test the

learning bounds of the learner by lowering human intervention. The

hypothesised degrading effects of noise in the problem on the sys-

tem’s performance were confirmed.

Part of this contribution was published in:

Syahaneim Marzukhi, Will N. Browne and Mengjie Zhang, ”Two-
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Cornered Learning Classifier Systems for Pattern Generation and

Classification”, Proceedings of the Genetic and Evolutionary Com-

putation Conference 2012 (GECCO 2012), pages 895-902, ACM.

Syahaneim Marzukhi, Will N. Browne and Mengjie Zhang, ”Adap-

tive Artificial Datasets to Discover the Effects of Domain Features for

Classification Tasks”, Proceedings of the Genetic and Evolutionary

Computation Conference 2013 (GECCO 2013), pages 157-158, ACM.

Syahaneim Marzukhi, Will N. Browne and Mengjie Zhang, ”Adap-

tive Artificial Datasets Through Learning Classifier Systems for Clas-

sification Tasks”, Proceedings of the International Workshop in Learn-

ing Classifier Systems 2013 (IWLCS 2013), page 1243-1250, ACM.

Syahaneim Marzukhi, Will N. Browne and Mengjie Zhang, ”Adap-

tive Artificial Datasets Through Learning Classifier Systems for Clas-

sification Tasks”, Evolutionary Intelligence (October 2013), DOI 10.1007

/ s12065-013-0094, Springer-Verlag Berlin Heidelberg.

3. The thesis has introduced a new technique for addressing classifi-

cation tasks using the Three-Cornered Coevolution System for the first

time. This is a new coevolution LCS where three different agents

evolve to adapt to the changes of the problem. Both of the classifica-

tion agents evolve to learn various classification problems, while the

generation agent evolves to tune and adjust the problem’s difficulty

based on the classification agents’ ability to learn. The classification

agents used different types of learning technique (i.e. reinforcement

learning and supervised learning) to learn the classification tasks.

Based on the classification agents’ ability (i.e. the difference in per-

formance between the classification agents) the generation agent ad-

justs and creates various problems for classification at different lev-
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els of difficulty (i.e. various ‘hard’ problems). The results showed

that the coevolutionary (coadaptive evolutionary) process was suc-

cessfully implemented without human intervention as the genera-

tion agent and the classification agents evolved and adapted to the

changes of the problems autonomously.

1.6 Organisation of the Thesis

The remainder of the thesis is organised as follows.

Chapter 2 presents a review of the literature on Learning Classifier Sys-

tems (LCSs) as a main approach to address classification problems. A

detailed description of LCSs is given to provide the background for the

readers understanding the main methodology. The chapter also covers

important background of EC from an artificial intelligence (AI) and ma-

chine learning (ML) perspective. It therefore visits the basic concepts of

evolutionary algorithms (EAs) and genetic algorithms (GAs). This chap-

ter then gives a review of the current research on using LCSs for pattern

classification problems.

Chapter 3 details the methodology used for the three different phases

of research work in order to develop the Three-Cornered Coevolution Sys-

tem. This chapter provides a framework for developing, testing and evalu-

ating the systems for each phase. The Three-Cornered Coevolution System

work consists of three main phases. Phase 1 is to develop an automated

evolvable problem generator for generating the classification problems.

Phase 2 is to develop the Two-Cornered Coevolution System for classifi-

cation, and Phase 3 is to develop the Three-Cornered Coevolution System

for classification. Detailed design of each system, including the problem

setup and the experimental setup, is discussed and presented.

Chapter 4 presents the results of the research for each phase. In Phase

1, a set of problem domains for the classification task (i.e. image-based

data or artificial data) that can be generated automatically has been estab-
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lished. Various problem domains have been successfully tested with the

classification agent in order to determine its learning bounds and inves-

tigate its performance. The results indicated within this domain whether

the problem’s difficulty can be increased or decreased at the appropriate

level, the classification agent’s performance can be investigated and fur-

ther tuning can be performed. In Phase 2, the system was further enhanced

where the problem’s difficulty can be tuned and adjusted whilst lowering

human involvement. However, the results suggested that generating the

artificial data through specifying features rather than image-based data

led to a system that can tune and adjust the problem’s difficulty meaning-

fully. In addition, applying Pittsburgh-style LCS (i.e. A-PLUS) coupled

with Tabu Search rather than Michigan-style LCSs helped the generation

agent to evolve the rules most effectively. The generation agent was able

to generate the next problem based on the classification agent’s ability and

learned the difficulty of the problem.

Phase 3 is the final research goal. The Three-Cornered Coevolution Sys-

tem for addressing classification tasks has been developed where the sys-

tem consisted of three different communicating agents. In this phase the

classification agents’ performance that used a different style of learning

technique (i.e. supervised or reinforcement learning technique) on vari-

ous problem domains was analysed in order to confirm that the coevolu-

tion process had occurred. The results showed that the generation agent

was able to drive the coevolutionary process (i.e. coadaptive coevolution)

within the system successfully.

Chapter 5 discusses the relevance and impact of the novel work in the

LCSs field, highlights the limitations of the work and presents a detailed

analysis of findings for each phase. Comparison is made with existing

literature to place the results in context.

Chapter 6 summarises the findings and contributions from the experi-

ments in each phase of the thesis, and describes future research directions

arising from the contributions of this work.
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Chapter 2

Background

This chapter gives a general description of the field of the work for this the-

sis and provides a review of the literature that forms the background to the

novel contributions. The chapter contains an overview of artificial intelli-

gence and machine learning in which the work is situated, and the task to

which the application of the work is applied, i.e. classification problems.

Next, the chapter focuses on the specific machine learning paradigm that

is used in the contributions of the work: Genetic-based Machine Learning

(GBML). GBML systems are machine learning techniques that use evolu-

tionary computation (EC) in learning tasks. Details of Learning Classifier

Systems (LCSs), a subset of GBML systems, are presented as a main ap-

proach to addressing the classification problems.

The chapter is structured as follows. First, sections 2.1 and 2.2 provide

a description of artificial intelligence (AI) and machine learning (ML) and

ML paradigms, particularly on the machine learning task we are dealing

with (i.e. the classification problem) by defining the scope and the con-

cepts that are going to be used in the work. Secondly, sections 2.3 and

2.4 give a brief description of evolutionary computation (EC) and evo-

lutionary algorithm (EA) field. Thirdly, section 2.5 describes the main

knowledge discovery mechanism of genetic algorithms (GA), and shows

GA theory and a formal methodology of its application. Next, section 2.6

13
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describes coevolution that applies to the work. The final three sections

focus on GBML related contents, specifically LCSs in section 2.7. Section

2.8 and 2.9 provide details of four LCSs models that are used to address

the classification problems (i.e. XCS, XCSR, UCS and A-PLUS). Section

2.10 provides a description on Tabu Search (TS) that is used to enhance

the LCSs model, A-PLUS, for exploring the search space of the problem

domain. Section 2.11 discusses related works of LCSs for addressing the

classification tasks. Finally, section 2.12 provides a summary of the chap-

ter.

2.1 Overview of Artificial Intelligence

Artificial Intelligence (AI) is a cross-disciplinary field of research that is gen-

erally concerned with developing and investigating systems that act intel-

ligently [92]. There are four categories of AI as defined by Russell and

Norvig [98]:

1. Systems that think like humans: systems that model the cognitive

information processing properties of humans. This includes fields

such as cognitive science and cognitive neuroscience.

2. Systems that act like humans: systems that can perform specific tasks

that humans can do, which includes fields such as the Turing test,

natural language processing, automated reasoning, knowledge rep-

resentation, machine learning, computer vision, and robotics.

3. Systems that think rationally: systems that model the laws of ratio-

nalism and structured thought of humans, such as syllogisms and

formal logic.

4. Systems that act rationally: systems that can act rationally as hu-

man behaviours, such as expected utility maximization and rational

agents.
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Briefly, artificial intelligence is the study of intelligent mechanisms and

intelligent behaviours in the system. In the work for this thesis, we focus

on a system that acts rationally in order to construct an intelligent agent

that can perceive its environment, generate plans, execute those plans and

communicate with other agents.

2.2 Overview of Machine Learning

Machine learning (ML) is a major research area in AI that is concerned with

the design and the development of algorithms and techniques that allow

computers to learn, where computers evolve their behaviours based on

empirical data and automatically improve with experience.

Machine learning can be defined as computational methods using ex-

periences to improve performance or to make accurate prediction of spe-

cific tasks [79]. The goal of machine learning is to design computer pro-

grams which learn to solve problems without explicitly being programmed

or instructed [25].

In [78], Mitchell defined machine learning as any computer program

that improves its performance at some task through experience as follows.

“A machine is said to learn from an experience E with respect to a

particular task T and performance is measured by P, only if the sys-

tem improves its performance P at task T by following experience of

E.”

Machine learning is generally categorized according to the type of learn-

ing procedure used to generate the output value. Learning methods in ma-

chine learning can be distinguished into: supervised, unsupervised and

reinforcement learning [79].

In supervised learning, the learner receives a set of labelled examples (a

training set) consisting of a set of instances that have been properly labeled
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with the correct output (i.e. classification, regression and so forth). The

goal is to learn a function that can perform an input-output mapping.

In unsupervised learning, the learner receives unlabelled examples where

the training data has not been labelled (i.e. clustering, dimensionality re-

duction). The goal is to find inherent patterns in the data that can then be

used to determine the relationships between inputs.

In reinforcement learning, the learner (the agent) actively interacts with

the environment and in some cases affects the environment, and receives

an immediate reward for each action. The desired outputs are not directly

provided. Instead, a learner has to learn based on rewards and punish-

ments it receives for its actions. The goal is to maximize the reward over a

course of actions and iterations with the environment.

This can be illustrated by the following two tasks [58].

• Classifying a dataset of mushroom varieties.

Task T: distinguish and classify between poisonous mushrooms and

edible mushrooms; Performance measure P: percentage of correctly

classified mushrooms between two types of mushrooms; and Train-

ing experience E: a database of pre-classified mushrooms; the de-

scription between two types of mushrooms (i.e. colour, size, shape)

with a given class.

• Simulating a frog.

Task T: maximize the number of flies it eats, minimize its energy ex-

pended and avoid being eaten itself; Performance measure P: num-

ber of flies eaten and survive; and Training experience E: trial and

error practice to maximize the number of flies it eats while minimiz-

ing the energy use.

The previous two examples describe two types of learning task where

it is possible to apply a machine learning technique for solving those prob-

lems. The first example shows a pattern classification task, while the latter

shows an on-line control task, where each task is suitable for a different
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learning technique. In the first problem, a supervised learning technique

is suitable for classifying between the two types of mushrooms, when a

training set of pre-classified examples is provided. However, in the sec-

ond example, when the system is only being given certain conditions, ei-

ther positive reward (i.e. eating flies) or negative reward (i.e. being eaten

itself), then the reinforcement learning technique is more appropriate to

solve this problem.

The mushroom classification task can also be categorized as a non-

sequential task (single-step task), when the action taken by the learner has

no effect on the inputs it will receive in the future. However, the frog sim-

ulation task is a sequential task (multi-step task), when an action taken at

time t by the learner might influence the inputs it will receive in the future.

In general the sequential task is more difficult, as it requires the learner to

consider the long term consequences of its actions.

In the work for this thesis we are dealing with the supervised learning

and reinforcement learning techniques for addressing the non-sequential

task (i.e. classification). Both of the learning techniques will be imple-

mented in the agents for the Three-Cornered Coevolution System. There-

fore, the rest of this chapter will focus on these two paradigms of learning

techniques for classification.

2.2.1 Machine Learning for Classification

The field of pattern recognition is concerned with the automatic discovery

of regularities in data through the use of computer algorithms, for further

actions such as classifying the data into different categories [11]. An exam-

ple of pattern recognition is classification, which is a task of assigning one

of several predefined categories to each object in previously unseen data

[19].

Classification is a data mining task which resolves the class of an object

by assigning a collection of objects (data) to the target classes (categories).
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The goal of classification is to accurately predict the target class for each

case in the collection of objects (data). The simplest type of classification

problem is binary classification. In binary classification, the target class has

only two possible values: for example, poisonous mushrooms and edible

mushrooms.

A pattern is a characteristic of an observation such as a speech signal

or a human face image, while a structural characteristic extracted from a

pattern is called a feature [17]. Each pattern can be viewed as a point (a

vector) in the feature space. From a statistical classification point of view,

a pattern is represented by a set of d features (attributes), viewed as a d-

dimensional feature vector [50]. The process of converting a pattern to

features is called feature extraction. A feature selection algorithm is used

to select the best features for representing the classes or the distinction

between classes.

In the statistical classification approach, the goal is to choose features

that allow pattern vectors, which belong to different categories, to occupy

a d-dimensional feature space [50]. The representation of feature space

is considered effective if the patterns are well separated between classes.

During training (i.e. given a set of training patterns from each class), the

objective is to establish decision boundaries in the feature space which

separate patterns to different classes. In the training mode, a classification

algorithm finds a relationship between features for representing the input

patterns and the classifier is trained to partition the feature space. Differ-

ent classification algorithms use different techniques for finding those re-

lationships. In the test mode, the trained classifier assigns an unseen input

pattern to one of the classes under consideration, based on the measured

features.

Pattern classification is performed by assigning an output value (also

known as label, category, target class) to a given input value (also known

as an instance or an example), according to some specific algorithm. A

pattern can be represented as a pair of variables: [x, ω], where x is a vector
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of observation, and ω is a label that represents a meaningful concept for a

problem domain [100]. Classification is a task of learning a target function

f : x → ω that maps each attribute set x to one of the predefined class

labels ω. The target function can be used as an explanatory tool to distin-

guish between objects of different classes (descriptive modeling [19]) , or can

be used as a predictive tool to predict the class label of unknown records

(predictive modelling [19]).

2.2.1.1 Problem Difficulty

In most existing artificial classification systems, the problem domain is

created and controlled by humans. Humans set up and tune the problem

domain, such as determining the problem’s difficulty. If the problem is

too complex, the system does not learn. Conversely, if the problem is too

simple, the system does not reach its full potential and can classify all of

the examples easily. If humans can set up the problem appropriately then

the machines can extract beneficial knowledge to solve the classification

task.

A problem can be difficult for different reasons [39], which can affect the

performance of classifiers. In [39], Ho and Basu identified that problems

can be difficult because of a mixture of three effects: (1) class ambiguity,

(2) boundary complexity, and (3) sample sparsity and feature space di-

mensionality. In [73], Macia defined these three effects as follows.

Ambiguity refers to a situation when there are examples in which their

features do not allow distinguishing the class. Usually, this ambiguity is

due to the problem formulation in which the concepts are intrinsically in-

separable or the set of attributes is not sufficient to describe the concepts.

Class separability and problem linearity are based on the geometrical com-

plexity of data structure. The classes are ambiguous regardless of sample

size or feature space dimensionality.

Boundary complexity is related to the description of the class boundary.

Complex decision boundaries and subclass structure can be categorized
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by the minimum length of a computer program needed to reproduce it.

Boundary complexity is due to the nature of the problem regardless of

sample size or feature space dimensionality.

Sample sparsity and feature space dimensionality are concerned with the

difficulty which occurs when the sampled instances of a problem do not

contain all of the necessary patterns. Moreover, small sample size and

high dimensionality are likely to increase this difficulty, making the solu-

tion more complex to discover. Therefore, the rules may overgeneralize

if they do not encounter examples near the decision boundary. In con-

trast, simple problems are normally linearly separable with wide margins

between decision boundaries.

The major focus of the work for this thesis is mainly in the area of pat-

tern recognition. More specifically, the work is focused on one example

of pattern recognition which is classification. Thus, ML can be adapted to

address the classification problem in order to achieve better results. Here,

the learning algorithm (i.e. the classification agent) learns to recognize

the patterns and makes intelligent decisions based on the empirical data

(i.e. training set) for classifying the patterns to the correct class. This set

of descriptors that characterize different aspects of complexity is useful to

estimate the classification agent’s performance, as well as to investigate

the classification agent’s domains of competence.

2.2.2 Machine Learning and Agents

During the last decade, developments in the fields of ML and agent tech-

nologies have, in some respect, become complementary and researchers

from both fields have seen ample opportunities to profit from solutions

proposed by each other [51]. The central goal of ML is to construct a com-

plete intelligent agent that can perceive its environment, generate plans,

execute those plans and communicate with other agents [63]. Recently,

several agent-based frameworks and applications that utilize ML for mak-
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ing intelligent decisions have been reported. Thus, research into learning

agent technology, such as reinforcement learning, supervised learning and

unsupervised learning, is increasingly becoming an important topic to fur-

ther investigate for producing valuable applications [52].

Moreover, autonomous agents and multi-agent systems represent a

new way of analysing, designing, and implementing complex software

systems [52]. The agent-based applications can offer powerful tools and

techniques that can potentially improve the implementation of many soft-

ware systems. There have been considerable agent-based applications

ranging from comparatively small systems such as personalised email fil-

ters to large, complex, mission critical systems such as air-traffic control.

In [52], an agent is defined as a computer system that is situated in an

environment and capable of flexible autonomous action in order to meet

its design objectives. There are three key main concepts in the definition:

situated, autonomy and flexibility that can be described as follows [52].

• Situated refers to a situation where the agent perceives sensory in-

put from its environment in which it can perform actions and adapts

with the changes of the environment.

• Autonomy refers to a condition when the agent is able to act without

the direct intervention of humans (or other agents). The agent has

power to control its own actions and internal state and is capable of

learning from experience.

• Flexible can be defined by two terms: responsive and pro-active. Re-

sponsive means that the agent should perceive its environment and

responds in a timely fashion to the changes of the environment. Pro-

active means that the agent should not simply act in response to the

environment, but should be able to exhibit goal-directed behaviour

by taking the initiative where appropriate.

An autonomous agent is defined as a computational system that inhabits

some complex dynamic environment, senses and acts autonomously in
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this environment, and by doing so realizes a set of goals or tasks for which

they are designed [75].

In the work for this thesis, autonomous agents are implemented in the

Three-Cornered Coevolution System. The system consists of three main

agents, a generation agent and two classification agents that use different

techniques of learning (i.e. supervised learning and reinforcement learn-

ing). All agents evolve to adapt to and drive the changes of the problem.

The classification agents evolve to learn various classification problems,

while the generation agent evolves to tune and adjust the problem (i.e. the

problem’s difficulty) based on the classification agent’s ability to learn.

2.3 Overview of Evolutionary Computation

Evolutionary computation (EC) is a research area within AI that models the

processes of natural evolution following Charles Darwin’s theory of nat-

ural selection [6, 23], where the main concept is survival of the fittest. EC

may also refer to an optimization methodology inspired by the mecha-

nisms of biological evolution and behaviours of living organisms [127].

In natural evolution, survival is achieved through reproduction. The in-

dividuals with the best characteristics have greater chances of surviving

and reproducing. Offspring are reproduced from two parents (sometimes

more than two) containing genetic material of both (or all) parents, hope-

fully the best characteristics of each parent. Those characteristics will be

passed on to the offspring, and will be inherited by the following gener-

ations, and (over time) become dominant in the population. The individ-

uals with the best characteristics have greater chances for survival com-

pared to those individuals that inherit weak characteristics. This process

is referred to as the survival of the fittest. On the other hand, evolution is an

optimization process where the aim is to improve the ability of the indi-

vidual to survive in dynamically changing and competitive environments

[22].
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The terminology used by EC researchers is strongly influenced by the

biological process of natural evolution. An individual is a candidate so-

lution to a problem, while a population is an entire set of the current so-

lutions. The actual representation (encoding) of the individual is called

genome (chromosome), where each genome contains a sequence of genes

(i.e. attributes that describes an individual). The value of a gene within a

certain range is called an alle (i.e. value of the attribute). A genotype de-

scribes the genetic composition of the individual, which is inherited from

the parents, while a phenotype is the expressed behavioural traits of the

individual in a specific environment [23].

Evolution by natural selection simulates evolution based on the processes

of reproduction, recombination, mutation, competition and selection [82]

as follows. During each generation the individuals compete with oth-

ers for reproduction. The individuals with the best characteristics have

a greater chance to survive and to reproduce following the phenomena of

survival of the fittest. The individuals can be modified to produce a new

individual through a breeding process (i.e. combining parts of the other

individuals (parents)) called recombination (crossover). This new indi-

vidual is referred to as an offspring (child). Each individual can also be

mutated which alters some of the alles of the chromosome through muta-

tion. Next, each individual is evaluated and receives a grade called fitness.

Fitness is used to indicate the quality of the individual in the context of a

given problem. When the new offspring are introduced to the population

and replace the current population, the new population is called a new

generation.

Generally, EC algorithms include genetic algorithm (GA), evolution-

ary programming (EP), evolutionary strategies (ES), genetic programming

(GP), learning classifier systems (LCS), differential evolution (DE), and es-

timation of distribution algorithm (EDA). There are a number of EC algo-

rithms in the EC research community, where all of the algorithms have a

similar framework in implementation and procedure as illustrated in Fig-
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ure 2.1 [127]. The framework consists of three fundamental operations

and two optional operations. The evolutionary iterations start after ‘pop-

ulation initialization’. Then follows the two operations of ‘fitness evalu-

ation and selection’ and ‘population reproduction and variation’. Next,

the new population is evaluated again and the iteration continues until

a termination criterion is satisfied. Besides those three operations, EC al-

gorithms sometimes perform another additional process such as an ‘algo-

rithm adaptation’ procedure or ‘local search’ procedure.

Figure 2.1: The flow of general EC scheme (adapted from [127]).

EC is also seen as the emulation of the process of natural selection in a

search procedure of computational systems [23]. Therefore, evolutionary
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processes can be simulated using computers to execute millions of gener-

ations of the procedure where it can be repeated and investigated under

various circumstances [22].

An EC algorithm is implemented in the work for this thesis, specifically

LCSs in the autonomous agents. Later, the EC algorithm is enhanced with

ML techniques in order to improve its performance. The idea is to use ML

techniques to directly guide the EC algorithm, i.e. GA, to search the space

of production rules and enhance the search performance, which has been

proven to improve the solution’s quality.

A main branch of EC is evolutionary algorithms (EAs), which are to

be reviewed below (see Section 2.4). Another branch of EC, swarm intelli-

gence, is not used in this work, so will not be described here.

2.4 Overview of Evolutionary Algorithms

Evolutionary algorithms (EAs) are based on the notion of a dynamically

changing population due to the birth of new individuals. These new indi-

viduals inherit genetic materials from parent individuals with high fitness,

while individuals with low fitness are likely not to be selected for repro-

duction, and may be eliminated from the population.

EAs can also be classified as guided random search techniques (non-deterministic

search) [8], which are used to attempt to find an optimal solution for a

given problem. The guided random search methods are useful in the prob-

lems where the search space is huge, multimodal, discontinuous, and a

near-optimal solution is acceptable [8].

The main idea of all these EAs is as follows: given a population of in-

dividuals, the environmental pressure causes natural selection among the

individuals, and improves the fitness (quality) of the population [22]. Fig-

ure 2.2 describes the general scheme of EA and this is further elaborated

in Algorithm 1.
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Figure 2.2: The flow of a general EA scheme (adapted from [23]).

Algorithm 1: Algorithmic description of EA (adapted from [22]).

1 begin

2 INITIALISE population with random candidate solutions

3 EVALUATE each candidate

4 while (termination condition is not satisfied) do

5 SELECT parents

6 RECOMBINE pairs of parents

7 MUTATE the resulting off-spring

8 EVALUATE new candidates

9 SELECT individuals for the next generation

10 end

11 end
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EAs have a number of components that must be specified in order to

define a particular EA [23]:

1. An encoding of solutions.

2. A function to evaluate the fitness (fitness function).

3. Initialization of the initial population.

4. Selection operators.

5. Reproduction operators such as crossover and mutation.

Different representation schemes of candidate solutions are often used

to categorise different EAs into different paradigms. The four major cur-

rent implementations of EA approaches are briefly described below:

• Genetic Algorithm [40, 41, 33, 34]

A Genetic algorithm (GA) models genetic evolution. GA was devel-

oped and applied by John Holland. Originally, GA was designed as

a formal system for adaption rather than an optimization system.

In Holland’s original work, each individual is represented by bi-

nary strings. GA basic features are: 1) crossover is the main method

for reproduction, while mutation plays a minor role; 2) the propor-

tional selection is used for selection purposes. Later, several changes

were made to this original GA, such as using different representa-

tion schemes, other selection methods, other crossover and mutation

operators for creating new individuals, and elitism to retain the best

individuals.

• Genetic Programming [59, 60]

Genetic programming (GP) is an extended form of GAs, which genet-

ically breeds a population of computer programs to solve problems.

Each individual of the population is represented by a complete com-

puter program in a suitable programming language. The most com-

monly used representation schemes include trees, binary, machine
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code, and many others to represent functions and arguments (e.g.

arithmetic operations, mathematical functions and conditional logi-

cal operations) in the computer program. GP uses similar reproduc-

tion operators such as in GAs.

• Evolutionary Strategy [96, 101, 102]

Evolutionary strategy (ES) typically employs real-valued parameters.

Each individual is represented as a genetic building block and a set

of strategy parameters to model the behaviour of the individuals in

the environment. ES basic features are: 1) the distinction between

a parent population (of size µ) and an offspring population (of size

λ ≥ µ); 2) mutation is the main method for reproduction.

• Evolutionary Programming [28, 27, 26]

Evolutionary programming (EP) was originally developed as a method

to evolve finite-state machines for solving time series prediction tasks

and was later extended to parameter optimization. EP relies on mu-

tation as the main operator for reproduction based on a single parent.

EP uses tournament selection to determine the number µ of individ-

uals for survival from the parents and the offspring. EP also uses the

self-adaption principle to evolve the strategy parameters during the

training.

In the work for this thesis, GA is implemented specifically in the LCS

methods as a main tool to evolve the rules. GA is commonly used by the

LCS community as it is well understood and improvements to the system

can be easily analysed. GA is used repeatedly to refine the rules for a finite

number of generations (iterations) until a termination criterion is met. The

main aspects of GAs will be reviewed in Section 2.5.
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2.5 Genetic Algorithm

Genetic algorithm (GA) [40, 41] updates a population of potential candidate

solutions iteratively. GA operates through a simple cycle as follows. At

each iteration (generation), GA evaluates candidate solutions and gener-

ates offspring based on the fitness of each candidate solution. Offspring

are reproduced from two parents, which contain genetic material of both

parents; hopefully, the best characteristics of each parent. Substructures of

the candidate solutions are then modified through genetic operators, such

as mutation and crossover, to form a better candidate solution. GA mod-

els the evolution of the population following a general scheme such as in

Algorithm 2 and specifies a number of its components as follows [22].

Algorithm 2: Algorithmic description of GA (adapted from [6]).

1 begin

2 Set generation t=0

3 INITIALISE the initial population P (t)

4 EVALUATE structures in P (t)

5 while (termination criteria not satisfied) do

6 t=t+1

7 SELECT for reproduction C(t) from P (t− 1)

8 RECOMBINE and MUTATE structures in C(t) forming C ′(t)

9 EVALUATE structures in C ′(t)

10 SELECT from C ′(t) and P (t− 1) forming P (t)

11 end

12 end

2.5.1 Knowledge Representation

In order to solve an optimization problem, GA starts with the chromo-

some representation of a parameter set. The parameter set can be encoded

as binary, real-value, integer or permutation representation. A set of the
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chromosomes is called a population, where the size of the population may

be constant or may vary from one generation to another. The standard

practise to generate the initial population is to choose randomly the gene

values from an allowed set of values. The goal of random value selection

is to ensure that the initial population is a uniform representation of the

entire search space [23].

In the binary representation, the parameter set is encoded as a finite-

length string over an alphabet of ‘0’s and ‘1’s. For example, the string

‘10011010’ is a binary chromosome of length l (where l=8) and in this case

there are 2l = 28 different chromosomes.

The integer representation is used to encode the problem of finding an

optimal value for a set of variables that takes all integer values. For ex-

ample, the values of {0, 1, 2, 3} can represent a path on a square grid of

{North, South, West, East}.
In certain cases, a candidate solution to a problem may contain a string

of real-values, when the solution is from a continuous distribution rather

than a discrete distribution. Therefore, these real-values normally are im-

plemented as floating-point values within the specified interval. The geno-

type for a solution with k genes is now a vector 〈x1, ...., xk〉 with xi ∈ R.

The work for this thesis is mainly focused on the area of classification

(i.e. image-based data and artificial data for classification). The simplest en-

coding system to represent the image-based data is binary representation.

However, the binary representations are not always suitable for address-

ing the problem that takes integer or real-value. Thus, the integer and the

real-value representation is used to represent attributes (or features) in the

problem and instances in the datasets for the artificial data.

2.5.2 Fitness Function

The fitness function is used as a quality measure to find good solutions

(i.e. individuals with high fitness values). The fitness function can map a
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chromosome representation into a scalar value: FEA : CI → R, where FEA

is the fitness function and C represents the I dimensional chromosome.

The fitness function quantifies the quality of each chromosome. The

fitness function is used to evaluate each individual in the population in

order to select individuals either for reproduction or mutation.

As the work for this thesis mainly addresses the classification tasks, the

classification accuracy is used to measure the classification agent’s perfor-

mance for learning various classification problems in the fitness functions.

2.5.3 Selection Operators

The aim of the selection operator is to emphasize better individuals in the

population. There are a number of selection schemes used in GA to se-

lect a number of parent individuals from the population for reproduc-

tion. The most common schemes used are: proportionate reproduction

(e.g. roulette-wheel), ranking, tournament and steady state selection [35].

The name proportionate reproduction describes a group of selection

schemes that choose individuals for reproduction depending on their ob-

jective function values [35]. The simplest selection scheme is roulette-

wheel selection, also called stochastic sampling with replacement. In roulette-

wheel selection, the chance of individuals being selected is proportional to

their fitness values. First, the individuals are mapped to contiguous seg-

ments of a wheel, and each individual’s segment is equal to the size of

its fitness (see Figure 2.3). Next, a random number is generated and the

individual whose segment spans the random number is selected for repro-

duction. This process is repeated until the desired number of individuals

is obtained. It is possible that a few individuals with high fitness will

dominate the population due to a wide range of fitness values. Roulette-

wheel selection is strongly fitness dependent where selection probability

depends on absolute fitness of individual compared to absolute fitness of

rest of the population.
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Figure 2.3: Roulette-wheel selection.

In tournament selection, at each iteration, a group of k individuals is ran-

domly selected (sampled) from the population. This is called a tourna-

ment of size k. The individuals in the group participate in a tournament,

where the fittest individual wins the tournament. A winning individual

is determined based on its fitness value (i.e. individual’s rank). The best

individual (one with the highest fitness value) is usually chosen determin-

istically, though a stochastic selection may be made [6]. As tournament

selection depends on the individual’s rank rather than the individual’s

relative fitness, it is not affected by the fitness distribution through the

population [22]. The size of the tournament controls the selection pres-

sure, where a bigger tournament size generates a higher selection pressure

[54]. In tournament selection, the worst individuals will not be selected,

whereas the best individuals will not dominate the population.

Tournament selection runs faster compared to roulette-wheel selection,

since roulette-wheel selection needs to compare the fitness of all individ-

uals in the population. In tournament selection, it is easy to control the

selection pressure by only varying the tournament size k. Thus, for all of

the experiments in the work for this thesis, tournament selection is used to

select the rules (classifiers) from the population either for reproduction or

mutation.

2.5.4 Reproduction Operators: Crossover

Crossover (recombination) refers to the process of creating a new individual

(offspring) from the two parent individuals, where the genome (chromo-
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some) should contain the most important features from the parent indi-

viduals. There are three basic steps to the crossover operation [6]. First,

two parent individuals are chosen at random from the population by the

selection operator. Secondly, one or more crossover points are chosen as

a breakpoint. Finally, the parent chromosomes are exchanged and then

combined to produce two new individuals (offspring). The probability of

the parent individuals undergoing crossover is controlled by the crossover

rate χ ∈ [0, 1], which determines how frequently the crossover operator is

activated.

2.5.4.1 Crossover for binary representation

Generally, there are three standard crossover methods used for the binary

representation [22]: 1) single-point crossover, 2) two-point crossover, and 3)

uniform crossover.

The single-point crossover [42, 53] is performed as follows (see Figure

2.4). First, one crossover point is selected randomly within the range of

[0, l − 1] (where l is the length of the encoding) to split both parent indi-

viduals at this point. Next, the binary string from the beginning of chro-

mosome to the crossover point is copied from its parent and the rest of the

binary string is copied from another parent.

Figure 2.4: Single-point crossover in GA (adapted from [22]).

The two-point crossover [53] is performed as follows (see Figure 2.5).

First, two crossover points are selected randomly within the range of [0, l−
1] (where l is the length of the encoding) to split both parent individuals at

this point. Next, the binary string from the beginning of chromosome to
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the first crossover point is copied from its parent. The part from the first

to the second crossover point is copied from another parent and the rest of

the binary string is copied again from its parent.

Figure 2.5: Two-point crossover in GA (adapted from [22]).

Figure 2.6 illustrates how uniform crossover [24] works by treating each

genome independently and making a random choice as to which parent

it should inherit from [22]. The binary string m is a mask computed for

each invocation of the operator from the set of crossover points [6]. This

mask is used to identify which string segments will be exchanged during

the crossover operation. Bits are copied either from the first parent or the

second parent to create the offspring.

Figure 2.6: Uniform crossover in GA (adapted from [22]).

2.5.4.2 Crossover for floating-point representation

In general, arithmetic crossover [23] is usually applied to the floating-point

representation, where an arithmetic operation is performed to create a new

offspring as follows.

On1,i = r1Cn1,i + (1.0− r1)Cn2,i (2.1)
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On2,i = (1.0− r2)Cn1,i + r2Cn2,i (2.2)

Where On1 and On2 are the generated off-springs, and Cn1 and Cn2 are the

parents with r1, r2 ∈ U(0, 1).

There are three types of arithmetic recombination used for the floating-

point representation [22]: 1) simple recombination, 2) single arithmetic

recombination, and 3) whole arithmetic recombination.

The simple arithmetic recombination is performed as follows (see Figure

2.7). First, one recombination point k is selected within the range of [0, l−1]
(where l is the length of the encoding) to split both of the parents at this

point. Next, the first k floats from the beginning of chromosome to the

crossover point, is copied from its parent and the rest of the floats are the

arithmetic average of both parents.

Figure 2.7: Simple arithmetic recombination in GA (adapted from [22]).

The single arithmetic recombination is performed as follows (see Figure

2.8). First, one random point k is selected within the range of [0, l − 1]

(where l is the length of the encoding). At that position k, the offspring’s

float value is the arithmetic average of both parents, while the rest float

values are from its parent.

The whole arithmetic recombination is performed as follows (see Figure

2.9). Each of the offspring’s float values is the arithmetic average of both

parents.
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Figure 2.8: Single arithmetic recombination in GA (adapted from [22]).

Figure 2.9: Whole arithmetic recombination in GA (adapted from [22]).

2.5.5 Reproduction Operators: Mutation

The aim of mutation (variation) is to introduce new genetic material into an

existing individual in order to add diversity to the genetic characteristics

of the population. Mutation occurs with a certain probability (i.e. muta-

tion rate µ ∈ [0, 1]) [23]. Usually, a small value of mutation rate is used.

Mutation is used to find good solutions (e.g. to keep the fit individuals

from distortion, so that the good characteristics of the fit individual are

preserved).

2.5.5.1 Mutation for binary representation

There are two mutation methods used for the binary representation [23]: 1)

random mutation and 2) inorder mutation.

The random mutation is applied as follows (see Figure 2.10). First, the

bit positions are selected randomly. Next, a random value for each bit

is generated. If the random value is less or equal than µ, then flip the

corresponding bit value either from ‘1’ to ‘0’ or from ‘0’ to ‘1’.
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Figure 2.10: Random mutation in GA (adapted from [23]).

The inorder mutation is applied as follows (see Figure 2.11). First, the

two bit positions are selected randomly. Only the corresponding bit values

between these positions are mutated. Next, with probability µ flip the

corresponding bit value either from ‘1’ to ‘0’ or from ‘0’ to ‘1’.

Figure 2.11: Inorder mutation in GA (adapted from [23]).

2.5.5.2 Mutation for floating-point representation

In general the value of each gene is randomly changed within its domain

for a given lower bound Li and upper bound Ui as follow:

〈x1, ...., xn〉 → 〈x′1, ...., x′n〉, where xi, x
′
i ∈ [Li, Ui].

There are two mutation methods used for the floating-point representa-

tions [22]: 1) uniform mutation and 2) non-uniform mutation. In the uni-

form mutation, the values of x′i are drawn uniformly from [Li, Ui]. However,

in the non-uniform mutation, a random value is added to the allele, usually

sampled from a Gaussian distribution with mean zero and user specified
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standard deviation, and then the resulting value is suppressed within the

range [Li, Ui].

In the work for this thesis, mutation is used to support crossover in or-

der to ensure that the full range of allele values is accessible in the search.

Mutation is performed by creating one offspring from one parent. Muta-

tion creates random small diversions by staying near (in the area of) the

parent. The binary mutation is used for the image-based data, while mu-

tation for floating-point is used for the artificial data, in order to add new

material to the solutions.

2.6 Coevolution

According to the Darwinian theory [6], an individual evolves through in-

teraction with the environment. Coevolution is the complementary evo-

lution between closely associated species (individuals) [23], in a situation

where two different species interact with each other. In evolutionary al-

gorithms (EAs), evolution is viewed as the process that enables the pop-

ulation to adapt in a fixed simulated environment [23]. However, in Co-

evolutionary Algorithms (CEAs), evolution is actually influenced by other

independently acting biological populations in the fixed simulated envi-

ronment [23]. Therefore, the evolution is not just locally within each pop-

ulation, but also in response to environmental changes as caused by other

populations. As a consequence, natural evolution actually implies coevo-

lution.

Coevolution is a situation where multiple populations are evolved and

the fitness of an individual depends on its interactions with other individ-

uals. For example, predator-prey relationships involve coevolution, where

an evolutionary advance in the predator will trigger an evolutionary re-

sponse in the prey [7]. In coevolutionary systems, different populations

interact with each other in such a way that the evaluation function of one

population may depend on the state of the evolution process in the other



2.6. COEVOLUTION 39

population(s) [6].

There are two main forms of CEAs [22]: competitive coevolutionary

systems and cooperative coevolutionary systems. In competitive coevolu-

tion, individuals have to coevolve against other individuals (within a pop-

ulation or in opponent population). The evaluation of the individuals is

determined by a set of competitions between two or more individuals and

the fitness of an individual depends on the fitness of opponent individu-

als. In contrast cooperative coevolution evolves different populations each of

which contain partial solutions to a problem. The collaboration between

two or more individuals is necessary in order to evaluate one complete po-

tential solution and the fitness of an individual is measured by combining

it with one member from each of the other populations to form a complete

solution.

Coevolutionary algorithms bring an interesting perspective to evolu-

tion as they promote a different manner of the fitness evaluation of a

candidate solution, which takes into account its relation to the other sur-

rounding individuals [16]. In addition, coevolutionary evaluation is con-

tinuously altered throughout the existence of an individual as a result of

better roles achieved at each generation (survival of the fittest). Thus, co-

evolution has been very successful in many applications, which provide

a suitable approach to solve many real-world applications such as game

theory, robotics, classification and data mining.

The first work on cooperative coevolution in the GA domain was con-

ducted by Potter and De Jong [93, 95]. In their work, the cooperative

coevolution genetic algorithm (CCGA) was initially designed for func-

tion optimization, and later a general architecture was proposed for co-

operative coevolution with coadapted subcomponents [94]. In [118], a

framework for formal analysis of cooperative coevolutionary algorithms

(CCEAs) using multi-population symmetric (MPS) games from evolution-

ary game theory (EGT) was introduced. An enhanced cooperative coevo-

lution genetic algorithm (ECCGA) has also been applied to pattern clas-
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sification to further improve the classification performance [128]. A com-

petitive coevolution approach has been applied for developing strategies

to play games [112]. The results show that the coevolutionary approach,

which allows individuals to play against each other, can lead to much bet-

ter results compared to those learned with fixed external opponents.

Further, coevolution with LCSs was also employed for addressing many

other applications and achieved reasonable successes [48, 70, 76, 117]. In

[48], Huang and Sun proposed a coadaptive approach to control coevolution-

based eXtended Classifier System (XCS) parameters. The system (i.e. coad-

aptive XCS, CA-XCS) was tested on the 6-bit multiplexer problem. In this

approach one XCS was used to adjust the parameters of the other XCS

system. This approach (a coevolution model) allowed two XCS systems to

operate in parallel to solve the target and the parameter setting problems

simultaneously. Results showed that the coadaptive approach was suc-

cessful in terms of setting parameters according to target problem proper-

ties.

In [70], the paper addressed on how different knowledge represen-

tations can be evolved in a fine-grained parallel learning classifier sys-

tems (i.e. Genetic and Artificial Life Environment, GALE) for data mining

tasks. Experiments were performed with GALE2 to solve two well-known

datasets provided by the UCI repository [5]: the Iris dataset and the Wis-

consin breast cancer dataset to demonstrate that the fine-grained paral-

lel learning classifier systems can evolve individuals codifying different

knowledge representations at the same time. Results showed that when

an adequate extinction pattern was used, accurate individuals belonging

to different knowledge representations can be coevolved efficiently.

In [76], the paper proposed the CoXCS model, a coevolutionary multi-

population XCS. In this model, a number of isolated sub-populations were

used to evolve classifiers based on partitioning of the feature (attribute)

space. A modified version of XCS was used in each of the sub-populations.

Two modifications were made to the base XCS model running in each is-
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land: a new algorithm was used to create the match set and a special-

ized crossover operator was used. Next, the model was compared with

some of the representatives of several machine learning paradigms (i.e.

j48, NBtree, Random Forest, NN and SVM) on a collection of 6 real-world

datasets extracted from the UCI repository. Results showed that the accu-

racy of the proposed model was significantly better than other well-known

classifiers when the ratio of data features to samples was extremely large.

Results suggested that the composition strategy played an important role

in guiding the trajectory of the evolving populations.

In [117], the paper presented a novel hybrid learning algorithm, namely

CoCoLCS MFS ( a cooperative coevolution Pittsburgh Learning Classifier

Systems embedded with Memetic Feature Selection) in which a memetic

feature selection search is embedded into the classifier evolution process

of GAssist, a Pittsburgh-style LCS, by means of a cooperative coevolution

framework. In the proposed approach, the selected feature subsets and the

rule sets of classifiers in GAssist were encoded and evolved by two sepa-

rate populations. These two coevolving populations cooperate with each

other regarding fitness evaluation. Results on several benchmark datasets

chosen from the UCI repository illustrated that the proposed CoCoLCS

MFS was capable of delivering solutions with better accuracy and higher

stability, compared with the original GAssist. Moreover, the incorporated

feature selection helped to improve the computational efficiency by reduc-

ing the number of features involved in the classier evaluation.

However, in our implementation, the version of coevolution in the

Three-Cornered Coevolution LCSs System is implemented differently. The

term coevolution that is used in this thesis refers to the fact that several LCSs

interact and learn with each other to adapt with the changes of the prob-

lems. The Three-Cornered Coevolution System is implemented in such a

way that the agents interact in a coadaptive evolution manner. Each agent

adapts and learns the changes of the problems as the parameters setting

in each agent are kept unchanged. However, the individuals in each agent
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(i.e. rules) are evolved to learn various problems. Also, the three agents

are not cooperating in the usual sense, because the agents are opposed in

their purposes and objectives.

2.7 Genetic-based Machine Learning

Genetic-Based Machine Learning (GBML) systems are machine learning tech-

niques that use evolutionary computation (EC) to search complex search

spaces [91]. The first schemes of GBML systems were introduced by Hol-

land in the 1970s [41], and were formally presented in the paper ‘Cognitive

Systems Based on Adaptive Algorithms’ in 1978 by Holland and Reitman

[44]. Research on GBML has been conducted from two perspectives [91]:

the Pittsburgh approach and the Michigan approach.

2.7.1 Learning Classifier Systems

Learning Classifier Systems (LCSs) [41] are a subset of GBML systems [41],

which are machine learning techniques that incorporate reinforcement learn-

ing (RL) and evolutionary computation (e.g. genetic algorithm (GA)) in its

main component. LCSs are cross-disciplinary research areas of EC and RL

(see Figure 2.12). The RL component is applied to the classifier’s predic-

tions to evaluate the classifiers [125] for the identification of the best rules,

while the GA component is responsible for discovering potentially better

rules [14]. The desired outcome of running a LCS is for the evolved classi-

fiers to collectively model an intelligent decision maker [116].

In [43], Lanzi defined LCSs as follows:

“In LCSs an agent learns to perform a certain task by interacting

with a partially unknown environment, using rewards and other

feedback to guide an internal evolutionary process which modifies its

rule-based model of the world. The agent senses the environment

through its detectors; based on its current sensations and its past
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Figure 2.12: LCSs are cross-disciplinary research area of EC and RL

(adapted from [116]).

experience, the agent selects an action which is sent to the effectors in

order to be performed in the environment. Depending on the effects

of the agent’s action, the agent occasionally receives a reward. The

agent’s general goal is to obtain as much reward as possible from the

environment.”

Learning via reinforcement is an essential mechanism in the LCS archi-

tecture, where the learning guides the evolutionary component (e.g. GA)

to evolve a better set of rules. In reinforcement learning [111], the agent

learns from its interaction with its environment (see Figure 2.13). The

agent perceives the environment to be in a state, and selects an action to

be executed. In response, the environment returns a numerical reward to

the agent. The agent seeks to maximize the reward it receives in the long

run by effecting appropriate actions to the environment in order to learn a

mapping from situations to actions and increase its performance.

Reinforcement learning (RL) is defined as a learning technique for map-

ping a situation to an action where the main objective is to maximize the

scalar reward (reinforcement signal) received by the agent from the envi-

ronment [111]. In other words, RL can be referred to as learning by trial-

and-error between the agent and the environment, the agent receives per-
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Figure 2.13: RL components (adapted from [111]).

formance feedback in return from the environment. In most of the cases,

the actions may affect not only the immediate reward, but also the next

situation through to all subsequent rewards [111]. The agent has to exploit

what it already knows in order to obtain a reward, but it also has to explore

in order to select a better action in the future. RL provides a flexible ap-

proach to design a system in situations for which both supervised learning

and unsupervised learning are impractical.

LCSs comprise at least three main components [46]: the Performance

Component, the Reinforcement Component and the Discovery Compo-

nent (see Figure 2.14).

1. Population

LCSs contain a finite population of condition-action rules called clas-

sifiers that represent the current knowledge of the system. Each clas-

sifier is usually defined by four main parameters [65]:

• The condition, which specifies the input states in which the clas-

sifier can be applied.

• The action, which represents a decision on the problem identi-

fied by its condition or specified action that the classifier pro-

poses.
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Figure 2.14: Learning Classifier Systems (LCSs) main components.

• The prediction, which estimates the amount of reward that the

system will receive for the specified action it has performed.

• The fitness, which estimates how good the classifier (quality) is

at solving the problem.

2. Performance Component

The performance component controls the interaction between the

population of classifiers and the environment. At each iteration, the

system perceives the current state of the problem (i.e. input). The

system initially learns by covering each complete pattern for the in-

put. Next, it builds a match set containing all the classifiers in the

population where the condition matches the input. Next, the sys-

tem evaluates each action in the match set and selects an action to

be performed. The selected action is sent to the environment to be

executed on the problem. In response, the system receives a scalar

reward depending on the effect of the action that has been executed.
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3. Reinforcement Component (Credit Assignment)

The reinforcement component distributes the incoming reward from

the environment to the classifier that is accountable for the reward

obtained, and the associated parameters are updated. This compo-

nent is also known as credit assignment. In the sequential task (sin-

gle step task), the credit assignment is normally performed by some

form of algorithm (e.g. Q-learning-based strategy or any similar al-

gorithm) [57] to distribute the reward received.

4. Discovery Component

The discovery component which uses different genetic operators (i.e.

mutation and crossover) is responsible for discovering better clas-

sifiers and improving existing ones. The GA is mainly used as a

computational search technique to evolve a population of classifiers,

where each classifier represents a potential solution (or piece of a so-

lution) to a given problem. Here, the GA is performed following the

standard GA operation methods [53].

2.7.2 Pittsburgh-style LCSs versus Michigan-style LCSs

Research on LCSs have been conducted from two perspectives [91, 116]:

Pittsburgh-style LCSs and Michigan-style LCSs. These two approaches rep-

resent two very different ways of interpreting the contribution of EC to

ML. A Pittsburgh-style LCS is an optimization tool applied to learning

tasks that uses an EC technique as its main driving force, while Michigan-

style LCS has been designed specifically for learning and it is a combi-

nation of several components, where one of them is an EC technique [1].

Several main distinctions between the two approaches include: popula-

tion structure, solution structure, cooperation and competition within in-

dividuals in the population, and learning style [3].
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2.7.2.1 Pittsburgh-style LCSs

The Pittsburgh-style LCS was introduced by Smith in his dissertation at the

University of Pittsburgh in 1980 [108]. Pittsburgh-style LCSs define a pop-

ulation as a collection of multiple competing rule-sets which represent a

potential solution (see Figure 2.15). Each individual is a rule-set of clas-

sifiers. Therefore, each rule-set in the population is a potential solution.

The solution to the problem is the best individual of the population. The

individuals in the population compete to solve the problem and compete

for reproduction and evolve following the typical cycle of GAs. The GA

operates at the level of the entire rule-set rather than at the level of the

individual classifier. At the end of the evolutionary process, the best indi-

vidual found is treated as the final solution and used to predict the class

of unknown examples [125]. Thus, Pittsburgh-style LCSs are very close

to the essence of EC techniques where an individual is a complete solution,

and there is a competition between the candidate solutions in the popula-

tion, and the search space exploration is made using almost blind genetic

operators (without domain knowledge)[1].

Figure 2.15: Pittsburgh-style LCSs (adapted from [125]).

Pittsburgh-style LCSs need to explore a much larger search space than

Michigan-style LCSs, and they are often more computationally expensive

as the system has to evolve multiple rule-sets, which requires longer eval-

uation times because the whole population of multiple rule-sets needs to

be evaluated. Additionally, Pittsburgh-style LCSs need to address a bloat
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effect, which refers to a situation where the size of individuals grows with-

out control [4] (i.e. increases the size of candidate solutions by adding use-

less rules to individuals) [68]. Conversely, Pittsburgh-style LCSs usually

evolve more compact populations involving only few rules in a population

[1] compared to Michigan-style LCSs. Therefore, Pittsburgh-style LCSs

are more suitable when compact solutions with few rules are expected to

solve the problem and are normally applied to off-line learning problems.

Some of the most successful Pittsburgh-style LCSs include GABIL, GALE,

GAssist, and BioHEL (a descendant of GAssist) [116]. Those systems were

designed primarily to address classification or data mining problems for

which Pittsburgh-style systems are considered to be fundamentally suited.

The basic algorithm of Pittsburgh-style LCSs is shown in Algorithm 3.

Algorithm 3: Algorithmic description of Pittsburgh-style’s LCSs

(adapted from [125]).

1 begin

2 Perceive a group of input from the environment.

3 Generate a random population of rule-sets.

4 Evaluate the population of rule-sets.

5 for (each rule-set repeat until stopping criterion is met) do

6 Select a promising rule-set.

7 Apply variation operator on the promising rule-sets.

8 Evaluate the new rule-sets.

9 Replace the population of rule-sets with the new rule-sets.

10 end

11 The best rule-set is treated as the final solution.

12 end

2.7.2.2 Michigan-style LCSs

The Michigan-style LCS was implemented in Holland’s GBML system that

was developed at the University of Michigan [45, 18], which merges a
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credit assignment scheme with a GA to evolve a population of rules. In

Michigan-style LCSs, a population consists of a single rule-set which rep-

resents the problem solution (see Figure 2.16). Each individual is a clas-

sifier of the single rule-set. Therefore, the solution is represented by the

entire set of individual classifiers in the population. The individuals in the

population cooperate to solve the problem and compete for reproduction.

The RL exploits the incoming reward to estimate the action values in each

sub-problem to identify the best classifiers in the population. Meanwhile,

GA improves the current solution by means of exploring promising rules

[125]. GA periodically operates at the level of each individual classifier

referred as ‘classifier-based competition’. Michigan-style LCSs typically

evolve highly distributed problem solutions involving a large number of

classifiers, which make Michigan-style LCSs better suited to distributed

types of solution [1]. Michigan-style LCSs are typically applied to interac-

tive on-line learning problems. The most popular Michigan-style LCSs are

the accuracy-based LCSs (XCS) [119]. The basic algorithm of Michigan-

style LCSs is shown in Algorithm 4.

Figure 2.16: Michigan-style LCSs (adapted from [125]).

The work of the Three-Cornered Coevolution System consists of three

main agents (i.e. a generation agent and two classification agents). All

agents evolve to adapt to and drive the changes of the environment (i.e.

the problem). The classification agents evolve to learn various classifica-

tion problems, while the generation agent evolves to tune and adjust the

problem (i.e. the problem’s difficulty) based on the classification agent’s

ability to learn. Pittsburgh-style LCS is used in the generation agent to
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Algorithm 4: Algorithmic description of Michigan-style’s LCSs (on-

line).

1 begin

2 Initialise a population of classifiers.

3 for (each classifier repeat until stopping criterion is met) do

4 Perceive input from the environment.

5 Select promising classifiers.

6 Apply variation operator on the promising classifiers.

7 Evaluate the new classifiers.

8 Replace some of the population of classifiers with the new

classifiers.
9 end

10 The best classifiers are treated as the final solution.

11 end

learn the problem, where it can evolve and optimize the generation agent’s

rules (i.e. to produce compact solutions when only a few rules are ex-

pected). Michigan-style LCSs are used in the classification agents to learn

various problems for classification (i.e. interactive on-line learning sys-

tem).

2.7.3 Strength-Based LCSs versus Accuracy-Based LCSs

Traditionally, LCSs have been strength-based [119, 56], where the classi-

fier’s fitness is based on the prediction (reward) received from its interac-

tion with the environment [107]. The prediction value is used to measure

the fitness of each classifier when selecting any competitive or participa-

tive classifier. Therefore, the best rewarded classifiers will have a greater

chance to be selected than others. As a result, GA will eliminate the less

rewarded classifiers in comparison with others from the population.

As a consequence, the strength-based fitness can cause a problem of

‘greedy-classification’ and ‘strong-over-general classifiers’, where the over-
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general classifier acts correctly in a high reward state and acts incorrectly

in a low reward state [107]. In the rules’ competition, the over-general clas-

sifier has more influence in the low reward state and has a greater chance

for reproduction. So, this over-general classifier may displace other reli-

able classifiers, and the performance of the system can be worsened.

For this reason, Wilson introduced accuracy-based LCSs in 1995 [119],

called XCS. In accuracy-based LCSs, the classifier’s fitness is based on

the accuracy with which it predicts the reward received from its interac-

tion with the environment [56], rather than the prediction itself. Further,

GA acts in environmental niches instead of on the whole population to

maintain the parallel sustenance of equally important sub-solutions. This

means that GA searches for the classifiers that are accurate in their pre-

diction, independently from their prediction value, in order to select the

classifiers [107].

More importantly, accuracy-based LCSs, e.g. XCS, attempt to evolve a

complete map of all possible ‘condition-action’ rules for each possible level

of reward, compared to strength-based LCSs (e.g. ZCS) which attempt to

evolve a best action map. The best action map contains only the consistently

correct rules. However, the complete action map contains both consistently

correct and consistently incorrect rules. The rules that always receive the

highest reward are termed consistently correct rules (i.e. rules that predict

the correct class in all the inputs that they match). The rules with zero

reward and low error correspond to consistently incorrect rules (i.e. rules

that predict the incorrect class in all the inputs that they match). Therefore,

having all rules in the action maps for both correct and incorrect rules

enable accuracy-based LCSs able to address various ranges of problems

promisingly (see Section 2.11). Table 2.1 describes the major differences

between strength-based LCSs and accuracy-based LCS.
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Table 2.1: Strength-based LCSs versus Accuracy-based LCSs.

Strength-based LCSs Accuracy-based LCSs

Fitness is based on strength, which

is an estimation of the reward the

rules receive from the environment.

Therefore, the GA searches for the

best rewarded rules.

Fitness is based on the accuracy

of the prediction, rather than on

the prediction itself. This means

that the GA searches for rules that

are accurate in their prediction, in-

dependently from their prediction

value.

Strength-based LCSs evolve a best

action map, a map that contains

only the high-rewarded rules.

Accuracy-based LCSs evolve a

complete action map, a map that

consists of all accurate rules be-

longing to the different payoff

levels defined by the environment.

Strength-based LCSs perform

poorly in the presence of multiple

payoff levels, where the greedy

classifier allocations assign higher

reproductive opportunities to clas-

sifiers with higher rewards, that

cause strong over-generalisation.

Therefore the over-general classi-

fiers are reproduced more often

than other reliable classifiers that

have low-rewarded states. As a

consequence, over-general classi-

fiers may displace other reliable

classifiers, and the performance of

the system can be worse.

Accuracy-based LCSs avoid these

strong over-general effects by being

based on the accuracy of the predic-

tion, rather than the prediction it-

self.
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2.8 Accuracy-Based LCSs

Accuracy-based LCSs, e.g. XCS, have been recognized as one of the main

representative LCSs ‘to date’ [9], the most advanced and universal being

‘Michigan-style’ LCSs [115, 114]. The success factors of XCS are due to

two main changes made to the previous LCSs architecture: the classifier’s

fitness is based on the accuracy of the prediction and ‘niche-based’ GA.

XCS uses a form of restricted mating called ‘niche-based’ GA which fo-

cuses genetic search and provides a strong generalisation to the system

[58]. Other interesting features in XCS include [58]: 1) subsumption that

provides another bias towards generalisation rules, 2) deletion and GA in-

vocation to balance rule allocation between niches, and 3) macroclassifiers

which are classifiers with a numerosity parameter (parameter is used to

indicate the number of identical virtual classifiers), which decreases the

run-time and provides an important statistic on the worth of each unique

rule.

2.8.1 XCS

XCS consists of three main components of LCSs: the Performance Com-

ponent, the Reinforcement Component and the Discovery Component.

There are three important classifier groupings in XCS: the population set

[P], the match set [M] and the action set [A]. The population of classifiers

(rules) is denoted by [P] and has a maximum number of classifiers. The

match set [M] is formed from the current population set [P] and includes

all classifiers that match the current input. The action set [A] is formed

from the current match set [M] and includes all classifiers from the match

set [M] which propose the executed action to the environment. The in-

teraction process of the XCS’s Performance Component is illustrated in

Figure 2.17 and is described by the basic algorithm shown in Algorithm 5.
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Algorithm 5: Algorithmic description of XCS (Performance Compo-

nent) (adapted from [57]).

1 begin

2 Perceive a single input string (e.g. current state of the problem) from

the environment.

3 Generate a random population of classifiers [P].

4 Build a match set [M] containing all the classifiers in the population [P],

where the condition matches the input string.

5 if ([M] is empty or some of the classes are not predicted in [M]) then

6 Covering process is activated, a new classifier is created (where the

condition is a generalized version of the input example, an action is

the class that not covered in [M]).

7 Add this classifier into the population.

8 end

9 Calculate the prediction values for each action in the match set [M]

based on p and F values of each classifier in [M] (where p is is an

estimate of the expected amount of reward that the classifier will

receive and F is the classifier’s accuracy with respect to other

classifiers).

10 Evaluate each action in the match set [M] based on the calculated

prediction value.

11 Form the action set [A] containing the classifiers in match set [M] that

will advocate action to the environment.

12 Send the selected action to the environment and receive a reward.

13 Activate the credit assignment algorithm for classifiers update.

14 end
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Figure 2.17: Schematic illustration of XCS (adapted from [119]).

2.8.1.1 Knowledge Representation

XCS evolves a population of classifiers [P] to represent the solution to

a given problem. Knowledge is commonly represented in the form of

condition → action rules and a set of parameters, called classifiers. Each

classifier and its associated parameters are described in Table 2.2.

Classifiers may be created in one of three ways [57]: 1) random initial

population, 2) covering, and 3) GA. Each of these methods is described as

follows.

1. Random initial population

This method allows the population to be initialised and filled with

random classifiers. N classifiers are generated, each with random

condition and random action. Each bit in a classifier’s condition is

either a don’t care symbol # with probability p#, ‘0’, or ‘1’.

2. Covering

In this method, the system starts with an empty population. Next,

matching rules are produced through covering to fill the empty pop-
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Table 2.2: Description of parameters listing in XCS [115, 114].

Notation Description

The condition C Specifies the input (state) in which the classifier is applicable (matches). It is

commonly represented by fixed length ternary strings from {0, 1,#}, where

‘don’t care’ symbol # matches both 0 and 1.

The action A Specifies the selected action to be sent to the environment when the condition

is satisfied. Represented by fixed length binary strings from {0, 1}.

The prediction p Estimates the expected amount of reward that the classifier will receive for

the specified condition and action it performed.

The prediction error ǫ Estimates the error between the prediction p and the received payoff (re-

ward).

The fitness F Specifies the relative accuracy of the classifier or computed as inverse func-

tion of the prediction error (or the classifier’s quality), which evaluates the

classifier’s accuracy with respect to other classifiers in the same action set

[A].

The experience exp Counts the number of times the classifier has occurred in the action set [A].

The time stamp ts Denotes how many times the classifier has been evolved by GA in the action

set [A].

The action set size as Estimates the average size of the action set that the classifier belongs to.

The numerosity num Counts the number of copies of the classifier in the population (i.e. macroclas-

sifier). A macroclassifier is a classifier with a numerosity parameter, which

indicates the number of identical virtual classifiers it represents. Instead of

having n classifiers with identical conditions and actions, XCS stores a single

macroclassifier with numerosity n.

β Learning rate.

p# Probability of including don’t cares # in the classifier’s condition when the

classifier is created through covering. A higher p# value means more general

the classifiers are likely.

θsub Subsumption trigger threshold, when a classifier is allowed to subsume an-

other classifier when certain other conditions are met.

θGA GA threshold to control the rate of applying GA to individual niches (i.e.

action set [A]).

θdel Deletion threshold to delete the classifiers with low fitness.

χ Probability of applying crossover to two parents.

µ Probability of applying mutation to a bit in a condition or action.
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ulation. When a classifier is created through covering, its condition is

a copy of the current environmental input and it is given a randomly

chosen action. Each character in the condition is then mutated with

probability p# into a #. Covering allows the creation of new classi-

fiers whilst guaranteeing that it matches the current input. Covering

only occurs a few times at the beginning of the run to initialise the

population.

3. GA

XCS employs niche-based GA, which refers to the process of select-

ing parents from a subset of classifiers in the population (i.e. action

set [A] or originally match set [M]) for reproduction. Copies of the

classifiers are generated and then transformed using the standard

genetic operators for creating the new classifiers. Crossover only oc-

curs in the conditions, while mutation occurs in both the condition

and the action.

2.8.1.2 Performance Component

The Performance Component in XCS works as follows:

1. At each iteration, the system obtains a single input x from the envi-

ronment.

2. With the receipt of input x, the population of classifiers [P] is scanned.

3. Any classifier whose the condition matches the input x becomes a

member of match set [M]. The classifier is considered to match the in-

put when each symbol in its condition equals either the same symbol

at the corresponding position of the input or a ‘don’t-care’ symbol.

4. If the match set [M] is empty (i.e. none of the classifiers in the pop-

ulation [P] match the input), the covering operator is activated. The

covering operator creates a new classifier with a matching condition
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and a random action. With the addition of a new classifier, the exist-

ing classifiers must be removed from the population to keep N (the

number of maximum classifiers) constant using any selection mech-

anism (i.e. tournament selection).

5. Once the match set [M] is formed, a system prediction array P (ai)

is computed for each action ai in the match set [M] using fitness-

weighted average of the prediction of all classifiers in [M] that advo-

cates ai.

6. Next, the system evaluates each action in the match set [M] based on

the prediction value from the prediction array P (ai) in order to select

an action. The prediction array P (ai) stores the system prediction for

each advocated action in preparation for action selection. If a specific

action is not advocated (i.e. [M] is empty), then the covering operator

is activated.

7. Next, the system forms the action set [A]. The action set [A] contains

all classifiers from the match set [M] that proposed the executed ac-

tion to the environment (i.e. subset classifiers with the highest pre-

diction).

8. Next, the system selects an action to perform either using a simple

explore scheme1 or exploit scheme2 alternately. Then, the selected ac-

tion is performed in the environment and a reward is received in

returned.

1In explore scheme, the system selects an action at random from those advocated by

the matching rules; the system performs unbiased exploration from the available options

(choosing the action randomly).
2In exploit scheme, the system deterministically selects the action which is most highly

recommended by the matching rules; the system is maximally biased towards exploita-

tion of its current knowledge (choosing the best action).
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2.8.1.3 Reinforcement Component

Once the chosen action is sent to the environment, feedback is received

and translated to a scalar reward r. Next, the reinforcement learning al-

gorithm (credit assignment algorithm) is performed as described in Algo-

rithm 6.

Algorithm 6: Algorithmic description of credit assignment algorithm

in XCS (single-step task) (adapted from [57]).

1 begin

2 if (the previous time step’s action set [A] is not empty) then

3 UPDATE [A] (see Section 2.8.1.3).

4 Do ACTION SET SUBSUMPTION in [A].

5 if (condition for GA invocation in [A] are met) then

6 Call RULE DISCOVERY algorithm in [A].

7 end

8 end

9 end

The parameters of the classifiers are updated with respect to the im-

mediate feedback to the current action set [A]. The experience exp of all

classifiers in the action set [A] is increased and other related parameters

are updated. Parameter update is normally performed with the order:

prediction (p), prediction error (E) and fitness (F ) as follows [115, 114, 57].

1. Prediction p of each classifier in [A] (single-step task) is updated,

given the immediate reward received r:

pj ← pj + β(r − pj) (2.3)

Here, each classifier’s prediction is being updated, where pj is the

prediction of classifier j, where β is a value controlling the learning

rate (i.e. 0 < β < 1).
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2. Prediction error is updated :

ǫj ← ǫj + β(|r − pj| − ǫj) (2.4)

Each classifier’s prediction error is updated accordingly, where ǫj is

the prediction error of classifier j.

3. The accuracy κ is derived:

κj = {1 if ǫ<ǫ0
α(ǫj/ǫ0)−ν otherwise (2.5)

In order to calculate the classifier’s fitness, the classifier’s accuracy

is firstly calculated, where ǫ0 is a maximum error that a classifier can

take to be considered as accurate, and α and ν are constants that con-

trol the rate of decline in accuracy. If the error is below the accuracy

criterion (any rules with ǫ < ǫ0), the classifier is considered to be fully

accurate. Otherwise, the accuracy κj is a scaled of version of the er-

ror, where the classifier’s accuracy drops off quickly as controlled by

parameters α and ν when ǫ0 is exceeded. The accuracy falloff rate is

0 < β < 1 and the accuracy exponent is ν >0.

4. The relative accuracy κ′ for each classifier in [A] is computed:

κ′j = κj × numerosity(j)/
∑

x∈[A]

κx × numerosity(x) (2.6)

Once the accuracy of all classifiers in [A] has being updated, each

classifier’s relative accuracy is calculated. It causes the sum of all rel-

ative accuracies of the classifier in [A] to equal 1. If the sum of the

accuracies of the classifier in [A] is greater than 1, the relative accu-

racies of the classifier are less than their accuracies. Otherwise, the

relative accuracies of the classifier are greater than their accuracies.

5. The fitness value of each classifier is updated from the relative accu-

racy κ′:
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Fj ← Fj + β(κ′j − Fj) (2.7)

Note that fitness is shared among the classifiers in the same action

set [A] since it is calculated from the relative accuracies.

2.8.1.4 Discovery Component

In XCS, the GA (i.e. niche-based GA) is applied to the action set [A] with a

frequency fixed by the parameter θGA, which refers to a process of selecting

parents from the action set [A] (a subset of classifiers in the population) for

reproduction as described in Algorithm 7.

Classifiers Subsumption is introduced as a way of biasing the system to-

wards general (but still accurate) classifiers [57]. GA sub-sumption (in

the version proposed by Martin Butz [14]) is activated for each of the

offspring classifiers. Each offspring is checked for subsumption with its

parents before it is added to the next generation [115, 114]. If the parent

is sufficiently experienced, accurate and more general than the offspring,

then the offspring is not introduced, instead the parents’ numerosity is in-

creased. However, if the offspring cannot be subsumed by the parents,

than the offspring will be added to the population [P]. During the inser-

tion, the offspring is compared to all individuals in [P] to check for any

identical classifier. If an exact identical classifier is found, its numerosity

is increased instead of adding the offspring.

In order to restore the number of classifiers to N , an appropriate num-

ber of classifiers need to be removed from the next generation. If a pop-

ulation size is greater than the maximum value N , a deletion process is

performed with a probability proportional to an estimate of the size of the

action set as. If the classifier is sufficiently experienced and its fitness F

is significantly lower than the average fitness of the classifiers in [P], its

chance to be deleted is increased.



62 CHAPTER 2. BACKGROUND

Algorithm 7: Algorithmic description of rule discovery in XCS

(single-step task) (adapted from [57]).

1 begin

2 Reset GA counters of classifiers in [A].

3 SELECT two parents P1 and P2 from [A].

4 CROSS P1 and P2 with probability χ otherwise clone to obtain C1 and

C2.

5 MUTATE each bit in C1 and C2 with probability µ.

6 Initialise parameters of C1 and C2.

7 DELETE classifiers as needed.

8 if (C1 subsumed by P1 or P2) then

9 Increment numerosity of subsuming parent.

10 end

11 else

12 Insert C1 into [P].

13 end

14 if (C2 subsumed by P1 or P2) then

15 Increment numerosity of subsuming parent.

16 end

17 else

18 Insert C2 into [P].

19 end

20 end
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2.8.2 XCSR

Accuracy-based Learning Classifier Systems with real-value, XCSR, was intro-

duced later by Wilson [120]. XCSR enhanced XCS to real inputs (i.e. in-

teger and real-valued problem domains). The representation of XCSR is

illustrated in Figure 2.18, while the changes from XCS to XCSR [120] in

respect to the classifier’s representation is as follows.

Figure 2.18: Schematic illustration of XCSR (adapted from [76]).

2.8.2.1 Knowledge Representation

XCSR evolves a population of classifiers [P] to represent the solution to

a given problem. Each of the N classifiers in the population consists of

condition→ action rule and a set of parameters as follows:

1. The condition C specifies a problem domain by interval encoding

within the interval C = (l1, u1, l2, u2, ..., li, ui); where li is a lower bound

and ui is an upper bound of a real-value number. A classifier matches

an input x if and only if li ≤ xi < ui for all xi.

2. The action part A specifies an available or specified action that the

classifier proposes, A ∈ a, where a = {a1, ..., am} is the set of all

possible actions in the problem.
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3. The prediction p estimates the payoff the system will receive if con-

dition Cj matches and its action is chosen by the system.

4. The prediction error ǫ estimates the error in pj with respect to actual

payoffs received.

5. The fitness F specifies the relative accuracy of the classifier.

2.8.2.2 Performance Component

The performance component in XCSR works in a similar way to XCS. The

main difference (i.e. on how the input is perceived) is described as follows.

1. XCSR is initialized with an empty population, where initial classi-

fiers are generated by a covering mechanism that creates intervals

controlled by parameter r0. When a new covered classifier is cre-

ated, each interval inti = (li, ui) is generated as li = xi − rand(r0)

and ui = xi + rand(r0), where rand(r0) is a value uniform randomly

chosen from [0, r0] and r0 is a real constant [49].

2. At the beginning of each iteration, the system detects the current

problem instance x.

3. With the receipt of the instance, the population of classifiers [P] is

scanned.

4. Any classifier in the current population [P] whose conditions are sat-

isfied by x becomes a member of the match set [M]. The classifier

is considered to match the input when x lies in each of the hyper-

rectangles of all matching classifiers; a classifier matches an input

message x if each element xi belongs to the corresponding interval

in C within the lower bound and upper bound range li ≤ xi < ui.

Every possible action should be represented by at least one classifier

in the match set [M].
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The Reinforcement Component and the Discovery Component of XCSR

also work similarly to XCS as described in the previous section.

2.8.3 UCS

UCS [9] is a learning classifier system derived from XCS that works un-

der a supervised learning scheme [87]. As UCS is specifically designed for

supervised learning, it benefits directly from known labels during training

[105]. The main difference between UCS and XCS is as follows [87]. First,

the Performance Component is adjusted based on a supervised learning

scheme. Thus, UCS only evolves high-rewarded classifiers (i.e. the best

action map). Secondly, UCS calculates accuracy as the percentage of cor-

rect classification.

UCS uses the same classifiers representation as in XCS, and ‘niche-

based’ GA is implemented as the main search mechanism. However, niches

in UCS are defined by the correct rule-set [C], and it is expected that UCS

will generalize over the search space of correct rule-sets [9]. The changes

from XCS to UCS are discussed in this section, where the major differences

are in the Performance Component [9, 105]. The Reinforcement Compo-

nent and the Discovery Component of the system work as described in

XCS in the previous section.

2.8.3.1 Knowledge Representation

UCS evolves a population of classifiers [P] to represent the solution to a

given problem. Each classifier is represented in the form of condition →
action rules and a set of parameters, called classifiers. The main parameters

of the classifiers are: 1) acc, the accuracy of the classifier, 2) F , the fitness

of the rule which is based on the accuracy acc, 3) exp, the experience of the

classifier, 4) the niche size cs, 5) the last time of the GA activation ts, and 6)

the numerosity num, which denotes the number of copies of the classifiers

in the population.
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2.8.3.2 Performance Component

UCS is a supervised learner, thus learning is performed using a supervised

learning scheme. During learning, UCS perceives a set of labelled exam-

ples where each instance x = (x1, ...., xn) and has a corresponding class c.

Therefore, UCS is being presented with an input example together with

the associated class, x : c.

During learning, UCS works as follows [87]:

1. At each iteration, an input example x with the associated class c is

presented to the system.

2. With the receipt of input x, the population [P] is scanned.

3. Next, the system creates the match set [M] consisting of those classi-

fiers whose conditions match the input x.

4. Those classifiers in the match set [M] which predict the class c form

the correct set [C].

5. If the correct set [C] is empty, the covering operator is activated, cre-

ating a new classifier with a generalized condition matching x with

random # and predicting class c.

During testing, UCS works as follows [87].

1. At each iteration, only input example x is presented to the system.

Thus, UCS must predict its associated class c.

2. With the receipt of input x, the population [P] is scanned.

3. Any rule whose condition matches the input x becomes a member of

the match set [M].

4. Once the match set [M] is formed, the system selects the best class

from the vote (weighted by fitness) of all classifiers in the match set

[M] (i.e. chosen the most-voted class).
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At each time the classifier participates in the match set [M] in the learn-

ing mode, the classifier parameters are updated as follows [86, 87]. The

accuracy acc is computed as the proportion of correct classification:

acc =
NumberOfCorrectClassification

exp
(2.8)

Note, since the classifiers’ parameters are updated in the match set [M],

the classifiers’ experience exp is increased by one every time the classifier

participates in the match set [M]. The niche size cs stores the average num-

ber of classifiers that participates in the correct set [C]. The niche size cs is

updated whenever the classifier belongs to the correct set [C]. The rest of

the parameters in UCS (i.e. the accuracy κ, the relative accuracy κ′ and the

fitness F ) are updated in the same way as in XCS.

2.8.3.3 Discovery Component

In UCS, the GA is used as the search mechanism similar to that of XCS (i.e.

niche-based GA), where GA is applied to the correct set [C]. The system

selects two parents from the correct set [C] (a subset of classifiers in the

population) for reproduction. The rest of the process works similarly to

XCS.

2.9 A-PLUS

Accuracy-based Pittsburgh Learner Using Subsumption (A-PLUS) is a version

of Pittsburgh-style LCSs, which incorporated the rule subsumption deletion

and inaccurate rule deletion from XCS into its method. In [109], Stacey im-

plemented ‘XCS updates’ into A-PLUS, in such a way that the system

can reduce the execution time by replacing the specific rules with more

general rules and only delete inaccurate rules. The main structure of A-

PLUS follows Pittsburgh-style LCSs descending from GABIL (GA Batch-

Incremental concept Learner) [53].
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2.9.1 Knowledge Representation

In Pittsburgh-style LCSs, knowledge is represented by a population of rule-

sets. An individual is a rule-set (i.e. a variable-length set of rules). Each

rule (classifier) has a fixed length, but the number of classifiers of the set

is variable. Here, a classifier is in the form of condition-action rules and a

set of parameters. The condition is a conjunction of terms, where each of

them is related to an attribute of the input instance, whilst the action is an

associated class. For example, the condition (i.e. nominal and real-valued

attributes) can be represented as follows [1].

attributei is equal to valueij

attributei is equal to valueij1 or valueij2
attributei belongs to interval [low, high]

attributei is lower than value

attributei is higher than value

A-PLUS used a method similar in GABIL [53] to represent the nom-

inal attributes as follows [1, 125]. Each individual I is a variable-length

set of classifiers, where each rule Ri includes the condition part and the

corresponding action.

I = (R1 ∨R2 ∨ ... ∨Rn) (2.9)

The rule Ri can defined as:

(V 1
1 ∨ ...∨V 1

k1
)∧ (V 2

1 ∨ ...∨V 2
k2
)∧ ...∧ (V n

1 ∨ ...∨V n
kn)→ classification (2.10)

where the condition part of each rule is a conjunctive normal form (CNF),

V j
k denotes the kth value of the jth feature. The rule is triggered when the

value of the jth feature in the input is equal to one element in V j
1 ∨ ...∨ V j

k .

The condition can be mapped into a binary string in the following way.

For example, there are three features {A, B, C}. Each feature can take any

value of {A1, A2}, {B1, B2, B3} and {C1, C2, C3, C4}. One bit represents
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each available value for each feature, and if the feature has a value in the

condition part then the corresponding bit is set to ‘1’, or else ‘0’. Therefore

the condition {A has value A1 or A2}, {B has value B3} and {C has value

C1 or C4} can be represented as ‘110011001’.

The condition can also be represented by the real-value attributes using

real-value intervals as follows [1]. Each individual is a variable-length set

of rules:

A1 ∈ [l1, u1] ∧ A2 ∈ [l2, u2]..... ∧ An ∈ [ln, un]→ classcm (2.11)

Where Ai is an attribute or feature of the domain and li, ui are the lower

and upper bounds of an interval associated to the attribute Ai. The values

of li and ui are calculated using the method as in the XCSR system [120],

where the interval is codified as a pair of real values defined by the centre

and spread. The lower bound of the interval is defined as centre− spread,

while the higher bound of the interval is defined as centre+ spread.

2.9.2 Rule-Set Evaluation

Here, A-PLUS is designed as an on-line system. At each iteration, each

rule-set is initialized based on the input example and creates a number

of classifiers that classifies the input example correctly . The rule-set is

evaluated based on the previous performance of each classifier in the set.

The simplest approach of examining the past experience of the classifier

and computing its accuracy is as follows (similar to equation 2.8):

accuracy = C/T (2.12)

Where C is the number of correctly classified instances, and T is the total

number of instances that the classifier matched.

Next, each classifier in the rule-set is evaluated. First, the classifier is as-

signed an accuracy value (i.e. the number of correctly classified instances

over the total number of instances that match). Secondly, the average accu-

racy of the classifiers in each action set [A] is calculated, where the action
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set is defined as a set of matched classifiers that correctly classify a given

data instance. Thirdly, the mean accuracies are added and finally divided

by the total number of data instances, giving an overall fitness value for

the rule-set, where fitness is based on the rule-set accuracy. Thus, the rule-

set with a higher number of accurate classifiers in each action set will have

a higher fitness and ultimately be favoured for reproduction. A-PLUS sys-

tem is executed as in Algorithm 8.

2.9.3 Rule-Set Evolution

A-PLUS applies a standard GA to evolve individuals (rule-sets) by op-

erating at the level of a single rule-set. The genetic operators which ap-

ply to the system are limited to selection, crossover and mutation. In order

to restore the number of rule-sets to N , an appropriate number of rule-

sets needs to be removed from the next generation. If a population size is

greater than the maximum value N , a deletion process is performed.

2.9.3.1 Selection

A-PLUS used the tournament selection as suggested by Butz [14]. The in-

dividuals compete against each other and only one individual is chosen

to reproduce (i.e. the fittest individual wins the tournament). The tourna-

ment selection depends on the individual’s rank rather than the relative

fitness. The selection is therefore not affected by the fitness distribution

through the population [22], which makes the individuals in the tourna-

ment selection converge faster.

2.9.3.2 Crossover

In A-PLUS, an individual is a population of rule-sets, where each rule-set

has a fixed length with a variable number of classifiers in the set. Since

all classifiers have the same length, the crossover point can be set to any

position of the string and is not restricted to rule boundaries. A-PLUS
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Algorithm 8: Algorithmic description of A-PLUS (Accuracy-based

Pittsburgh Learner Using Subsumption) (adapted from [109]).

1 begin

2 for each ruleSet do

3 ruleSet.meanActionSetSize=0

4 ruleSet.rawFitness=0

5 for each classifier do

6 classifier.meanActionSetSize=0

7 classifier.meanActionSetAccuracy=0

8 end

9 for each classifier do

10 for each dataInstance do

11 if classifier is matched then

12 classifier.match++

13 if classifier.action==dataInstance.class then

14 classifier.correct++

15 end

16 end

17 classifier.accuracy=classifier.correct/classifier.match

18 classifier.numActionSet= classifier.correct

19 end

20 end

21 for each dataInstance do

22 Empty the action set

23 for each classifier do

24 if classifier is matched AND classifier.action==dataInstance.class then

25 Add classifier to ACTION-SET

26 end

27 end

28 actionSetAccuracy=0

29 for each classifier in ACTION-SET do

30 actionSetAccuracy += classifier.accuracy

31 actionSetAccuracy /= number of classifiers in ACTION-SET

32 end

33 for each classifier in ACTION-SET do

34 classifier.meanActionSetSize += number of classifiers in ACTION-SET

35 classifier.meanActionSetAccuracy += actionSetAccuracy

36 end

37 ruleSet.meanActionSetSize += number of classifiers in ACTION-SET

38 ruleSet.rawFitness += actionSetAccuracy

39 carry out SUBSUMPTION-DELETION

40 ruleSet.rawFitness /= number of data instances

41 ruleSet.meanActionSetSize /= number of data instances

42 carry out INACCURACY-DELETION

43 end

44 end

45 end
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uses two-point crossover on each parent, where each point is aligned with

the corresponding point on the other parent and swaps the segments lying

between the cut points. There are a few reasons for choosing this method

[109]. First, it is insufficient to choose the same crossover point for both

parents, since the individuals may be of different lengths and the chosen

point may not exist on one parent. Secondly, the crossover points cannot

be chosen arbitrarily on both parents, as this may result in the creation

of invalid classifiers with too many or not enough attribute values. The

crossover method applied to A-PLUS is performed as in Table 2.3.

Table 2.3: A-PLUS crossover (adapted from [109]).

Method Description

Two-Point Crossover RuleSetParent1, RuleSetParent2

Precondition none

Postcondition selects two random crossover points on each

‘parent’ rule-set, swaps the middle segments,

and replaces the parents with the resulting

‘child’ rule-set.

2.9.3.3 Mutation

A-PLUS uses a standard mutation with a parameter specifying the proba-

bility of the operator’s application [109]. A new value is always chosen

when the mutation function is called. If the gene currently has value ‘0’ or

‘1’, then it may either be flipped within a condition string or mutated into

a ‘don’t care’. If a ‘don’t care’ is to be mutated, it has an equal chance of

becoming ‘0’ or ‘1’. The mutation method applied to A-PLUS is performed

as in Table 2.4.
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Table 2.4: A-PLUS mutation (adapted from [109]).

Method Description

Mutation rule-set, integer

Precondition integer supplied must be a valid position

within the rule-set.

Postcondition assigns a randomly chosen alternative value to

the specified bit.

2.9.4 XCS component in A-PLUS

The individuals in Pittsburgh-style LCSs are commonly encoded as a variable-

length set of rules. Thus, bloat may be a problem to the system. This prob-

lem is related to the unlimited growth of the size of the individuals [4]. In

[109], it is hypothesised that the problem could be resolved by evaluating

individual classifiers and removing any inaccurate or unnecessary specific

classifiers. Therefore, rule subsumption deletion and inaccurate rule deletion

methods in XCS have been adapted to A-PLUS in order to control the bloat

effect. The methods were successfully employed within XCS [119], but had

not previously been tried in any Pittsburgh-style LCSs. Here, the methods

applied to A-PLUS are described in the following way [109].

2.9.4.1 Subsumption Deletion

This method is performed similarly to XCS. However, A-PLUS includes

the action set subsumption. A-PLUS consists of an action set [A], which

refers to a set of matched classifiers that correctly classify a given data

instance. There will be a corresponding action set for each instance in the

training set, though some of these action sets might be empty. The system

searches for the most general and accurate classifier in the current action

set. If there is one maximally general and accurate classifier in the action

set [A], then all classifiers which are accurate but more specific (can be
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subsumed by it) will be removed. Rule subsumption deletion is performed

as in Algorithm 9.

Algorithm 9: Algorithmic description of subsumption deletion in A-

PLUS (adapted from [109]).

1 begin

2 highestGenerality=0

3 index=-1

4 for each classifier in ACTION-SET do

5 if classifier.accuracy==1 AND classifier.numActionSets>1 AND

classifier.generality>highestGenerality then

6 highestGenerality = classifier.generality

7 index = classifier index

8 end

9 end

10 if index>-1 then

11 for each classifier in ACTION-SET do

12 if classifier.accuracy==1 AND classifier subsumed by

classifier[index] AND randomNumber<subsumptionProbability

then

13 DELETE classifier

14 end

15 end

16 end

17 end
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2.9.4.2 Inaccuracy Deletion

This method is performed when the classifier is not a member of any ac-

tion set [A], since it is considered completely inaccurate (i.e. always advo-

cating the wrong classification). In addition, other classifiers are removed

as well (i.e. when the classifier’s accuracy is below the average accuracy

of the classifiers belonging to the same action set). Inaccuracy deletion is

executed as shown in Algorithm 10.

Algorithm 10: Algorithmic description of inaccuracy deletion in A-

PLUS (adapted from [109]).

1 begin

2 for each classifier do

3 if classifier.numActionSets==0 then

4 DELETE classifier

5 end

6 else

7 classifier.meanActionSetSize /= classifier.numActionSets

8 classifier.meanActionSetAccuracy /= classifier.numActionSets

9 if classifier.accuracy<classifier.meanActionSetAccuracy then

10 if randomNumber<deletionProbability AND

classifier.meanActionSetSize≥ruleSet.meanActionSetSize then

11 DELETE classifier

12 end

13 end

14 end

15 end

16 end



76 CHAPTER 2. BACKGROUND

2.10 Tabu Search

Tabu Search (TS) is a neighborhood search method proposed by Glover

in 1986 [77]. TS is a ‘higher level’ heuristic procedure for solving opti-

mization problems, designed to guide other methods (or their component

processes) to escape the trap of local optimality [30]. TS uses [31, 32]: 1)

flexible memory structures to permit search information to be exploited

more thoroughly than by a rigid memory system or a memoryless system,

2) conditions for strategically constraining and freeing the search process

(embodied in tabu restrictions and aspiration criterion) and 3) memory

functions of varying time spans, from short-term to long-term memory for

intensifying and diversifying the search (reinforcing attributes historically

found good and driving the search into new regions).

A memory (i.e. short-term memory) forces TS to explore a new area of

the search space that seeks to make the best move if possible and subject to

available choices to satisfy certain constraints. These constraints (embod-

ied in the tabu restrictions) are designed to prevent the reversal (or repeti-

tion) of certain moves by rendering the selected attributes of these moves

forbidden (tabu) [32]. A known number of solutions that have been exam-

ined recently become tabu and cannot be selected when searching for the

next solution and they are stored in a memory called the tabu list [77].

The basic principle of TS is to improve local search whenever it encoun-

ters a local optima by allowing non-improving moves, as cycling back to

previously visited better solutions in the tabu list is forbidden [29]. The

tabu list records the recent history of the search, essentially the value of

the objective function f(i∗) of the best solution i∗, and also keeps informa-

tion on the trajectory through the last solutions visited [29]. When a new

candidate solution is introduced , it goes into the tabu list and it is made

tabu for a certain number of iterations (time).

One way of creating the tabu restrictions is to assign a maximum iter-

ation for each candidate solution in the tabu list. For example, each can-
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didate solution has a maximum ‘tabu tenure’ (iteration value assigned to

it, e.g. the maximum iteration value is 5). The candidate solution can be

revisited again only when the maximum iteration value is 0. For each it-

eration, all the non-zero values (i.e. the maximum iteration value of the

candidate solution) in are decremented by 1. This means, this candidate

solution cannot be revisited for the next 4 iterations. Thus, TS allows es-

caping from sub-optima solutions by improving the efficiency of the ex-

ploration process. TS is performed as described in Algorithm 11.
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Algorithm 11: Algorithmic description of Tabu Search (adapted from

[29]).

1 begin

2 s← s0 : create an initial solution.

3 BestSolution← s.

4 TabuList← null.

5 while (not stopping condition) do

6 Find the best neighbor of the current solution by applying an

allowed move (non-tabu move).

7 if (a given criteria is meet) then

8 CandidateSolution← accept as the new current solution.

9 end

10 else

11 CandidateSolution← find another neighbor (best non-tabu

neighbor).

12 end

13 if (fitness CandidateSolution greater than fitness BestSolution) then

14 BestSolution← CandidateSolution.

15 while (TabuList size greater than maximum TabuList size) do

16 ExpireFeatures(TabuList).

17 end

18 end

19 end

20 return BestSolution : globally best solution found.

21 end
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2.11 LCSs Applied to Pattern Classification

LCSs appear to be a widely applicable cognitive (agent) model that can

be implemented as a framework for a diversity of learning investigations

and practical applications [46, 9]. The important work of LCSs apply to

multi-step [67], modifications for non-Markov and Markov environments

[69, 68], incorporation of continuous-valued actions [47], function approx-

imation problem [37, 64, 121, 123, 15], boolean applications [66], and many

others. LCSs have also been applied to various applications in the ar-

eas of data analysis and data mining [122, 3, 106], pattern recognition

[113, 126, 16, 91], robotics [80, 55], classification [9, 99, 113] and compu-

tational economics [110]. Here, we review recent research that applied

LCSs to the area of pattern recognition and classification.

In [124], Wilson proposed the Three-Cornered Coevolution Framework,

which is a theoretical model of an automated image-transformation pro-

gram. The framework provides a new model of human-independent sys-

tem to address the pattern recognition problem. The Three-Cornered Co-

evolution Framework consists of three different agents that interact with

one another to adapt with and drive the changes of the problems. In this

framework, the pattern recognizers evolve to learn each set of the patterns,

while the pattern generator evolves autonomously to create various prob-

lems with different levels of difficulty for classification. It is proposed that

the pattern generator is able to adjust the difficulty of the problem being

addressed. However, this theoretical framework had not yet been imple-

mented and tested. There were several issues identified in the paper as

follows. First, is the coevolutionary framework relevant to the way natu-

ral patterns form? Secondly, if the framework functions as a pattern recog-

nizer, will the system evolve similar methods to human saccades? Thirdly,

how well will the framework drive the coevolution in the system? Finally,

if the framework works, will the results have wider relevance than image

classification? Therefore, it was unclear how well the framework would
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work to drive the coevolution among the agents in the system.

A number of GBML models were studied by Orriols-Puig et al. [91]

on a collection of 20 real-world datasets extracted from the UCI reposi-

tory and local repositories in order to determine whether or not the LCS

models were competitive for pattern recognition [91]. First, the paper

reviewed the most relevant GBML models for pattern recognition: non-

fuzzy rule representations (UCS, GAssist, HIDER, HMOF) and fuzzy rule

representations (SLAVE, Fuzzy LogitBoost). The six GBML models were

compared in terms of their accuracy and readability. UCS (the Michigan-

style GBML model for supervised learning) appeared to be the best model

as it obtained high accuracy, while SLAVE (fuzzy iterative rule learning

approach) appeared to be the best alternative model that obtained high

interpretability.

Secondly, the six GBML models were compared with a number ma-

chine learning techniques such as C4.5, IBK, Naive Bayes, PART and the

support vector machine, SMO. UCS appeared to be the most accurate

model among GBML models. UCS evolved the largest rule-set among all

the models. However, the larger number of rules in UCS may delay the

interpretability of the models. Thus, some reduction techniques were re-

quired to remove non-useful rules from the final population in UCS. GAs-

sist (Pittsburgh-style GBML) and HMOF (Pittsburgh-style fuzzy Genetic

Fuzzy Rule-based Systems) resulted in more readable models compared

to the remaining machine learning techniques, while maintaining statis-

tically equivalent test accuracy. The analysis showed that GBML models

were competent for classification and UCS was shown to be one of the

best learners. The paper also revealed the strengths and the weaknesses

of GBML models. It can be used as a guideline for choosing any GBML

model to apply to a problem on hand depending on the overall goal (i.e.

either to maximize the accuracy or the interpretability). All these results

may encourage a researcher to consider GBML models to apply to other

classification and pattern recognition problems.
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In [9], the performance of two accuracy-based LCSs (i.e. XCS and UCS)

in different types of classification problems was investigated by Bernado-

Mansilla, et al. XCS, as is standard, used the reinforcement learning scheme,

while UCS used the supervised learning scheme. First, the models were

tested on three artificial problems (i.e. binary class, multi-class, and multi-

class problem with different proportions of examples per class (class im-

balance problem)) in order to understand the behaviour of the models

related to the problem’s characteristics. Next, the models were further

tested with a set of real world classification problems from the UCI data

sets and compared to well-known learning algorithms such as ZeroR, IB1,

IBk, Naive Bayes, C4.5, PART and SMO. The accuracy rate of each learning

model is used as the metric of performance. The results showed that the

accuracy-based LCSs were competitive with respect to other learning algo-

rithms. UCS and XCS evolved accurate generalizations of best action maps

that consist of both correct and incorrect rules which helped the models to

correctly predict the class. The paper also suggested open issues for fur-

ther improvement such as using reduction techniques that may minimize

the number of rules during training in the models.

In [99], Hybrid C4.5 (decision tree induction) and UCS (accuracy-based

LCSs for supervised learning) were tested on eight multi-category classi-

fications of real world data sets from the UCI data repository, where the

quality of the rule-sets of these two algorithms were evaluated. The accu-

racy rate of each learning model was used as the metric of performance.

The results showed UCS had significantly better performance for six data

sets (Glass, Iris, Heart, Wine, Soybean and Vote), compared to C4.5 that

achieved less accuracy for all data sets except Soybean. UCS achieved 52%

accuracy rate, whereas C4.5 achieved 91.4% accuracy rate for the Soybean

data set. In the Soybean data set, there were 35 categorical attributes and

19 classes. The authors strongly suggested applying the accuracy-based

LCSs (UCS) to address other supervised learning problems.

Six well known evolutionary rule learning algorithms, XCS, UCS, GAs-
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sist, cAnt-Miner, SLAVE and Ishibuchi, were investigated by Tanwani, et

al. on 31 publicly available biomedical datasets [113]. The results showed

that GAssist (Pittsburgh-style LCSs) gave better classification results on

the majority of biomedical datasets among the compared schemes. The

greater accuracy was a result of its superior fitness function that used the

Minimum Description Length (MDL) principle to evolve optimum rules.

However, the results suggested that UCS and XCS were effective in iden-

tifying hidden patterns and generating information rich rules compared

to GAssist and cAntMiner that produced simple and generic rules. They

strongly recommended that other medical experts refine XCS and UCS

rules for knowledge extraction. They found that the classifier’s accuracy

depends on the complexity of a dataset. They also quantified the complex-

ity of a biomedical dataset in nature (i.e. missing values, imbalance ratio,

noise and information gain) which played a major role in determining the

classification accuracy of the datasets. They proposed a meta-classification

model that could be used for determining the problem’s difficulty.

From the above discussion, the most significant limitations of the re-

lated work are as follows:

1. Little work has been conducted on artificial problem generators and

even less in a coevolutionary framework for problem generation in

LCSs. Usually, a classification system’s performance is assessed on

different sets of data, commonly from public repositories. Few works

have been proposed investigating the classification system’s perfor-

mance via artificial datasets such as in [71], [38], [72], [73] and [103].

However, the complexity factor is limited for the creation of artificial

datasets at various levels of complexity.

2. LCSs are still lacking in complete theoretical frameworks of its im-

plementation in certain areas [124], and only few have been devel-

oped, for example, facet-wise analysis [12].

3. LCSs still have low visibility in the machine learning community.
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Recent advances on both the GBML theory and applications may

help encourage GBML techniques to be used as competent, accurate,

and reliable machine learning systems [91].

4. Most LCSs suffer from higher training times, which is associated

with the learning algorithm required to evolve accurate generaliza-

tion of a complete action map, which consists of both correct clas-

sification and incorrect classification for each problem sub-solution

[91, 9]. For example, the most competent GBML approaches tested in

[91] had a higher average run-time compared to C4.5 rule induction

algorithm.

5. Most LCSs consume larger computational resources (e.g. CPU time)

to evolve accurate generalized rules of complete action maps, which

consist of both correct and incorrect rules. This mostly happened in

a large search space domain where larger populations were needed

and more learning cycles were required [91, 9].

6. Most LCSs have a large number of configuration parameters that

need to be tuned and configured in the design of the experiment be-

fore any experiment can be performed.

2.12 Summary and Way Forward

This chapter covers concepts and background materials in the fields of ar-

tificial intelligence (AI) and machine learning (ML) where the work for this

thesis is applied. A general description of the machine learning paradigms

(i.e. supervised versus reinforcement learning) and concepts related to the

work in particular to address classification problems is presented. Next, a

description of evolutionary computation (EC) and evolutionary algorithm

(EA), specifically genetic algorithm (GA) is provided. However, GA is im-

plemented as ’niche-based GA’. The concept of coevolution that applies to
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the work is also described. Special focus is given to GBML systems, LCSs,

where four models of LCSs related to the implementation of the work are

elaborated (i.e. XCS, XCSR, UCS, A-PLUS). In order to enhance the capa-

bility of the LCSs model, Tabu Search is introduced. A literature review

of existing techniques relating to our work especially pattern recognition

and classification is also presented.

Some remarks regarding this line of research are as follows. Learning

from a set of examples that have desired features using any learning al-

gorithm (e.g. either supervised or unsupervised learning) is crucial and

important for most pattern recognition systems. In this domain, several

machine learning techniques, such as GBML systems, have been designed

to address various classification problems. In the last few years, a public

repository (i.e. the UCI repository), has become the most used resource

to obtain datasets for classification. The results reported in the litera-

ture have confirmed that GBML systems were competitive for classifica-

tion. The Three-Cornered Coevolution Framework provides a new inter-

esting model of human-independent system to address the pattern recogni-

tion problem differently. Research in this direction is relatively new, espe-

cially ‘coevolution LCSs’ and many aspects still need to be explored.

The work of Three-Cornered Coevolution System is not to identify an ideal

implementation, but to provide a new implementation choice (i.e. a new

coevolution system) that can be used in a comparison with other LCS im-

plementations. The work for this thesis is focused on an autonomous

classification-problem generation approach for generating various classifica-

tion problems, where the problem’s difficulty can be tuned and adjusted

automatically whilst lowering human involvement. The idea here is to

tune the problem’s difficulty autonomously so that the problem’s char-

acteristics may be determined effectively to empirically test the learning

bounds of the learners. As the learners learn and adapt with the changes

of the problems using different types of learning technique (e.g. super-

vised learning technique or reinforcement learning technique), a coevolu-
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tionary approach (i.e. coadaptive evolutionary approach) will be activated

in order for the system to create various problems for classification based

on the learners’ ability to learn. The methodology of the system will be

introduced in the next chapter.
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Chapter 3

Methodology

The overall aim of the work for the thesis is to design and develop the new

Three-Cornered Coevolution System for addressing the classification tasks.

This chapter details the methodology used to develop the system. The

methodology consists of three main phases as follows.

1. Phase 1: An Evolvable Problem Generator.

2. Phase 2: Two-Cornered Coevolution System.

3. Phase 3: Three-Cornered Coevolution System.

Phase 1 is necessary to establish an appropriate problem domain for

classification that can be evolved and tuned automatically. Therefore, an

automated evolvable problem generator is developed for creating two dif-

ferent problem domains for classification (i.e. image-based data and ar-

tificial data). The created problem domain is to be flexible in order to be

tuned and adjusted (e.g. to make it either a ‘hard’ or ‘easy’ problem). Here,

the generation agent evolves autonomously for generating different types

of image-based data (or artificial data) for the classification task, while the

classification agent evolves for classifying image-based data (or artificial

data) correctly.

87
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Phase 2 is needed to investigate the generation agent’s ability to au-

tonomously tune and adjust the problem’s difficulty based on the classi-

fication agent’s performance. The generation agent must either increase

or decrease the problem’s difficulty (i.e. either to maximize or minimize

the classification agent’s performance). Thus, the ability of the generation

agent to find an appropriate level of the problem’s difficulty is crucial to

ensure both agents work in a coevolutionary manner. This phase is impor-

tant for establishing a baseline for a coevolution system. Phase 2 is a stan-

dard coevolution system, where two different agents evolve to adapt to and drive

the changes of the problem. Here, the classification agent evolves to learn

various classification problems, while the generation agent coevolves to

tune and adjust the problem’s difficulty based on the classification agent’s

ability to learn.

Phase 3 is the final research goal and the core principle of the research.

This phase is a new coevolution system where three different agents evolve

to adapt to and drive the changes of the problem. Here, two classification

agents evolve to learn various classification problems, while the genera-

tion agent coevolves to tune and adjust the problem’s difficulty based on

the classification agents’ ability to learn. The overall system will imple-

ment the Three-Cornered Coevolution in which each agent autonomously

evolves to adapt with the changes of the problem, hence lowering human

involvement for setting and tuning the system.
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3.1 Phase 1: An Evolvable Problem Generator

The overall aim of this phase is to develop an automated evolvable problem

generator for generating various problems for classification. The gener-

ation agent (i.e. the automated evolvable problem generator termed as

the Sender (S)) needs to autonomously evolve the problem and generate

different types of image-based data (or artificial data) for classification,

while the classification agent (i.e. termed as the Receiver (R) which is an

accuracy-based LCS in this case) learns and evolves to learn the image-

based data (or artificial data).

3.1.1 Research Objectives

This overall aim can be broken down into the following objectives:

• Develop an evolvable problem generator for generating different types

of problems for classification, where each problem domain can be

created and manipulated autonomously (i.e. scalable and evolvable

image-based data or artificial data).

• Test the classification agent on various classification problems to de-

termine limits of the classification agent’s performance. The created

problem domain should be able to explore the classification agent’s

ability to work on various classification problems (i.e. ranging from

an ‘easy’ to a ‘hard’ problem).

• Evaluate the classification agent’s performance for learning various

classification problems. The system should be able to scale and evolve

the problem domains for generating various classification problems

to be learned by the classification agent.

• Investigate the classification agent’s performance for learning vari-

ous classification problems, so that an appropriate problem domain

develops as a baseline for further enhancement in the next phase of
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development. The created problem domain should be flexible to be

tuned and adjusted either to make it ‘hard’ or ‘easy’ for the classifi-

cation agent to learn.

• Verify the system as a baseline for generating various problems at

different levels of difficulty for classification.

3.1.2 Framework Design

The system consists of two main agents: an automated evolvable prob-

lem generator (i.e. the Sender (S)) and the classification agent (i.e. the

Receiver (R)) (see Figure 3.1). S is a program to generate various prob-

lems for classification, while R is a program to learn the generated image-

based data (or artificial data) based on accuracy-based LCS (i.e. XCS or

XCSR). The accuracy-based LCS was chosen to be applied to the classifi-

cation agent as it has been recognized as one of the main representative

LCSs ‘to date’ [9]; the most advanced and universal ‘Michigan-style’ LCSs

[115, 114]. Both agents will evolve using evolutionary computation (i.e.

Genetic Algorithm).

Figure 3.1: An evolvable problem generator.
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Figure 3.1 illustrates the overall design of the system. First, S generates

variants of problems for classification (i.e. a population of problems re-

ferred to as a meta-problem) and the associated instance for each individual

problem ‘on-the-fly’ (i.e. image-based data or artificial data). Secondly, S

sends each instance of the individual problem to R in turn (i.e. one itera-

tion for S is the individual problem, and one iteration for R is an instance

from an individual problem). R is developed based on the accuracy-based

LCS (i.e. XCS). Therefore, R learns each instance following XCS standard

procedure of learning. At each iteration R perceives a single instance and

selects an action (class) based on its past experience to S. R alternately exe-

cutes the explore scheme (choosing an action randomly) or the exploit scheme

(choosing a best action) to select the action to S. In response, S reads the

action and sends a numerical reward back to R. Based on the reward re-

ceived, R updates its rules that proposed the action.

In Phase 1, the problem is considered either ‘hard’ or ‘easy’ based on

the classification agent’s performance after a certain number of iterations.

Here, humans set the levels of the difficulty so that if the classification per-

formance is greater than 95% for each problem, the problem is categorized

as ‘easy’. However, in Phase 2, the system set the problem’s difficulty (i.e.

the problem’s difficulty is either increased or decreased automatically by

the problem generator based on the classification agent’s performance).

Therefore, the relative features in the problem that make the problem ei-

ther ‘harder’ or ‘easier’ is crucial.

A problem for classification can be difficult for several reasons (see Sec-

tion 2.2.1.1). Traditionally, research in this area involves choosing a do-

main, creating a source of exemplars and trying learning algorithms that

seem likely to work in that domain [124]. This includes creating problems

with large sets of examples that can be learned from (i.e. library of prob-

lems). In this case, an automatic problem generator would be valuable if

it were capable of producing examples of each class that are diverse and

subtle as well as numerous [124]. The following section will describe the
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two problem domains (i.e. image-based data and artificial data) for the

creation of the classification problems.

3.1.3 Image-based Data for Classification

In [124], Wilson provided some implementation suggestions for a frame-

work to be considered in order to create image-based data. A pattern

(image-based data) can be illustrated by a two-dimensional pattern and

can be encoded by a gray-scale visual pattern. Next, the pattern can be

transformed into another pattern via a transformation process, such as

translation, scaling and rotation within a defined range. Therefore, the

generation agent would contain a transformation module to take an in-

put image and transform it into an output image. The classification agent

needs to translate the output image back to the input image (i.e. classify

the pattern to a correct class).

In Phase 1, image-based data for classification system is created. How-

ever, for simplicity a pattern (image-based data) is encoded in a binary

representation of ‘1’ and ‘0’. The pattern is generated based on a list of

defined features such as dimensionality, orientation and angle. There are

different types of patterns that can be generated depending on a number

of defined features (i.e. 2NumberOfFeatures). Instead of using the transforma-

tion module, the logical operators ‘OR’ and ‘XOR’ are used to emphasize

a certain feature in the generated patterns, so that it can be classified into

‘Class 1’ or ‘Class 0’. It is hypothesised that by emphasizing a certain fea-

ture in these generated patterns, it will make the pattern either ‘hard’ or

‘easy’ to learn.

3.1.3.1 Image-based Data Domain

For simple image-based data, a problem can be described as a list of features

containing [PatternDimension,PatternOrientation,PatternOperator].

Table 3.1 describes the encoding scheme for simple image-based data. The
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first column describes each feature in the problem, while the second col-

umn gives the encoding scheme used to represent different values of the

feature.

For example, the problem of ‘0010000’ can be translated as ‘3 by 3 di-

mension pattern’ with ‘Horizontal’ orientation of three adjacent pixels and

applying logical operator ‘OR’. The pattern can be encoded into a value

of either ‘1’ for white or ‘0’ for black. For instance, a pattern resulting

from the problem (e.g. ‘0010000’) can be represented by 9 bits (pixels)

‘010010010’ and mapped into 3 by 3 dimensional mapping (i.e. row by

row). In this case, if the pattern can be mapped into three adjacent Hori-

zontal ‘1’s (i.e. three adjacent Horizontal pixels), then it can be categorized

as belonging to ‘Class 1’, otherwise ‘Class 0’. However, if there are multiple

sets of the three adjacent Horizontal ‘1’s or three adjacent Horizontal pix-

els in a single pattern, it is still categorized as belonging to ‘Class 1’ (see

Figure 3.2 (a)) due to the logical operator ‘OR’ in the problem’s feature (i.e.

PatternOperator).

Figure 3.2: Applying logical operator ‘OR’ and ‘XOR’ (simple image-based

data).

In another example, the problem of ‘0010001’ can be translated as ‘3 by

3 dimension pattern’ with ‘Horizontal’ orientation of three adjacent pixels

and applying logical operator ‘XOR’. For instance, one of the patterns can

be represented by 9 bits (pixels) of ‘010010010’. However, in this case, if

there are three adjacent pixels arranged Horizontally, and if only one set
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Table 3.1: Encoding scheme (simple image-based data).

Feature Encoded Scheme

F1 PatternDimension

n by n pattern dimension with n num-

ber of rows and n number of columns.

The first 2 bits:

‘00’ represents 3 by 3 dimension.

‘10’ represents 4 by 4 dimension.

‘11’ represents 5 by 5 dimension.

F2 PatternOrientation

Pattern orientation such as Vertical,

Horizontal, Diagonal1 or Diagonal2.

The next 4 bits:

Each bit represents Horizontal, Vertical, Di-

agonal1 or Diagonal2. ‘1000’ represents Hor-

izontal, ‘0100’ Vertical and so forth. If Patter-

nOrientation ‘1100’, the image will contain

patterns with Horizontal and Vertical orien-

tation.

F3 PatternOperator

Applying logical operator ‘OR’ or

‘XOR’ for classifying the class.

The next 1 bit:

‘0’ represents logical OR operator.

‘1’ represents logical XOR operator.

PatternOperator relates to the fact that the

specified pattern can occur in either one set or

multiple sets in the pattern. If PatternOpera-

tor is ‘OR’, then any number of the specified

patterns can occur for it to be categorized as

‘Class 1’. If PatternOperator is ‘XOR’, then

one and only one of the specified patterns can

occur for it to be categorized as ‘Class 1’.
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of three adjacent pixels arranged Horizontally exists, then ‘Class 1’, other-

wise ‘Class 0’ (see Figure 3.2 (b)). This condition strictly applies when the

feature of PatternOperator is the logical operator ‘XOR’.

The last feature of the problem (i.e. PatternOperator) relates to the

fact that the specified pattern can occur in either one set or multiple sets in

the pattern. If PatternOperator is set to logical operator ‘OR’, then any

number of the specified patterns can occur for it to be categorized as ‘Class

1’ (see Figure 3.2 (a)). However, if the PatternOperator is set to the

logical operator ‘XOR’, then one and only one of the specified patterns can

occur for it to be categorized as ‘Class 1’, otherwise ‘Class 0’ (see Figure

3.2 (b)).

3.1.3.2 Knowledge Representation

The Receiver (R) is developed based on accuracy-based LCSs (i.e. XCS)

using ternary alphabet representation. Table 3.2 illustrates R’s condition-

action rule format. The condition specifies each generated pattern, while

the class is considered as the action. The action can be either ‘1’ for ‘Class

1’, otherwise ‘0’ for ‘Class 0’. R will receive a reward of ‘1000’ for correct

classification or ‘0’ for incorrect classification.

Table 3.2: Example of R’s condition-action rule format.

R’s condition-action rule:

IF<pattern>THEN<class>

Rule’s description:

‘01#010010:1’

where ‘01#010010’ pattern can be mapped into 3 by 3 pattern dimension

mapping and is predicted to be ‘Class 1’.

The same R’s condition-action rule format will be used in all of the ex-

periments throughout the work, unless explicitly otherwise stated.
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3.1.3.3 Image-based Data Generation and Classification

Figures 3.3 and 3.4 illustrate the process of the pattern generation and clas-

sification between the Sender (S) and the Receiver (R).

Figure 3.3: Image-based data generation and classification between S and

R (correct classification).

Figure 3.4: Image-based data generation and classification between S and

R (incorrect classification).
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First, S creates a population of problems with different sets of fea-

tures. A problem contains a list of features such as [PatternDimension,

PatternOrientation, PatternOperator]. For example (see Figure

3.3), given a problem of [3 by 3 dimension, Vertical orientation,

operator OR], the problem can be encoded by 7 bits binary string of

‘0001000’. At each iteration, an individual problem from the meta-problem

is selected randomly from the population of problems.

Secondly, S generates a pattern (image-based data) based on the in-

dividual problem’s features (i.e. ‘0001000’) so that the generated pattern

consists of 9 bits binary string, which can be mapped into a 3 by 3 dimen-

sional pattern (see Figure 3.3 (a)). For instance, one of the patterns can be

encoded by 9 bits binary string of ‘010010010’ (refer Figure 3.3 (b)).

If the pattern contains three adjacent Vertical ‘1’s (i.e. three adjacent

pixels Vertically) or multiple sets of three adjacent Vertical ‘1’s, depending

on the problem’s feature of PatternOperator, then it can be categorized

as belonging to ‘Class 1’, otherwise ‘0’ (see Figure 3.3 (c)). There are 2n

possibilities of different patterns S wishes R to recognize for each problem,

where n is the number of bits in the pattern.

Thirdly, R will need to classify a pattern (e.g. ‘010010010’) as either

belonging to ‘Class 1’ or ‘Class 0’. Next, R sends either ‘1’ for ‘Class 1’ or

‘0’ for ‘Class 0’ as suggested by its rules. In response, S sends a numerical

reward of ‘1000’ for correct classification, or ‘0’, back to R.

3.1.4 Artificial Data for Classification

Lately, the study and comparison of different types of learners on vari-

ous datasets has gained attention among researchers. Often in real-world

problems, some features of the problem’s difficulty cannot be identified or

taken separately because of the overlapping features in the problem’s dif-

ficulty. There are several complexity factors such as data volume, search

space size and type, complexity of the concept, noise in the data, handling
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of missing values, and problem of over-fitting.

One approach to investigating the learner’s capability in this area is to

use artificial data [71]. This method allows the researcher to analyze the

learner’s capability under a controlled scenario, where the datasets can be

generated according to particular known features. Thus, issues of problem

difficulty such as noise, missing values, data sparsity and dimensionality,

can be introduced in a controlled way. Moreover, the use of artificial data

offers better understanding of the learner’s behaviour since the complex-

ity of the problem being studied is known [72], in a way that features of

the problem that affect the learner’s performance are transparent.

Therefore, artificial data for classification is developed. Here, a problem

is defined by a list of parameters. The parameters represent features of

a problem’s difficulty such as feature space dimensionality, data volume,

noise in the data, class ambiguity, sample sparsity and boundary com-

plexity. Next, the datasets are generated based on the list of those defined

parameters. In this domain, the work focuses to solve binary classification

tasks where two classes need to be classified.

3.1.4.1 Artificial Data Generation

In this domain, a problem is defined by a list of parameters (i.e. [Fn Fc

Fd Fi Fr Fan Fcn Fcbl Fcbd]). These parameters are real-valued

within a specified range, where each feature can take a number of values

(see Table 3.3). The datasets are generated based on the list of those de-

fined parameters. It is hypothesised that by tuning a certain feature F of

the current problem, it may make the problem either ‘hard’ or ‘easy’ to

learn.

F is used to distinguish a feature of the problem and f is used in re-

lation to data feature of each instance in the dataset. Fn determines the

number of data features f in the dataset. Once these features F are set, the

dataset containing a number of instances can be generated and the class of

each instance is labeled accordingly, i.e. based on the remaining features
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F in the problem. The datasets consist of a set of N instances, where each

instance n is defined by the specified problem of features F. Each instance

n is created on-the-fly with each data features f being within the interval

of [0,1] and is labeled accordingly.

Table 3.3 describes the encoding scheme for each feature F in the prob-

lem (i.e. [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]). The first column

gives details of each feature F in the problem, while the second column

provides the encoding scheme used to represent the different values of

the feature.

3.1.4.2 Knowledge Representation

The Receiver (R) is developed based on accuracy-based LCSs with real-

value conditions (i.e. XCSR). Table 3.4 illustrates R’s condition-action rule

format. The condition is encoded to be real-value of realn = (ln, un), where

ln is the lower bound and un is the upper bound within the interval [0, 1].

The action can be either ‘1’ for ‘Class 1’, otherwise ‘0’ for ‘Class 0’. The

last row illustrates R’s rules to specify one instance with two data features

where each data feature datan is within the interval of lower bound ln and

upper bound un (i.e. [0,1]). R will receive a reward of ‘1000’ for correct

classification or ‘0’ for incorrect classification.

The same R’s condition-action rule format will be used in all of the ex-

periments throughout the work, unless explicitly otherwise stated.
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Table 3.3: Description of features F in the problem.

Description. Value of feature F.

Fn: number of data features in each in-

stance.

Fn: from 2 to 5. If Fn=2, each instance

contains two data features f1 and f2.

Fc: number of conjunction. Fc: at least 1/2 of Fn. If Fn=2, then

Fc=1.

Fd: number of disjunction. 0≤Fd≤Fn. If Fn=2, then Fd can take

any value from 0 to 2.

Fi: number of irrelevant features. 0≤Fi<Fn. If Fn=2, then Fi can take

any value from 0 to 1.

Fr: number of redundant features. 0≤Fr<Fn. If Fn=2, then Fr can take

any value from 0 to 1.

Fan: percentage of noise level apply to

class.

Fan: from 0%-50%.

Fcn: percentage of noise level apply to

data features.

Fcn: from 0%-50%.

Fcbl: percentage of ‘Class 1’ instances

in the dataset.

Fcbl: from 0%-100%. If Fcbl=50,

there will be 50% instances of ‘Class 1’

and 50% instances of ‘Class 0’.

Fcbd: percentage of decision bound-

ary to separate between each class (i.e.

wide or small decision boundary of

the class).

Fcbd: from 0%-50%.
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Table 3.4: Example of R’s condition-action rule format.

R’s condition-action rule:

IF<condition> THEN<class>

condition is a list of data feature for each instance containing:

[data1, data2, ..., datan], where each data1 : [l1, u1]

[data1, data2]: class

[5.5,0.98], [0.4,0.8] :0

3.1.4.3 Artificial Data Generation and Classification

The process of artificial data generation and classification between S and R is

described as follows (see Figure 3.5). First, S generates variants of problems

for classification (i.e. a population of problems referred as a meta-problem).

S is initialized with an initial value for an individual problem (i.e. humans

specifies each value of features F). Secondly, S creates a set of artificial

dataset for classification associated with the individual problem that needs

to be solved by R. Next, S sends each instance in the dataset to R in turn

(i.e. one iteration for S is the individual problem, and one iteration for R is

an instance from the individual problem).

Figure 3.5: Artificial data generation and classification between S and R

(correct classification).
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For example, given a problem of <Fn=2 Fc=1 Fd=0 Fi=0 Fr=0 Fan=5

Fcn=5 Fcbl=70 Fcbd=5>, the problem generator (S) generates each in-

stance n by evaluating the values of F in the order of precedence such as

Fn, Fcbl, Fc, Fd, Fcbd, Fr, Fan and Fcn described as follows:

1. The system checks for the value of Fn. In this case, each instance in

the dataset consists of two data features such as f1 and f2 when Fn

is set to 2 (Fn=2).

2. The system calculates the possible values of f1 and f2 based on the

value of Fcbl where each instance is created on-the-fly. Here, the

class balance Fcbl is set to 70 (Fcbl=70). Therefore, the dataset will

contain 70% instances from ‘Class 1’ and 30% instances from ‘Class

0’. The possible value of f1 and f2 is performed as follows when

class balance Fcbl is set to 70%.

3. If Fc is set to 1 (Fc=1) and Fd is set to 0 (Fd=0), the probability

of f1 and f2 follows P(f1 AND f2) and is computed as P(f1) ×
P(f2). In this case, P(f1) × P(f2) is equal to 0.7 when Fcbl/100

(i.e. 70/100). The probability of f1 and f2 is calculated as 2
√
0.7 =

0.836. Next, the possible values (decision values) of f1 and f2 are

calculated as 1.0−0.836 = 0.164 (within the interval [0,1]) and are set

to 0.164. Based on this value (decision value), a rule for classifying

each instance either belonging to ‘Class 1’ or ‘Class 0’ is derived as

(IF f1>=0.164 AND f2>=0.164 THEN ‘Class 1’).

4. However, if Fd is set to 1 (Fd=1) and Fc is set to 0 (Fc=0), the

probability of f1 and f2 follows P(f1 OR f2) and is computed as

P(f1)+P(f2)-[P(f1) × P(f2)]. In this case, P(f1 OR f2) is

equal to 0.7 when Fcbl/100 (i.e. 70/100). If the probability of f1 is

set to 0.6 which less than 0.7, then the probability of f2 is calculated

as 0.7=0.6+f2-[0.6×f2], where f2 is equal to 0.25. Next, possible

values (decision values) of f1 is calculated as 1.0− 0.6 = 0.4 and f2
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is calculated as 1.0− 0.25 = 0.75 (within the interval [0,1]). Based on

this value (decision value), a rule for classifying each instance either

belonging to ‘Class 1’ or ‘Class 0’ is derived as (IF f1>=0.4 OR

f2>=0.75 THEN ‘Class 1’).

5. The system creates an instance randomly and labels the instance

based on the derivation rules. The dataset contains a number of in-

stances such as <0.6,0.3> and <0.1,0.1>.

6. Next, each data feature f1 and f2 is checked with the defined deci-

sion boundary Fcbd, where Fcbd=5. The data value of f1 and f2

are recalculated to ensure that it is well separable between ‘Class 1’

and ‘Class 0’ (see Table 3.5). First, the system determines the values

of DB (DecisionBoundary) and R (Range). Here, DB is 0.164 (i.e. the

decision values of f1 and f2, when Fc=1 and Fd=0) and R is calcu-

lated as (Fcbd/100)/2. Second, each data feature is checked either

greater than DB or less than DB. If the data feature greater than

DB, its value is recalculated as follows Xn = (DB + (R/2)) + (Xn−
DB/1−DB)× (1−DB− (R/2)). However, if the data feature is less

than DB, its value is recalculated as Xn = (Xn/DB)+ (DB− (R/2).

For example, the first instance contains <0.6,0.3>, where the first

data feature f1 is 0.6 and and the second data feature f2 is 0.3. Here,

f1 is greater than DB, when DB = 0.164. So f1 is recalculated as

(0.164+ (0.5/2)) + (0.6− 0.164/1− 0.164)× (1− 0.164− (0.5/2)), and

the new value is 0.548. Value of f2 also is recalculated as (0.164 +

(0.5/2)) + (0.3 − 0.164/1 − 0.164) × (1 − 0.164 − (0.5/2)) when f2 is

greater than DB, and the new value is 0.337. The new value for the

first instance now is <0.548,0.337>.

7. The system checks for the value of Fr. Here, Fr is set to 0 (Fr=0),

which means there is no redundant value between the data features

f1 and f2. The value of the second data feature (i.e. f2) remains the

same. However, if Fr is set to 1 (Fr=1), the value of the second data
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feature f2 will has the same value with f1.

8. Next, based on the derived rule (i.e. (IF f1>=0.164 AND f2>=0.164

THEN ‘Class 1’)), each instance is labelled either ‘Class 1’ or ‘Class

0’ such as <0.548,0.337:1>.

9. Finally, the system applies noise to the data features f1 and f2 and

the class. In this case, each data feature and the class has a random

value associated with them. As Fcn is set to 5 (Fcn=5), the chance of

noise being applied to the data feature f1 (and f2) is 5%. If the gen-

erated random value associated to f1 (and f2) is less than 0.05, then

the value of f1 (and f2) is reset to a new value within the defined

range, otherwise the value of f1 (and f2) remain the same. Here,

Fan is set to 5 (Fan=5), so the noise level that applies to the class

is 5%. If the generated random value associated with the class is

less than 0.05, the class will be flipped either from ‘1’ to ‘0’ or ‘0’ to

‘1’, otherwise the class remains unchanged. In order to avoid the

classification agent learning the inverse problem, the value of Fan

and Fcn is set within 0-50%.

Thirdly, R needs to successively classify each instance in the dataset

as either belonging to ‘Class 1’ or ‘Class 0’. Thus, R sends either ‘1’ for

‘Class 1’ or ‘0’ for ‘Class 0’ as suggested by its rules. In response, S sends a

numerical reward of ‘1000’ for correct classification, or ‘0’ is returned to R.

Table 3.5 shows sample of the generated instance n and its data fea-

tures f when features F are set as follows <Fn=2 Fr=1 Fan=5 Fcn=5

Fcbl=70 Fcbd=5>.
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Table 3.5: Sample of the generated instance n.

Problem. Instance and class.

Example 1: conjunction (Fc=1, Fd=0)

Class 1: IF(f1>=0.164 AND

f2>=0.164)

f1 f2 : class

0.1 0.1 : 1

0.5 0.5 : 0

Example 2: disjunction (Fd=1, Fc=0)

Class 1: IF(f1>=0.4 OR

f2>=0.75)

f1 f2 : class

0.1 0.1 : 0

0.5 0.8 : 1

Example 3: noise to action (Fan=5, where

noise=0.05).

f1 f2:class:rndValue

0.1 0.1 : 1 : 0.6

f1 f2:class

0.1 0.1 : 1

IF(rndValue of class>noise)THEN class is remain.

ELSE flip class either from ‘1’ to ‘0’ or from ‘0’ to ‘1’.

Example 4: noise to condition (Fcn=5,

where noise=0.05)

f1:rndValue,f2:rndValue:class

0.1:0.6, 0.1:0.6 : 1

f1 f2 : class

0.1 0.1 : 1

FOR each data feature (f1 to f2)

IF(rndValue of f1 and f2 >noise) THEN the value of the

data feature (f1 and f2) is remain.

ELSE the value of the data feature (f1 and f2) will be re-

placed by a new random value.

Example 5: decision boundary (Fcbd=5)

Class 1: IF(f1>=0.164 OR

f2>=0.164) DB(DecisionBoundary) =

0.164

R(Range) = (Fcbd/100)/2 = 0.25

FOR each data feature (Xn : f1tof2)

IF(value of f1 or f2>decision boundary)

Xn = (DB + (R/2)) + (Xn−DB/1−DB)× (1−DB −

(R/2))

IF(value of f1 or f2<decision boundary)

Xn = (Xn/DB) + (DB − (R/2)
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3.1.5 Experimental Design

In our implementation, the classification agent (i.e. the Receiver (R)) is

executed following Wilson’s explore/exploit scheme [119], which has become

the standard approach in accuracy-based LCSs. The explore and exploit

schemes are run alternately with probability 50% explore1 and 50% exploit2.

For example, to learn 2,000 instances, R is run for 2,000 iterations. In the

first iteration, R chooses the action randomly (explore scheme), while in the

second iteration, R chooses the best action (exploit scheme). For 2,000 itera-

tions, there will be 1,000 explore scheme and 1,000 exploit scheme.

Table 3.6 shows the parameter setting for R (that applied accuracy-based

LCSs, XCS) for addressing the image-based data for classification. The pa-

rameters are set according to [54], where a few modifications are made to

improve the efficiency, including the number of classifiers and the number

of iterations. There will be many iterations of R for each iteration of S (e.g.

to learn 10,000 patterns (instances), R is run for 10,000 iterations).

Table 3.7 shows the parameter setting for R (that applied accuracy-based

LCSs with real value, XCSR) for addressing the artificial data for classifica-

tion. The parameters are set according to [120, 13]. A few modifications

are made to improve the efficiency, including the number of classifiers and

the number of iterations. In this domain, the population size N is limited

to 500 classifiers for each problem, where R learns 2,000 instances (i.e. R

runs for 2,000 iterations). There will be many iterations of R for each it-

eration of S. One iteration for S is a problem, and one iteration for R is an

instance. Both values are low for standard LCSs to reduce training times as

the overall ‘meta-problem’ task is time consuming.

1In explore scheme, the system selects an action at random from those advocated by the

matching rules (choosing the action randomly).
2In exploit scheme, the system deterministically selects the action which is most highly

recommended by the matching rules (choosing the best action).
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Table 3.6: Parameters setting for XCS (image-based data).

Parameter Value

Number of iterations 10,000 (3 by 3 pattern), 50,000

(4 by 4 and 5 by 5 pat-

tern) (one iteration represent-

ing one instance of the prob-

lem)

Maximum size of the popula-

tion

N 500, 5,000, 50,000

Selection algorithm Tournament selection

Tournament size τ a fraction τ = (0, 1] of the

current action set size, where

(τ = 0.4 is the suggested

value)

Crossover algorithm Two-Point crossover

Crossover probability χ 0.8

Mutation algorithm Random mutation

Mutation probability µ 0.4

Probability of using # p# 0.01

Accuracy discount factor α 1.0

Learning rate β 0.2

Rule’s fitness to its accuracy ν 5

GA threshold θGA 25

Subsume threshold θsub 20

Rule deletion threshold θdel 20

Deletion discount factor δ 0.1

Initial prediction error ǫ0 1.0

GAsubsumption YES

ASsubsumption YES
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Table 3.7: Parameters setting for XCSR (artificial data).

Parameter Value

Number of iterations 2000 (one iteration represent-

ing one instance of the prob-

lem)

Maximum size of the popula-

tion

N 500

Selection algorithm Tournament selection

Tournament size a fraction τ = (0, 1] of the

current action set size, where

(τ = 0.4 is the suggested

value)

Crossover algorithm Arithmetic crossover

Crossover probability χ 0.8

Mutation algorithm Random mutation

Mutation probability µ 0.4

Mutation threshold m0 0.2

Covering threshold r0 0.4

Accuracy discount factor α 1.0

Learning rate β 0.2

Rule’s fitness to its accuracy ν 5

GA threshold θGA 25

Subsume threshold θsub 20

Rule deletion threshold θdel 20

Deletion discount factor δ 0.1

Initial prediction error ǫ0 10

GAsubsumption YES

ASsubsumption YES
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The same parameters setting for XCS and XCSR will be used in all of

the experiments throughout the work, unless explicitly otherwise stated.

Both of the systems (i.e. XCS and XCSR) are implemented as suggested by

Butz [13].

All of the experiments are run 30 times with different random seeds for

analysing the results. R’s performance was calculated from the exploit tri-

als. After a certain number of iterations, R’s classification performance (i.e.

average of correct classification performance from the exploit trials over 30

runs) is used to calculate R’s performance on the specified problem.

3.1.6 Summary

In Phase 1, two different problem domains for classification (i.e. image-

based data and artificial data) are established. Here, both of the problem

domains can be tuned and adjusted autonomously (i.e. either to make

the problem ‘hard’ or ‘easy’) by the problem generator (i.e. the Sender). In

this phase, the experimental design, including experimental setup, param-

eters setting and evaluation metrics are presented. Based on this set-up,

the classification agent’s (i.e. the Receiver) ability on various problem do-

mains is evaluated to help in empirically testing the learning bounds of the

agent. Thus, in the next phase, the two problem domains (i.e. image-based

data and artificial data) will be further investigated for the Two-Cornered

Coevolution System.
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3.2 Two-Cornered Coevolution System

The overall aim of this phase is to design a new problem generation approach

to autonomously generate image-based data (or artificial data) for classifi-

cation with different levels of difficulty based on the classification agent’s

ability to learn. In the Two-Cornered Coevolution System, the generation

agent (i.e. the automated evolvable problem generator) creates various

complex problems for classification, whilst the classification agent (i.e.

accuracy-based LCSs) learns the problems and adapts to different feed-

back returns from the generation agent. Ultimately, the problem’s diffi-

culty needs to be adjusted (i.e. increased or decreased) based on the clas-

sification agent’s learning ability once the problem features that alter its

performance have been identified.

3.2.1 Research Objectives

This aim can be broken down as the following objectives.

1. Develop a Two-Cornered Coevolution System for addressing classifica-

tion problems, which consists of two main agents: the problem gen-

eration agent (i.e. the Sender) and the classification agent (i.e. the

Receiver).

2. Evaluate the Receiver’s performance for learning different types of

problems for classification within a given period of time or after a

certain number of iterations.

3. Investigate a method for the Sender to increase or decrease a prob-

lem’s difficulty based on the Receiver’s performance and to autonomously

determine how the features in a problem domain affect the learning

of the Receiver.

4. Investigate the cooperation between the Sender and the Receiver in

this coevolutionary process.
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3.2.1.1 Framework Design

The system consists of two main agents, the generation agent (i.e. the

Sender (S)) and the classification agent (i.e. the Receiver (R)) (see Figure

3.6). S is a program to create various problems for classification with differ-

ent levels of difficulty using Pittsburgh-style LCSs. R is a program to learn

the generated image-based data (or artificial data) using accuracy-based

LCSs (i.e. XCS or XCSR). Both of the agents evolve using evolutionary

computation (i.e. Genetic Algorithm).

For this work, Pittsburgh-style LCSs is found more suitable for appli-

cation to the generation agent considering that Pittsburgh-style LCSs usu-

ally evolve more compact population of rules compared to Michigan-style

LCSs. Here, Pittsburgh-style LCSs, A-PLUS (Accuracy-based Pittsburgh

Learner Using Subsumption), is selected to be applied to the generation

agent. A-PLUS is capable of addressing the ‘bloat’ phenomenon, which

refers to increasing any variable-sized solution (in this case, a set of rules)

[1].

Figure 3.6 illustrates the overall design of the system. In Phase 2, S gen-

erates various image-based data (or artificial data) from different problems

for classification that will need to be solved by R. Here, S adjusts the prob-

lem’s difficulty autonomously based on R’s learning ability. Therefore, S

activates a program for problem generation, while R activates a program

for classification. R learns the classification problems and adapts to differ-

ent feedback returns from S. Both S and R maintain their own population

of candidate classifiers and evolve using evolutionary computation (i.e.

Genetic Algorithm). Based on R’s performance, S needs to identify and

discover the difficulty of the problem (e.g. the effect of varying feature

values in the problem) in order to generate a new problem at the appro-

priate levels of difficulty for R to learn. If S’s objective is to increase R’s

performance, S tunes and makes the problem ‘easier’ to learn. If S’s objec-

tive is to decrease R’s performance, S makes the problem ‘harder’ to learn.

Here, S is trying to discover features in the problem that either make the
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problem ‘easier’ or ‘harder’ for R to learn, with respect to a fixed R imple-

mentation (fixed parameters setting).

Figure 3.6: Two-Cornered Coevolution System.

3.2.2 Image-based Data for Classification

3.2.2.1 Image-based Data Domain

In Phase 1, the simple image-based data, which is a non-sparse problem with

a low number of conditions has been established. The problem can be de-

scribed as a list of features that contains [PatternDimension, PatternOrientation,

PatternOperator] and each feature can take a number of values such as

[3 by 3 dimension, Vertical orientation, operator OR] (see Ta-

ble 3.1).

In Phase 2, the simple image-based data is further extended to a complex

image-based data, which has a higher number of conditions. The problem can

be described as a list of features (containing more than three features) such

as [PatternDimension, PatternStroke, PatternOrientation, PatternAngle,

PatternOperator]. Each feature can take a number of values such as [3

by 3 dimension, 1 stroke, Vertical orientation, 0 degree angle,

OR operator]. Table 3.8 describes the encoding scheme for each feature
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in the complex image-based data. The first column gives a detailed descrip-

tion of each feature in the problem, while the second column provides the

encoding scheme used to represent different values for the feature.

3.2.2.2 Knowledge Representation

S generates various problems for classification, while R learns the image-

based data (patterns) for each problem and adapts to different feedback re-

turns from S in order to predict the class. R’s condition-action rules are sim-

ilar to Phase 1 (see Table 3.2). Table 3.9 illustrates S’s condition-action rule

format for the complex image-based data. S is developed based on Pittsburgh-

style LCSs (i.e. A-PLUS) using ternary alphabet representation. The condi-

tion specifies the problem containing a list of parameters [PatternDimension,

PatternStroke, PatternOrientation, PatternAngle, PatternOperator],

where each feature can take on a number of values. The problem’s diffi-

culty is considered to be the action, where it can be either ‘1’ for ‘hard’

problem, or ‘0’ for ‘easy’ problem. The ProblemDifficulty is based on the

classification performance after a certain number of iterations.

The same S’s condition-action rules format will be used in all of the ex-

periments for addressing the image-based data in this phase, unless ex-

plicitly otherwise stated.

3.2.2.3 Image-based Data Generation and Classification

Figure 3.7 illustrates the process of the image-based data generation and clas-

sification between S and R. First, S creates a population of problems with

different sets of features. A problem contains a list of features [PatternDimension,

PatternStroke, PatternOrientation, PatternAngle, PatternOperator],

where the value can be [3 by 3 dimension, 2 stroke, Vertical and

Horizontal orientation, 90 degree angle, operator XOR] that

can be encoded by an 11 bits binary string of ‘00101100011’. At each itera-

tion, an individual problem is selected randomly from the population.
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Table 3.8: Encoding scheme (complex image-based data).

Feature Encoding Scheme

F1-PatternDimension

n by n pattern dimension

with n number of rows and n

number of columns.

The first 2 bits:

‘00’ 3 by 3 pattern dimension.

‘01’ 4 by 4 pattern dimension.

‘10’ 5 by 5 pattern dimension.

F2-PatternStroke

total number of strokes in

pattern (e.g. 1 stroke equiv-

alent to 3 adjacent pixels in 3

by 3 dimension pattern).

The next 2 bits:

‘00’ if total number of stroke in pattern

equal to 0.

‘01’ if total number of stroke in pattern

equal to 1.

‘10’ if total number of stroke in pattern

equal to 2.

F3-PatternOrientation

orientation of pattern such as

Vertical, Horizontal, Diago-

nal1 or Diagonal2 on the pat-

tern mapping.

The next 4 bits:

Each bit represents Horizontal, Vertical,

Diagonal1 or Diagonal2.

‘1000’ represents Horizontal, ‘0100’ Verti-

cal and so forth.

F4-PatternAngle

if there is any desired angle

from four angles with degree

of 0, 90, 180 and 360 in pat-

tern; an angle is formed by in-

tersecting strokes.

The next 2 bits:

‘00’ if there is 0 degree angle in pattern.

‘01’ if there is 90 degree angle in pattern.

‘10’ if there is 180 degree angle in pattern.

‘11’ if there is 360 degree angle in pattern.

F5-PatternOperator

applying logical operator OR

or XOR for classifying the

class.

The next 1 bit:

‘0’ represents logical OR operator.

‘1’ represents logical XOR operator.
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Table 3.9: Example of S’s condition-action rule format.

S’s condition-action rule:

IF<problem>THEN<ProblemDifficulty>

problem is a list of features containing :

[PatternDimension, PatternStroke, PatternOrientation,

PatternAngle, PatternOperator]

Rule’s description:

‘00011000000:0’

where ‘00’ represents 3 by 3 pattern dimension, ‘01’ represents total

stroke is 1, ‘1000’ represents Horizontal orientation, ‘00’ represents 0

degree angle in the pattern, ‘0’ represents operator ‘OR’ and the prob-

lem is predicted to be a ‘easy’.

Figure 3.7: Image-based data generation and classification between S and

R.
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Secondly, S generates a pattern (image-based data) based on the indi-

vidual problem’s features (i.e. ‘00101100011’). For example, the generated

pattern consists of a 9 bits binary string, which can be mapped into 3 by 3

dimensional pattern. The pattern can be encoded into a value of either ‘1’

for white or ‘0’ for black, and read row by row (see Figure 3.7 (a)). For in-

stance, the pattern can be encoded by a 9 bits binary string of ‘100100111’

(see Figure 3.7 (b)). If the pattern contains of three adjacent Vertical ‘1’s

(i.e. three adjacent pixels Vertically) and three adjacent Horizontal ‘1’s

(i.e. three adjacent pixels Horizontally), where the total stroke is 2 (i.e. 2

straight lines of Vertical and Horizontal lined) and can build a 90 degree

angle, then it can be categorized as belonging to ‘Class 1’, otherwise ‘Class

0’ (see Figure 3.3 (c)).

Thirdly, R needs to classify the pattern of ‘100100111’ as either belong-

ing to ‘Class 1’ or ‘Class 0’. Next, R sends either ‘1’ for ‘Class 1’ or ‘0’ for

‘Class 0’ as suggested by its rules. In response, S sends a numerical reward

of ‘1000’ for correct classification, or ‘0’ back to R.

After a certain number of iterations, S will evaluate R’s performance for

learning different types of patterns. Based on its prediction, S is tasked to

create the next problem at the appropriate levels of difficulty to R, where S

autonomously determines the features in the problem that alters R’s per-

formance, and S can either increase or decrease the problem’s difficulty

based on R’s performance.

However, in this domain, there is a case where S can create a sparse

problem such as creating a valid encoding, which does not produce a valid

problem for R to learn. Thus, it is impossible for S to predict R’s learning

ability correctly. For example, the problem ‘00011000011’ can be translated

as [3 by 3 dimension, 1 stroke, Horizontal orientation,

90 degree angle, operator XOR]. This example is considered sparse

when valid encodings do not produce valid problems, e.g. one stroke and

90 degree angle. Therefore, considering this ‘sparse problem’, an appropri-

ate problem domain (i.e. artificial data) is needed to address the classification
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problems and is discussed in detail in the next section. In addition, within

this domain there are a few other problems that limit the system’s capa-

bility of producing flexible and adjustable problems for the classification

tasks which are discussed in Section 5.1.

3.2.3 Artificial Data for Classification

3.2.3.1 Artificial Data Generation

In this domain, the problem of defining a problem with an appropriate

level of difficulty is considered a meta-problem. The meta-problem itself

is difficult in practice due to the execution time needed to solve for any

individual problem. Starting from the beginning for each problem or re-

peating a given problem is time consuming. Thus, a local search method

is required to adjust the problem domain so the generation agent can com-

mence from the previous learnt problems, without requiring to repeat the

same problem domain. The process of artificial data generation is described

as follows:

First, S generates variants of problems for classification (i.e. a popula-

tion of problems referred as meta-problem). S is initialized with an initial

value for an individual problem containing a list of parameters (i.e [Fn

Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]) for generating a set of artificial

data (dataset). The dataset is generated based on the list of those defined

parameters associated with the individual problem that need to be solved

by R (see Section 3.1.4.1 and Table 3.5).

Secondly, Tabu Search is used in S to discover the combination of fea-

tures F in the problem in order to generate the next problem at the appro-

priate levels of difficulty. S can either make the problem ‘harder’ or ‘easier’

for R to learn (i.e. maximize or minimize R’s performance). The basic prin-

ciple of TS is to pursue local search whenever it encounters a local optima

by allowing non-improving moves. When a new candidate solution is in-

troduced (i.e. a new best solution is found), it goes into the tabu list and it
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is made tabu for a certain number of iterations (tabu tenure). The tabu list

records the recent history of the search and also keeps information on the

itinerary through the last solutions visited. Here, one way of creating the

tabu restrictions (constraint) is to assign a maximum iteration for each can-

didate solution in the tabu list. The approach for TS maintaining the tabu

list is by remembering an index of features that have been swapped and

the time (number of iterations) when it was swapped [77] (see Algorithm

11 in the Section 2.10).

In this set-up, a maximum time (iteration) for each index is 5. This

means each feature can remain in the tabu list for only 5 times (itera-

tions). Here, S objective is to make the problem ‘harder’ for R to learn (i.e.

minimize Rs performance), where TS iteration is set to 10. S starts with

an initial solution (i.e. [Fn=5 Fc=1 Fd=0 Fi=0 Fr=4Fan=5 Fcn=5

Fcbl=50 Fcbd=5]). Changes of features F (the solution) and tabu list

content for the first two iterations is described as follows. For each itera-

tion, each feature value F is changed within a certain limit. In the first iter-

ation, the best solution is [5, 1, 0, 1, 4, 5, 5, 50, 5], when R’s

performance is 67% and the swap in tabu list is at index 4 [0, 0, 0, 5,

0, 0, 0, 0, 0]. In this case, the swap at index 4 gives the best solu-

tion, thus the feature at index 4 is not allowed to be used and not available

for the next 5 iterations. In the second iteration, the best solution is [5,

1, 0, 1, 4, 5, 5, 50, 4], when R’s performance is 62.0% and the

swap in tabu list is at index 9 [0, 0, 4, 0, 0, 0, 0, 0, 5]. Here,

index 4 and 9 is not available to be swapped for the next iterations, while

other indexes are available to be swapped in any iteration.

Table 3.10 illustrates changes in feature F when applying TS in S to in-

crease the problems difficulty. S starts with an initial solution (i.e. [Fn=5

Fc=1 Fd=0 Fi=0 Fr=4 Fan=5 Fcn=5 Fcbl=50 Fcbd=5]), where R’s

performance is 66%. However, after 10 iterations, TS is able to find the best

combination of features F in the problem that decreases R’s performance

(i.e. minimize R’s performance) from 66% to 51% by changing certain fea-



3.2. TWO-CORNERED COEVOLUTION SYSTEM 119

tures F. Using TS, S is able to search for the best combination of features F

for the set task. Based on R’s classification performance, S changes the val-

ues of features F (i.e. finds the best combination of features that can either

make the problem ‘harder’ or ‘easier’) for generating the next problem for

R to learn. R needs to learn again for each new problem send by S.

Table 3.10: Changes in features F using Tabu Search in S.

INITIAL SOLUTION: 5, 1, 0, 1, 4, 5, 5, 50, 5

INITIAL PERFORMANCE: 66.0

Search COMPLETE!

BEST PERFORMANCE: 51.0

BEST SOLUTION: 5, 0, 1, 0, 3, 29, 1, 3, 1

NOTE:

R’s classification performance decreased from 66% to 51% using TS to

adjust [Fc Fd Fi Fr Fan Fcn Fcbl Fcbd].

3.2.3.2 Knowledge Representation

S generates various problems for classification, while R learns the datasets

for each problem and adapts to the resulting feedback, returning from S

in order to predict the class. R’s condition-action rules are similar to Phase

1 (see Table 3.4). Table 3.11 illustrates S’s condition-action rule format. S is

developed based on Pittsburgh-style LCSs (i.e. A-PLUS). The condition (ci)

specifies the problem containing state1 and state2. Each state is a list of fea-

tures F in the problem (i.e [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]).

The staten is encoded to be real valued at realn = (ln, un), with a lower

bound and an upper bound within a specified interval. The ProblemDiffi-

culty is considered to be the action, where it can be either ‘1’ for a ‘harder’

problem, or ‘0’ for an ‘easier’ problem. In Phase 2, S must either increase

or decrease the problem’s difficulty to either maximize or minimize R’s
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performance. The ProblemDifficulty is therefore changed either from ‘hard’

to ‘harder’ or ‘easy’ to ‘easier’ compared to Phase 1. If R’s performance

for state2 is greater than R’s performance for state1, then the problem is

considered ‘easier’, otherwise ‘harder’.

Table 3.11: Example of S’s condition-action rule format.

S’s condition-action rule:

IF<state1, state2> THEN<ProblemDifficulty>

staten is a list of features containing:

[Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]

state1, state2 : ProblemDifficulty

state1 : [l1, u1], [l2, u2], [l3, u3], [l4, u4], [l5, u5], [l6, u6], [l7, u7], [l8, u8]

state1:[0,1], [0,1], [0,1], [0,1], [40,50], [40,50], [50,100], [0,50]

state2:[0,1], [0,1], [0,1], [0,1], [0,5], [45,50], [70,100], [0,25]

ProblemDifficulty: 0 (easier)

3.2.3.3 Artificial Data Generation and Classification

The process of artificial data generation and classification between S and R

is described as follows. First, S generates variants of problems for clas-

sification (i.e. a population of problems referred as meta-problems). S is

initialized with a random meta-problem containing a list of parameters (i.e

[Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]). Next, S effectively gener-

ates a set of datasets for an individual problem and sends each instance in

the dataset to R.

Thirdly, R needs to successively classify each instance in a dataset as

belonging either to ‘Class 1’ or ‘Class 0’. Thus, R sends either ‘1’ for ‘Class

1’ or ‘0’ for ‘Class 0’ as suggested by its classifiers. In response, S sends a

numerical reward of ‘1000’ for correct classification or ‘0’ is returned to R.

Fourth, based on R’s performance, S needs to generate a new problem
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where S’s objective can be either to make the problem ‘easier’ by decreas-

ing the problem’s difficulty or ‘harder’ by increasing the problem’s diffi-

culty. In the first approach tested, S uses TS to vary the features F in the

current problem for generating the subsequent problem in the next set of

iterations (see Table 3.10).

However, using TS alone in S resulted in TS becoming stuck in local

optima (see Section 4.2.2.1). Thus, in order to overcome stagnation in the

local optima, a Pittsburgh-style LCSs, A-PLUS, is adapted in S to evolve

S’s rules. S implements A-PLUS system as an on-line version rather than

off-line to suit the design of the Two-Cornered Coevolution System. The

on-line system offers several advantages over the off-line system which is

discussed in Section 5.1. In the original implementation of the A-PLUS

system, the datasets are read in batch-mode or off-line mode. Now the

datasets are created on-the-fly, thus, the system can directly process the

datasets instantly. In addition, TS is used to discover the best combina-

tion of features F in the problem that alters R’s classification performance,

while A-PLUS evolves S’s single rule (i.e. the problem).

An algorithmic description to describe the main task of S and R for

problem generation and classification tasks (restricted to binary classifica-

tion) is shown in Algorithm 12.

3.2.4 Experimental Design

In our implementation, the classification agent (i.e. the Receiver) is exe-

cuted following Wilson’s explore/exploit scheme [119], which has become the

standard approach in accuracy-based LCSs and uses the same parameter

setting as in Phase 1. The generation agent (i.e. the Sender) is a version of

Pittsburgh-style LCSs, A-PLUS, and is executed in on-line mode and imple-

mented as suggested in [109].
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Algorithm 12: Algorithmic description for problem generation and

classification, Subscript R the Receiver, Subscript S the Sender.

1 begin

2 problem← Sender : generate initial problem to Receiver.

3 while (number of problem less than maximum problems) do

4 while (instance less than maximum instance in dataset) do

5 instance← Sender : generate instance based on problem.

6 Receiver ← pattern : perceive instance from Sender.

7 GENERATE MATCH SET [M]R out of [P]R using instance.

8 GENERATE PREDICTION ARRAY PAR out of [M]R.

9 class← SELECT ACTION according to PAR .

10 GENERATE ACTION SET [A]R out of [M]R according to class.

11 Receiver : execute action class.

12 reward← Sender : Sender check class and send reward back to Receiver.

13 prediction← reward : update prediction with current reward of Receiver.

14 UPDATE SET [A]R using prediction possibly deletion in[P]R.

15 RUN GA in [A]R considering instance insertion in [P]R.

16 if instance equal to maximum instance in dataset then

17 classificationPerformance : calculate Receiver classification performance.

18 end

19 end

20 Sender : read classificationPerformance

21 problem← Sender : APPLY TS on problem based on Receiver

classificationPerformance.

22 ruleset← Sender : generate rule set based on problem.

23 ruleset← Sender : APPLY GA to rule set.

24 for (each rule set) do

25 Set rawFitness to zero.

26 EVALUATE accuracy of each classifier.

27 for (each problem) do

28 CREATE ACTION SET [A]S of correct matching classifiers.

29 CALCULATE meanAccuracy of classifiers in [A]S and add to rawFitness.

30 if (action set contains a totally accurate classifier) then

31 DELETE other classifiers in [A]S that are accurate but subsumed by it.

32 end

33 end

34 rawfitness = rawFitness/totalProblems.

35 Set rawfitness to Fitness

36 DELETE any totally inaccurate classifiers.

37 DELETE weak classifiers that appear in [A]S .

38 end

39 SELECT next problem.

40 problem← Sender : next problem.

41 end

42 end
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Table 3.12 shows the parameter setting of S for addressing the classifi-

cation problems (i.e. image-based data and artificial data). The parameters

are set according to [109], where a few modifications are made including

the number of classifiers in the population and the number of iterations.

Table 3.12: Parameters setting for A-PLUS.

Rule set parameters Value

Initial number of rules 10

Generality 0.33

Deletion probability 1.0

Subsumption probability 1.0

GA parameters Value

Maximum population size 100

Selection algorithm Tournament selection

Tournament size 5

Crossover algorithm Two-point crossover (binary representa-

tion)

Arithmetic crossover (real-value repre-

sentation)

Crossover probability 0.6

Mutation algorithm Random mutation (binary representa-

tion)

Random mutation (real-value representa-

tion)

Mutation probability 0.001

Fitness threshold 0.005

ASsubsumption YES
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The same parameters setting for A-PLUS will be used in all of the ex-

periments throughout the work, unless explicitly otherwise stated. All of

the experiments are run 30 times with different random seeds for analysing

the results. R’s classification performance is calculated from the exploit tri-

als, similar to Phase 1.

3.2.5 Summary

In Phase 2, the Two-Cornered Coevolution System is implemented as a

coadaptive evolution rather than a real coevolution such as proposed in the

Three-Cornered Coevolution Framework by Wilson. In the Two-Cornered

Coevolution System, the generation agent (i.e. the Sender) and the clas-

sification agent (i.e. the Receiver) are evolving at different levels of struc-

ture. S evolved on the level of architecture (i.e. the problem creation),

while R evolved on the the level of components (i.e. the classifiers or so-

lutions), where the parameter setting for S and R are fixed. Here, both the

rate of convergence to a classification performance level and the maximum

achievable performance level itself are not known a priori, so it is difficult

to determine when the generation agent should adjust the problem’s diffi-

culty. There will be a case when the whole learning system is stable, where

the classification agent has successfully addressed the classification prob-

lems, hence becoming inactive (i.e. the the classification agent’s perfor-

mance cannot be improved). This is one reason why the Three-Cornered

Coevolution System is preferred over the Two-Cornered Coevolution Sys-

tem.

In the Three-Cornered Coevolution System, the problem domain can

be tuned autonomously, depending on the two different classification agents’

ability to learn (i.e. the Receiver (R) and the Interceptor (I), which will

use different techniques of learning) [124], and an active learning sys-

tem can be established. By introducing a third agent (i.e. the Intercep-

tor), the difference in classification performance between the two classi-
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fication agents can be used to direct the generation agent to change the

problem’s difficulty, whilst the difference in performance encourages ex-

ploration of the problem’s difficulty. The third agent can also assist in de-

termining whether the problem should be made ‘harder’ or ‘easier’ when

the classification agents’ performance have stagnated. In addition, the

Three-Cornered Coevolution System is needed in order to investigate the

coevolutionary process between the participating agents within the system

if the framework is practical. This coevolutionary approach will be further

investigated.

3.3 Three-Cornered Coevolution System

The Three-Cornered Coevolution System is important as it addresses both

how computers can solve interesting problems and how to find interest-

ing problems to solve, which was previously the human investigators task.

The overall aim of this phase is to develop the Three-Cornered Coevolu-

tion System where three different agents evolve to adapt to and drive the

changes of the problem. The name ‘three-cornered’ derives from having

one generation agent, one favoured classification agent, and one classifi-

cation agent to monitor (i.e. intercept) the learning between the first agent

in case it becomes stagnated.

The generation agent (i.e. the Sender) to autonomously generate var-

ious problems (i.e. various sets of artificial data) for classification, whilst

the classification agents (i.e. the Receiver and the Interceptor) learn the

problems and adapt to different feedback returns from the generation agent.

Here, the classification agents use different techniques of learning (i.e. ei-

ther the supervised learning or the reinforcement learning technique) to

learn the problem (i.e. one similar problem at a time without interaction),

whilst the generation agent determines the type of problems that can be

solved by the classification agents. Ultimately, the problem’s difficulty is

adjusted (i.e. increased or decreased) based on the classification agents’
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learning ability (i.e. the difference in classification performance).

3.3.1 Research Objectives

This aim can be broken down into the following objectives.

1. Develop a Three-Cornered Coevolution System for addressing classi-

fication problems. The system consists of three main agents: the

Sender (S), the Receiver (R) and the Interceptor (I). S wants to send a

variety of problems and its associated dataset for classification to R

and I, whilst R and I need to classify the datasets effectively. R may

use different techniques compared to I without interaction between

R and I.

2. Evaluate the difference in performance between R and I for learning

various types of datasets after a certain number of iterations, as indi-

cation for S to increase or decrease the problem’s difficulty based on

the R’s and I’s performance.

3. Investigate the competitive relationship between R and I in this co-

evolutionary process.

4. Investigate the coevolutionary process between S, R and I in the

Three-Cornered Coevolution System as each agent adapts and learns

the problems while evolving the individual’s rules.

3.3.2 Framework Design

The system consists of three main agents: the generation agent (i.e. the

Sender (S)) and two classification agents (i.e. the Receiver (R) and the In-

terceptor (I)) (see Figure 3.8). S is a program to generate various problems

for classification, while R and I are programs to learn the artificial data us-

ing different techniques of learning (i.e. either the supervised learning or
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reinforcement learning). All of the agents evolve using evolutionary com-

putation (i.e. Genetic Algorithm). The system is an extended version of the

Two-Cornered Coevolution System for addressing the classification problem

in Phase 2 (see Section 3.2).

Figure 3.8: Three-Cornered Coevolution System.

Figure 3.8 illustrates the overall design of the system. In this setup, S

generates artificial data from various problems for classification that will

need to be solved by R and I. Therefore, S activates a programme for prob-

lem generation, while R and I activate a programme for classification. R

and I learn the classification problems and adapt to different feedback re-

turns from S. However, the action of I may or may not always be compet-

itive with R. Here, R and I use different techniques of learning (i.e. either

the supervised learning or reinforcement learning). In the Three-Cornered

Coevolution System, all agents evolve to adapt to and drive the changes

of the problem and the difference in performance between R and I is used

to direct S to change the problem’s difficulty.

Here, S can change the problem’s difficulty based on the difference in

performance between R and I (i.e. below a certain threshold). I as the

third agent can assist in determining whether the problem should be made

’harder’ or ‘easier’ when the performances have stagnated. The difference

in performance helps to separate whether a current non-optimal perfor-

mance level is likely due to the problem or to the techniques’ abilities, i.e.

when there is a difference between the former agents’ performances and
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the latter. Next, S will adjust the problem’s difficulty either to make the

problem ‘harder’ or ‘easier’. If the difference in performance between R

and I is greater than the threshold value, S will change the problem’s dif-

ficulty and make the problem to be ‘easier’. However, if the difference

in performance between R and I is less than the threshold value, S will

change the problem’s difficulty and make the problem to be ‘harder’ (see

Figure 3.9). Therefore, S needs to consider the ability of R and I when gen-

erating a variety of problems to be solved which can be determined based

on the difference in performance between R and I (i.e. determining the

type of problems that can be solved by R and I).

Figure 3.9: Three-Cornered Coevolution System (coevolutionary process).

3.3.3 Artificial Data for Classification

3.3.3.1 Knowledge Representation

S generates various sets of artificial data (problems) for classification, while

R and I learn the datasets for each problem and adapt to different feedback

returns from S in order to predict the class. R’s condition-action rule format

is similar to Phase 1 (see Table 3.4) and S’s condition-action rule format is

similar to Phase 2 (see Table 3.11).
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Table 3.13 illustrates I’s condition-action rule format. The condition spec-

ifies each instance in the dataset, while the class is considered to be the

action. The condition is encoded to be real-value of realn = (ln, un), where

ln is the lower bound and un is the upper bound within the interval [0, 1].

The action can be either ‘1’ for ‘Class 1’, otherwise ‘0’ for ‘Class 0’. The

last row illustrates I’s rules to specify one instance with two data features

where each data feature datan is within the interval of lower bound ln and

upper bound un (i.e. [0,1]). I will receive a reward of ‘1000’ for correct

classification or ‘0’ for incorrect classification.

Table 3.13: Example of I’s condition-action rule format.

I’s condition-action rule:

IF<condition> THEN<class>

condition is a list of data feature for each instance containing:

[data1, data2, ..., datai], where each datai : [li, ui]

[data1, data2]: class

[0.3,0.6], [0.5,0.8] :0

3.3.3.2 Artificial Data Generation and Classification

The process of artificial data generation and classification between S, R and I

are provided as follows. First, S generates variants of problems for classifi-

cation (i.e. a population of problems referred as meta-problem). S is initial-

ized with a random meta-problem containing a list of parameters (i.e [Fn

Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]). Next, S creates a set of artificial

data for an individual problem and sends each instance in the dataset to R

and I.

Secondly, R and I need to classify each instance as either belonging to

‘Class 1’ or ‘Class 0’ and send either ‘1’ for ‘Class 1’ or ‘0’ for ‘Class 0’ as

suggested by its rules. However, R will use different techniques of learn-
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ing compared to I, for classifying the instances (i.e. either the supervised

or the reinforcement learning technique). In response, S sends a numerical

reward of ‘1000’ for correct classification otherwise ‘0’ returned to both R

and I.

Thirdly, S coevolves to tune and adjust the problem’s difficulty (i.e. ei-

ther to increase or decrease the difficulty levels) based on R’s and I’s ability

to learn. S’s objective is either to explore maximizing or minimizing one

favoured classification agent’s performance (i.e. R or I) by adjusting the

problem’s difficulty. Here, R and I use different techniques of learning (i.e.

either the supervised learning or reinforcement learning). Thus, S needs

to determine the type of problems that can be solved by R and I by adjust-

ing the difficulty levels and related parameters. S aims to autonomously

discover the connection between problem characteristics and the ability of

R and I, which affect the classification performance. Based on the differ-

ence in performance (i.e. depending on a given threshold value) between

R and I, S uses TS to vary the feature F in the problem for generating a new

meta-problem in the next set of iterations (i.e. either to make the problem

‘harder’ or ‘easier’) effectively. Further, R and I learn and evolve to solve

the problem (see Figure 3.8).

Finally, S increases the problem’s difficulty and generates various ‘hard’

problems for classification to R and I. S’s objective is to minimize one

favoured classification agent’s performance (i.e. R or I) when increasing

the problem’s difficulty. Again, R and I evolve to solve the problem, where

the capability of using two different learning techniques (i.e. the super-

vised learning and reinforcement learning) in R and I to solve a certain

problem is investigated.
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3.3.4 Experimental Design

In our implementation, the generation agent (i.e. the Sender) is executed

and set similar to Phase 2, where both of the classification agents (i.e. the

Receiver and the Interceptor) are executed following Wilson’s explore/exploit

scheme [119]. However, if the classification agent is a supervised learner

(i.e. UCS system), the parameters are set according to [105, 84, 85]. Table

3.14 shows the parameters setting for UCS for addressing the classifica-

tion problems (i.e. artificial data). UCS is implemented as suggested in

[62, 61] and follows the algorithm in Algorithm 13. The same parameters

setting will be used in all of the experiments throughout the work, unless

explicitly otherwise stated.

All of the experiments are run 30 times with different random seeds

for analysing the results. R’s and I’s performance are calculated from the

exploit trials. There will be many iterations of R and I for each iteration of

S (i.e. to learn 2,000 instances, R and I are run for 2,000 iterations). One

iteration for S is a problem, and one iteration for R and I is an instance

from the dataset. After a certain number of iterations (instances), R’s and

I’s classification performance (i.e. average of correct classification perfor-

mance from the exploit trials over 30 runs) are recorded to measure R’s

and I’s performance on the specified problem.



132 CHAPTER 3. METHODOLOGY

Table 3.14: Parameters setting for UCS.

Parameter Value

Population size N 500

Number of iterations 2,000 (one iteration representing

one instance of the problem)

Selection algorithm Tournament selection

Tournament size τ a fraction τ = (0, 1] of the current

action set size, where (τ = 0.4 is the

suggested value)

Crossover algorithm Arithmetic crossover

Crossover probability χ 0.8

Mutation algorithm Random mutation

Mutation probability µ 0.4

Accuracy discount factor α 0.1

Learning rate β 0.2

Optimum rule accuracy acc0 0.99

Rule’s fitness to its accuracy ν 10

Mutation threshold m0 0.2

Covering threshold r0 0.4

GA threshold θGA 50

Subsume threshold θsub 200

Rule deletion threshold θdel 200

Deletion discount factor θ 0.1

GAsubsumption YES

ASsubsumption NO
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Algorithm 13: Algorithmic description of UCS’s (Performance Com-

ponent) (adapted from [105]).

1 begin

2 Perceive a single input string (e.g. current state of the problem) from

the Sender.

3 Generate a random population of classifiers [P].

4 Build a match set [M] containing all the classifiers in the population [P],

where the condition matches the input string.

5 Update all classifiers participating in [M].

6 Form the correct set [C] containing the classifiers in match set [M] that

predict the same class as the label of the current input.

7 if ([C] is empty) then

8 Covering process is activated, a new classifier is created (a

condition is a generalized version of the input example, an action is

the same class label).

9 Add this classifier in the population.

10 end

11 Send the selected action to the environment and receive a reward.

12 Activate the credit assignment algorithm.

13 end
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3.3.5 Summary

The Three-Cornered Coevolution is the final research goal. The Three-Cornered

Coevolution System is a new coevolution system where three different agents

evolve to adapt to and drive the changes of the problem. The system con-

sists of a generation agent which is referred to as the Sender (S) and two

classification agents which are referred as the Receiver (R) and the Inter-

ceptor (I). Here, the classification agents evolve to learn various classifica-

tion problems, while the generation agent coevolves to tune and adjust the

problem’s difficulty based on the classification agent’s ability to learn. Fur-

ther, as the generation agent increases the problem’s difficulty and gener-

ates various ‘hard’ problems for classification, the system will implement

the Three-Cornered Coevolution.

3.4 Summary and Way Forward

This chapter provides a detailed design for the Three-Cornered Coevolution

System that consists of three main phases. All the phases need to be com-

pleted sequentially in order to develop a fully operational Three-Cornered

Coevolution System. The problem domains for each phase is described and

the knowledge representation of each agent in the system is illustrated.

The experimental design of the system including the experimental setup,

the parameter settings, the evaluation metrics and the algorithm of the

sub-system for each phase is presented. The next chapter will present the

results of implementing the system phase by phase and discuss the rele-

vant findings.



Chapter 4

Results

The main goal of the work for this thesis is to design and develop a new

implementation of Three-Cornered Coevolution System for addressing the

classification tasks. In order to achieve this goal, there are three main

phases that need to be established as follows. Firstly, Phase 1 is necessary

to create an appropriate problem domain for classification as a test bed that

can be evolved and tuned automatically. Secondly, Phase 2 is needed to in-

vestigate the generation agent’s ability to autonomously tune and adjust

the problem’s difficulty based on the classification agent’s performance.

Phase 2 is important to establish a baseline for the coevolutionary system.

Finally, Phase 3 is the main research goal to develop the Three-Cornered

Coevolution System, which is a new coevolution LCS, where three different

agents evolve to adapt to and drive the changes of the problem. The de-

tails of the three phases have been described in Chapter 3. This chapter

will present the experiments and the results of the system phase by phase

(see Table 4.1).

135
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Table 4.1: Summary of the experiments for each phase.

Phase Experiments

Phase 1:

image-

based

data.

1 - evaluate R-XCS’s performance on the 3 by 3 dimensional patterns.

2 - evaluate R-XCS’s performance on the 4 by 4 dimensional patterns.

3 - evaluate R-XCS’s performance on the 5 by 5 dimensional patterns.

Phase 1:

artificial

data.

1 - evaluate R-XCSR’s performance on the four problem domains (i.e.

Fn=2,3,4,5).

2 - investigate R-XCSR’s performance on the four problem domains (i.e.

Fn=2,3,4,5), when Fan, Fcn and Fcbl are increased by 5.

Phase 2:

image-

based

data.

1 - evaluate R-XCS’s and S-XCS’s performance on simple image-based

data.

2 - evaluate R-XCS’s and S-XCS’s performance on complex image-based

data.

3 - evaluate S-XCS’s and S-APLUS’s performance on simple image-

based data.

Phase 2:

artificial

data.

1 - evaluate S-TS’s performance that can either maximize or min-

imize R-XCSR’s performance on the four problem domains (i.e.

Fn=2,3,4,5).

2 - evaluate S-APLUS-TS’s performance that can either maximize or

minimize R-XCSR’s performance on the four problem domains (i.e.

Fn=2,3,4,5).

Phase 3:

artificial

data.

1 - evaluate S-TS’s and S-APLUS-TS’s performance that can either max-

imize or minimize I-UCS’s performance on the four problem domains

(i.e. Fn=2,3,4,5).

2 - investigate I-XCSR’s and I-UCS’s ability to trigger S-APLUS-TS to

change the problems difficulty when the threshold values were set to:

1) 10%, and 2) 20% on the four problem domains (i.e. Fn=2,3,4,5).

3 - investigate I-XCSR’s and I-UCS’s ability either suitable to be as a

triggering agent or learning agent on the four problem domains (i.e.

Fn=2,3,4,5).

4 - investigate R-XCSR’s and I-UCS’s capability when S-APLUS-

TS increases the difficulty levels for the four problem domains (i.e.

Fn=2,3,4,5), where S-APLUS-TS is tasked either minimize I-UCS’s

or R-XCSR’s performance one at a time.
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4.1 Phase 1: An Evolvable Problem Generator

The overall aim of Phase 1 is to develop an automated evolvable problem

generator for generating various problems for classification. A set of ex-

periments is performed to verify the automated evolvable problem gen-

erator. This is tested by adopting an accuracy-based LCSs in the classifi-

cation agent for addressing the evolved problems. The generation agent

(i.e. the automated evolvable problem generator, termed as the Sender

(S)) autonomously evolves the problem and generates different types of

image-based data (or artificial data) for classification, while the classifi-

cation agent (i.e. the accuracy-based LCS, termed as the Receiver (R))

evolves to learn the image-based data (or artificial data). In Phase 1, the

classification agent was trained and tested on various problem domains in

order to investigate limits of its performance, so that appropriate problem

domains have been developed as a test bed that can be further enhanced

in Phase 2. In this phase there was no feedback from the Receiver to the

Sender.

4.1.1 Image-based Data for Classification

In this section, the results of the classification agent (i.e. the Receiver (R))

that used an accuracy-based LCS, XCS, in both of the training mode and the

testing mode on the three problem domains1 are presented.

First, R-XCS was trained2 to learn various patterns (image-based data)

on various dimensionalities to determine the limits of its performance.

Next, R-XCS was tested3 on unseen patterns (image-based data) of the

1Note: problem domain refers to the three problem domains of image based-data (i.e. 3

by 3, 4 by 4 and 5 by 5 pattern dimensional mapping), instance refers to a

generated pattern from any problem domain, problem refers to one problem domain.
2In the training mode, the system learns each pattern alternately using explore and ex-

ploit scheme.
3In the testing mode, the system exploits previous knowledge in the training mode to

learn a new pattern.
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same problem domains to verify that sufficient knowledge for classifying

the patterns (image-based data) to the correct class had been created.

4.1.1.1 Experimental Results

For all of the experiments, the classification agent (i.e. the Receiver) was

executed following Wilson’s explore/exploit scheme4 [119], which has become

the standard approach in accuracy-based LCSs as described in Section

3.1.5. In explore scheme, the system selects an action at random from those

advocated by the matching rules (choosing the action randomly). In ex-

ploit scheme, the system deterministically selects the action which is most

highly recommended by the matching rules (choosing the best action). The

results were recorded from the exploit scheme, where R-XCS selected the

best action to effect S in order to obtain the highest reward. R-XCS was

designed as an on-line learner (or agent).

The first set of experiments was performed in order to evaluate R-

XCS’s classification performance on the 3 by 3 dimensional pattern

mapping. The population size N was set to 500, and the number of iter-

ations (patterns) was set to 220,000. These parameters were set according

to [54], where a few modifications were made to improve the efficiency,

including the population size N and the number of iterations. Figure 4.1

shows the average of R-XCS’s classification performance in the training

mode. R-XCS is able to achieve 100% performance by classifying the pat-

terns correctly after 18,100 iterations of learning. Figure 4.2 shows R-XCS’s

classification performance in the testing mode. The average of R-XCS’s

classification performance in the testing mode to learn 100 patterns (ex-

emplars) is approximately 99.0%, and for 500 patterns is approximately

99.2%.

4For example, to learn 2,000 patterns R-XCS is run for 2,000 iterations. In the first iter-

ation, R-XCS chooses the action randomly (explore scheme), while in the second iteration,

R-XCS chooses the best action (exploit scheme). For 2,000 iterations, there will be 1,000

explore scheme and 1,000 exploit scheme.
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Figure 4.1: Average of R-XCS’s classification performance in the training

mode to learn the 3 by 3 dimensional pattern mapping from Exploit trials

for 220,000 patterns (110,00 Exploit, 110,00 Explore) over 30 runs.

Figure 4.2: R-XCS’s classification performance in the testing mode to test

the 3 by 3 dimensional pattern mapping from 30 runs.



140 CHAPTER 4. RESULTS

Based on R-XCS’s performance, R-XCS’s rules was further studied. Ta-

ble 4.2 describes R-XCS’s rules on the 3 by 3 dimensional pattern

mapping. The classifier’s experience is given in the second column. The

classifier’s associated parameters (i.e. fitness, prediction and accuracy) are

given in the next three columns. The final two columns provide the classi-

fier’s condition and action for mapping the pattern.

Table 4.2: Examples of R-XCS’s rules (3 by 3 dimensional pattern

mapping).

Number Experience Fitness Prediction Accuracy Condition Action

1 187480 0.99 1000 1 0###0###0 0

2 182599 0.83 1000 1 #1##1##1# 1

3 181647 0.73 1000 1 1##1##1## 1

4 181013 0.62 904.1 0 #0#0####0 0

5 182079 0.62 1000 1 1###1###1 1

6 90903 0.61 1000 1 0####000# 0

7 186188 0.59 1000 1 ######111 1

8 362112 0.51 786.8 0 ##0#0#### 0

9 90863 0.46 1000 1 #0##0#0#0 0

10 181862 0.03 903.5 0 ###1##1#1 1

The second set of experiments was performed to evaluate R-XCS’s

classification performance on the 4 by 4 dimensional pattern mapping.

The population size N was set to 5,000 and R-XCS was trained for up to

100,000 iterations. These parameters were set according to [54], where a

few modifications were made to improve the efficiency, including the pop-

ulation size N and the number of iterations. Figure 4.3 shows the average

of R-XCS’s classification performance in the training mode, where R-XCS is

able to achieve 100% performance after 22,600 iterations. Figure 4.4 shows

R-XCS’s classification performance in the testing mode, where the average

of R-XCS’s classification performance to learn 100 patterns (exemplars) is

100.0%, and for 500 patterns is approximately 99.9%.
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Figure 4.3: Average of R-XCS’s classification performance in the training

mode to learn the 4 by 4 dimensional pattern mapping from Exploit trials

for 1000,000 patterns (500,00 Exploit, 500,00 Explore) over 30 runs.

Figure 4.4: R-XCS’s classification performance in the testing mode to test

the 4 by 4 dimensional pattern mapping over 30 runs.
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The third set of experiments was performed to evaluate R-XCS’s clas-

sification performance on the 5 by 5 dimensional pattern mapping.

The population size N was set to 50,000 and R-XCS was trained for up to

100,000 iterations. These parameters were set according to [54], where a

few modifications were made to improve the efficiency, including the pop-

ulation size N and the number of iterations. Figure 4.5 shows that R-XCS

is able to achieve 100% performance in the training mode by correctly clas-

sifying the patterns after 68,500 iterations. Figure 4.6 shows R-XCS’s clas-

sification performance in the testing mode, where the average of R-XCS’s

classification performance to learn 100 patterns (exemplars) is 100%, and

is approximately 99.9% for 500 patterns.

Figure 4.5: Average of R-XCS’s classification performance in the training

mode to learn the 5 by 5 dimensional pattern mapping from Exploit trials

for 1000,000 patterns (500,00 Exploit, 500,00 Explore) over 30 runs.
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Figure 4.6: R-XCS’s classification performance in the testing mode to test

the 5 by 5 dimensional pattern mapping from 30 runs.

Table 4.3 gives R-XCS’s computational time for classifying the patterns

either belonging to ‘Class 1’ or ‘Class 0’ in the training mode. The second

column indicates the number of iterations (instances) that R-XCS needs to

learn, the third column gives the number of classifiers in R-XCS and the

last column gives the computational time for R-XCS to solve the problem.

Table 4.3: Average of R-XCS’s computational time over 30 runs (training

mode) to learn image-based data.

Problem

Domain

Instances (Itera-

tions)

Classifiers Computational

Time (minutes)

3 by 3 220,0000 500 1.0

4 by 4 1000,000 5,000 2.4

5 by 5 1000,000 50,000 88
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Figure 4.7 plots the average of R-XCS’s computational time for classi-

fying the patterns on the three problem domains in the training mode over

30 runs. The computational time increases exponentially when the dimen-

sionality grows.

Figure 4.7: Average of R-XCS’s computational time over 30 runs (training

mode) to learn image-based data.

4.1.1.2 Discussions and Findings

The goal to develop an automated evolvable problem generator in S has been

achieved. S was able to generate a scalable problem domain (i.e. image-

based data or (patterns)) that can be evolved in both of the dimension-

ality and the problem’s difficulty. Further, R-XCS learned the generated

patterns successfully. However, the total execution time required was in-

creased as would be expected when the dimensionality and the difficulty

of the problem grew exponentially.

First, R-XCS has been applied to the three problem domains to solve

and learn various image-based data (patterns); mapping all the patterns to

the associated class. The dimensionality ranges from the 3 by 3, 4 by

4, 5 by 5 with the length of 9, 16 and 25 bits input state (string) and can

take up to any number of n by n dimensional patterns. S was successfully



4.1. PHASE 1: AN EVOLVABLE PROBLEM GENERATOR 145

created and manipulated the problem domain autonomously. S was able

to generate different types of patterns at various dimensionalities, while

R-XCS evolved to learn the generated patterns and correctly classify the

patterns according to the specified class.

Next, R-XCS was tested on the three problem domains to determine the

limits of its performance. R-XCS was able to learn the generated patterns

successfully for the three problem domains (i.e. 3 by 3, 4 by 4 and 5

by 5 dimensional pattern mapping). The results suggested that

R-XCS was able to learn the generated patterns within the set parameters

successfully (i.e. different setting of the population size and the number of

iterations). Utilising accuracy-based LCS, XCS, R was able to classify the

patterns to the correct class in these three problem domains. Since XCS is

designed to be an on-line learning system through reinforcement learning,

R-XCS requires a longer training time to achieve its best performance. In

this problem domain, the 3 by 3 dimensional pattern mapping

was considered as ‘easy’ problem when R-XCS was able to classify the

generated patterns based on its previous knowledge (i.e. 500 rules) com-

pared to the 4 by 4 and 5 by 5 dimensional pattern mapping

which is considered as ‘hard’ problem.

It was found that the problem’s difficulty was related to the size of n by

n dimensional pattern mapping. As the dimensionality increases, a higher

number of patterns can be generated by S, thus a bigger search space needs

to be solved by R-XCS. Furthermore, the results showed that the execution

time was different between n by n dimensional pattern mapping. In fact,

the computational time was related to the size of n by n dimensional pat-

tern mapping. The total number of the patterns increased dependent on 2k

(where k = n×n of the n by n dimensional pattern mapping). For example,

for the 3 by 3 dimensional pattern mapping, k can be calculated

as 3×3 = 9, therefore at least 29 = 512 various patterns need to be learned,

in order for R-XCS to achieve optimal performance. Meanwhile, the num-

ber of patterns which R-XCS needs to distinguish can become very large
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as the dimensionality increases (i.e. 25 bits pattern to be mapped 5 by 5

dimensional pattern mapping).

4.1.2 Artificial Data for Classification

In this section, the results of the classification agent (i.e. the Receiver (R))

that used an accuracy-based LCSs with real-value, XCSR, in the training and

the testing mode on the four problem domains5 are presented. The surface

landscape of R-XCSR’s classification performance is illustrated to show the

trade-off surface for each problem domain that alters R-XCSR’s classification

performance when a certain feature in the problem-specific parameters

(i.e. [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]) is adjusted.

First, R-XCSR was trained with various artificial data on the four prob-

lem domains to determine the limits of its performance. Secondly, R-XCSR

was tested on various artificial data on the same problem domains to ver-

ify that sufficient knowledge for classifying the instances to the correct

class had been developed. Thirdly, R-XCSR was evaluated on various

problems, where different combinations of features of the problem had

been altered (i.e. increasing and decreasing value of certain features, such

as class balance (Fcbl) and noise levels (Fan and Fcn)), to explore the

surface landscape of R-XCSR’s classification performance.

5Note: problem domain refers to various datasets with different number of data features

in each dataset depending on value Fn (i.e. Fn=2 to Fn=5), instance refers to an instance

in each dataset, problem refers to a problem from any problem domain that contains a

problem-specific parameters (i.e. [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd].
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4.1.2.1 Experimental Results

The first set of experiments was performed in order to evaluate R-XCSR’s

classification performance on the four problem domains (i.e. Fn=2 to

Fn=5), where the features F in the problem were set to [Fc=1 Fd=0 Fi=0

Fr=0 Fan=0 Fcn=0 Fcbl=50 Fcbd=0] and the dataset contained 2,000

instances. Figure 4.8 illustrates the average of R-XCSR’s classification per-

formance over 30 runs in the training mode on the four problem domains.

The results show that R-XCSR is able to learn the dataset with varied per-

formance on the four problem domains. Figure 4.9 shows R-XCSR’s best

classification performance in the training mode on the same problem set-

up of the four problem domains. R-XCSR obtains an average performance

of 99.5% when Fn=2, 98.8% when Fn=3, 98.9% when Fn=4 and 98.6%

when Fn=5. Figure 4.10 shows R-XCSR’s classification performance in the

testing mode on the same problem set-up on the four problem domains.

R-XCSR obtains average performance of 85.4% when Fn=2, 79.7% when

Fn=3, 77.7% when Fn=4 and 76.9% when Fn=5. The results suggest that

the problem domain Fn=5 is the ‘hardest’ problem compared to the oth-

ers. Meanwhile, the problem domains Fn=2 and Fn=3 are the ‘easiest’

problems, as expected.

Table 4.4 provides R-XCSR’s computational time for classifying 2,000

instances for the given problem setting [Fc=1 Fd=0 Fi=0 Fr=0 Fan=0

Fcn=0 Fcbl=50 Fcbd=0] on the four problem domains in the training

mode. The second column indicates the number of iterations (instances)

that needs to be learned by R-XCSR, the third column gives the number of

classifiers in R-XCSR and the last column gives R-XCSR’s computational

time to solve the problem.
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Figure 4.8: Average of R-XCSR’s classification performance in the training

mode on the four problem domains from Exploit trials for 2,000 instances

(1,00 Exploit, 1,00 Explore) over 30 runs.

Figure 4.9: R-XCSR’s best classification performance in the training mode

on the four problem domains from 30 runs.
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Figure 4.10: R-XCSR’s classification performance in the testing mode on the

four problem domains from 30 runs.

Table 4.4: Average of R-XCSR’s computational time over 30 runs (training

mode) to learn artificial data.

Problem

Domain

Instances Classifiers Computational Time

(minutes)

Fn=2 2000 500 1.5

Fn=3 2000 500 2.5

Fn=4 2000 500 3.5

Fn=5 2000 500 4.5

Figure 4.11 plots the average of R-XCSR’s computational time for clas-

sifying 2,000 instances on the four problem domains in the training mode

over 30 runs to learn artificial data. The computational time increases lin-

early when the dimensionality (i.e. number of data features in the dataset)

grows.
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Figure 4.11: Average of R-XCSR’s computational time over 30 runs (train-

ing mode).

The second set of experiments was conducted to investigate R-XCSR’s

classification performance with various problems, where different combi-

nations of features F in the problem was altered (i.e. by increasing and

decreasing the value of certain features F such as class balance (i.e. Fcbl)

and noise level (i.e. Fan and Fcn)). In each problem domain, the value of

noise that applies to the action (i.e. Fan) and the value of noise that ap-

plies to the condition (i.e. Fcn) are increased by 5 within the range of 5

to 50. The value of class balance (i.e. Fcbl) is also increased by 5 within

the range of 50 to 100, while other feature values are set to [Fc=1 Fd=0

Fi=0 Fr=0].

Figure 4.12 shows R-XCSR’s classification performance when noise that

applies to the action Fan is set within the range of 5 to 50, while the class

balance Fcbl is set within the range of 50 to 100. Both values are increased

by 5. R-XCSR achieves a good performance of 85-100%, when the class bal-

ance Fcbl is within 50-100% and the noise level that applies to the action

Fan is within 0-10% for the problem domain Fn=2.
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Figure 4.12: Trade-off surface of R-XCSR’s classification performance

(based on the average of R-XCSR’s classification performance in training

mode for learning a binary classification problem over 30 runs), when Fan

and Fcbl is increased by 5 for Fn=2.
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Figure 4.13 shows R-XCSR’s classification performance when noise that

applies to the condition Fcn is set within the range of 5 to 50, while the

class balance Fcbl is set within the range of 50 to 100. Both values are

increased by 5. R-XCSR achieves a good performance of 90-100%, when

the class balance Fcbl is within the range of 50-65% and the chances of

noise level Fcn being applied to data features f is in the range 0-50% for

the problem domain Fn=2.

Figure 4.13: Trade-off surface of R-XCSR’s classification performance

(based on the average of R-XCSR’s classification performance in training

mode for learning a binary classification problem over 30 runs), when Fcn

and Fcbl is increased by 5 for Fn=2.
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Figure 4.14 shows the trade-off surface of the four problem domains (i.e.

Fn=2 to Fn=5) that alters R-XCSR’s classification performance. R-XCSR’s

classification performance on the four problem domains are varied but

show the same pattern (i.e. the effects of changing the value of Fan, Fcn

and Fcbl either will increase or decrease R-XCSR’s classification perfor-

mance). If there is no gradient in difficulty that exists in the problem, then

it would be impossible for S to tune the problem to being either ‘harder’

or ‘easier’ for R-XCSR to learn.

Note, 100% performance is not reached due to limiting the number of

classifiers and training instances. The classification performance improves

as the class imbalance ratio increases beyond 90% as the majority class fa-

cilitates general (possibly over-general) classifiers and the crude classifiers

(deliberately). Fitness function does not take this into account. The results

show that a gradient in difficulty exists in relation to features in the prob-

lem. This enumerated-information is useful to set up an initial problem

for S and determine whether S can vary the difficulty levels appropriately

in Phase 2.

Table 4.5 gives R-XCSR’s computational time for one surface landscape

in the training mode, when a different combination of features in the prob-

lem is altered (i.e. Fc=1, Fan=0 to 50, Fcbl=50 to 100). The sec-

ond column indicates the number of iterations (instances), the third col-

umn gives the number of classifiers and the last column gives the compu-

tational time for R-XCSR to solve the problem.

4.1.2.2 Discussions and Findings

The goal of this section is to develop an automated evolvable problem gen-

erator in S to generate various problems for classification (i.e. artificial

data). The goal has been achieved because S was able to generate vari-

ous datasets at different levels of difficulty. Further, R-XCSR was able to

learn the datasets successfully. However, the computational time required

is increased when the number of data features and the instances grow and
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(a) Fan and Fcbl is increased by 5. (b) Fcn and Fcbl is increased by 5.

(a) Fan and Fcbl is increased by 5. (b) Fcn and Fcbl is increased by 5.

(a) Fan and Fcbl is increased by 5. (b) Fcn and Fcbl is increased by 5.

(a) Fan and Fcbl is increased by 5. (b) Fcn and Fcbl is increased by 5.

Figure 4.14: Trade-off surface of R’s classification performance (based on

the average of R’s classification performance in training mode for learning

a binary classification problem over 30 runs).
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Table 4.5: R-XCSR’s computational time for one surface landscape (training

mode) to learn artificial data.

Problem

Domain

Instances Classifiers Computational Time

(minutes)

Fn=2 2000 500 5.0

Fn=3 2000 500 8.3

Fn=4 2000 500 11.6

Fn=5 2000 500 13.3

the problem’s difficulty become harder, as would be expected.

In the first set of experiments, R-XCSR was applied to the four problem

domains to solve and learn the generated datasets, determining the class

for all instances of the four problem domains namely Fn=2 to Fn=5. S suc-

cessfully created and manipulated the problem domain autonomously. S

generated various problems for classification based on the list of parame-

ters [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd], while R-XCSR evolved

to learn all instances for each dataset.

In order to explore R-XCSR’s performance landscape on the four prob-

lem domains, a second set of experiments was performed, where the val-

ues of certain features F in the problem (i.e Fan, Fcn and Fcbl) were in-

creased and decreased. The results showed that R-XCSR was able to learn

the datasets with different performances depending on the ‘set-up of the

problem’. Based on R-XCSR’s classification performance from the surface

landscape, it was identified that a gradient in difficulty exists in relation to

features F. The results suggested that S should be able to vary the difficulty

levels of the problem by using any appropriate method once the features

that altered R-XCSR’s classification performance were known. The prob-

lem’s difficulty in this domain was related to the the parameters [Fn Fc

Fd Fi Fr Fan Fcn Fcbl Fcbd]. Therefore, the problem’s difficulty

can be increased or decreased by changing the values of the features F in
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the problem.

In all of the experiments, the computational time was varied between

different ‘set-ups of the problem’. The computational time was not only

related to the number of features F in the problem, but was also related

to the total instances in the dataset. For example, the computational time

to train R when the problem was set to [Fn=2 Fc=1 Fd=0 Fi=0 Fr=0

Fan=5 Fcn=0 Fcbl=50 Fcbd=0] was 1 minute 30 seconds, and to re-

peat the whole process for 30 runs, R-XCSR required approximately 45

minutes (see Table 4.4). It was estimated that to complete the whole prob-

lem domain R-XCSR required approximately 23 hours (45 minutes × total

attributes which is 29).

This means, increasing the number of features F will also increase the

computational time and the problem’s difficulty as R-XCSR needs to learn

a larger number of instances and requires more iterations (time) to solve

the problem. In all of the experiments, the population size N was limited

to 500 classifiers and R-XCSR learnt only 2,000 instances (i.e. R-XCSR was

run for 2,000 iterations). Both values are low for standard LCSs, in order

to reduce the training times as the overall ‘meta-problem’ task is time con-

suming. Due to this constraint, 100% performance was not reached as the

number of classifiers and the number of training instances were limited.

Although the system can be extended to produce a maximum value

of features F and f, the work for this thesis only focuses on identifying

feature values F that affect R-XCSR’s performance (i.e. controlling for pos-

sible confounding variables to the problem’s difficulty). Table 4.5 provides

the computational time to complete one surface landscape in order to ex-

plore R-XCSR’s classification performance when different combinations of

features F in the problem are altered.

Instead of covering every possible combination of features F in the

problem, the problem is divided to the precision of 5% (i.e. Fan, Fcn and

Fcbl is increased by 5) in order to evaluate R-XCSR’s classification per-

formance, which has reduced the computational time. For example, the
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initial problem is set to [Fn=2 Fc=1 Fd=0 Fi=0 Fr=0 Fan=5 Fcn=0

Fcbl=50 Fcbd=0], later the value of Fan and Fcn are increased by 5%

within the range of 5% to 50%, and value of Fcbl is also increased by 5%

within the range of 50% to 100%. Completing one problem landscape took

only approximately 5 minutes. Thus, the system used less computational

time through this method compared to the enumerated method (i.e. to

cover every single possible combination of features F in the problem), in

order to investigate R-XCSR’s classification performance.

4.1.3 Summary and Way Forward

In Phase 1, an automated method (i.e. automated evolvable problem gen-

erator) to generate various image-based data (patterns) and artificial data

for classification, which were directly tested by two Learning Classifier

Systems (i.e. XCS or XCSR), was created. Both the problems (i.e. the

image-based data and the artificial data) and the solution (i.e. XCS or

XCSR) evolved in parallel, with the accuracy-based LCSs attempting to

learn the evolving image-based data (or artificial data). This method helps

to empirically test the learning bounds of accuracy-based LCSs in the prob-

lem domain. The accuracy-based LCSs, were able to learn the generated

image-based data (or artificial data) successfully. However, the time re-

quired increased when the dimensionality increased as the classification

agent (i.e the Receiver) needed to solve a higher number of the generated

image-based data (or artificial data).

It is hypothesized that there will be a scenario when the image-based

data (or artificial data) is too simple, and the classification agent learns the

image-based data (or artificial data) easily and becomes stagnant. There

will be also a scenario when the image-based data (or artificial data) is too

complex, and the classification agent cannot learn and again becomes stag-

nate. Within this domain, if the problem’s difficulty can be increased or de-

creased at an appropriate level, the classification agent’s performance can
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be investigated and further tuning can be performed. In the next section,

a novel method on how to increase or decrease the problems’ difficulty

based on the classification agent’s learning ability will be investigated.

Thus, a study on how the classification agent’s performance depends on

the parameter values of the problem or how to choose parameter values in

the problem that can optimize the classification agent’s performance , will

be conducted.

4.2 Phase 2: Two-Cornered Coevolution System

The overall aim of Phase 2 is to develop an automated evolvable generation

agent for generating various classification problems that have an ability

to autonomously tune and adjust the problem’s difficulty based on the

classification agent’s performance. A set of experiments was performed

to investigate the generation agent’s ability and the classification agent’s

performance in this domain. The generation agent (i.e. the Sender (S)) au-

tonomously evolves the problem and generates different types of image-

based data (or artificial data) for classification, while the classification agent

(i.e. the accuracy-based LCSs, termed as the Receiver (R)) evolves to learn

the image-based data (or artificial data). The generation agent either in-

creases or decreases the problem’s difficulty in order to maximize or min-

imize the classification agent’s performance.

4.2.1 Image-based Data for Classification

In this section, the results of the generation agent (i.e. the Sender (S)) and

the classification agent (i.e. the Receiver (R)) in the Two-Cornered Coevolu-

tion System are presented. Both the problem domain and the solution are

evolved autonomously (i.e. the generation agent created various problems

and the associated sets of patterns, while the classification agent learnt

each set of patterns).
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The first set of experiments was performed in order to investigate R-

XCS’s and S’s performance on the two problem domains (i.e. simple image-

based data and complex image-based data). Next, the second set of exper-

iments was performed in order to evaluate the effectiveness of using dif-

ferent style LCSs in S (i.e. either Michigan-style LCSs or Pittsburgh-style

LCSs) to evolve S’s rule. In Phase 2, S should be able to tune the problem’s

difficulty autonomously depending on R-XCS’s ability to learn, to make

the problem either ‘hard’ or ‘easy’.

First, R-XCS and S were applied to the two problem domains: simple

image-based data (i.e. three features in the problem can be adjusted) and

complex image-based data (i.e. more than three features in the problem can

be adjusted). Next, S was evaluated to predict the difficulty levels of the

problem based on R-XCS’s classification performance. If S is able to pre-

dict the difficulty levels correctly, then S can tune the problem’s difficulty

of the next problem appropriately based on R-XCS’s ability to learn (i.e.

either to predict the problem ‘hard’ or ‘easy’). A level of 95% classification

performance was chosen to separate ‘hard’ from ‘easy’ problems. This

value was chosen based on the previous results in Phase 1, where humans

set the levels of the difficulty so that if the classification performance is

greater than 95% for each problem, the problem is categorized as ‘easy’,

otherwise ‘hard’.

Furthermore, the effectiveness of using two different styles of LCSs in

S to evolve its rules on the simple image-based data was compared, such

that S can generate the next problem at the appropriate levels of difficulty

more effectively. Here, R-XCS sends feedback to S, therefore S can tune

and adjust the problem’s difficulty based on R-XCS’s performance.
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4.2.1.1 Experimental Results

The previous results in Phase 1 showed that R-XCS was able to learn

the generated patterns (image-based data) for the 3 by 3 dimensional

pattern mapping successfully (see Figure 4.15). Figure 4.15 shows R-

XCS’s performance for learning three problems that is varied (i.e. above

90%) for the first 10,000 iterations. Therefore, 10,000 iterations are chosen

to be set in learning the simple image-based data in order to distinguish the

difficulty levels in the problem.

Figure 4.15: R-XCS’s classification performance on a series of the gener-

ated problems from S-XCS. Note the performance at 10,000 iterations is

shown in Figure 4.16 for each problem.

The first set of experiments was performed to evaluate R-XCS’s and

S-XCS’s performance on the simple image-based data (i.e. three features

can be adjusted such as [PatternDimension, PatternOrientation,

PatternOperator]). Figure 4.16 presents the average of R-XCS’s classifi-

cation performance for each problem, where R-XCS needs to recognize the

generated patterns (image-based data) from various problems (i.e. 10,000

patterns for each individual problem, where the total number of problems
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is 1000). However, results suggest that the separation value of 95% be-

tween ‘hard’ and ‘easy’ problems does not lead to a balanced class distri-

bution, where R-XCS’s performance is approximatley 95% and above for

only a small number of problems.

Figure 4.16: R-XCS’s classification performance in the training mode to

learn different types of binary problems for 1,000 problems.

Figure 4.17 depicts the average of S-XCS’s performance6 for predict-

ing the problem’s difficulty for 1,000 problems. R-XCS sends feedback to

S-XCS for predicting R-XCS’s learning ability to learn different types of

problem for classification (i.e. the problem is categorized as either ‘1’ if

‘hard’ or ‘0’ if ‘easy’).

6S-XCS learns each problem alternately using explore and exploit scheme.
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Figure 4.17: Average of S-XCS’s performance in the training mode for

predicting R-XCS’s learning ability/problem’s difficulty (either ‘hard’ or

‘easy’) from Exploit trials for 1,000 problems (500 Exploit, 500 Explore)

over 30 runs.

Based on S-XCS’s performance, S-XCS’s rule was further studied. Ta-

ble 4.6 provides samples of S-XCS’s rules on the simple image-based data (i.e.

three features in the problem can be adjusted). The second column gives

the value of the first feature in the problem (i.e. PatternDimension

that can take any value of ‘3 by 3, 4 by 4 and 5 by 5 dimensional pattern

mapping’). The third column gives the value of the second feature in the

problem (i.e PatternOrientation that can take any value of orienta-

tion ‘Horizontal, Vertical, Diagonal1 and Diagonal2’). The fourth column

gives the value of the third feature in the problem (i.e. PatternOperator

that can take a value of logical operator ‘OR’ or ‘XOR’). The fifth column

indicates either the problem is ‘easy’ or ‘hard’. The last two columns gives

S-XCS’s prediction value and the fitness of S-XCS’s rule.

S-XCS predicts that the problems with the features of PatternOperator

where the logical operator is ‘OR’ are considered to be a ‘hard’ problem.

The problems received the highest prediction value (i.e. rule 7 and 5,
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Table 4.6: Example of S-XCS’s rules (simple image-based data).

Rule Condition Action Prediction Fitness

F1 F2 F3

1 ## ##00 # 1 1000 0.69

2 ## ###1 1 0 1000 0.64

3 ## ##00 # 0 0 0.61

4 ## #### 1 1 361.25 0.5

5 0# 1#0# 0 1 997.57 0.48

6 ## 0##0 1 0 999.61 0.45

7 11 0#10 0 1 1000 0.44

8 0# 0#11 # 0 840 0.41

9 ## ##11 1 1 0 0.36

10 ## #0## 1 0 1000 0.33

where the conditions are ‘110#100’ and ‘0#1#0#0’, with the action ‘1’). The

problems with the logical operator ‘XOR’ are considered to be an ‘easy’

problem (i.e. rule 2, 6 and 10, where the conditions are ‘1#####11’, ‘##0##01

and ‘###0##1’, with the action ‘0’). However, rules 4 and 9 incorrectly pre-

dict the logical operator ‘XOR’ are considered to be ‘hard’ problem when

both the prediction and fitness values are low.

It was expected that R-XCS would achieve a good classification perfor-

mance for a problem that applies the logical operator ‘OR’ to the problem,

due to the fact that any number of the specified pattern can occur in the gen-

erated pattern and is considered an ‘easy’ problem. In contrast, R-XCS’s

classification performance actually achieved more than 95% for the prob-

lems that contain the logical operator ‘XOR’, when one and only one of the

specified patterns can occur in the generated pattern which is considered

to be a ‘hard’ problem.
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The second set of experiments was performed to evaluate R-XCS’s and

S-XCS’s performance on the complex image-based data (i.e. more than three

features can be adjusted such as [PatternDimension, PatternStroke,

PatternOrientation, PatternAngle, PatternOperator]). Figure

4.18 shows the average of R-XCS’s classification performance for the com-

plex image-based data. However, for almost all the problems, R-XCS can-

not learn the generated patterns, which are too difficult to be classified

correctly within 10,000 iterations. Based on R-XCS’s classification perfor-

mance, S-XCS was able to predict the difficulty levels of the problem (see

Figure 4.19).

Figure 4.18: R-XCS’s classification performance in the training mode to

learn different types of binary problems for 1,000 problems.

Next, S-XCS’s rule was further investigated. Table 4.7 gives samples of

S-XCS’s rules for predicting the problem difficulty for the complex image-

based data, where more than three features can be adjusted. The second col-

umn gives the value of the first feature in the problem (i.e. PatternDimension

that can take any value of ‘3 by 3, 4 by 4 and 5 by 5 dimensional pattern’).

The third column gives the value of the second feature in the problem

(i.e. PatternStroke that can take any value of ‘0, 1, 2 and 3’). The

fourth column gives the value of the third feature in the problem (i.e.

PatternOrientation that can take any value of orientation ‘Horizon-
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Figure 4.19: Average of S-XCS’s performance in the training mode for

predicting R-XCS’s learning ability/problem’s difficulty (either ‘hard’ or

‘easy’) from Exploit trials for 1,000 problems (500 Exploit, 500 Explore)

over 30 runs.

tal, Vertical, Diagonal1 and Diagonal2’). The fifth column gives the value

of the fourth feature in the problem (i.e. PatternAngle that can take any

value of ‘0, 90, 180 and 360 degree’. The sixth column gives the value of the

fifth feature in the problem (i.e. PatternOperator that can take a value

of logical operator ‘OR’ or ‘XOR’). The seventh column indicates that the

problem is either ‘easy’ or ‘hard’. The last two columns give S-XCS’s pre-

diction value and the fitness of S-XCS’s rule.

Note all of the problems were ‘hard’ except for rules 8 and 9, so it was

trivial for S-XCS to learn. After a certain number of iterations, S-XCS was

able to formulate appropriate knowledge in its population of rules. How-

ever, the criteria S-XCS created for the Problem-PatternDifficulty mapping

was only partially accurate due to the generalisation caused by the class

imbalance and the sparse coding (i.e. generating patterns for certain prob-

lem is not easy). For example, rules 8 and 9 incorrectly predicted that

the problems were considered ‘hard’ when both the prediction and fitness
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Table 4.7: Examples of S-XCS’s rules (complex image-based data).

Rule Condition Action Prediction Fitness

F1 F2 F3 F4 F5

1 ## #0 11#1 #0 1 1 1000 0.15

2 10 0# 11## ## 0 1 1000 0.11

3 #0 #0 #### #0 1 1 1000 0.21

4 ## ## 10## 0# # 1 1000 0.21

5 0# #1 #1## 0# 1 1 1000 0.02

6 ## #0 #1#1 0# 0 1 1000 0.02

7 ## ## 1### #0 # 1 1000 0.81

8 10 ## 110# 10 0 0 0 0.21

9 1# #1 1#1# 10 0 0 0 0.11

values are low.

Based on S-XCS’s performance on both of the problem domains (i.e.

simple and complex image-based data), a third set of experiments was

conducted in order to investigate S’s performance by applying two dif-

ferent styles of LCSs in S. In this experiment, S was applied to the simple

image-based data. First, the Michigan-style LCSs, XCS, was applied to S to

evolve S’s rules, so that S could predict the difficulty levels of the prob-

lem effectively. Figure 4.20 shows the average of S-XCS’s performance for

predicting the problem’s difficulty for 1,000 problems, while Figure 4.21

shows the average of S-XCS’s performance for 50,000 problems. The re-

sults indicate that S-XCS takes more iterations to predict the problem’s

difficulty to be considered either ‘hard’ or ‘easy’, and S-XCS’s prediction

performance increases on average from 80% to 90% (see Figure 4.21). The

results also suggest that S-XCS is required to evaluate the whole problem

domain in order to build appropriate knowledge of the problem.
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Figure 4.20: Average of S-XCS’s performance in the training mode for

predicting R-XCS’s learning ability/problem’s difficulty (either ‘hard’ or

‘easy’) from Exploit trials for 1,000 problems (500 Exploit, 500 Explore)

over 30 runs.

Figure 4.21: Average of S-XCS’s performance in the training mode for

predicting R-XCS’s learning ability/problem’s difficulty (either ‘hard’ or

‘easy’) from Exploit trials for 50,000 problems (25,000 Exploit, 25,000 Ex-

plore) over 30 runs.
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Table 4.8 describes samples of S-XCS’s rules on the simple image-based

data, where three features can be adjusted in the problem (i.e. [PatternDimension,

PatternOrientation, PatternOperator]), when S-XCS’s is executed

for 50,000 iterations. The second column gives the value of the first feature

in the problem (i.e. PatternDimension that can take any value of ‘3 by 3,

4 by 4 and 5 by 5 dimensional pattern mapping’). The third column gives

the value of the second feature in the problem (i.e. PatternOrientation

that can take any value of orientation ‘Horizontal, Vertical, Diagonal1 and

Diagonal2’). The fourth column gives the value of the third feature in the

problem (i.e. PatternOperator that can take a value of logical opera-

tor ‘OR’ or ‘XOR’). The fifth column indicates either the problem is ‘easy’

or ‘hard’ (0 or 1 respectively). The sixth column gives S-XCS’s prediction

value.

Table 4.8: Examples of S-XCS’s rules (simple image-based data).

Rule Condition Action Prediction

F1 F2 F3

1 ## #101 # 0 1,000

2 ## 0#11 # 0 1,000

3 ## 1#10 # 0 1,000

4 ## ##11 # 0 1,000

5 ## 101# # 0 1,000

6 10 0#00 # 1 1,000

7 10 #00# 1 1 1,000

8 10 00#0 # 1 1,000

9 10 000# # 1 1,000

10 10 00#0 # 1 1,000
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S-XCS predicted that the problem containing the feature of PatternOrientation

and PatternDimension (i.e. 4 by 4 dimensional patterns) was consid-

ered a ‘hard’ problem as the problem received the highest prediction value

(i.e. rules 6 to 10). In contrast, rules 1 to 5 suggest that the problem’s fea-

ture of PatternDimension does not affect the problem’s difficulty as

‘any dimensionality’ is considered ‘easy’ including the problem’s feature

of PatternOrientation. After a certain number of iterations (i.e. S-

XCS was executed for 50,000 iterations to learn 50,000 patterns), S-XCS

was able to formulate appropriate knowledge in its population of rules.

Again, the criteria S-XCS created for the Problem-PatternDifficulty mapping

was only partially accurate due to the generalisation caused by the class

imbalance and the sparse coding (i.e. generating patterns for certain prob-

lem is not easy and the generated image-based data were not properly

separable), even though S-XCS was trained longer.

Second, the Pittsburgh-style LCS, A-PLUS, is applied to S to evolve S’s

rules, such that S can predict the difficulty levels of the problem effectively.

Figure 4.22 shows the average of S-APLUS’s prediction performance for

predicting the problem’s difficulty for 1,000 problems on the simple image-

based data. S-APLUS was able to predict the problem’s difficulty based on

R-XCS’s performance. However, S-APLUS was unable to find a perfect

rule-set to describe the problem’s features that affected the problem’s dif-

ficulty. Instead, the proposed classifiers in the rule-set contained a sparse

coding, meaning that not all binary values were legal, making them only

partially accurate. There was only a small change in S-APLUS’s perfor-

mance after the first three to four hundred iterations in learning the prob-

lem. The results suggest that premature convergence may have occurred.

It is encouraging that the performance was around 96% on average. Some

improvement might be achieved through experimentation by adjusting a

few parameters (i.e. increasing the size of classifiers in the rule-set).
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Figure 4.22: Average of S-APLUS’s performance in the training mode for

predicting R-XCS’s learning ability/problem’s difficulty (either ‘hard’ or

‘easy’) from Exploit trials for 2,000 problems (1,000 Exploit, 1,000 Explore)

over 30 runs.

Table 4.9 describes samples of S-APLUS’s individual rule-set on the

simple image-based data, where three features can be adjusted in the problem

(i.e. [PatternDimension, PatternOrientation, PatternOperator]).

The second column gives the value of the first feature in the problem (i.e.

PatternDimension that can take any value of ‘3 by 3, 4 by 4 and 5 by 5

dimensional pattern mapping’). The third column gives the value of the

second feature in the problem (i.e. PatternOrientation that can take

any value of orientation ‘Horizontal, Vertical, Diagonal1 and Diagonal2’).

The fourth column gives the value of the third feature in the problem (i.e.

PatternOperator that can take a value of the logical operator ‘OR’ or

‘XOR’). The fifth column indicates either the problem is ‘easy’ or ‘hard’ (0

or 1 respectively). The sixth column gives a number of the same rules in

the S-APLUS population (macroclassifier).
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Table 4.9: Example of S-APLUS’s individual rule-set (simple image-based

data).

Rule Condition Action Numerosity

F1 F2 F3

1 ## #11# # 0 18

2 00 ###1 # 0 17

3 00 #00# # 0 13

4 ## ##11 # 0 11

5 ## 1##1 # 0 8

6 ## 0#00 1 1 23

7 ## 00#0 1 1 19

8 ## 1100 0 1 16

9 10 #000 # 1 10

10 10 0#0# # 1 23

After 1,000 iterations, S-APLUS was able to formulate appropriate knowl-

edge as described in Table 4.9. However, the criteria S-APLUS created for

the Problem-PatternDifficulty mapping was only partially accurate due to

the generalisation caused by the class imbalance and the sparse coding.

The results showed that the generated image-based data were not prop-

erly separable; one pattern might be labelled to more than one class, which

led to data ambiguity and class imbalance problems. Nevertheless, the

quality of solutions was reasonably good and readable compared to S-XCS

that applied Michigan-style LCSs. In fact, the features that affected the

problem’s difficulty had become apparent. The results suggested that the

problems containing the feature of PatternOrientation and PatternDimension

do affect the problem’s difficulty. For example, if the problem’s feature

PatternDimension was ‘4 by 4 dimensional pattern mapping’ (i.e. rule

9 and rule 10) it was considered to be ‘hard’ problem. On the other hand, if

the problem’s feature PatternDimension was ‘3 by 3 dimensional pat-
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terns mapping’ (i.e. rule 2 and rule 3) and had either ‘Diagonal1’ or ‘Diag-

onal2’ in PatternOrientation, it was considered an ‘easy’ problem.

4.2.1.2 Discussions and Findings

The overall aim of the section was to develop the Two-Cornered Coevolu-

tion System, where the generation agent (i.e the Sender) should be able

to tune the problem’s difficulty autonomously depending on the classifi-

cation agent’s ability to learn (i.e. to make the problem either ‘hard’ or

‘easy’). Nevertheless, in this domain (i.e. image-based data), the under-

lying feature relationships which control the ease of learning within the

problem domains were not easily separated. This makes the generation

agent unable to change the difficulty levels effectively.

In the first set of experiments, S was able to generate various prob-

lems for classification (i.e. simple image-based data and complex image-

based data). However, if R-XCS’s learning is halted too early, then R-XCS

was not able to learn to classify the patterns to the correct class accurately.

Therefore, an autonomous method is required to determine when to halt

R-XCS’s learning to identify its true capability. The 95% performance rate

that was used to separate ‘hard’ from ‘easy’ problems based on the previ-

ous results was not appropriate for the complex image-based data prob-

lem and reducing the knowledge about the problem features that S was

able to learn, is necessary.

Next, two different styles of LCSs (i.e. Michigan-style LCSs and Pittsburgh-

style LCSs) were applied to S in order to investigate the effectiveness of

both approaches for evolving S rules in predicting the problem’s diffi-

culty. A-PLUS is the Pittsburgh-style LCSs, that incorporated a few meth-

ods of Michigan-style LCSs, XCS, such as rule-subsumption and inaccurate

rule-deletion in its component. The adoption of rule-subsumption method

in A-PLUS is important to reduce the size of the final rules, by remov-

ing large numbers of specific rules through generalisation. Meanwhile,

the inaccurate rule-deletion helps the system focus its search for optimal
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rules more quickly. For all of the experiments, A-PLUS was run in on-line

mode, where only a single training instance is presented to the system.

This evaluation approach was in contrast to the original Pittsburgh-style

LCSs that had been designed only for off-line learning tasks, where a set

of pre-classified data instances was generated in advance. This approach

was introduced in order to suit the system design (i.e. generating each pat-

terns on-the-fly or instantly). According to S’s rules, it has been confirmed

that S-APLUS was able to produce more compact rules with less running

time (i.e. number of iterations). Furthermore, features in the problem that

affected R-XCS’s performance became apparent.

However, the findings showed that the generated image-based data

were not properly separable; one pattern might be labelled to more than

one class, which led to data ambiguity and class imbalance problems.

There was no underlying relation between the resulting pattern and the

features in the problem to distinguish the class clearly. Besides, S ran-

domly generated image-based data without having any mechanism that

could control a certain critical feature in the problem such as data spar-

sity, noise and class balance, which can adjust the difficulty of the prob-

lem. Therefore, if S is able to identify features in the problem that affect

R’s performance and predict the difficulty levels correctly, S can tune the

problem’s difficulty of the next problem more effectively.

4.2.1.3 Summary and Way Forward

Implementing a Pittsburgh-style LCS to the generation agent (i.e. the

Sender) in the Two-Cornered Coevolution System improved the explo-

ration of the rules structure, where the effect of the problem’s features to

the difficulty levels has become apparent. Furthermore, the proposed ap-

proach was able to reduce both the number of iterations and the running

time of the generation agent for predicting the problem’s difficulty, while

achieving solutions with the same or even higher accuracy compared to

the generation agent that implemented a Michigan-style LCS.
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However, the generation agent was unable to identify the problem’s

difficulty effectively due to sparse coding and class imbalance. This re-

sulted in the vast majority of randomly initialised rules being deleted,

because of not being accurate and leaving very few rules for the GA to

evolve. This problem can be solved by applying a new problem for clas-

sification (i.e. artificial data), where certain critical features in the prob-

lem (i.e. class balance, noise, decision boundary, number of instances, and

many other parameters) can be controlled to generate various classifica-

tion problems with different levels of difficulty. Therefore, in the next sec-

tion, the work focuses on implementing an equivalent system for address-

ing the artificial data instead of image-based data. Further investigation

will also be performed in order to study the differences between different

approaches of LCSs in the generation agent (e.g. whether to use Michigan-

style LCSs or Pittsburgh-style LCSs, i.e. to evolve complete rules or sub-

sets of rules to map the problem’s features to the difficulty levels).

4.2.2 Artificial Data for Classification

In this section, the results of the generation agent (i.e. the Sender (S)) and

the classification agent (i.e. the Receiver (R)) in the Two-Cornered Coevolu-

tion System are presented for addressing the artificial data. Both the prob-

lem domain and the solution evolved autonomously (i.e. the generation

agent created various problems and the associated datasets, while the clas-

sification agent learned each instance in the datasets).

The Tabu Search (TS) [77] technique was adapted on the two different

systems (i.e. the plain Sender 7 and the Sender that applied Pittsburgh-

style LCSs, A-PLUS) either to maximize or minimize the classification

agent’s performance (i.e. the Receiver). The first set of experiments was

performed in order to evaluate the effectiveness of TS technique in vary-

7no learning system involved, i.e. the automated evolvable problem generator as im-

plemented in the Section 3.1 for addressing the artificial data
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ing features value F in the problem, either to make the problem ‘harder’ or

‘easier’ for R-XCSR to learn. The second set of experiments was performed

to find the best system between the two systems (i.e. most effective or effi-

cient system) that can automatically adjust the problem’s difficulty based

on R-XCSR’s ability to learn.

First, TS is applied to S to search for the best combination of features

F in the problem that can vary the difficulty levels based on R-XCSR’s

performance. Next, TS is used either to maximize or minimize R-XCSR’s

performance by adjusting the problem’s difficulty. Third, both of the sys-

tems (i.e. the plain Sender and the Sender that applied Pittsburgh-style

LCSs, A-PLUS) were evaluated so that S could generate the next problem

at the appropriate levels of difficulty.

4.2.2.1 Experimental Results

In the first set of experiments, TS was applied to S (i.e the plain Sender),

either to maximize or minimize R-XCSR’s performance. Figures 4.23 and

4.24 show the average of R-XCSR’s classification performance when TS is

applied to S (i.e. S-TS) to search for the best combination of features F (i.e.

[Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]) for a two-class classifica-

tion problem, with the aim to maximize R-XCSR’s performance. S-TS was

initialised with a predefined problem, where [Fc=1 Fan=50 Fcn=50

Fcbl=50 Fcbd=25] and was likely to be a ‘hard’ problem. TS was used

to vary the features F in the problem except for Fn.
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Figure 4.23: Average of R-XCSR’s classification performance in the train-

ing mode to learn a two-class classification problem in the four problem

domains. TS is used in S for adjusting the difficulty levels (i.e. from ‘hard’

to ‘easy’).

Figure 4.24: Average of R-XCSR’s classification performance in the train-

ing mode to learn a two-class classification problem in the four problem

domains over 30 runs for 50 problems. TS is used in S for adjusting the

difficulty levels (i.e. from ‘hard’ to ‘easy’).
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Table 4.10 describes the changes of features F in the problem (i.e. from

initial problem to the next problem), when TS is applied to S (i.e. S-TS)

to maximize R-XCSR’s performance, where TS iterations is set to 100. S-

TS starts with the initial problem (the second column), where R-XCSR’s

classification performance is shown in the third column. Next, S-TS tunes

the initial problem to the next problem (the fourth column) to be ‘easier’

which increases R-XCSR’s performance (the fifth column). The last col-

umn shows R-XCSR’s execution time to address an individual problem

for a single run. Here, S-TS uses TS to discover the best combinations of

features F in the problem that can maximize R-XCSR’s performance (i.e.

selects the best combinations of features F from 100 iterations with high-

est classification performance), where R-XCSR’s performance is from the

training mode and R-XCSR’s parameters setting are fixed for each prob-

lem.

Table 4.10: Changes of features F when S-TS maximize R-XCSR’s perfor-

mance.

Problem

Domain

Initial Problem R

(%)

Next problem R

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 54 [2, 1, 0, 0, 0, 1, 0, 3, 2] 100 23 sec

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 47 [3, 1, 0, 1, 0, 0, 3, 4, 0] 100 43 sec

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 54 [4, 1, 0, 0, 1, 0, 3, 3, 3] 99 1 min

36 sec

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 49 [5, 1, 0, 0, 0, 0, 2, 4, 4] 97 2 min

45 sec
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S-TS was able to adjust the difficulty levels by varying the features

F in the problem to maximize R-XCSR’s performance, where S-TS can

make the problem ‘easier’ for R-XCSR to learn. For instance, when Fn=2,

TS changes the initial problem [2 1 0 0 0 50 50 50 25] to the next

problem [2 1 0 0 0 1 0 3 2], which increases R-XCSR’s performance

from 54% to 100% (see Table 4.10). The results suggest that applying TS

to S is suitable for helping S-TS to discover the best combination of fea-

tures F in the problem that alter R-XCSR’s performance (i.e. S-TS can

autonomously determine the effect of the individual problem feature to-

wards R-XCSR’s performance).

Figure 4.25 shows the average of R-XCSR’s classification performance

when TS is applied to S (i.e. S-TS) to search for the best combination of

features F (i.e. [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]) for a two-

class classification problem, with the aim to minimize R-XCSR’s perfor-

mance. S-TS was initialised with a predefined problem, where [Fc=1

Fan=5 Fcn=5 Fcbl=50 Fcbd=5] and was likely to be an ‘easy’ prob-

lem. TS was used to vary the features F in the problem except for Fn.

Figure 4.25: Average of R-XCSR’s classification performance in the train-

ing mode to learn a two-class classification problem in the four problem

domains over 30 runs for 50 problems. TS is used in S for adjusting the

difficulty levels (i.e. from ‘easy’ to ‘hard’).
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Table 4.11 describes the changes of features F in the problem (i.e. from

the initial problem to the next problem) when TS is applied to S to minimize

R-XCSR’s performance, and TS iterations is set to 100. S-TS starts with the

initial problem (the second column), and R-XCSR’s classification perfor-

mance is shown in the third column. Next, S-TS tunes the initial problem

to the next problem (the fourth column) to be ‘harder’ which decreases R-

XCSR’s performance (the fifth column). The last column shows R-XCSR’s

execution time to address an individual problem for a single run.

Table 4.11: Changes of features F when S-TS minimize R’s performance.

Problem

Domain

Initial Problem R

(%)

Next problem R

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 5, 5, 50, 5] 94 [2, 1, 0, 0, 1, 5, 5, 50, 5] 82 24 sec

Fn=3 [3, 1, 0, 0, 1, 5, 5, 50, 5] 86 [3, 1, 0, 1, 1, 5, 3, 50, 5] 84 45 sec

Fn=4 [4, 1, 0, 0, 1, 5, 5, 50, 5] 85 [4, 1, 0, 1, 1, 3, 3, 50, 4] 84 1 min

20 sec

Fn=5 [5, 1, 0, 0, 1, 5, 5, 50, 5] 88 [5, 1, 0, 1, 1, 5, 5, 50, 5] 79 2 min

28sec

Here, a single parameter tended to be the focus when applying TS to

S, which resulted in the approach becoming stuck in local optimum. For

example, when Fn=2, TS changes the initial problem [2 1 0 0 0 5 5

50 5] to the next problem [2 1 0 0 1 5 5 50 5]which decreases R-

XCSR’s performance from 94% to 82% (see Table 4.11). Subsequently there

is no significant difference in R-XCSR’s performance. Therefore, in the

next set of experiments, Pittsburgh-style LCSs, A-PLUS, was implemented

in S-TS to overcome this problem.
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The second set of experiments was conducted in order to investigate

S’s ability when two different systems were applied to S (i.e. either the

plain Sender with TS referred as S-TS or the Sender that applied Pittsburgh-

style LCS, A-PLUS, with TS referred as S-APLUS-TS). Both of the methods

were compared in order to find an effective system that autonomously ad-

justs the problem’s difficulty based on R-XCSR’s ability to learn (i.e. either

to maximize or minimize R’s performance).

Figure 4.26 show the average of R-XCSR’s classification performance

when TS is applied to S (i.e. either the plain Sender or the Sender-APLUS).

S’s objective is to minimize R-XCSR’s performance where S is initialised

with a predefined ‘hard’ problem (see Table 4.12 and Table 4.13).

Table 4.12 describes how S-TS changes the initial problem (the second

column) to the next problem (the fourth column) and decreases R-XCSR’s

performance (the fifth column) within a period of time (the sixth column).

Table 4.12: Changes of features F when S-TS minimize R-XCSR’s perfor-

mance.

Problem

Domain

Initial Problem R

(%)

Next problem R

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 5, 5, 50, 5] 92 [2, 1, 0, 0, 1, 5, 5, 50, 5] 82 17 sec

Fn=3 [3, 1, 0, 0, 1, 5, 5, 50, 5] 86 [3, 1, 0, 1, 1, 5, 3, 50, 5] 84 24 sec

Fn=4 [4, 1, 0, 0, 1, 5, 5, 50, 5] 85 [4, 1, 0, 1, 1, 3, 3, 50, 4] 84 51 sec

Fn=5 [5, 1, 0, 0, 1, 5, 5, 50, 5] 88 [5, 1, 0, 1, 1, 5, 5, 50, 5] 79 1 min

40 sec
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(a) S-TS minimize R-XCSR’s performance.

(b) S-APLUS-TS minimize R-XCSR’s performance.

Figure 4.26: Average of R-XCSR’s classification performance in the train-

ing mode to learn a two-class classification problem in the four problem

domains over 30 runs for 50 problems.
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Table 4.13 describes how S-APLUS-TS changes the initial problem (the

second column) to the next problem (the fourth column) and decreases R-

XCSR’s performance (the fifth column) within a period of time (the sixth

column).

Table 4.13: Changes of features F when S-APLUS-TS minimize R-XCSR’s

performance.

Problem

Domain

Initial Problem R

(%)

Next problem R

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 5, 5, 50, 5] 78 [2, 0, 1, 1, 1, 47, 23, 93, 19] 44 24 sec

Fn=3 [3, 1, 0, 0, 1, 5, 5, 50, 5] 70 [3, 0, 1, 1, 2, 38, 20, 50, 33] 43 1 min

2 sec

Fn=4 [4, 1, 0, 0, 1, 5, 5, 50, 5] 66 [4, 0, 1, 1, 2, 26, 28, 20, 4] 51 2 min

43 sec

Fn=5 [5, 1, 0, 0, 1, 5, 5, 50, 5] 75 [5, 0, 1, 1, 1, 13, 18, 32, 16] 73 4 min

50 sec

Note, R-XCSR’s performance in Table 4.13 is different from Table 4.12

because the results are recorded from two independent experiments with

different random seeds where each instance are created ’on-the-fly’ (the

data is created on-line).

Table 4.14 describes how S-APLUS-TS changes the initial problem (the

second column) to the next problem (the fifth column) until up to 10 prob-

lems which decreases R-XCSR’s performance (the third and sixth column)

when Fn=2.
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Table 4.14: Changes of features F when S-APLUS-TS minimize R-XCSR’s

performance (Fn=2).

Problem

Num.

Problem R

(%)

Problem

Num.

Problem R

(%)

0 [2, 1, 0, 0, 0, 5, 5, 50, 5] 78 1 [2, 0, 1, 1, 1, 47, 23, 93, 19] 44

2 [2, 0, 1, 1, 1, 33, 22, 79, 31] 38 3 [2, 0, 1, 1, 1, 26, 19, 70, 26] 47

4 [2, 0, 1, 1, 1, 38, 34, 79, 27] 49 5 [2, 0, 1, 1, 1, 26, 30, 52, 20] 58

6 [2, 0, 1, 1, 1, 47, 4, 44, 17] 51 7 [2, 0, 1, 1, 1, 36, 22, 88, 23] 50

8 [2, 0, 1, 1, 1, 23, 38, 61, 15] 58 9 [2, 0, 1, 1, 1, 47, 4, 43, 28] 54

Table 4.15 shows the results of the statistical test (i.e. student t-test)

in order to verify that S-APLUS-TS effectively minimizes R-XCSR’s perfor-

mance compared to S-TS. The data (sample) for this test is based on the

results from Figure 4.26. The p-value for each problem domain (i.e. Fn=2

to Fn=5) is far less than 0.05. The results indicate that there is a statis-

tically significant difference between the two systems. S-APLUS-TS per-

forms better than S-TS, where applying the Pittsburgh-style LCS, A-PLUS

with TS in S improved S’s rules and effectively minimize R-XCSR’s perfor-

mance.

Table 4.15: Results of the statistical test (i.e. student t-test) between two

systems (i.e. S-APLUS-TS and S-TS) to minimize the problem’s difficulty.

Problem Domain p-value

Fn=2 2.531E-20

Fn=3 1.754E-31

Fn=4 1.116E-29

Fn=5 6.919E-31
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The results indicate that S-TS struggles to minimize R-XCSR’s perfor-

mance using TS alone in its methods (see Figure 4.26). However, the re-

sults suggest that using the Pittsburgh-style LCS, A-PLUS, with TS in S

(i.e. S-APLUS-TS), not only facilitates S to discover the best combination

of features F in the problem, but it also improves S’s rule which effectively

minimize R-XCSR’s performance (see Figure 4.26 and Table 4.15). On the

other hand, both of the systems can minimize R-XCSR’s performance with

a small difference in the total execution time for the two problem domains

(i.e. Fn=2 and Fn=3) except for Fn=4 and Fn=5.

Figure 4.27 compares the average of R-XCSR’s classification perfor-

mance when S-TS and S-APLUS-TS are used to search for the best com-

bination of features F in the four problem domains. S’s objective is to max-

imize R-XCSR’s performance and S is initialised with an ‘easy’ predefined

problem (see Table 4.16 and Table 4.17).

Table 4.16 describes how S-TS changes the initial problem (the second

column) to the next problem (the fourth column) and increases R-XCSR’s

performance (the fifth column) within a period of time (the sixth column).

Table 4.16: Changes of features F when S-TS maximize R-XCSR’s perfor-

mance.

Problem

Domain

Initial Problem R

(%)

Next problem R

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 54 [2, 1, 0, 0, 0, 1, 0, 3, 2] 100 15 sec

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 47 [3, 1, 0, 1, 0, 0, 3, 4, 0] 100 27 sec

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 54 [4, 1, 0, 0, 1, 0, 3, 3, 3] 100 55 sec

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 49 [5, 1, 0, 0, 0, 0, 2, 4, 4] 100 1 min

55 sec
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(a) S-TS maximize R-XCSR’s performance.

(b) S-APLUS-TS maximize R-XCSR’s performance.

Figure 4.27: Average of R-XCSR’s classification performance in the train-

ing mode to learn a two-class classification problem in the four problem

domains over 30 runs for 50 problems.
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Table 4.17 describes how S-APLUS-TS changes the initial problem (the

second column) to the next problem (the fourth column) and increases R-

XCSR’s performance (the fifth column) within a period of time (the sixth

column).

Table 4.17: Changes of features F when S-APLUS-TS maximize R-XCSR’s

performance.

Problem

Domain

Initial Problem R

(%)

Next problem R

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 53 [2, 0, 1, 0, 1, 1, 3, 3, 2] 99 31 sec

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 44 [3, 0, 1, 1, 2, 0, 0, 0, 1] 100 44 sec

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 56 [4, 0, 1, 0, 3, 0, 0, 2, 0] 100 1 min

40 sec

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 57 [5, 0, 1, 0, 4, 4, 0, 0, 2] 100 4 min

20 sec

However, in this case the results suggest that using the Pittsburgh-style

LCS, A-PLUS, with TS helps S to discover the best combination of features

F in the problem which maximizes R-XCSR’s classification performance,

but there is no significant change in S’s rule from what has been discov-

ered by TS alone in S. Here, both systems successfully maximize R-XCSR’s

performance. Further, both of the systems can maximize R-XCSR’s classi-

fication performance with a small difference of the total execution time for

the three problem domains (i.e. Fn=2, Fn=3 and Fn=4) except for Fn=5.

4.2.2.2 Discussions and Findings

The overall aim of this section is to develop the Two-Cornered Coevolution

System, where the generation agent (i.e the Sender) is to be able to tune the

problem’s difficulty autonomously depending on the classification agent’s

(i.e the Receiver) ability to learn (i.e to make the problem either ‘harder’
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or ‘easier’). The goal has been achieved as S was able to autonomously

adjust and tune the difficulty of the problem (i.e. artificial dataset) based

on R’s ability to learn in the sense of strictly maximizing or minimizing R’s

performance. This is why the Three-Cornered Coevolution System is pre-

ferred over the Two-Cornered Coevolution System. In the Three-Cornered

Coevolution System both the rate of convergence to a classification perfor-

mance level and the maximum achievable performance level itself are not

known a priori.

In the first set of experiments, TS was adopted in S to search for the best

combination of features F in the problem that affected R’s classification

performance. Applying TS in S, helped S to discover the best combination

of features F in the problem that altered R’s classification performance (i.e.

S can autonomously determine the effect of individual problem features

regarding R’s classification performance). The results suggest that TS was

suitable for implementation in S, where S was able to adjust and tune the

problem’s difficulty either to make the problem ‘harder’ or ‘easier’ for R to

learn. The results also indicated that TS was able to adjust the problem’s

difficulty which could either ‘maximize’ or ‘minimize’ R’s performance.

The results also showed that R was able to address the problem for classi-

fication as expected.

Here, a single parameter tended to be the focus when applying TS to S

(see Table 4.11), resulting in the approach becoming stuck in local optima.

In order to overcome this problem, the second set of experiments was per-

formed to evaluate the two different systems (i.e. the plain Sender and

the Sender that applied Pittsburgh-style LCSs, A-PLUS) that adopted TS

so that S could generate the next problem at the appropriate level of diffi-

culty. The results showed that applying the Pittsburgh-style LCSs, APLUS,

in S had improved S’s rule, and TS was able to adjust the difficulty levels

more effectively by varying the features F in the problem specially to min-

imize R’s classification performance, where S could make the problems

‘harder’ for R to learn.
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4.2.2.3 Summary and Way Forward

Generating artificial data through specifying the problem’s features such

as [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd] rather than image-based

data has led to a system that can tune the datasets to adjust the perfor-

mance of LCSs in a desired manner. An enumerative analysis of the poten-

tial datasets identified the performance gradients, but the ‘on-line’ learner

(i.e. the Sender) identified useful gradients more efficiently. Important

features, which control the ease of learning within the problem domains

were identified using TS (e.g. extreme levels of noise decreased the classi-

fication agents’s performance). The classification agent (i.e. the Receiver)

was able to learn the generated datasets successfully, while the genera-

tion agent (i.e. the Sender) effectively tuned the problem’s difficulty based

on the classification agent’s performance. Applying the Pittsburgh-style

LCSs, A-PLUS, facilitated S to evolve and optimize the rules more effec-

tively in order to generate the next problem at the appropriate levels of

difficulty. The adaption of A-PLUS to an ‘on-line’ system was successful.

However, the Two-Cornered Coevolution System was implemented as

a coadaptive evolution rather than a real coevolution such as proposed in Wil-

son’s Three-Cornered Coevolution Framework. Thus, in the next phase

the main focus is to ensure that all the agents cooperate with each other

through a coevolutionary process within the system, so that the agents

will trigger evolution when necessary. In Phase 3, the Three-Cornered Co-

evolution System consists of three different agents that communicate and

work cooperatively to adapt with the changes of the problem. The im-

plementation of this framework will be explored in the next section. In

Phase 3, the generation agent (i.e. the Sender) needs to tune and adjust

the problem’s difficulty based on the two different classification agents’

ability to learn (i.e. the Receiver (R) and the Interceptor (I) which will use

different techniques of learning) [124]. I is required to direct S to change

the problem’s difficulty when R becomes stagnated through the coevolu-

tionary process.
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4.3 Phase 3: Three-Cornered Coevolution System

The overall aim of Phase 3 is to develop the Three-Cornered Coevolution Sys-

tem where three different agents evolve to adapt to and drive the changes

of the problem. In Phase 3, a new classification agent, termed the Intercep-

tor is introduced to trigger the coevolutionary process within the system

(see Section 3.3). Here, both of the classification agents (i.e. the Receiver

(R) and the Interceptor (I)) evolve and compete to learn various classifi-

cation problems (i.e. artificial data) using different types of learning tech-

niques (i.e. supervised learning or reinforcement learning), while the gen-

eration agent (i.e. the Sender (S)) evolves to tune and adjust the problem’s

difficulty based on the classification agents’ ability to learn. A set of ex-

periments was performed to investigate the generation agent’s ability and

the classification agents’ performance in this problem domain8.

All the agents work in a coevolutionary manner (i.e. coadaptive evolu-

tion) so that all the agents evolve and adapt to the changes of the prob-

lem. R and I were only applied to the artificial data, while S tuned and

adjusted the problem’s difficulty based on R’s and I’s performance. By

introducing a similar third agent (i.e. the Interceptor), the difference in

classification performance can be used to trigger the change in problem

difficulty when necessary. The third agent can also assist in determining

whether the problem should be made ‘harder’ or ‘easier’ when the agents’

performance have stagnated.

8Note: problem domain refers to various datasets with different number of data features

in each dataset depending on value Fn (i.e. Fn=2 to Fn=5), instance refers to an instance

in each dataset, problem refers to a problem from any problem domain that contains a

problem-specific parameters (i.e. [Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd].
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4.3.1 Interceptor’s Performance

In this section, the results of the new classification agent (i.e. I’s classifi-

cation performance) in the Three-Cornered Coevolution System are pre-

sented. A set of experiments was performed in order to investigate the

ability of: 1) I to learn various classification problems (i.e. artificial data)9,

2) S for maximizing and minimizing I’s classification performance10. I was

applied to the four problem domains (i.e. Fn=2 to Fn=5), while the diffi-

culty levels were tuned by S either to maximize or minimize I’s classifica-

tion performance.

The first set of experiments was performed in order to investigate the

ability of: 1) I to learn various classification problems (i.e. artificial data),

2) S to maximize I’s classification performance by tuning and adjusting the

features F in the problem.

Figure 4.28 shows the average of I’s classification performance, where

S-TS is able to search for the best combination of features F in the problem,

in the four problem domains and maximizes I’s classification performance.

S is initialised with a predefined problem (selected to be a ‘hard’ problem)

(see Table 4.18).

Figure 4.29 shows the average of I-UCS’s classification performance,

where S-APLUS-TS successfully searches for the best combination of fea-

tures F in the problem to address the same problem (see Table 4.19), and

maximizes I-UCS’s classification performance.

9I is initially set to be a supervised learning system, i.e. UCS
10either ‘S-TS’ where Tabu Search is applied to S and no learning systems involved

or ‘S-APLUS-TS’ where Tabu Search is applied to S and S used Pittsburgh-style LCSs,

A-PLUS
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Figure 4.28: Average of I-UCS’s classification performance in the training

mode to learn a two-class classification problem in the four problem do-

mains over 30 runs for 50 problems. TS is used in S for adjusting the diffi-

culty levels (i.e. from ‘hard’ to ‘easy’).

Figure 4.29: Average of I-UCS’s classification performance in the training

mode to learn a two-class classification problem in the four problem do-

mains over 30 runs for 50 problems. S-APLUS together with TS is used for

adjusting the difficulty levels (i.e. from ‘hard’ to ‘easy’).



192 CHAPTER 4. RESULTS

Table 4.18 describes how S-TS changes the initial problem (the second

column) to the next problem (the fourth column) and increases I-UCS’s per-

formance (the fifth column) within a period of time (the sixth column). The

results show that S-TS is able to tune the features in the problem and adjust

the problem’s difficulty in order to maximize I-UCS’s performance.

Table 4.18: Changes of features F when S-TS maximize I-UCS’s perfor-

mance.

Problem

Domain

Initial Problem I

(%)

Next problem I

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 54 [2, 0, 0, 0, 1, 3, 0, 4, 3] 100 15sec

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 54 [3, 0, 0, 1, 1, 1, 4, 2, 4] 100 27sec

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 51 [4, 0, 0, 0, 1, 0, 2, 3, 3] 100 55sec

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 39 [5, 0, 0, 1, 0, 1, 0, 1, 0] 100 1min

55sec

Table 4.19 describes how S-APLUS-TS changes the initial problem (the

second column) to the next problem (the fourth column) and increases I-

UCS’s performance (the fifth column) within a period of time (the sixth

column). The results also show that S-APLUS-TS successfully tunes the

features in the problem and adjusts the problem’s difficulty to maximize

I-UCS’s performance.
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Table 4.19: Changes of features Fwhen S-APLUS-TS maximize I-UCS’s per-

formance.

Problem

Domain

Initial Problem I

(%)

Next problem I

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 55 [2, 0, 1, 0, 1, 0, 4, 0, 1] 100 29sec

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 50 [3, 0, 1, 1, 1, 1, 4, 0, 4] 100 44sec

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 39 [4, 0, 2, 0, 0, 0, 4, 3, 2] 100 1min

39sec

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 51 [5, 0, 1, 0, 2, 1, 0, 0, 3] 100 2min

20sec

In this case, the results confirmed that applying TS in S (i.e. either S-TS

or S-APLUS-TS) facilitated S to discover the best combination of features

F in the problem to maximize I’s performance. There were no significant

changes in S-APLUS-TS’s rules compared to S-TS’s rules. Both systems

successfully maximized I’s performance, though S-APLUS-TS required a

longer time compared to S-TS.

The second set of experiments was performed in order to investigate

the ability of: 1) I to learn various classification problems (i.e. artificial

data), 2) S to minimize I’s classification performance by tuning and adjust-

ing the features F in the problem.

Figure 4.30 shows the average of I-UCS’s classification performance,

where S-TS is unable to minimize I-UCS’s classification performance ef-

fectively on the four problem domains. S is initialised with a predefined

problem (an ‘easy’ problem) (see Table 4.20) to minimize I-UCS’s classifi-

cation performance. It is not an easy task for S-TS to search for the best

combination of features F in this set-up as S-TS needs to search multiple

features simultaneously and becomes trap in the local optima.
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Figure 4.30: Average of I-UCS’s classification performance in the training

mode to learn a two-class classification problem in the four problem do-

mains over 30 runs for 50 problems. TS is used in S for adjusting the diffi-

culty levels (i.e. from ‘easy’ to ‘hard’).

Figure 4.31 shows the average of I-UCS’s classification performance,

where S-APLUS-TS successfully minimizes I-UCS’s classification perfor-

mance. S-APLUS-TS is able to search for the best combination of features

F in the problem to address the same problem (see Table 4.21) effectively

and minimizes I-UCS’s classification performance.

Table 4.20 describes how S-TS changes the initial problem (the second

column) to the next problem (the fourth column) and decreases I-UCS’s

performance (the fifth column) within a period of time (the sixth column).

The results show that S-TS is unable to tune the features F in the problem

and adjust the problem’s difficulty effectively in order to minimize I-UCS’s

performance.

Table 4.21 describes how S-APLUS-TS changes the initial problem (the

second column) to the next problem (the fourth column) and decreases I-

UCS’s performance (the fifth column) within a period of time (the sixth

column). The results show that S-APLUS-TS successfully tunes the fea-

tures in the problem and adjusts the problem’s difficulty to minimize I-

UCS’s performance.
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Figure 4.31: Average of I-UCS’s classification performance in the training

mode to learn a two-class classification problem in the four problem do-

mains over 30 runs for 50 problems. A-PLUS with TS is used in S for

adjusting the difficulty levels (i.e. from ‘easy’ to ‘hard’).

Table 4.20: Changes of features F when S-TS minimize I-UCS’s perfor-

mance.

Problem

Domain

Initial Problem I

(%)

Next problem I

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 5, 5, 50, 5] 92 [2, 1, 0, 0, 1, 4, 2, 50, 5] 82 17 sec

Fn=3 [3, 1, 0, 0, 1, 5, 5, 50, 5] 89 [3, 1, 0, 1, 1, 3, 0, 50, 4] 57 24 sec

Fn=4 [4, 1, 0, 0, 1, 5, 5, 50, 5] 75 [4, 1, 0, 0, 1, 5, 5, 50, 5] 75 51 sec

Fn=5 [5, 1, 0, 0, 1, 5, 5, 50, 5] 88 [5, 1, 0, 1, 1, 5, 4, 50, 3] 81 1 min 40

sec
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Table 4.21: Changes of features F when S-APLUS-TS minimize I-UCS’s per-

formance.

Problem

Domain

Initial Problem I

(%)

Next problem I

(%)

Time

Taken

Fn=2 [2, 1, 0, 0, 0, 5, 5, 50, 5] 93 [2, 0, 1, 1, 1, 19, 21, 34, 32] 58 29 sec

Fn=3 [3, 1, 0, 0, 1, 5, 5, 50, 5] 84 [3, 0, 1, 0, 0, 38, 0, 1, 1] 51 1 min

19 sec

Fn=4 [4, 1, 0, 0, 1, 5, 5, 50, 5] 66 [4, 0, 1, 1, 1, 4, 3, 52, 31] 47 1 min

52 sec

Fn=5 [5, 1, 0, 0, 1, 5, 5, 50, 5] 75 [5, 0, 1, 1, 0, 2, 1, 86, 0] 43 3 min

38 sec

The results showed that S is unable to minimize I-UCS’s classification

performance effectively, using TS alone in its methods. In this case, TS was

focused on individual parameter tuning compared to A-PLUS that was

able to perform holistic multiple simultaneous parameter tuning. How-

ever, the results suggest that applying TS to S was suitable for facilitat-

ing S to discover the optimal combination of features F in the problem

that alters I-UCS’s performance. Further, adapting the Pittsburgh-style

LCSs, A-PLUS, with TS in S, not only facilitated S to search for the com-

binations of features in the problem, but it also improved S’s rules which

effectively minimized I-UCS’s classification performance. However, the

total execution time increased when the system used S-APLUS-TS, but I-

UCS’s classification performance decreased significantly. In this case, S-

APLUS-TS was able to effectively minimize I-UCS’s classification perfor-

mance, whereas previously I-UCS was able to solve the simpler problems

for classification as expected.
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4.3.2 Classification Agents’ Performance

In this section, the results of the classification agents (i.e. the frequency

of peak performance) and the generation agent (i.e. changes of features F

in the problem) in the Three-Cornered Coevolution System are presented.

The frequency of peak performance is defined as the number of maximum

classification performance of the classification agent (i.e. a repetitive point

of the maximum classification performance on the graph, where the clas-

sification performance of R and I is greater than 60% and the difference in

performance between R and I is less than the threshold value) for solving

a number of problems.

A set of experiments was performed in order to investigate the ability

of I11 to trigger S12 to change the problem’s difficulty (i.e. either to make it

‘harder’ or ‘easier’). S tunes the problem’s difficulty to be ‘harder’, when

the difference in performance between R and I is less than the threshold

value. S tunes the problem’s difficulty to be ‘easier’, when the difference

in performance between R and I is greater than the threshold value. R and

I were applied to the four problem domains (i.e. Fn=2 to Fn=5), where

S tuned the difficulty levels either to increase or decrease the problem’s

difficulty.

It is a standard practice to take the average of 30 independent runs in

assessing the results of EC experiments in order to avoid outliers and assist

in statistical analysis. However, this makes the assumption that each prob-

lem remains the same for 30 independent runs, which is not the case here,

as S varies the problem to R and I stochastically. Although the patterns

of performance may be similar between all the runs, the phase between

performance improvements or decreases may (often) differ, which render

taking the average at any given instance meaningless. Therefore, the re-

11either ‘I-UCS’ that used the supervised learning system (i.e. UCS) or ‘I-XCSR’ that

used the reinforcement learning system (i.e. XCSR)
12‘S-APLUS-TS’ where Tabu Search is applied to S and S used Pittsburgh-style LCSs,

A-PLUS
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sults only illustrate R’s and I’s classification performance from a single run

out of 30 runs conducted to verify consistency in performance for learning

a number of problems. The classification performance is recorded from

the average of every 100 Exploit trials.

The first set of experiments was performed in order to investigate the

ability of I-XCSR13 to trigger S to change the problem’s difficulty when the

threshold values were set to: 1) 10%, and 2) 20%.

Figure 4.32 shows the frequency of peak performance of R-UCS and

I-XCSR when I-XCSR that used reinforcement learning is set to trigger S to

change the problem’s difficulty on the four problem domains (i.e. Fn=2 to

Fn=5) for a single run. The frequency of peak performance is higher for

all the problem domains except for Fn=2 when the threshold value is set

to 10% compared to 20%.

13Here, I-XCSR is the triggering agent when the difference in performance is calculated

as I-XCSR’s performance - R-UCS’s performance
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(a) threshold=10, Fn=2. (b) threshold=20, Fn=2.

(a) threshold=10, Fn=3. (b) threshold=20, Fn=3.

(a) threshold=10, Fn=4. (b) threshold=20, Fn=4.

(a) threshold=10, Fn=5. (b) threshold=20, Fn=5.

Figure 4.32: Frequency of peak performance of R-UCS and I-XCSR when

I-XCSR triggers S to change the difficulty levels (threshold=10,20).
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Table 4.22 provides the frequency of peak performance of R-UCS and

I-XCSR (the second and third column) and the percentage of peak perfor-

mance (i.e. the frequency of peak performance divided by the total prob-

lems) (the fourth and fifth column) when I-XCSR triggers S to change the

problem’s difficulty on the four problem domains (i.e. Fn=2 to Fn=5). The

threshold values are set to 10% and 20%.

Table 4.22: Frequency of peak performance of R-UCS and I-XCSR when

I-XCSR triggers S to change the difficulty levels (threshold=10,20) for 50

problems from a single run.

Problem

Domain

peak per-

formance

(threshold=10)

peak per-

formance

(threshold=20)

% of peak

performance

(threshold=10)

% of peak

performance

(threshold=20)

Fn=2 10 20 20 40

Fn=3 24 21 48 42

Fn=4 18 17 36 34

Fn=5 23 16 46 32

Table 4.23 describes how S changes the initial problem to the next prob-

lem, which either increases or decreases I-XCSR’s and R-UCS’s perfor-

mance when the threshold value is set to 10%. For example, when Fn=2,

S starts with the initial problem that needs to be learned by I-XCSR and R-

UCS (the second column), where the classification performance is shown

in the third and fourth column. S tunes the initial problem to the next prob-

lem (the fifth column) to be ‘harder’ when the difference in performance is

less than threshold=10, which decreases I-XCSR’s and R-UCS’s performance

(the sixth and seventh column). S tunes the second problem (the second

column) to the third problem (the fifth column) to be ‘easier’ when the

difference in performance is greater than threshold=10, which increases I-

XCSR’s and R-UCS’s performance (the sixth and seventh column). Con-

versely, when Fn=3 and Fn=4, S tunes the second problem (the second
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column) to the third problem (the fifth column) to be ‘harder’ when the dif-

ference in performance is less than threshold=10, which decreases I-XCSR’s

and R-UCS’s performance (the sixth and seventh column).

Table 4.23: Changes of features F when I-XCSR triggers S to change the

problem’s difficulty (threshold=10).

Problem

Domain

Initial Problem I

(%)

R

(%)

Problem=2 I

(%)

R

(%)

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 100 100 [2, 0, 1, 1, 1, 21, 14, 18, 4] 59 77

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 88 100 [3, 0, 1, 0, 0, 1, 7, 0, 31] 91 100

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 89 100 [4, 0, 1, 1, 0, 2, 3, 4, 3] 90 98

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 98 97 [5, 0, 1, 0, 0, 47, 3, 3, 0] 40 61

Problem

Domain

Problem=2 I

(%)

R

(%)

Problem=3 I

(%)

R

(%)

Fn=2 [2, 0, 1, 1, 1, 21, 14, 18, 4] 59 77 [2, 2, 0, 1, 1, 1, 0, 0, 0, 3] 100 100

Fn=3 [3, 0, 1, 0, 0, 1, 7, 0, 31] 91 100 [3, 0, 1, 1, 1, 1, 12, 63, 27] 43 59

Fn=4 [4, 0, 1, 1, 0, 2, 3, 4, 3] 90 98 [4, 0, 1, 1, 1, 16, 2, 4, 3] 53 86

Fn=5 [5, 0, 1, 0, 0, 47, 3, 3, 0] 40 61 [5, 0, 1, 0, 0, 1, 1, 3, 4] 97 100

Table 4.24 describes how S changes the initial problem to the next prob-

lem, which either increases or decreases I-XCSR’s and R-UCS’s perfor-

mance when the threshold value is set to 20%. The sequence is similar to

that described earlier. S tunes the initial problem to the next problem (the

fifth column) to be ‘harder’ when the difference in performance is less than

threshold=20, which decreases I-XCSR’s and R-UCS’s performance (the sixth

and seventh column). Next, S tunes the second problem (the second col-

umn) to the third problem (the fifth column) again to be ‘harder’ when

the difference in performance is less than threshold=20, which decreases I-

XCSR’s and R-UCS’s performance (the sixth and seventh column).
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Table 4.24: Changes of features F when I-XCSR triggers S to change the

problem’s difficulty (threshold=20).

Problem

Domain

Initial Problem I

(%)

R

(%)

Problem=2 I

(%)

R

(%)

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 100 100 [2, 0, 1, 1, 1, 21, 14, 18, 4] 59 77

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 88 100 [3, 0, 1, 0, 1, 1, 3, 48, 31] 37 66

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 89 100 [4, 0, 1, 1, 1, 31, 4, 4, 3] 50 73

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 98 97 [5, 0, 1, 0, 0, 47, 3, 3, 0] 40 61

Problem

Domain

Problem=2 I

(%)

R

(%)

Problem=3 I

(%)

R

(%)

Fn=2 [2, 0, 1, 1, 1, 21, 14, 18, 4] 59 77 [2, 0, 1, 1, 0, 38, 1, 4, 1] 44 60

Fn=3 [3, 0, 1, 0, 1, 1, 3, 48, 31] 37 66 [3, 0, 1, 1, 1, 2, 0, 0, 4] 91 96

Fn=4 [4, 0, 1, 1, 1, 31, 4, 4, 3] 50 73 [4, 0, 1, 1, 0, 0, 1, 2, 2] 89 100

Fn=5 [5, 0, 1, 0, 0, 47, 3, 3, 0] 40 61 [5, 0, 1, 0, 0, 1, 1, 3, 4] 97 100

In this set-up, I-XCSR was able to trigger S to change the problem’s

difficulty for a given threshold. S tuned the problem’s difficulty to be

‘harder’, when the difference in performance between R and I was less

than the threshold value, which decreased R’s and I’s performance. S ad-

justed the problem’s difficulty to be ‘easier’, when the difference in per-

formance between R and I was greater than the threshold value which

increased R’s and I’s performance.
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The second set of experiments was performed in order to investigate

the ability of I-UCS14 to trigger S to change the problem’s difficulty when

the threshold values were set to: 1) 10%, 2) 20%.

Figure 4.33 shows the frequency of peak performance of R-XCSR and I-

UCS when I-UCS, that used supervised learning, is able to trigger S to change

the problem’s difficulty on the four problem domains (i.e. Fn=2 to Fn=5)

for a single run. The frequency of peak performance is higher for all the

problem domains when the threshold value is 10%, instead of 20%.

Table 4.25 provides the frequency of peak performance and the per-

centage of peak performance when I-UCS is used to trigger S to change the

problem’s difficulty. The frequency of peak performance again is higher

for all the problem domains when the threshold value is set to 10% rather

than 20%.

Table 4.25: Frequency of peak performance of R-XCSR and I-UCS when

I-UCS triggers S to change the difficulty levels (threshold=10,20) for 50

problems from a single run.

Problem

Domain

peak per-

formance

(threshold=10)

peak per-

formance

(threshold=20)

% of peak

performance

(threshold=10)

% of peak

performance

(threshold=20)

Fn=2 25 9 50 18

Fn=3 24 7 48 14

Fn=4 25 11 50 22

Fn=5 25 10 50 20

14Here, I-UCS is the triggering agent when the difference in performance is calculated

as I-UCS’s performance - R-XCSR’s performance



204 CHAPTER 4. RESULTS

(a) threshold=10, Fn=2. (b) threshold=20, Fn=2.

(a) threshold=10, Fn=3. (b) threshold=20, Fn=3.

(a) threshold=10, Fn=4. (b) threshold=20, Fn=4.

(a) threshold=10, Fn=5. (b) threshold=20, Fn=5.

Figure 4.33: Frequency of peak performance of R-XCSR and I-UCS when

I-UCS triggers S to change the difficulty levels (threshold=10,20).
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Table 4.26 describes how S changes the initial problem to the next prob-

lem, which either increases or decreases I’s and R’s performance when the

threshold value is set to 10. Table 4.27 describes how S changes the initial

problem to the next problem, which either increases or decreases I’s and

R’s performance when the threshold value is set to 20. In this case, I-UCS was

able to trigger S to change the problem’s difficulty for a given threshold.

The process of S changing the problems either to be ‘harder’ or ‘easier’

was similar to that described earlier.

Table 4.26: Changes of features F when I-UCS triggers S to change the

problem’s difficulty (threshold=10).

Problem

Domain

Initial Problem I

(%)

R

(%)

Problem=2 I

(%)

R

(%)

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 100 58 [2, 0, 1, 0, 1, 1, 1, 0, 4] 100 90

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 100 80 [3, 0, 1, 0, 1, 1, 2, 1, 2] 100 68

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 100 81 [4, 0, 1, 0, 1, 3, 2, 0, 2] 100 83

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 100 73 [5, 0, 1, 0, 0, 1, 3, 2, 3] 100 89

Problem

Domain

Problem=2 I

(%)

R

(%)

Problem=3 I

(%)

R

(%)

Fn=2 [2, 0, 1, 0, 1, 1, 1, 0, 4] 100 90 [2, 0, 1, 1, 1, 0, 8, 51, 36] 48 52

Fn=3 [3, 0, 1, 0, 1, 1, 2, 1, 2] 100 68 [3, 0, 1, 1, 1, 1, 12, 63, 27] 100 80

Fn=4 [4, 0, 1, 0, 1, 3, 2, 0, 2] 100 83 [4, 0, 3, 1, 1, 1, 1, 3, 2] 100 77

Fn=5 [5, 0, 1, 0, 0, 1, 3, 2, 3] 100 89 [5, 0, 1, 1, 0, 1, 4, 4, 2] 100 86
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Table 4.27: Changes of features F when I-UCS triggers S to change the

problem’s difficulty (threshold=20).

Problem

Domain

Initial Problem I

(%)

R

(%)

Problem=2 I

(%)

R

(%)

Fn=2 [2, 1, 0, 0, 0, 50, 50, 50, 25] 100 58 [2, 0, 1, 0, 1, 1, 1, 0, 4] 100 90

Fn=3 [3, 1, 0, 0, 1, 50, 50, 50, 25] 100 80 [3, 0, 1, 0, 0, 26, 1, 2, 3] 55 61

Fn=4 [4, 1, 0, 0, 1, 50, 50, 50, 25] 100 81 [4, 0, 1, 0, 1, 31, 3, 3, 4] 57 61

Fn=5 [5, 1, 0, 0, 1, 50, 50, 50, 25] 100 73 [5, 0, 1, 0, 0, 1, 3, 2, 3] 100 89

Problem

Domain

Problem=2 I

(%)

R

(%)

Problem=3 I

(%)

R

(%)

Fn=2 [2, 0, 1, 0, 1, 1, 1, 0, 4] 100 90 [2, 0, 1, 1, 1, 0, 8, 51, 36] 48 52

Fn=3 [3, 0, 1, 0, 0, 26, 1, 2, 3] 55 61 [3, 0, 1, 1, 1, 29, 3, 59, 10] 50 59

Fn=4 [4, 0, 1, 0, 1, 31, 3, 3, 4] 57 61 [4, 0, 1, 1, 0, 46, 1, 2, 4] 36 56

Fn=5 [5, 0, 1, 0, 0, 1, 3, 2, 3] 100 89 [5, 0, 1, 1, 1, 1, 4, 84, 4] 19 36

The results suggest that both classification agents (i.e. R and I) achieved

different levels of classification performance, where in most problems the

classification agent that used the supervised learning system (i.e. UCS)

achieved a better performance as expected (see Table 4.26 and 4.27). These

results are related to the way the learning system is designed. UCS is

specifically designed for the classification tasks and benefits directly from

the known label (provided class). In contrast, XCSR receives an immediate

reward from the environment upon predicting an action (class) for each

input, where XCSR works, based on a ‘trial-an-error’ basis. For all of the

experiments, both systems were given 2,000 instances for classifying the

instance either belonging to ‘Class 1’ or ‘Class 0’. The results suggest that

XCSR requires a larger number of instances than UCS in order to achieve

its best performance.

Varying the threshold values (i.e. 10% and 20%) either increased or de-

creased the frequency of peak performance of R and I. In this case, both
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systems (either ‘I-XCSR’ (the reinforcement learning system) or ‘I-UCS’

(the supervised learning system)) successfully triggered S to change the

problem’s difficulty. When the threshold value was set to 10%, the fre-

quency of peak performance was higher than when set to 20%, for almost

all the problem domains. The results also showed I (either I-XCSR or I-

UCS) was able to trigger S to tune the problem’s difficulty either to make

the problem ‘harder’ or ‘easier’. If the difference in performance between

R and I was less than the threshold value, S tuned the problem’s difficulty

to be ‘harder’. Conversely, if the difference in performance between R and

I was greater than the threshold value, S tuned the problem’s difficulty

to be ‘easier’. In this case, the ideal threshold value was 10%, where I

successfully triggered S to change the difficulty levels of the problem and

increased the frequency of peak performance.

4.3.3 Triggering Agent’s and Learning Agent’s Performance

In this section, the results of the classification agents (i.e. the frequency of

peak performance and the data analysis) and the generation agent in the

Three-Cornered Coevolution System are presented. A set of experiments

was performed in order to investigate the ability of I15 either as being suit-

able to be a learning agent or a triggering agent when the difference in per-

formance between I and R was less than the threshold value: 1) 10%, and

2) 20%.

The classification agent that is set to trigger S to change the problem’s

difficulty is termed the triggering agent. The difference in performance be-

tween the triggering agent and the learning agent is defined as follows:

T = TriggeringAgentperformance− LearningAgentperformance (4.1)

15either ‘I-UCS’ that used the supervised learning system (i.e. UCS) or ‘I-XCSR’ that

used the reinforcement learning system (i.e. XCSR)
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If I is set as the triggering agent, T is defined as follows:

T = Iperformance−Rperformance (4.2)

where I is the triggering agent, and R is the learning agent.

Initially, I was the triggering agent when I triggered S to change the

problem’s difficulty, while R was the learning agent. R and I were applied

to the four problem domains (i.e. Fn=2 to Fn=5), where S tuned the diffi-

culty levels based on the difference in performance between I and R.

The first and second sets of experiments were performed in order to

investigate the ability of I-XCSR and I-UCS to be suitable either as a trig-

gering agent or learning agent.

Figure 4.34 and Figure 4.35 show the frequency of peak performance

between I-XCSR and I-UCS to trigger S to change the problem’s difficulty,

when the threshold value is set to 10% and to 20% respectively, for a single

run. The frequency of peak performance is higher for almost all the prob-

lem domains when the threshold value is set to 10% compared to 20%,

either I-XCSR or I-UCS is used to trigger S to change the problem’s diffi-

culty.
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(a) I-XCSR trigger S, Fn=2. (b) I-UCS trigger S, Fn=2.

(a) I-XCSR trigger S, Fn=3. (b) I-UCS trigger S, Fn=3.

(a) I-XCSR trigger S, Fn=4. (b) I-UCS trigger S, Fn=4.

(a) I-XCSR trigger S, Fn=5. (b) I-UCS trigger S, Fn=5.

Figure 4.34: I-XCSR versus I-UCS triggers S to change the difficulty levels

(threshold=10).
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(a) I-XCSR trigger S, Fn=2. (b) I-UCS trigger S, Fn=2.

(a) I-XCSR trigger S, Fn=3. (b) I-UCS trigger S, Fn=3.

(a) I-XCSR trigger S, Fn=4. (b) I-UCS trigger S, Fn=4.

(a) I-XCSR trigger S, Fn=5. (b) I-UCS trigger S, Fn=5.

Figure 4.35: I-XCSR versus I-UCS trigger S to change difficulty levels

(threshold=20).
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Table 4.28 and Table 4.29 compare the percentage of peak performance

between I-XCSR and I-UCS to trigger S to change the problem’s difficulty,

when the threshold value is set to 10% and to 20% respectively, for a single

run.

Table 4.28: Percentage of peak performance between I-XCSR and I-UCS

(threshold=10) for 50 problems.

Problem

Domain

I-XCSR trig-

ger S (% peak

performance)

I-UCS trigger S

(%peak perfor-

mance)

Fn=2 20 50

Fn=3 48 48

Fn=4 36 50

Fn=5 46 50

Table 4.29: Percentage of peak performance between I-XCSR and I-UCS

(threshold=20) for 50 problems.

Problem

Domain

I-XCSR trig-

ger S (% peak

performance)

I-UCS trigger S

(%peak perfor-

mance)

Fn=2 40 18

Fn=3 42 14

Fn=4 34 22

Fn=5 32 20
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The percentage of peak frequency is higher for all of the problem do-

mains, if I-UCS is used to trigger S to change the problem’s difficulty and

the threshold value is set to 10%. Conversely, the frequency of peak per-

formance is higher for all of the problem domains, if I-XCSR is used to

trigger S to change the problem’s difficulty and the threshold value is set

to 20%.

Table 4.30 and Table 4.31 present the analysis data when I-XCSR is used

to trigger S to change the problem’s difficulty where the threshold value is

set to 10 and 20 respectively. Table 4.32 and Table 4.33 present the analysis

data when I-UCS is used to trigger S to change the problem’s difficulty,

where the threshold value is set to 10% and 20% respectively. The second

column indicates R’s and I’s best performance and the third column indi-

cates R’s and I’s worst performance. The next column gives R’s and I’s av-

erage performance over 50 problems. The fifth column gives the standard

deviation of R’s and I’s performance (e.g. the data distribution about the

mean value). The last column gives the standard error of R’s and I’s per-

formance (e.g. how the mean varies with different experiments measuring

the same quantity). Results are varied when different learning techniques

(i.e. UCS and XCSR) are used in I to trigger S to change the problem’s

difficulty.
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Table 4.30: Analysis data, when I-XCSR triggers S to change the difficulty

levels (threshold=10) for 50 problems.

Problem

Domain

Agent Maximum

Perfor-

mance

Minimum

Perfor-

mance

Average

Perfor-

mance

Std Std Error

Fn=2 I-XCSR 100.0 8.0 45.2 19.69 2.78

R-UCS 94.0 17.0 52.3 18.05 2.55

Fn=3 I-XCSR 98.0 19.0 69.2 25.66 3.63

R-UCS 100.0 2.0 83.8 19.37 2.74

Fn=4 I-XCSR 92.0 11.0 71.1 21.89 3.10

R-UCS 100.0 11.0 84.8 19.62 2.77

Fn=5 I-XCSR 100.0 12.0 70.8 27.75 3.92

R-UCS 100.0 28.0 80.9 21.29 3.01

Table 4.31: Analysis data, when I-XCSR triggers S to change the difficulty

levels (threshold=20) for 50 problems.

Problem

Domain

Agent Maximum

Perfor-

mance

Minimum

Perfor-

mance

Average

Perfor-

mance

Std Std Error

Fn=2 I-XCSR 100.0 17.0 66.96 27.86 3.94

R-UCS 100.0 41.0 82.22 17.90 2.53

Fn=3 I-XCSR 100.0 22.0 66.08 25.48 3.60

R-UCS 100.0 27.0 82.40 20.16 2.85

Fn=4 I-XCSR 100.0 27.0 59.86 21.91 3.10

R-UCS 100.0 34.0 76.60 19.54 2.76

Fn=5 I-XCSR 100.0 6.0 63.76 26.65 3.77

R-UCS 100.0 29.0 77.20 20.96 2.96
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Table 4.32: Analysis data, when I-UCS triggers S to change the difficulty

levels (threshold=10) for 50 problems.

Problem

Domain

Agent Maximum

Perfor-

mance

Minimum

Perfor-

mance

Average

Perfor-

mance

Std Std Error

Fn=2 I-UCS 100.0 44.0 76.32 24.03 3.40

R-XCSR 100.0 57.0 87.40 13.96 1.97

Fn=3 I-UCS 96.0 16.0 67.08 26.49 3.75

R-XCSR 100.0 16.0 85.12 19.85 2.81

Fn=4 I-UCS 100.0 21.0 71.48 24.30 3.44

R-XCSR 100.0 45.0 87.64 15.15 2.14

Fn=5 I-UCS 100.0 42.0 77.64 21.51 3.04

R-XCSR 100.0 58.0 88.08 13.38 1.89

Table 4.33: Analysis data, when I-UCS triggers S to change the difficulty

levels (threshold=20) for 50 problems.

Problem

Domain

Agent Maximum

Perfor-

mance

Minimum

Perfor-

mance

Average

Perfor-

mance

Std Std Error

n=2 I-UCS 100.0 4.0 57.82 26.61 3.76

R-XCSR 100.0 10.0 60.44 19.52 2.76

Fn=3 I-UCS 100.0 8.0 51.80 22.16 3.13

R-XCSR 87.0 22.0 52.72 14.37 2.03

Fn=4 I-UCS 100.0 8.0 60.50 29.48 4.17

R-XCSR 88.0 17.0 58.90 16.71 2.36

Fn=5 I-UCS 100.0 16.0 54.88 21.70 3.07

R-XCSR 95.0 19.0 60.40 17.42 2.46
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When I-XCSR was used to trigger S to change the problem’s difficulty

and the threshold value was set to 20% compared with 10%, for all the

problem domains, R achieved 100% classification performance, and R-

UCS’s worst classification performance also increased (see Table 4.31). R-

UCS’s average classification performance was above 75% and the standard

error of R was below than 3.0 for all the problem domains (see Table 4.31),

again when I-XCSR was used to trigger S to change the problem’s diffi-

culty and the threshold value was set to 20% rather than 10%.

When I-UCS was used to trigger S to change the problem’s difficulty

and the threshold value was set to 10% rather than 20%, R-XCSR achieved

100% classification performance for all the problem domains except for

Fn=3, and R-XCSR’s worst classification performance also increased ex-

cept for Fn=3 (see Table 4.32). R-XCSR’s average classification perfor-

mance was above 85% and the standard error of R was below 3.0 for all

the problem domains again when I-UCS was used to trigger S to change

the problem’s difficulty and the threshold value was set to 10% rather than

20% (see Table 4.32).

It is noted that in certain problem domains R’s and I’s classification

performance are below 50% for solving the binary classification. This is

because the results are recorded from a single run instead of the average

of 30 runs for learning a number of problems, where the classification per-

formance is traced from every 100 exploit trial.

Table 4.34 and Table 4.35 show the mean square error (MSE) between

R-UCS and R-XCSR for the first 10 problems when either I-XCSR or I-UCS

is used to trigger S to change the problem’s difficulty, and the threshold

value is set to 10% and 20% respectively. The first column is R-UCS’s MSE

when I-XCSR is a triggering agent. The second column is R-XCSR’s MSE

when I-UCS is a triggering agent.
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Table 4.34: Mean square error (MSE) between R-XCSR and R-UCS (thresh-

old=10).

Problem

Domain

MSE R-UCS

(triggering

agent: I-XCSR)

MSE R-XCSR

(triggering

agent: I-UCS)

Result

Fn=2 158.7 190.1 R-UCS < R-XCSR

Fn=3 180.6 650.0 R-UCS < R-XCSR

Fn=4 218.0 463.0 R-UCS < R-XCSR

Fn=5 172.3 165.0 R-UCS > R-XCSR

Table 4.35: Mean square error (MSE) between R-XCSR and R-UCS (thresh-

old=20).

Problem

Domain

MSE R-UCS

(triggering

agent: I-XCSR)

MSE R-XCSR

(triggering

agent: I-UCS)

Result of MSE

Fn=2 490.6 194.9 R-UCS > R-XCSR

Fn=3 392.9 157.7 R-UCS > R-XCSR

Fn=4 313.6 224.0 R-UCS > R-XCSR

Fn=5 333.7 117.2 R-UCS > R-XCSR
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Table 4.34 shows that the mean square error of R-UCS is small on all the

problem domains except for Fn=5, when I-XCSR is the triggering agent

when the threshold value is set to 10%. The results indicate that R-UCS

is suitable to be the learning agent when MSE R-UCS is smaller than R-

XCSR. Table 4.35 show R-XCSR’s mean square error is small on all the

problem domains, when I-UCS is the triggering agent and the threshold

value is set to 20%. Here, the results indicate that R-XCSR is suitable to be

the learning agent when MSE R-XCSR is smaller than R-UCS.

Therefore, the results suggest that XCSR was suitable to be the trig-

gering agent, while UCS should be the learning agent when the threshold

value was set to 10%. Conversely, the results suggest that XCSR was more

suitable to be the learning agent rather than the triggering agent when the

threshold value was set to 20%.

4.3.4 Classification Agents’ Performance when Problem’s

Difficulty Increased

In this section, the results of the classification agents (i.e. the classifica-

tion performance) and the generation agent (i.e. changes of features F in

the problem) in the Three-Cornered Coevolution System are presented. In

the previous section S tunes the problem’s difficulty to be either ‘harder’

or ‘easier’ (see Section 4.3.3). Here, S consecutively tunes the problem’s

difficulty to be ‘harder’ and generates various ‘difficult’ problems for clas-

sification. A set of experiments was performed in order to investigate the

capability of R and I using different types of learning systems16 to learn,

while S consistently increased the problem’s difficulty. R and I were ap-

plied to the four problem domains (i.e. Fn=2 to Fn=5), where S tuned

the difficulty levels to be ‘harder’ to increase either R’s or I’s classification

performance at a time. The threshold value was set to 10%.

16either the supervised learning system (i.e. UCS) or the reinforcement learning system

(i.e. XCSR)
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In the first set of experiments, the capability of R-XCSR and I-UCS

is investigated when S increases the difficulty levels for the four problem

domains. S is tasked to minimize I-UCS’s performance.

Figure 4.36 depicts the classification performance between R-XCSR and

I-UCS on the four problem domains (i.e. Fn=2 to Fn=5) when S increases

the problem’s difficulty. The plots show that for most of the problems,

UCS outperforms XCSR, as expected, due to the increased of domain in-

formation. Next, these results are discussed in more detail (see Table 4.36).

(a) Fn=2. (b) Fn=3.

(a) Fn=4. (b) Fn=5.

Figure 4.36: R-XCSR’s versus I-UCS’s performance when S consistently

tunes the problem’s difficulty to be ‘harder’ while minimizing I-UCS’s per-

formance.
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Table 4.36 describes the changes of features F in the problem (i.e. ex-

amples of problem, from the initial problem up to 10 problems) when S in-

creases the problem’s difficulty while minimizing I-UCS’s classification per-

formance for Fn=2. S starts with the initial problem (the first row), where

R-XCSR’s and I-UCS’s classification performances are shown in the last

two columns. Next, the initial problem is adjusted to the next problem

(the second row) by S to be ‘harder’ which affects R-XCSR’s and I-UCS’s

classification performance (the last two columns), and so on. It is noted

that when Fn=2 and S is tasked to make the problem ‘harder’, S sets Fd

to be 1 (i.e. from Fd=0 to Fd=1). The results indicate that I-UCS achieves

better results compared to R-XCSR, specifically for addressing the class

imbalance problems (i.e. problem 1, 5, 6, 9 and 10, when the class bal-

ance (i.e. Fcbl) decreases. Here, one class (i.e. ‘Class 0’) is represented

by a larger number of instances than the other class (i.e. ‘Class 1’). In

the noisy problem (i.e. problem 4, 7 and 10), where the noise that applies

to the action attribute (class) of the instance (i.e. Fan) is higher, I-UCS is

more robust than R-XCSR. I-UCS also outperforms R-XCSR in the problem

where the decision boundary (i.e. Fcbd) is small (i.e. problem 1, 5 and 6).

The results from the other problem domains (i.e. Fn=3, Fn=4 and Fn=5)

show the same pattern which is not shown here.

R-XCSR performed better than I-UCS when the class balance (i.e. Fcbl)

was set in the range of 50-60%, while the noise that applied to the action

(i.e. Fan) and condition (i.e. Fcn) was low (i.e. problem 2, 3 and 4). Con-

versely, when the values of the class balance (i.e. Fcbl), the noise that

applied to the action (i.e. Fan) and condition (i.e. Fcn), and the class

boundary (i.e. Fcbd) were increased, I-UCS achieved better performance

than R-XCSR (i.e. problem 5 to 10).
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Table 4.36: Changes of features F when S increases problem’s difficulty

while minimizing I-UCS’s performance (Fn=2).

Problem

Number

Fc Fd Fi Fr Fan Fcn Fcbl Fcbd R-

XCSR

(%)

I-

UCS

(%)

0 0 0 0 1 5 5 50 5 96 96

1 0 1 1 1 3 5 26 3 96 98

2 0 1 1 1 2 1 60 0 75 66

3 0 1 1 1 0 4 65 4 71 66

4 0 1 1 1 5 38 48 16 78 75

5 0 1 0 1 3 1 78 0 48 57

6 0 1 0 1 1 4 76 2 66 69

7 0 1 1 1 4 33 56 6 55 76

8 0 1 1 1 1 0 78 2 70 70

9 0 1 1 1 3 3 45 36 45 57

10 0 1 1 1 4 26 25 4 78 98
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In the second set of experiments, the capability of R-UCS and I-XCSR

is investigated when S increases the difficulty levels for the four problem

domains. S is tasked to minimize I-XCSR’s performance instead of R-UCS’s

performance.

Figure 4.37 depicts R-UCS’s and I-XCSR’s classification performance

on the four problem domains (i.e. Fn=2 to Fn=5) when S increases the

problem’s difficulty. The plots illustrate that for most of the problems,

R-UCS achieves better performance compared to I-XCSR. Again UCS out-

performs XCSR for almost all the problems, where these results are further

described in Table 4.37.

(a) Fn=2. (b) Fn=3.

(a) Fn=4. (b) Fn=5.

Figure 4.37: R-UCS’s versus I-XCSR’s performance when S consistently

tunes the problem’s difficulty to be ‘harder’ while minimizing I-XCSR’s

performance.



222 CHAPTER 4. RESULTS

Table 4.37 describes the changes of features F in the problem (i.e. ex-

amples of problem, from the initial problem up to 10 problems) when S

increases the problem’s difficulty while minimizing I-XCSR’s classification

performance for Fn=2. S starts with the initial problem (the first row), where

R-UCS’s and I-XCSR’s classification performance are shown in the last two

columns. Next, the initial problem is adjusted to the next problem (the sec-

ond row) by S to be ‘harder’ which affect R-UCS’s and I-XCSR’s classifica-

tion performance (the last two columns), and so on. The results indicate

R-UCS outperforms I-XCSR for addressing the class imbalance problems

(i.e. problem 2, 3, 5, 7, 8, 9 and 10), when the class balance (i.e. Fcbl)

decreases. However, in the noisy problem (i.e. problem 7 and 10), where

the noise that applies to the condition attribute of the instance (i.e. Fcn)

is higher, there is a significant difference between R-UCS’s performance

and I-XCSR’s performance. In the case of a smaller decision boundary (i.e.

problem 6), R-UCS also outperforms I-XCSR. The results from the other

problem domains (i.e. Fn=3, Fn=4 and Fn=5) show the same pattern

which is not shown here for the sake of brevity.

R-UCS achieved better performance compared to I-XCSR even though

S increased the problem’s difficulty by increasing the value of the class

balance (i.e. Fcbl) and the noise that applied to the action (i.e. Fan) and

condition (i.e. Fcn) for all problems except for problem 1. I-XCSR per-

formed better than R-UCS when the class balance (i.e. Fcbl) was set to

100% (all instances were set to ‘Class 1’ or ‘Class 0’), while the noise that

applied to the action (i.e. Fan) was nearly 50% and the noise that applied

to the condition (i.e. Fcn) was 0% (i.e. problem 4).
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Table 4.37: Changes of features F when S increases problem’s difficulty

while maximizing I-XCSR’s performance (Fn=2).

Problem

Number

Fc Fd Fi Fr Fan Fcn Fcbl Fcbd I-

XCSR

(%)

R-

UCS

(%)

0 0 0 0 1 5 5 50 5 75 95

1 0 1 1 1 39 2 0 3 58 61

2 0 1 1 0 1 0 1 1 66 99

3 0 1 1 1 4 4 1 3 66 97

4 0 1 1 1 46 0 0 0 58 57

5 0 1 1 1 2 4 1 3 66 100

6 0 1 0 0 4 1 84 0 50 57

7 0 1 0 1 3 2 3 3 62 94

8 0 1 0 0 2 4 3 4 64 96

9 0 1 0 0 1 3 2 2 70 96

10 0 1 1 0 3 0 3 2 69 97
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4.3.5 Discussions and Findings

The overall aim of this work is to develop a Three-Cornered Coevolution

System, where three different agents work cooperatively and adapt to the

changes of the problem. The goal has been achieved as the system is capa-

ble of triggering (activating) coevolution between the participating agents

in the system when necessary without human involvement. S was able to

tune and adjust the difficulty levels based on the difference in performance

between R and I, while both R and I learned the problem using different

techniques of learning.

In Section 4.3.1, the new classification agent (i.e. the Interceptor) that

used supervised learning LCSs, I-UCS was applied to the four problem

domains (i.e. Fn=2 to Fn=5), where the difficulty levels were tuned and

adjusted by S. The results confirmed that S-APLUS-TS was successful and

effectively tuned and adjusted the problem’s difficulty by varying features

in the problem compared to S-TS, to either maximize or minimize I’s clas-

sification performance. Moreover, the results also suggested I-UCS was

able to solve the problems as expected.

In Section 4.3.2, the classification agents’ performance (i.e. R’s and I’s

frequency of peak performance, where R and I used two different learning

systems) in the coevolutionary system was investigated. In this case, the

frequency of peak performance was higher on the four problem domains

when the threshold value was set to 10% compared to when the threshold

value was set to 20%, where I-UCS was able to trigger S to change the prob-

lem’s difficulty and improved R’s performance. In addition, S was able to

change features in the problem to either make the problem ‘harder’ or

‘easier’. If the difference in performance between R and I was greater than

the threshold value, S was able to change the problem’s difficulty to be-

come ‘easier’ which decreased the gap between R and I. Conversely, if the

difference in performance between R and I was smaller than the thresh-

old value, S was able to change the problem’s difficulty to ‘harder’ which

increased the gap between R and I and decreased R’s and I’s performance.
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In Section 4.3.3 a set of experiments was performed to investigate the

effectiveness of using two different learning systems in I in order to de-

termine whether UCS or XCSR was more suitable to be the learning agent

or the triggering agent. In this case, when the threshold value was set to

10% rather than 20%, the results suggested that XCSR was suitable to be

the triggering agent, while UCS being the learning agent, even though I-

UCS was able to improve R’s performance. However, the results suggest

that XCSR was more suitable to be the learning agent rather than the trig-

gering agent, even though I-XCSR was able to improve R’s performance,

when the threshold value was set to 20% instead of 10%.

In Section 4.3.4, the capability of the classification agents (i.e. R and

I) that used different types of learning systems (i.e. either UCS or XCSR)

on ‘hard’ problems was investigated, where the threshold value was set

to 10. For almost all the problems, UCS outperformed XCSR, even though

S was tasked to maximize XCSR’s performance. In comparison, UCS was

specifically designed for supervised learning, while XCS was more general

and learned only from the feedback about action consequences [87]. It was

expected that UCS would perform well in all tested problems as UCS was

provided with the known label. The results indicated that UCS was more

robust than XCSR for addressing the class imbalance problems and UCS

was less sensitive to parameter settings compared to XCSR.

It was found that both systems (i.e. UCS and XCSR) were not achieved

100% performance for solving a certain ‘hard’ problems created by S due

to the same parameter setting being used for XCSR and UCS for all of the

experiments. In [84, 85], the paper provides a few resampling techniques

that allow UCS to deal with the class imbalance problems more effectively.

However, these techniques were not applied for this work. In [89, 90],

the author reports there are two critical parameters in XCS for optimal

performance (i.e. the learning rate and the GA triggering threshold θGA).

Again, the same learning rate and the GA triggering threshold θGA was

used in XCSR. In future, if XCSR is configured appropriately (e.g. adaptive



226 CHAPTER 4. RESULTS

tuning on the two critical parameters), it is hypothesised that a significant

improvement of XCSR’s performance can be achieved.

4.4 Summary and Way Forward

In the Three-Cornered Coevolution System, I was the main agent that trig-

gered the coevolutionary process, while S was the main agent that con-

trolled the coevolutionary process between the participating agents when

necessary. S was able to tune and adjust the problem’s difficulty autonomously

based on the classification agents’ ability to learn within the given thresh-

old, either to make the problem ’harder’ or ’easier’. Further, the behaviour

of two different learning systems (i.e. UCS and XCSR) depending on the

type and the percentage of noise, class imbalance and the characteristics

of the data was investigated. As S increased the problem’s difficulty, R’s

and I’s performance were varied, where features in the problem (i.e. Fan,

Fcn, Fcbl and Fcbd) that affected either UCS’s or XCSR’s performance

were apparent. Therefore, if both learning systems are configured appro-

priately (i.e. to self-adapt during learning), both systems become compet-

itive in solving complex classification problems.

The core principle of the research to develop a novel Three-Cornered

Coevolution System, where three different agents work cooperatively in a

coevolutionary system has been achieved. The generation agent was able

to determine the effect on the triggering of the coevolutionary process be-

tween the classification agents, to successfully tune and adjust the prob-

lem’s difficulty. In future, the generation should be further enhanced to let

the classification agents continuously improve, especially when the prob-

lem’s difficulty becomes ‘harder’ and ‘complex’. Thus, the cooperative

coevolution between all the agents can be performed in such a way that

each agent attempts to evolve and achieve its best performance consis-

tently. Instead, a cooperative coevolution can be further implemented in

the Three-Cornered Coevolution System.



Chapter 5

Discussion

A theoretical framework of Three-Cornered Coevolution was proposed by

Wilson in the paper ‘Coevolution of Pattern Generators and Recognizers’

[124]. The author proposed an automatic system for creating a pattern gen-

erator and two pattern recognizers that might provide new and human-

independent insight into the pattern recognition problem [124]. However,

this theoretical framework had not yet been implemented and tested. It

was not known how the coevolutionary process would actually work be-

tween the pattern generator and the pattern recognizers within the system.

Several issues were identified in Wilson’s paper. First, is the coevolu-

tionary framework relevant to the way natural patterns form? Secondly,

if the framework functions as a pattern recognizer, will the system evolve

similar methods to human saccades? Thirdly, how well will the frame-

work drive the coevolution in the system, given that one of the pattern

recognizers is provided with prior information? Finally, if the framework

works, will the results have wider relevance than image classification?

In order to address the above issues, this work has dealt with the first

and the third issues specifically. In answering the first issue, two problem

domains have been developed: image-based data and artificial data. The

results showed that the artificial data was more appropriate for artificial

systems compared to the image-based data in order to develop the coevo-
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lutionary system. In this domain, a variety of datasets can be built with

different characteristics defined by a set of difficulty factors (i.e. dimen-

sionality, noise, class balance, decision complexity) for generating various

classification problems at different levels of difficulty. Further, different

types of difficulty factors for the classification tasks can be introduced

to test the learner’s ability, which can be assessed using different types

of performance measure (i.e. robustness, scalability, and predictive accu-

racy). Within this domain, when the coevolutionary process is triggered,

the pattern generator is able to coevolve and adapt with the changes (i.e.

to tune and adjust the problem’s difficulty appropriately based on the pat-

tern recognizers’ classification performance).

As the focus was now on the artificial data task, the second issue on

human saccades evolution was not considered in the work for this thesis.

However, this issue can be considered in future work, where it can be

handled using image-based data.

In addressing the third issue, this work applied different techniques of

learning (i.e. supervised learning and reinforcement learning) in the pat-

tern recognizers, whereas the pattern generator was provided with useful

information regarding the problem domain. Here, the pattern generator

learned for the benefit of the group of learning systems [97] (i.e. to tune

and adjust the problem’s difficulty appropriately based on the pattern rec-

ognizers’ classification performance).

Learnt information regarding the problem domain was therefore useful

in order for the pattern generator to generate the next problem at appro-

priate levels of difficulty. On the other hand, in order for the pattern recog-

nizers to address the on-line arrival of problem and coordination knowl-

edge more flexibly, the pattern recognizers should depend less on shared-

information [104] so that it can adapt to changing environments. Here,

the pattern recognizers are given their own learning goal (i.e. to solve the

classification problems) independent from the pattern generator’s goal.

The proposed framework for a human-independent pattern recogni-
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tion system by Wilson provided a vast opportunity for research. The frame-

work offers the potential for autonomous learning, extending to complex

image-based data (pattern) and insight into coevolution learning over stan-

dard studies of pattern recognition that can be explored further.

In the next section, related issues and highlights of overall findings

for each phase are discussed. Insightful discussions are provided to an-

swer the above issues based on the experimental results from the previous

chapter.

5.1 Phase 1: An Evolvable Problem Generator

In order to develop a human-independent system for addressing classifica-

tion problems, the system should be capable of creating an appropriate

problem domain where it could be changed and adjusted in meaningful

ways. Thus, Phase 1 was necessary to establish an appropriate problem

domain for classification tasks that could be evolved and tuned automati-

cally as a basis of the Three-Cornered Coevolution System. In Phase 1, two

different problem domains for classification tasks that can be tuned auto-

matically (i.e. image-based data and artificial data) have been established.

For simplicity, a method to generate image-based data with different

dimensionality as an initial problem domain was developed. However,

the image-based data were not suitable for application to the Three-Cornered

Coevolution System. This was because important features in the problem

that altered the classification performance of the pattern recognizers were

not transparent.

In this image-based data task, the underlying feature relationships that

control the ease of learning within the problem domain were not easily

separated. Findings showed that the generated image-based data were not

well separable: one pattern may be labeled to more than one class, which

leads to data ambiguity and class imbalance. It has been discovered that

there was no underlying relation between the resulting image-based data
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(pattern) and the features in the problem in order to distinguish the class

clearly. The problem formulation was not intrinsically separable, thus the

set of features was not sufficient to describe the underlying concept.

In addition, the generation agent randomly generated image-based data

without having any mechanism that could control certain features in the

problem, such as data sparsity, noise and class balance. Therefore, the in-

terpretation of the image-based data (pattern) created for each problem

and mapped to corresponding difficulty levels were not clear. Moreover,

a small number of certain patterns was rare, which introduced sparsity

to the problems. This caused the system to wrongly generalize all such

‘problems’ as ‘difficult’. However, many more samples would have re-

sulted in the patterns being trivial to learn, but this would have been time

consuming.

A further challenge for pattern recognition research was to create prob-

lems with large sets of examples that could be learned from [124]. When

the number of instances and the dimensionality increased and the prob-

lem’s difficulty became complex, the classification agent consumed a large

amount of memory and demanded a much longer training time than would

be expected. Therefore, the classification agent was only tested within a

limited bound rather than the whole search space of the problem domain

in order to investigate features in the problem that altered the classification

agent’s performance.

Instead of using the image-based data, it was now considered better

to use the artificial data where various datasets for the classification tasks

could be generated based on a list of problem-specific parameters. Find-

ings strongly suggested that the method of using artificial datasets for

classification was more relevant and suitable for several reasons. Various

datasets for the classification task could be built with different character-

istics defined by a set of factors controlling difficulty (i.e. dimensionality,

noise, class balance, decision complexity) as suggested in [39, 103, 83]. Fur-

thermore, a wide range of the complexity factors in data mining could be
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introduced to test the classifier’s ability, which could be measured based

on different types of performance measure such as robustness, scalability,

and predictive accuracy as described in [72, 73]. It was considered better

to generate the datasets by specifying features rather than patterns. The

problem generation of artificial datasets for pattern extraction tasks has

led to a system that can tune and adjust the problem’s difficulty based on

the learner’s ability to learn.

5.1.1 Tuning of Pattern Recognition Task versus Interact-

ing with a Learning System

It was important to ensure that the problem domain was flexible in order

to be tuned and adjusted, e.g. the difficulty levels of the problem could

either be increased or decreased. It was hypothesised that by tuning a cer-

tain feature(s) in the problem the pattern generator could make the prob-

lem either ‘harder’ or ‘easier’ to learn. The findings indicated that the new

problem domain of artificial data for classification can be tuned and ad-

justed in meaningful ways so that the gradient of performance related to

the difficulty levels exist (see Figure 4.14). Within this domain, the classi-

fication agent’s ability can be investigated under a known scenario; where

the artificial data can be generated according to a particular known fea-

ture of the problem. Thus, issues of problem difficulty such as noise, class

balance, decision complexity and many others can be introduced in a con-

trolled way.

Based on the enumerative analysis of the potential datasets (see Fig-

ure 4.14), the gradient of performance related to the difficulty levels were

identified and became apparent. The surface landscape of the classifica-

tion agent’s performance showed the trade-off surface for each problem

domain that altered the classification agent’s performance when a certain

feature in the problem was adjusted. The results indicated that a gradient

in difficulty existed in relation to features in the problem.
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Next, the method of the automated evolvable problem generator was

introduced for generating various artificial data. Here, EC algorithms,

specifically GA in an LCS, were applied to the automated problem gen-

erator. The GA was commonly used for rule discovery. GA was used to

create various artificial data for the classification tasks in order to deter-

mine the classification agent’s behaviour and test the classification agent’s

accuracy under various scenarios. The results showed that GA efficiently

created the evolutionary processes within the system compared to the enu-

merative method. Millions of generations of the artificial data could be

executed and repeated on a computer under various circumstances. Fur-

ther, GA enabled the system to automatically deploy solutions for more

complex problems with less time.

The introduced method of the automated evolvable problem generator

enabled the production of scalable and evolvable artificial data for classi-

fication with various levels of difficulty. In addition, the problem gener-

ator allowed detailed analysis of the results to high precision to be per-

formed in comparison with the enumerative method. Details of the anal-

ysis, specifically on the important areas of the search space that contains

useful information to the problem generator, could be conducted.

The conceptual distinction between the new method and the enumer-

ative method is that, in the enumerative method, each and every point

of the search space (i.e. the list of problem-specific parameters) needs to

be evaluated in order to achieve the optimal solution, which is very time

consuming. The enumerative method may fail to search the space of any

problem with moderate size and complexity because it may become sim-

ply impractical to search all the points in the space [8]. The problem gen-

erator has a list of problem-specific parameters that can generate random

instances for each parameter value. Further, the characteristics of the prob-

lem can be tuned by adjusting the problem-specific parameters.

This method enabled a systematic investigation of the learner’s abil-

ity on the most important sub-set of the problem domain (i.e. the hardest
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parameter range of the problem) to be performed. In particular, when

there were many combinations of features in the problem, the problems

would be hard to learn. Thus, results relating the problem’s characteris-

tics to learner performance could be extracted (see Figure 4.14) and fur-

ther investigation on the interaction of problem-specific parameters could

be performed. For instance, important features which control the ease

of learning within the problem domain for the classification system were

identified e.g. extreme levels of noise.

5.1.2 Selection of Agent

In this work, the coevolution approach required an interaction between the

agents, where each agent attempted to adapt with one another’s changes

in an on-line manner. Therefore, both of the agents (i.e. the generation

agent and the classification agent) were designed as on-line systems. The-

oretically, the on-line system has the advantage over the off-line system in

the following ways. First, in order to learn and continue to adapt to the

changes of the environment (i.e. the coevolutionary approach), the on-line

system is necessary. Secondly, the training data (i.e. image-based data or

artificial data created on-the-fly) can be generated easily, based on partic-

ular problem-specific parameters during the system’s operational phase.

This method allows a systematic investigation of the learner’s ability by

relating the problem characteristics to the learner’s performance to be per-

formed. This includes determining the learner’s optimal performance at

different stages of the iterations. Further, various types of problems can be

generated instantly to test the learner’s performance and ability based on

a certain performance measure. Thirdly, the on-line system is potentially

more robust because errors or omissions, while creating the training set,

can be corrected during the system’s operational phase. In contrast, the

off-line system is presented with the whole training set in order to solve

the problem at hand. As a consequence, it is a waste of computational re-
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sources and time to track the learner’s performance at each iteration until

the end of the process, especially when the learner does not reach its high-

est performance. By the time the process is finished, it is too late to amend

and make any correction.

In this work, Learning Classifier Systems (LCSs) are mainly applied

as the learning systems. LCSs were chosen to address the classification

problems based on the potential characteristics described as follows:

1. Interpretability [2]: The system produced solutions in a form of human-

readable ’condition-action’ rules. The rules were easily interpreted

and readable, which suggested interesting dependencies of attributes

in the problem under study. For example, the classification agent

’condition-action’ rules were retrieved from file(s) for further analy-

sis (see Section 3.1.3.2 and Section 3.1.4.2). A study on the associated

information regarding the problem domain was performed success-

fully in order to understand the classification agent’s behaviour for

a particular problem. The interpretability of the ’condition-action’

rules offered a potential tool either for explanatory data analysis or

predictive modeling analysis.

2. Generalisation [46]: The system has the capability to generalise over

the input (state) in order to develop a compact description of the

input-output map that has been learned. The introduction of this

generality allowed the system to sample parts of the state space at

different levels of abstraction [74]. The system was therefore able to

represent learnt information in a compact form of rules and applied

the learned knowledge to unseen input. For instance, each time the

classification agent sensed inputs (i.e. image-based data or artificial

data) a population of classifiers that matched the inputs were cre-

ated. Based on its generalisation capability, the classification agent

developed a compact description of the input-output map to suc-

cessively classify each input in the correct class as suggested by its
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classifiers (see Section 3.1.3.2 and Section 3.1.4.2).

3. Variations in representation [65]: The representation of knowledge in

LCSs is flexible. The ‘condition-action’ rules referred as a classi-

fier can be represented using different kinds of representations (e.g.

binary, real-valued, messy, GP-like, symbolic expressions). For ex-

ample, the classification agent’s ‘condition’ was represented by the

‘ternary’ alphabet to specify the patterns for the image-based data

(see Section 3.1.3.2). Further, the classification agent’s ‘condition’

was represented by ‘real-value’ numbers for specifying each instance

in the dataset for the artificial data (see Section 3.1.4.2). The classifi-

cation agent’s ‘action’ was encoded by an ‘integer’ value where the

action could be either ‘1’ for ‘Class 1’, otherwise ‘0’ for ‘Class 0’. Vari-

ations in representation enabled the system to be applied to many re-

search areas for addressing different types of problems e.g. pattern

recognition and data mining, where each classifier component was

tailored to fit the need of a particular application without modifying

the main structure of the system [65].

5.1.3 Problem Generator

Traditionally, research in pattern recognition involves choosing a domain,

creating a source of exemplars, and trying out learning algorithms that

seem likely to work in that domain [124]. Thus, an automatic problem

generator (i.e. the generation agent) would be valuable to provide sev-

eral advantages over the traditional method. The introduced method in

this thesis was different from the traditional method and other methods

mentioned in [71] in several ways.

1. The problem generator has a list of problem-specific parameters (i.e.

[Fn Fc Fd Fi Fr Fan Fcn Fcbl Fcbd]) that can generate a ran-

dom instance for each combination of parameter values, which can
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cover a wide range of the complexity factors (i.e. feature space di-

mensionality, noise, class balance, boundary complexity, sample spar-

sity, irrelevant and redundant attributes, and many other parame-

ters) compared to the method proposed in [71]. The advantage of

the introduced method was that the characteristics of the complexity

factors can be included in the problem to generate various datasets

at different levels of difficulty in order to investigate the learner’s

ability in a known scenario.

2. The problem generator was able to autonomously adjust and tune

features in the problem for the generation of various datasets in or-

der to test the learner’s ability. Based on a certain problem-specific

parameter setting, different types of performance measures can be

adopted to assess the learner’s performance. However, the work

only focused on the classification agent’s performance (i.e. classifica-

tion accuracy), being a standard measure in the area. Nevertheless,

the performance measure was not limited only to the classification

accuracy, which can be further extended to such matters as robust-

ness, scalability and relevance. For example, the learner’s scalability

could be tested by varying the number of features and the number

of instances in the problem’s set-up.

3. The problem generator enabled the generation of a large set of ex-

amples (i.e. creating a library of problems) autonomously. The sys-

tem was completely self-contained [74] (i.e. no human in the loop).

The problem generator was able to generate various datasets with a

varying number of problems depending on the problem-specific pa-

rameter which was set-up autonomously. Random instances for each

problem-specific parameter (i.e. [Fn Fc Fd Fi Fr Fan Fcn Fcbl

Fcbd]) could therefore be created automatically, and this changed

the composition of the dataset at each run. A large set of examples

for each class that were diverse and numerous could be produced
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according to the setting of the number of instances in the datasets Fn

coupled with other associated parameters. The introduced method

enabled an investigation of the learner’s ability to solve different

types of problems to be performed.

4. Most importantly, problems of encoding and decoding for generat-

ing various problems could be handled efficiently with minimal er-

ror by the problem generator. The problem generation task could be

conducted with less human intervention for setting and tuning the

problem characteristics for generating variants classification prob-

lems at different levels of difficulty (see Table 4.10, Table 4.11, Table

4.17 and Table 4.13). Instead, the task could now be performed by the

problem generator autonomously (i.e. adjusting and tuning certain

features in the problem to generate various datasets). When thou-

sands or millions of instances in the datasets need to be produced for

each problem by changing and tuning certain parameters manually

(i.e. either to increase or decrease the problem’s difficulty), humans

might make a mistake.

5. The artificial data could be used as a test bed on various problem

domains to help in empirically testing the learning bounds of the

classifiers. The list of problem-specific parameters (i.e. [Fn Fc Fd

Fi Fr Fan Fcn Fcbl Fcbd]) can take any value up to a certain

range. However, there was a limit for each feature value of the prob-

lem that would affect the classification performance and the learn-

ing bound of the learner. For example, when the problem set-up was

set to [Fn=2 Fc=1 Fd=0 Fi=0 Fr=0], and the noise level that ap-

plied to the action was greater than 30% (Fan≥30), the classifica-

tion performance started to decrease to less than 60% (see Figure

4.14). This meant that this particular classification agent’s perfor-

mance would never achieve 100% performance if the noise level that

was applied to the action was greater than 30% in this problem set-
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up. Thus, instead of testing the classification agent on various prob-

lems, the task can be refined to identify how the classification agent

can perform better with the problem (i.e. increasing or decreasing

the classification agent’s learning rate or the classification agent’s er-

ror tolerance rate).

In summary, Phase 1 was necessary to establish an appropriate prob-

lem domain for classification that can be evolved and tuned automati-

cally. Although the problem of automatic test generation (i.e. artificial

data) has been considered in the literature from different perspectives,

the generation of test-problems by coevolution for LCSs is quite new. In

Phase 1, a novel system for an evolvable problem generator that can create

various problems for classification has been established; a new human-

independent system for the creation of various classification problems.

Moreover, the problem domain can be evolved using LCSs and manip-

ulated autonomously to generate a scalable and evolvable problem (i.e.

image-based data or artificial data).

5.2 Phase 2: Two-Cornered Coevolution System

In order to develop a coevolution system for addressing the classification

tasks, the system should be able to tune the problem appropriately (i.e.

find an appropriate level of the problem’s difficulty) based on the classifi-

cation agent’s performance. The classification agent can then be aligned to

solve the classification task. Thus, Phase 2 was required in order to inves-

tigate the coevolutionary approach within the system, where two different

agents (i.e. the classification agent and the generation agent) interact with

each other to adapt to the changes within the problem.

Usually, the problem domain is created and controlled by humans. Hu-

mans set up and tune the problem domain, such as determining the prob-

lem’s difficulty. Different problems are often required to be configured
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with different parameters or strategies in order to improve the perfor-

mance. For instance, one can perform trial-and-error tuning through ex-

tensive experiments, while others use their past knowledge or experience

to tune the parameters differently, guided by some rules-of-thumb [36]. In

the latter case, there is no formal tool or statistical methodology involved.

The approaches are extremely tedious, error prone, unproductive and ex-

pensive [10]. Optimizing parameter values, is however, a non-trivial prob-

lem which is beyond the limits of human problem solving [81]. The prob-

lem of parameter tuning is hard because for any given application there is

a large number of options, but only little knowledge about the effect of the

parameters values on the learner’s performance is provided [81]. In ad-

dressing this problem, a local search method (i.e. Tabu Search technique)

was used to tune the parameter values (i.e. the problem’s features) so that

the generation agent could commence from the previous problem without

requiring repetition of the same problem. The results (see Section 4.2.2.1)

showed that the generation agent was able to find an appropriate level of

the problem’s difficulty autonomously (i.e. either increased or decreased

the problem’s difficulty based on the classification agent’s performance),

which was very crucial in this phase. Moreover, Phase 2 was a baseline for

Three-Cornered Coevolution System.

Alternatively, automatic configuration and tuning can be considered as

an integral part of the system development [10]. This method can reduce

the effort needed for tuning and setting the parameter values in order to

analyze the learner’s ability (e.g. study how the learner’s performance

depends on its parameter values and how to choose parameter values that

optimize the learner’s performance). Instead of spending time to search

for the appropriate parameter values blindly, the same effort can be spent

to autonomously control the parameter values in order to find an optimal

solution for a given task. In order to achieve this adjustable control over

blind tuning, a suitable control mechanism is required.

There are two approaches in choosing and setting the parameter values



240 CHAPTER 5. DISCUSSION

in the field of evolutionary computation [21]: 1) parameter tuning and 2)

parameter control. In the case of parameter tuning, the parameter values are

established before the run (i.e. fixed in the initialization stage) and do not

change while the algorithm is running. However, in the case of parameter

control the parameter values are given an initial value when starting the

algorithm and the parameter values are change during the algorithm run.

In this phase, the parameter control scheme is selected to control the pa-

rameter value of features F in the problem. Using this scheme, the param-

eter values are initialized with an initial value when starting the algorithm

and changed during run time. TS was applied to the generation agent to

change the parameter values. First, the generation agent is initialised with

an instance (set-up) of the problem. Secondly, TS changed the parame-

ter values during run time for a number of iterations. Here, TS is used

to define a new problem at an appropriate level of difficulty. Applying

TS to the generation agent helped the agent to discover the best combi-

nations of features in the problem that altered the classification agent’s

performance. The generation agent was able to search for the best combi-

nation of features in the problem (i.e. with the objective either to ‘increase’

or ‘decrease’ the classification agent’s performance) by varying the diffi-

culty levels (i.e. either to make the problem ‘easier’ or ‘harder’ to learn)

(see Figure 4.24 and Figure 4.25). This method helped the generation agent

to: 1) define the new problem at the appropriate levels of difficulty based

on the classification agent’s performance, 2) find the types of problems

that were commensurate in the domain of competence of the classification

agent, and 3) identify adversarial problems for classification tasks. How-

ever, the generation agent that used TS alone in its methods did not ef-

fectively minimize the classification agent’s performance (see Figure 4.25).

The findings showed that at a certain number of iterations, TS was likely

to become stuck in local-optima when there was not much improvement

in the features of the problem for the new problem. The cause was that

the generation agent created the new problem within a similar parameter
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setting, which did not effectively reduce the classification agent’s perfor-

mance to make the problem ‘harder’.

Considering that Pittsburgh-style LCSs are very close to the essence

of EC techniques, this approach was chosen in order to handle the prob-

lem of the parameter setting (i.e. when TS is likely to become stuck in

local-optima). Pittsburgh-style LCSs (i.e. A-PLUS) was applied to the gen-

eration agent to evolve the generation agent’s rules once the new problem

was identified by TS.

The drawback of Pittsburgh-style LCSs is that the system explores a

much larger search space compared to Michigan-style LCSs. Conversely,

Pittsburgh-style LCSs usually evolve more compact populations involving

only a few rules in a population compared to Michigan-style LCSs. For this

work, Pittsburgh-style LCSs were more suitable when compact solutions

with few rules were expected to solve the problem. Since Pittsburgh-style

LCSs are often more computationally expensive as they need to evolve

multiple rule-sets and require longer evaluation time to assess the whole

population of multiple rule-sets, A-PLUS (Accuracy-based Pittsburgh Learner

Using Subsumption) was selected. A-PLUS was capable of addressing the

bloat phenomenon, which refers to increasing any variable-sized set of

rules [1]. The results confirmed that applying A-PLUS in the generation

agent had improved its rules where the generation agent was able to adjust

the difficulty levels more effectively. Using this approach, the generation

agent effectively adjusted the difficulty levels by varying the features in

the problem specially to minimize the classification agent’s performance,

where the generation agent could make the problems ’harder’ for the clas-

sification agent to learn (see Figure 4.26).
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5.3 Phase 3: Three-Cornered Coevolution System

The Three-Cornered Coevolution System is the final research goal and the

core principle of this research. The system is a new coevolution LCS where

three different agents evolve to adapt with and drive the changes of the

problem. There are a few distinctions between the new approach com-

pared to the original framework proposed by Wilson described as follows.

5.3.1 Naming of the Agents

In Wilson’s framework, the system was conceived as a pattern generator

and two pattern recognizers. The pattern generator was referred as the

Sender (S), while the pattern recognizers were referred as the Friend (F)

and the Enemy (E). S’s objective was to increase F’s performance instead

of E’s performance. Therefore, F was provided with prior information

regarding the problem. Most unlikely both of the pattern recognizers (i.e.

F and E) used the same learning systems to address a similar problem. In

this framework, the same learning system received different information

to address the similar problem.

The Three-Cornered Coevolution System consisted of a generation agent

and two classification agents. The generation agent was referred as the

Sender (S) and the classification agents were referred as the Receiver (R)

and the Interceptor (I). The classification agents were termed the Receiver

and the Interceptor, because both of the classification agents competed

with each other to learn a similar problem. However, the classification

agents used different types of learning techniques (i.e. R learned through

reinforcement learning, while I learned through guided learning). S’s ob-

jective was to increase both R’s and I’s performance. In this system, two

different learning systems received the same information to address a sim-

ilar problem.
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5.3.2 Input and Output Data

In Wilson’s framework, F and E received variants of input images. How-

ever, F received an input image with prior information regarding its archetype.

Next, both F and E (i.e. the pattern recognizers) attempted to transform

the input image back into the archetype. The performance (i.e. the classi-

fication performance) of the pattern recognizers was computed as correct

recognition against the images. In this framework, the learning systems

were used to solve and address the image-based data for the classification

tasks.

In the Three-Cornered Coevolution System both R and I (i.e. the clas-

sification agents) received an identical individual problem (i.e. artificial

data) at a time and attempted to classify all instances in the dataset to the

correct class. However, R and I used different types of learning techniques.

R learned through reinforcement learning, while I learned through super-

vised learning. It was expected that most of the time I outperformed R, but

not for all the problems. The performance (i.e. the classification perfor-

mance) of the classification agents was computed as correct classification

against a total number of instances. In the Three-Cornered Coevolution

System, the learning systems were used to solve and address the artificial

data for classification problems.

5.3.3 Coevolutionary Approach

The Three-Cornered Coevolution System offers several advantages over

Wilson’s framework as it provides a greater flexibility in problem creation

and problem solving, especially with the work now focusing on the arti-

ficial data for classification. In this system, S (i.e. the generation agent)

autonomously generated variants of problems at different levels of dif-

ficulty for classification, where S was able to adjust the difficulty levels

effectively by varying the features in the problem that could either make

the problems ‘harder’ or ‘easier’ based on the classification agents’ abil-
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ity to learn (see Figure 4.34). To formulate this approach, S first learned

the ‘meta-problem’ by generating many problems, while both R and I (i.e.

the classification agents) learned an individual problem at a time, through

many instances of the problem. Next, based on R’s and I’s ability to learn

(i.e. when the difference in performance between R and I was below a

certain threshold), S coevolved to tune and adjust the problem’s difficulty

(i.e. either to increase or decrease the problem’s difficulty).

In the Three-Cornered Coevolution System, I triggered the coevolu-

tionary process within the system (i.e. at the lower-level of the system; the

classifier), while S controlled the coevolutionary process within the system

(i.e. at the top-level of the system’s structure; the problem domain). How-

ever, in Wilson’s framework, E (i.e. the pattern recognizer) controlled and

triggered the coevolutionary process within the system. It was expected

that at a certain degree, E’s success would be necessary to improve S’s and

F’s performance.

In Wilson’s framework, as the problem’s difficulty increased, the over-

all system implemented the Three-Cornered Coevolution in which each

agent (S, F and E) attempted to evolve the best program to consistently

achieve its objectives. In the Three-Cornered Coevolution System when

S increased the problem’s difficulty and generated various ‘hard’ prob-

lems for classification, the overall system successfully executed the Three-

Cornered Coevolution. S consecutively increased the problem’s difficulty,

whereas R and I attempted to solve the classification tasks where the clas-

sification performance were varied (see Figure 4.36 and Figure 4.37). The

findings showed that the classification performance was related to the type

and percentage of the noise, the class imbalance ratio and the characteris-

tics of the artificial data. It was found that I (i.e. the UCS system) was

less sensitive to parameter tuning and more robust to noise and class im-

balanced problem compared to R (i.e. the XCS system). In the XCS sys-

tem, two parameters became critical for optimal performance: the learn-

ing rate and the GA triggering threshold θGA [89, 90]. Therefore, if both
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R and I were configured appropriately (i.e. to self-adapt during learning

[88, 89, 90]), both R and I were competitive to solve complex classification

problems and evolve consistently in order to maximize the classification

performance.

To this end, the version of coevolution in the Three-Cornered Coevolu-

tion System was implemented as coadaptive evolution. The system was con-

ducted in such a way that the agents work cooperatively in a co-adaptive

manner, where three different agents interacted with one another to adapt

with one another’s changes. In this way, S was able to identify features

in the problem that altered R’s and I’s performance where a number of

readable rules for each problem could be interpreted effectively when re-

quired. Consequently, the real cooperative coevolution process between

the agents could be further improved, so that the rules in each communi-

cating agent could be evolved in parallel within a sub-population. Later,

the rules can be combined with the rules in the other sub-populations to

create a comprehensive set of rules for addressing the problem.

5.3.4 Summary

The Three-Cornered Coevolution could be addressed in two different ways

as discussed earlier, although this assumed that both of the methods were

applicable to the system. In the Three-Cornered Coevolution System, the

effect to trigger the coevolutionary process between R and I was known by

S (i.e. the difference in performance between R and I). S was able to iden-

tify the features in the problem that altered the classification performance.

Therefore, S was capable to autonomously generate various problems at

the appropriate levels of difficulty whilst lowering human involvement,

and produced variants of datasets for each problem to be learned by R

and I respectively.

It is considered that the Three-Cornered Coevolution System has the

following benefits. First, both of the problem domain and the solution can
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be evolved autonomously. This method can reduce the effort needed for

tuning and setting the parameter values in order to analyze the learner’s

ability. Secondly, a study on either how the learner’s performance de-

pends on its parameter values or how to choose parameter values that op-

timize the learner’s performance can be performed through this method

(see Section 4.3.1). Thirdly, an investigation on how different agents per-

form in the coevolutionary system can be conducted. Thus, different as-

pects of study including the problem domain and the implementation of

the framework (e.g. on how the three different agents communicating

within the system) can be investigated.

5.4 Summary and Way Forward

In this chapter, several issues relating the original Three-Cornered Coevo-

lution Framework have been identified and addressed appropriately for

each phase. Detailed discussions are provided to elaborate the above is-

sues. It is noted that some aspects of the true implementation of coop-

erative coevolutionary framework are still open to further improvement.

Thus, the next chapter will provide a summary of the research and de-

scribe future research directions arising from the discussions in this work.
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Conclusions

The overall goal of the work for this thesis is to develop the Three-Cornered

Coevolution System for classification, where the system is capable of au-

tonomously triggering (or activating) coevolution between the participat-

ing agents in the system when necessary, without human involvement.

The system is a new coevolution system for generating various classifica-

tion problems and testing the ability of a learning system autonomously.

The goal has been achieved as the system was able to trigger the coevolu-

tionary process automatically. The thesis demonstrated a set of new ideas

and methodologies that use the Three-Cornered Coevolution System to

modify the problem creation for classification where three different agents

interact with each other in a coevolutionary manner.

6.1 Achieved Objectives

The thesis has achieved the following objectives:

1. The thesis introduced an automated evolvable problem generator that

can create various problems for classification tasks; a new human-

independent system for the problem creation of various classification

problems (Phase 1). Two new different problem domains have been

247
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created and can be manipulated autonomously (i.e. scalable image-

based data, and artificial data). The results showed that the new

system can evolve various problems for classification autonomously,

which can create variants of image-based data, and artificial data, at

different levels of difficulty whilst lowering human involvement.

2. The thesis introduced a new technique, the Two-Cornered Coevolution

System, for addressing classification task(s). This was a new human-

independent adjustable system which was capable of producing var-

ious classification problems and testing the learning algorithm (i.e.

the classification agent) (Phase 2). The problem domain could be

tuned autonomously based on the classification agent’s ability to

learn. The system was able to generate different types of problems

for classification, whereas the problem’s difficulty could be tuned

and adjusted automatically based on the classification agent’s ability

to learn (i.e. either increasing or decreasing the problem’s difficulty

depending on the classification performance). The results suggested

that the Two-Cornered Coevolution System had modified the tradi-

tional process for classification, as now both the problem and the

solution evolve in parallel rather than independently. The detailed

analysis shows that the evolved problems can easily be interpreted in

order to understand the effect of features in the problem that altered

the classification agent’s performance. The thesis also demonstrated

how two different LCS approaches (i.e. Michigan and Pittsburgh)

can be implemented in the system for addressing the classification

tasks. The adaption of Pittsburgh-style LCSs, A-PLUS, to an ‘on-line’

system was successful.

3. The thesis introduced a new technique, the Three-Cornered Coevolu-

tion System, for addressing classification task(s), which is a new co-

evolution system (Phase 3). A set of new ideas and methodologies

that use Three-Cornered Coevolution System for the first time to ad-
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dress the classification tasks, has been established. This is a new co-

evolutionary LCS where three different agents evolve to adapt with

and drive the changes of the problems. Here, a new classification

agent is introduced to trigger the coevolutionary process within the

system. Both the classification agents evolve to learn various classifi-

cation problems, while the generation agent evolves to tune and ad-

just the problem’s difficulty based on the classification agents’ ability

to learn. The classification agents use different types of learning tech-

niques (i.e. reinforcement learning and supervised learning) to learn

the classification tasks. The results showed that, as the classifica-

tion agents learned and adapted with the changes of the problems,

the coevolutionary process (i.e. coadaptive evolutionary) was im-

plemented successfully without human intervention. Moreover, the

overall system successfully executed the Three-Cornered Coevolu-

tion as the generation agent increased the problem’s difficulty and

generated various ‘hard’ problems for classification, where the clas-

sification agents’ performances were varied.

6.2 Main Conclusions

This section presents the main conclusions for the three research objectives

drawn from the three major contributions of the thesis.

6.2.1 Phase 1: An Evolvable Problem Generator

There are two important factors that need to be considered in designing

the automated evolvable problem generator (Phase 1). First, a well suited prob-

lem domain to encompass the classification tasks is required. Secondly, an

appropriate knowledge-based representation of the learner (i.e. the clas-

sification agent) in order to address the classification tasks effectively, is

necessary.
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In Phase 1, two different problem domains for classification tasks (i.e.

image-based data and artificial data) that can be generated automatically

have been established. A novel framework for an automated evolvable

problem generator that can create various problems for classification tasks

autonomously has been developed. The novelty here is that a new human-

independent system for the creation of various classification problems has

been established. Moreover, the created problem domain can be tuned

and adjusted at various levels of difficulty. The image-based data utilized

instances that were directly evolved, whereas for the real-valued artificial

data, the underlying dataset properties were evolved, which then created

the instances for training the classification agent. The latter abstracted

approach was shown be more appropriate, as the underlying feature re-

lationships that control the ease of learning within the problem domain

were apparent.

All the agents were designed for an on-line system. The on-line system

was required to establish the coevolutionary system where each agent at-

tempted to adapt to each other’s changes for an on-line manner. Here,

LCSs have been applied to the agents based on the potential of their char-

acteristics, such as interpretability, generalisation capability and variations

in representation.

The main idea of the automatic classification problem generation has

contributed towards a valuable source of library exemplars over the tradi-

tional method of costly human data specification. The system was able to

autonomously generate various exemplars at different levels of difficulty

for classification. The generated problems could be used to help in em-

pirically testing the learning bounds of the learner (i.e. the classification

agent) with less human intervention. The new method has a number of

advantages over the traditional method.

1. The problem generator permitted the generation of a large set of ex-

amples (i.e. creating library of problems) autonomously.
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2. The problem generator has a list of problem-specific parameters that

could generate random instances and exemplars for each parameter

value, which could cover a wide range of complexity factors in the

problems.

3. The problem generator was able to autonomously adjust and tune

features in the problem for the generation of various instances and

exemplars to test the learner’s ability.

4. The problem generator was able to handle problems of encoding and

decoding for the generation of various instances and exemplars.

6.2.2 Phase 2: Two-Cornered Coevolution System

The Two-Cornered Coevolution System is concerned with the autonomous

problem domain creation by the generation agent to autonomously gener-

ate various classification problems based on the classification agent’s per-

formance. First, the generation agent needs to determine the complexity

factors in the problem, which can either ‘increase’ or ‘decrease’ the prob-

lem’s difficulty. Secondly, the generation agent needs to autonomously

tune the problem to be either ‘harder’ or ‘easier’ for the classification agent

to learn based on the classification agent’s performance.

In order for the generation agent to adjust the problem’s difficulty the

associated information in the problem such as the features of the problem

should be able to be manipulated and adjusted. This suggests that the cre-

ated problem domain should be flexible to able to be tuned and adjusted to

make the problem either ‘harder’ or ‘easier’. Findings strongly suggested

that the method of using artificial data for classification was more relevant

and suitable than the image-based data for several reasons, e.g. features

in the problem can be tuned and adjusted either to increase or decrease

the problem’s difficulty (see Section 5.1). The problem generation of ar-

tificial data for classification led to a system that can tune and adjust the

problem’s difficulty based on the learner’s ability.
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Next, the generation agent needed to determine the complexity factors

in the problem that could either ‘increase’ or ‘decrease’ the problem’s dif-

ficulty. Here, Tabu Search is used in the generation agent to determine

important features in the problem that alter the classification agent’s per-

formance. TS is used to find the best combination of features in the prob-

lem by varying the difficulty levels (i.e. either to tune the problem from

‘hard’ to ‘harder’ or ‘easy’ to ‘easier’ to learn). By implementing TS in the

generation agent the difficulty levels can be tuned and adjusted based on

the classification agent’s performance. However, the generation agent that

used TS alone in its component did not effectively minimize the classifica-

tion agent’s performance (i.e. to tune the problem from ‘hard’ to ‘harder’)

as it became stuck in local optima.

Therefore, the Pittsburgh-style LCSs (i.e. A-PLUS system) is used in

the generation agent to generate various classification problems, while

Michigan-style LCSs (i.e. XCSR) is used in the classification agent to learn

various classification problems. A-PLUS is applied to the generation agent

to evolve its rules so that each new problem can be generated effectively

at the appropriate levels of difficulty. Both of the systems worked well

and showed promising results. The Pittsburgh-style LCSs, A-PLUS sys-

tem, was successfully executed as an on-line system rather than the off-

line system. The on-line system was required in order to establish the co-

evolutionary system where each agent attempted to adapt to each other’s

changes in an on-line manner. Moreover, the on-line system had several

advantages over the off-line system as discussed in Section 5.1.

The Two-Cornered Coevolution System is a baseline for coevolution

LCSs where two different agents interact with each other to adapt with

the changes of the problem. This is the first attempt to develop a new

human-independent coevolutionary system for classification using LCSs.

The system has modified the traditional process of creating problems for

classification. Usually the learning algorithms are tested and adopted on

a collection of problems (e.g. from a public repository) with certain con-
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straints and data dependence. Here, both of the problem domain and the

learner (i.e. the classification agent) evolved to address the classification

tasks. Further, the problem domain was tuned autonomously based on

the classification agent’s ability to learn.

6.2.3 Phase 3: Three-Cornered Coevolution System

In the Three-Cornered Coevolution System, a new classification agent, namely

the Interceptor was introduced to trigger the coevolutionary process within

the system. Two different styles of learning techniques (i.e. reinforcement

learning technique and supervised learning technique) were applied to the

classification agents (i.e. R and I). I used the supervised learning technique

(i.e. UCS system), whereas R used the reinforcement learning technique

(i.e. XCS system), or vice versa.

The Three-Cornered Coevolution System is concerned with the coevo-

lutionary process between three different agents within the system so that

the coveolutionary process is triggered when necessary (i.e. when the dif-

ference in performance between R and I is below a specified threshold

value). Both R and I evolve to learn various classification problems, while

S coevolves to tune and adjust the problem’s difficulty based on R’s and I’s

ability to learn. I is introduced to the system in order to direct S to change

the problem’s difficulty.

In Phase 3, the difference in the classification agent’s performance trig-

gered the coevolutionary process, while the generation agent (i.e. S) con-

trolled the coevolutionary process. The effect to trigger the coevolution-

ary process between R and I was known by S (i.e. when the difference

in performance between R and I is below a specified threshold value). S

was able to identify features in the problem that altered the classification

performance. S was capable of autonomously generating various prob-

lems at the appropriate levels of difficulty (i.e. either to make the problem

‘harder’ or ‘easier’) whilst lowering human involvement, and produced
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variants of datasets for each problem to be learned by R and I. In addition,

the Three-Cornered Coevolution System allowed two different LCSs (i.e.

XCS system or UCS system) to be automatically tested to identify which

system performed better. The findings showed that the classification per-

formance of the two systems was related to the type and the percentage

of the noise, the class imbalance ratio and the characteristics of the artifi-

cial data. As the problem’s difficulty increased (i.e. when S attempted to

generate various ‘hard’ problems for classification), the classification per-

formance between R and I varied. It was found that the UCS system was

less sensitive to the parameters tuning and more robust to noise and class

imbalance problem compared to XCS system. However, if both systems

were configured appropriately (i.e. to self-adapt during learning), they

were competitive to solve complex classification problems.

The Three-Cornered Coevolution System provides a greater flexibil-

ity in problem creation and problem solving. This system has the fol-

lowing benefits: 1) both the problem domain and the solution evolve au-

tonomously reducing human intervention, 2) the coevolutionary process

in the system is triggered automatically when necessary, and 3) a human-

independent system for addressing the classification tasks over standard

studies, where the evolutionary approach provides a greater utility and

extensibility in problem creation and problem solving.

6.3 Future Work

The Three-Cornered Coevolution System is a novel coevolution LCS where

three different agents interact with each other to drive the changes of the

problems. The system is developed based on the theoretical model of the

Three-Cornered Coevolution proposed by Wilson [124]. Several directions

can be further investigated to extend this work. This section highlights po-

tential future work motivated by the study of this thesis.
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6.3.1 Problem Domain and Knowledge Representation

Appropriate problem domain and knowledge representation is crucial in

designing the automated evolvable problem generator (Phase 1). In order

to allow the participating agents to evolve more effectively in a dynam-

ically changing environment, different aspects need to be considered in

this direction.

Currently the generation agent is restricted to create image-based data

or artificial data, which contain binary and real-valued data. However, in

the real world applications, many datasets contain more than just a single

type of data. For example, in the biomedical fields, the medical datasets

often contain numeric data (e.g. test results), images data (e.g. x-rays),

nominal data (e.g. smoker or non-smoker), and acoustic data (e.g. voice

recording). Therefore, future work needs to explore this potential area in

particular to design a method which integrates data from multiple sources

in a single system. A study can be performed in order to investigate the

agent’s capability within the system either for generating or learning vari-

ous types of data. In this case, a hybrid representation of numeric, nominal

and many others can be introduced to the agent to improve the visualiza-

tion, representation and condensation of its rules when applied to the real

world problem.

6.3.2 EC

Research into enhancing the EC algorithms with other methods plays an

important role in various fields and applications in providing a good qual-

ity of solutions. In Phase 2, a metaheuristic search method (i.e. Tabu

Search) helped the EC algorithms (i.e. LCSs) to perform a search more

effectively. Tabu Search has been successfully applied to the generation

agent to enhance its ability to adjust the problem’s difficulty, though there

are still open issues that remain to be explored in this field.

In Phase 2, Tabu Search helped S (i.e. Pittsburgh-style LCSs, A-PLUS)
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to search more effectively. However, TS has added extra computational

burdens to the system as more parameters were introduced. The system

became much more complex and required more time to be executed and

evaluated. Thus, a method to determine and control the additional pa-

rameters in the system is required. In particular, a method to automati-

cally determine the parameters during the search process (e.g. to control

the parameters adaptively and systematically), should be undertaken for

further investigation. Therefore, another research direction balancing the

performance’s improvement and the computational burden caused by the

this technique can be explored. A better understanding of how to improve

the cooperation between the ML technique and other methods efficiently

can be gained.

6.3.3 Evaluation Measure

In order to evaluate the performance of any EC algorithm or ML tech-

nique, various evaluation schemes need to be used (e.g. robustness, scala-

bility, and predictive accuracy). For all of the experiments, the learner’s

performance (i.e. the classification agent) was based on the classifica-

tion performance (predictive accuracy). However, there are different types

of performance measures that can be used to assess the learner’s perfor-

mance from different aspects.

Different types of evaluation schemes can be performed to assess dif-

ferent performance measures when dealing with different types of prob-

lems or different sets of problem configuration. For example, noise, miss-

ing values, or ambiguity can be added to the problem to test the learner ro-

bustness. The learner’s scalability would be tested by varying the number

of features and the number of instances in the datasets. Thus, the system

can test the learner’s efficiency in a particular case and comprehend the

learner’s behaviour for a specific constraint which can be further investi-

gated on various performance measures.
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6.3.4 Cooperative Coevolution System

A novel Three-Cornered Coevolution System where three different agents

work coadaptively has been achieved. However, the version of the coevo-

lutionary approach in the Three-Cornered Coevolution System was per-

formed in such a way that the agents work cooperatively in a coadaptive

evolution manner, where three different agents interacted with one an-

other to adapt with their changes. Thus, the cooperative coevolution process

between the agents can be implemented further, such that each classifier

in all of the communicating agents can be evolved in a subpopulation and

then combined with the rules in another subpopulation to create compre-

hensive rules for addressing the classification tasks.

In many cases, substantial prior-knowledge is required to boost the

learning process and enhance the learning experience. The system can

therefore be further enhanced to provide all of the agents with substantial

prior-knowledge (e.g. previous learnt knowledge or shared knowledge),

so that the cooperative coevolution between all participating agents can

accelerate the agents’ performance in which each agent attempts to evolve

their best rules consistently.

6.4 Closing Remarks

The major task of the work for this thesis was to develop a new Three-

Cornered Coevolution System for classification, which was a new coevo-

lution LCS. The Three-Cornered Coevolution System was successfully de-

veloped and has contributed to the LCS field to provide a new system

of implementation choice that can be used in a comparison of existing

LCSs in the field. Even though the implementation of the system is dif-

ferent from Wilson’s Framework, the system offers a great potential for

autonomous learning and provides useful insight into coevolution learn-

ing over the standard studies of pattern recognition. Nevertheless, there
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are still plenty of areas for improvement, which open new research di-

rections in this domain. For instance, the Three-Cornered Coevolution

System can be further enhanced to become a new cooperative coevolution

system. The refinement of the system may lead to an autonomous and

fully operational cooperative coevolution system in the field and provide

another interesting research direction.
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[84] A. Orriols-Puig and E. Bernadó-Mansilla. The Class Imbalance Prob-

lem in UCS Classifier System: A Preliminary Study. In International

Workshop Learning Classifier System (IWLCS’05), pages 161–180, 2005.

[85] A. Orriols-Puig and E. Bernadó-Mansilla. Class Imbalance Problem
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