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When an acoustic wave is incident on a three-dimensional vortical structure, with length scale small

compared with the acoustic wavelength, what is the scattered sound field that results? A frequently

used approach is to solve a forced wave equation for the acoustic pressure, with nonlinear terms on

the right-hand side approximated by the bilinear product of the incident wave and the undisturbed

vortex: we refer to this as the ‘‘acoustic analogy’’ approximation. In this paper, we show using

matched asymptotic expansions that the acoustic analogy approximation always predicts the

leading-order scattered sound field correctly, provided the Mach number of the vortex is small, and

the acoustic wavelength is a factor of order M 21 larger than the scale of the vortex. The

leading-order scattered field depends only on the vortex dipole moment. Our analysis is valid for

acoustic frequencies of the same order or smaller than the vorticity of the vortex. Over long times,

the vortex may become significantly disturbed by the incident acoustic wave. Additional conditions

are derived to maintain validity of the acoustic analogy approximation over times of order M 21,

long enough for motion of the vortex to be significant on the length scale of the acoustic waves.

© 2001 American Institute of Physics. @DOI: 10.1063/1.1401814#

I. INTRODUCTION

The problem of acoustic scattering by localized vortical

flows has a long history,1–9 and continues to attract attention

in a variety of fields, including acoustics, fluid

dynamics,10–14 astrophysics,15 and superfluids.16,17 The de-

velopment of experimental techniques to measure vortex

structures by acoustic scattering has been responsible for re-

cent interest in the problem.18–20

The ‘‘Born’’ limit, where the wavelength of the incom-

ing sound wave is much longer than the size of the vortex, is

amenable to analytic progress. To a first approximation, the

vortex is shaken backward and forward by the longitudinal

sound wave, which is uniform on the scale of the vortex; at

the next level of approximation, the vortex responds to the

large-scale compression and straining motion induced by the

wave. Consequently, sound is radiated and the incoming

wave may be viewed as being scattered by the vortex.

Acoustic scattering by a radially symmetric vortex in

two dimensions has been a major component of previous

work. In most studies, the problem is formulated as a forced

wave equation. Following Lighthill’s pioneering work,21 the

fluid equations are rewritten with the acoustic wave operator

acting on the density perturbation on the left-hand side, and

all the remaining ~nonlinear! terms, which take the form of a

quadrupole source, on the right. The quadrupole source is

expressed mathematically as ]2T i j /]x i]x j , where the x i are

the independent Cartesian coordinates, and T i j is a tensor.

For small-Mach-number flows, T i j'r0u iu j , where r0 is the

mean density, and the u i are velocity components. The scat-

tered wave field is then computed on the assumption that T i j

may be approximated by the bilinear product of the veloci-

ties of the incoming plane wave (u i
w , say! and the known

vortical flow (u i
v , say!, so that T i j'r0(u i

vu j
w

1u i
wu j

v). We

shall call this approach the acoustic analogy approximation,

since the problem is analogous to one in which an acoustic

wave operator is provided with a known source. This termi-

nology was used by Lighthill to refer to acoustic wave radia-

tion by vortical flows, in which the relative weakness of the

radiation implies that the vortical flow can be regarded as

known, to leading order, and contains precisely the informa-

tion required to evaluate the nonlinear source term.

The acoustic analogy approximation has been used to

obtain results for scattering by point vortices22 and distrib-

uted vortices8 in two dimensions, and results obtained using

this approximation agree well with numerical aeroacoustic

calculations.11 It has been claimed23 that it leads to a singu-

larity in the scattered field in the forward scattering direction,

but, in fact, this singularity can be removed by considering a

region of parabolic shape about the forward axis.9,10,14

A more serious criticism of the acoustic analogy ap-

proximation is that no reason can be given a priori to explain

why this approximation to the nonlinear terms T i j should

give the correct scattered sound field. The difficulty lies in

the fact that the vortex and the sound wave interact, so the

time-dependent velocity field in the vortex differs signifi-

cantly from the superposition of the velocity field of the

basic vortex and the velocity field of the incident sounda!Deceased.
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wave. Moreover, this difference occurs at precisely the order

of calculation required to determine the scattered sound field.

Reference 14 ~hereafter FLS! developed a rational

asymptotic expansion procedure that clearly showed the na-

ture of the scattering in the farfield. Two regions are required

in this analysis: an inner, vortical region, and an outer, wave

region. A solution is developed in the vortical region, in re-

sponse to forcing by the incident acoustic wave. The analysis

shows how this response in the vortical region forces a scat-

tered wave in the wave region, and hence a complete

leading-order solution for scattering in the Born limit is ob-

tained. It is shown in FLS that the leading-order scattered

wave field is, in fact, correctly predicted by the forced wave

equation approach, at least for steady two-dimensional vor-

tices with circulation. Moreover, the scattered field depends

only on the circulation, and parameters of the incident acous-

tic wave, but contains no information about the detailed

structure of the vortex.

The acoustic analogy approximation has also been em-

ployed in three dimensions.18,24–27 In this case there is

clearly no singularity in the scattered field, but the question

of the validity of the acoustic analogy approximation re-

mains. In this paper we ask the following question: under

what circumstances is the scattered field predicted correctly

when the acoustic analogy approximation is used to evaluate

T i j .

We answer this question by proceeding along the lines of

FLS, deriving the leading-order scattered field far from the

vortex via a rational asymptotic expansion procedure. The

basic equations and expansion procedure are outlined in Sec.

II. The full equations of motion are solved in Secs. III and IV

in the inner and outer regions, respectively. The acoustic

analogy approximation to the scattered sound field can be

derived directly from the analysis presented, and it is shown

that, in fact, the acoustic analogy approximation does not

neglect any terms that contribute to the leading-order scat-

tered sound. This is discussed in Sec. V, and conclusions are

presented in Sec. VI.

In Part II of this paper,28 we calculate sound scattering

by Hill’s spherical vortex in the axisymmetric case, where

the incident sound wave is parallel to the axis of symmetry

and direction of propagation of the vortex. The inner and

outer problems are solved in closed form, and compared to

the results derived in this paper.

II. STATEMENT OF PROBLEM

For simplicity, we consider the problem of the scattering

of acoustic waves by a vortex in a homentropic ideal gas.

The momentum and continuity equations and the equation of

state are

raS ]u

]t
1u"¹uD52¹pa , ~1!

]ra

]t
1¹•~rau!50, ~2!

pa

p0

5S ra

r0
D g

, ~3!

where here all the symbols take their usual meanings, and pa

and ra denote the absolute pressure and density, respectively,

as distinct from perturbation pressure and density to be de-

fined below. We shall assume that the vortex has spatial scale

L. We also define the vorticity v5¹Ãu.

We assume that the vorticity decays rapidly with dis-

tance, so that uvu5O@(r/L)2`# as r→` , meaning that uvu
decays faster than any inverse power of (r/L), where r is a

measure of distance from the center of the vortex. We shall

take the velocity induced by the vorticity to be of magnitude

U. We then define the Mach number M[U/c0 , where c0

[(gp0 /r0)1/2 is the speed of sound. Throughout this paper

we take the Mach number to be small.

We shall refer to the region of scale L centered on the

vortex as the vortical region, since it is only in this region

that the vorticity is significantly different from zero. If the

velocity is scaled on U, and the length scaled on L, which is

the nondimensional scaling appropriate to the vortical re-

gion, the governing equations are

~11M 2r !S ]u

]t
1u"¹uD52¹p , ~4!

M 2S ]r

]t
1¹"~ru! D1¹"u50, ~5!

11gM 2p5~11M 2r !g, ~6!

where the relations,

pa511gM 2p , ra511M 2r , ~7!

imply that pressure and density depart from their uniform

background values by O(M 2), consistent with near-

incompressible motion.29

From ~4! and ~5! we can form the ‘‘Lighthill equation,’’

2M 2
]2r

]t2
1

]2T i j

]x i]x j

52¹2p , ~8!

where the Lighthill stress tensor is given by

T i j5~11M 2r !u iu j . ~9!

In the two-dimensional problem solved in FLS, the un-

disturbed vortex ~i.e., in the absence of the acoustic waves!
was taken to be steady, and so in that problem the vortical

region is fixed in space. In three dimensions, however, there

are very few examples of localized vortices that are fixed in

space. The classic example of Hill’s spherical vortex trans-

lates at a constant velocity, and we wish to include this ex-

ample within our analysis. We also wish to allow the vortex

to move through a significant number of wavelengths of the

incident acoustic wave, so our analysis must remain valid for

times O(M 21). We shall therefore employ, in the vortical

region, a spatial coordinate j, defined such that

j5x2xc~ t !, ~10!

where xc is the center of the vortical region. The definition of

the center of the vortical region is an arbitrary one and, as we

shall see, the exact definition that we use does not affect the

results that we obtain. However, we shall require that in our

definition, the center of the vortical region xc move with the
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vortex, so that the vorticity remains confined to a region in

which uju is of order unity. For example, we may use the

definition of vortex centroid given by30

x
v
5

1

2I2
E x8@x8Ãv~x8!•I# d3x8, ~11!

where

I[
1

2
E x8Ãv~x8! d3x8, ~12!

and I5uIu.
In coordinates j and t, Eqs. ~4!–~6! for the flow in the

vortical region are

~11M 2r !S ]u

]t
2v"¹u1u"¹uD52¹p , ~13!

M 2S ]r

]t
2v"¹r1¹•~ru! D1¹"u50, ~14!

11gM 2p5~11M 2r !g, ~15!

where now ¹ is a gradient with respect to j, and

v5

dxc

dt
. ~16!

Note that in ~13!–~15! the coordinates are (j,t), but the ve-

locity u is the velocity relative to an observer at a fixed

location in x.

Equations ~13!–~15! are a complete set of equations for

a homentropic ideal gas, but in the following analysis it

proves convenient to use the vorticity equation:

]v

]t
5¹Ã@~u2v !Ãv# , ~17!

and the Lighthill equation ~8!, which, in the vortical region,

is written as

2M 2S ]

]t
2v"¹D 2

r1

]2T i j

]j i]j j

52¹2p . ~18!

We shall use ~14!, ~17!, ~18! in developing the asymptotic

expansion of the flow in the vortical region.

Acoustic waves are incident upon the flow in the vortical

region. We shall take the frequency v of these waves to be of

the same order of magnitude, U/L , as the magnitude of the

vorticity in the vortical region. Our analysis is hence valid

for unsteady vortices, but also applies to steady vortices. The

ratio of length scales between the inner and outer region is

L/l5Mv/2p . Then the assumption of small Mach number

of the flow in the vortical region implies that the acoustic

waves must have wavelength O(LM 21) ~Refs. 14, 29!, and

so the vortical region takes the role of an inner region, sur-

rounded by an outer, wave region, of length scale LM 21.

In the wave region the appropriate spatial variable is X

[Mx. Equations ~4!–~6! are then rewritten, using the wave-

region spatial variable X. The result is

~11M 2H !S ]U

]t
1M 2U"¹UD52¹P , ~19!

]H

]t
1¹"U1M 2¹"~UH !50, ~20!

11g M 2P5~11M 2H !g. ~21!

The gradient operator acting on a wave-region quantity cor-

responds to differentiation with respect to X. Nondimen-

sional fields in the wave region are represented by capital

letters, except for the density r , which is denoted there by H.

The velocity field has been scaled by a factor of M in ~19!,
~20!.

Now, the vorticity in the wave region is assumed to be

smaller than any power of M, and we may hence use a ve-

locity potential F in the wave region such that U5¹F .

Using ~21!, the momentum equation ~19! may then be inte-

grated once to yield the wave-region Bernoulli equation,

]F

]t
1

1

2
M 2¹F•¹F1

1

g21
M 22@~11M 2H !(g21)

21#50.

~22!

This equation and ~20! together constitute a complete set of

equations for flow in the wave region.

Throughout we shall assume that the amplitude of the

incident acoustic wave is sufficiently small that quantities

quadratic in the amplitude of the incident wave can be ne-

glected. In the present nondimensional variables, we shall

therefore take the pressure P (i) associated with the incident

wave to be given by

P (i)
5de i(kX2vt), ~23!

with the wave propagating in the positive X direction, and

Eqs. ~21! and ~22! imply

v5k , ~24!

with both v and k positive without loss of generality.

Equations ~19!–~21! apply everywhere outside the vorti-

cal region, whose location we denote by X5Xc(t). Here we

make no assumption on the magnitude of Xc , so our analysis

is valid for times O(M 21), over which the vortex may move

through several wavelengths of the incident acoustic wave.

However, the vortex does move with a velocity that is char-

acteristic of the velocity in the vortical region, U, which is a

factor M smaller than the sound speed, and so

MV[
dXc

dt
5O~M !. ~25!

Again, we shall expand the expression for V , but the expres-

sion for Xc is not expanded. Note that it is not necessary for

dXc /dt to be equal to Mdxc /dt , and, in fact, dXc /dt will

differ from Mdxc /dt at O(M 2d). There is no technical dif-

ficulty in having a difference between Xc and Mxc , provided

this difference is accounted for when deriving matching con-

ditions between the two regions. Note also that the flow in

the wave region is expressed in terms of the spatial variable

X: no transformation to a moving frame is employed in the

wave region.
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We now develop the solutions in the inner vortical re-

gion and the surrounding wave region, on the assumption

that both M!1 and d!1. The solution is thus represented as

a double asymptotic series in M and d ~although with a spe-

cial treatment of the vorticity, as discussed below!.

III. THE SOLUTION IN THE VORTICAL REGION

The solution in the vortical region is now expressed as

an asymptotic expansion in M and d:

u5u01M 2u21•••1du011Mdu111M 2du211M 3du31

1••• , ~26!

p5p01M 2p21•••1dp011Mdp111M 2dp21

1M 3dp311••• , ~27!

r5r01M 2r21•••1dr011Mdr111M 2dr21

1M 3dr311••• . ~28!

Powers of M 2 are required initially in the expansion of the

basic flow, as could be predicted from the form of Eqs. ~14!–

~15!. The terms linear in d increase in single powers of M

due to matching conditions with the incident acoustic wave.

The vorticity itself must not be expanded, however, be-

cause the corresponding evolution equations for the higher-

order contributions to the vorticity are likely to have solu-

tions that grow exponentially in time,31,32 and so the

expansion will become disordered at times O@ ln(1/M )# . In-

stead, the vorticity is taken to satisfy the induction equation

~17!, with the induction velocity u and the velocity of the

centroid v computed to whatever order is required. The

question of the existence of solutions of this induction equa-

tion is an unsolved problem. The truncation at leading order

is equivalent to the three-dimensional incompressible Euler

equations, for which finite-time singularity is conjectured,

for some initial conditions,33 but not proved. Our approach

here is a practical one. We do not necessarily require the

solution to exist for long times. If it does not, then the analy-

sis presented here is valid for times O(1). On the other hand,

if the solution to the vortical flow does exist for long times

~e.g., a steady solution, such as Hill’s vortex!, then our analy-

sis is capable of capturing this solution, and perturbations to

it, over times of at least O(M 21).

In order to maintain long-time validity of the solution,

the location xc of the centroid of the vortex is not expanded,

but its velocity is, so that

v5v01dv011••• . ~29!

Thus, the evolution of xc is treated similarly to the evolution

of v, with the expression for xc not expanded, but the center

of the vortex xc traveling with the velocity v expanded to

whatever order is required. We shall choose v01 and subse-

quent d-dependent terms as is convenient, while the higher-

order terms independent of d are not needed.

Because we do not expand v, all velocities except u0

must be irrotational, and so only their divergence is required

to determine the velocity at each successive order. As we

shall see, a perturbation expansion procedure can be estab-

lished using ~14!, ~15!, and ~18! to determine the pressure,

density, and divergence at successive orders. This procedure

differs slightly from that followed by FLS, in which the vor-

ticity is also expanded. The expansion of vorticity is possible

in that paper because the basic flow is a steady state that does

not support neutral modes at the incident frequency. In this

paper, however, we consider general, unsteady vorticity dis-

tributions, and so the nonexpansion of vorticity is crucial to

retaining well-ordered expansions over a long time.

A. The undisturbed vortical flow

At leading order @i.e., O(1)], the continuity equation

~14! is

¹"u050. ~30!

Thus, given the vorticity v, we may obtain the leading-order

velocity u0 in terms of the vorticity using the Biot–Savart

integral,

u052

1

4p
E v~j8!Ã¹juj2j8u21d3j8. ~31!

This simply represents the relationship between velocity and

vorticity in the three-dimensional incompressible Euler equa-

tions. We have assumed that the vorticity is O(r2`) as r

→` , where henceforth r[uju denotes distance from the cen-

ter of the vortical region, and so the integral in ~31! con-

verges.

In order to determine matching conditions between the

vortical region and the wave region, the asymptotic behavior

of flows in the vortical region must be determined in the

limit r→` .

From ~31!, we have

u052

1

4p
E v~j8!Ã¹j~r21

2j8"¹jr21

1
1
2j8j8:¹j¹jr21!d3j81O~r25!. ~32!

The first term in the expansion ~32! vanishes because, by the

divergence theorem and the fact that ¹"v50, we have

05E d3j
]

]j i

@j jv i~j!#5E d3jv j~j!. ~33!

The next two terms in ~32! can be expressed as gradients of

a scalar potential, because the vorticity vanishes as r→` .

The first of these two is discussed in standard texts,30 but the

second is often not treated. The analysis is presented in Ap-

pendix A. The result is that

u05

1

4p
¹~I"¹r21

1J:¹¹r21!1O~r25!, as r→` , ~34!

where

J52

1

3
E j8@j8Ãv~j8!#d3x8. ~35!

Note that ~34! implies

u05O~r23!, as r→`; ~36!
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this result is crucial to establishing the convergence of cer-

tain integrals that arise as the analysis proceeds.

To determine the leading-order pressure p0 , we use the

Lighthill equation ~18!, which gives

]2

]j i]j j

~u0iu0 j!52¹2p0 . ~37!

Here, u0i are the components of u0 , which is determined

from the vorticity by ~31!. Thus, ~37! shows that p0 can be

determined from v, and, using the free-space Green’s func-

tion for the Laplacian, the solution of ~37! for p0 can be

written as

p05

1

4p
E d3j8uj2j8u21

]2

]j i8]j j8
@u0i~j8!u0 j~j8!# . ~38!

To determine p0 in the limit r→` , it is convenient to

rewrite ~38! as

p05

1

4p
E d3j8u0i~j8!u0 j~j8!

]2

]j i]j j

uj2j8u21. ~39!

This is valid since u0iu0 j5O(r26) as r→` . In the limit r

→` , this gives

p05

]2

]j i]j j
S 1

r
D 1

4p
E d3j8u0i~j8!u0 j~j8!1O~r24!.

~40!

Thus,

p05O~r23!, as r→` . ~41!

We now proceed to calculate the velocity and pressure at

O(M 2). Expanding ~14! at O(M 2), we have

]r0

]t
2v0•¹r01¹•~r0u0!1¹"u250, ~42!

and the equation of state gives

p05r0 . ~43!

Equation ~42! is an equation for ¹"u2 . Moreover, u2 is irro-

tational, and so, writing u25¹f2 , Eq. ~42! is a Poisson

equation for f2 , provided u0 , r0 , and ]r0 /]t are known.

Now, p0 is computed from ~38!, in which u0 in the in-

tegrand is obtained from the vorticity via ~31!. Therefore, u0

and r0 are known. To evaluate ]r0 /]t we use the fact that

r05p0 , and therefore we evaluate ]r0 /]t by taking the time

derivative of the integral representation ~38!. To do this, we

must evaluate ]u0 /]t , which is done taking the time deriva-

tive of the expression ~31!. This integral depends only upon

the vorticity, and so by ~17! its time derivative may be evalu-

ated in principle simply by replacing ]v/]t by ¹Ã@(u

2v)Ãv# .

This general structure is applied to all evaluations of

time-derivative terms. All the fields are regarded as function-

als of the vorticity, with different functionals F(•) for the

different fields, and we introduce the notation $u0 ,p0 , . . . %
5$Fu0

(v),Fp0
(v), . . . % to represent this. The rate of

change of any of these fields is thus ultimately determined by

the evolution of v, or more precisely by ]v/]t , through

]F

]t
5

dF

dv
•

]v

]t
, ~44!

where dF/dv is a functional derivative. It follows that, al-

though a quantity may exist only at a single order in the

asymptotic expansion, its time derivatives will exist at that

order and all higher orders. Thus, if a functional F is itself

expanded, in powers of M and d , so that

F5F01dF011••• , ~45!

then the time derivative of that field is calculated according

to

]F

]t
5

]F0

]t
1d

]F01

]t
1•••

5

dF0

dv
¹Ã@~u01du012v02dv011••• !Ãv#

1d
dF01

dv
¹Ã@~u02v01••• !Ãv#1•••

5

dF0

dv
¹Ã@~u02v0!Ãv#

1dH dF01

dv
¹Ã@~u02v0!Ãv#

1

dF0

dv
¹Ã@~u012v01!Ãv#J 1••• . ~46!

We therefore introduce the notation

]F

]t
U

O(M pdq)

~47!

to mean the component of the time derivative of the quantity

F at the order M pdq, where, in this paper, p and q will be

non-negative integers. This means that the time derivative

]r0 /]t in ~42! must be replaced by ]r/]t uO(1)

5]r0 /]t uO(1) . Indeed, not only is this consistent with the

asymptotic expansion procedure, but it is, in fact, necessary

in order for the expansion procedure to proceed. The quantity

]r0 /]t can never be evaluated using an asymptotic expan-

sion procedure of the type developed here, since the full

velocity field, to all orders, is never known in any asymptotic

expansion procedure; however, ]r0 /]t uO(1) can be evaluated

at this stage in the procedure because u0 is known from ~31!.
To supplement the notation ~47!, we shall also use shorthand

notation for the leading-order time derivative of the quantity

F, namely

]0F

]t
[

]F

]t
U

O(1)

. ~48!

Using ~43!, and the notation just introduced, Eq. ~42! is

written as

¹2f252

]p0

]t
U

O(1)

1v0"¹p02¹"~p0u0!. ~49!

A solution to this equation could be given by using the

free-space Green’s function for the Laplacian, as in ~38!.
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However, the farfield behavior of the first term on the right-

hand side of ~49! cannot be determined in this way, because

p0 does not decay sufficiently rapidly in r as r→` . Instead

~cf. Ref. 29!, we invert the Laplacian on the kernel in the

integral representation ~38! for p0 , and hence

f252

1

8p
E d3j8uj2j8u

]2

]j i8]j j8
S ]0

]t
2v0•¹j8D

3@u0i~j8!u0 j~j8!#1

1

4p
E d3j8

3uj2j8u21¹j8
"@p0u0~j8!# . ~50!

Now, we have that u05O(r23) as r→` . Then, from

~13! we have

S ]0

]t
2v0•¹Du0;2¹p0 , as r→` , ~51!

and so

S ]0

]t
2v0•¹Du05O~r24!, as r→` . ~52!

It follows that

S ]0

]t
2v0"¹D ~u0iu0 j!5O~r27!, as r→` . ~53!

Hence, an expression for f2 in the limit r→` can be ob-

tained, namely,

f252

1

8p S ]2

]j i]j j

r D E d3j8S ]0

]t
2v0"¹j8D

3@u0i~j8!u0 j~j8!#1O~r22!, ~54!

and, since u25¹f2 , ~54! implies

u25O~r22!, as r→` . ~55!

B. The flow in the vortical region to O„Md…

Because of the long wavelength of the incident acoustic

wave, it affects the flow in the vortical region via matching

conditions in the limit r→` . The matching process carries

through in a straightforward manner, while the unexpanded

vorticity and the use of different frames in near- and far-

fields is not so simple, so the matching will be presented in

an informal manner for convenience. At O(d), the incident

acoustic wave imposes matching conditions:

p01→e ikXce2ivt; r01→e ikXce2ivt; u01→0; as r→` ,
~56!

since X2Xc5Mj , where j is the x component of j.

The solution for the flow fields in the vortical region is

then simply

p015r015e ikXce2ivt; u0150. ~57!

Thus, at O(d), the pressure and density experience time-

dependent but spatially independent oscillations, and there is

no flow in the vortical region at this order. Note that p01 and

r01 are time dependent in two ways: the e2ivt factor due to

the incident acoustic wave, and also the factor e ikXc(t), which

arises due to the motion of the vortex through the fluid. Re-

call that this second time dependence is slow, in the sense

that dXc /dt5O(M ). Since u0150, we also take v0150.

At O(Md), Eq. ~14! gives

¹"u1150. ~58!

The conditions on the velocity and pressure, in the limit r

→` , are

u11→ie ikXce2ivt; p11→ikje ikXce2ivt, ~59!

where i is the unit vector in the direction of propagation of

the incident acoustic wave.

The flow is irrotational at all orders beyond O(1), and

so the solution for the velocity consistent with ~58! and ~59!
is

u115ie ikXce2ivt. ~60!

This is the same as in FLS, but in that paper, there was also

a rotational component of the flow at this order, which was

obtained by solving a Rayleigh-type equation. In this paper,

that component is incorporated into the leading-order flow,

because in this paper the leading-order vorticity is advected

by the full velocity field, and the vorticity is not expanded in

powers of M and d . The current analysis can be used in the

two-dimensional case too, and exactly the same results as

FLS are recovered, thereby showing that the O(M 2d) scat-

tering prediction of FLS applies to unsteady flow too, as

might be expected since the form of the scattering term de-

pends only of the circulation, which is independent of time.

The Lighthill equation ~18! at O(Md) gives

¹2p1150, ~61!

and the solution to ~61! consistent with the matching condi-

tion ~59! is

p115ikje ikXce2ivt. ~62!

Note here that u11 is independent of the spatial coordi-

nate j. We shall therefore take

v115u11 . ~63!

Consequently, we can see from ~17! that there is no evolution

of vorticity relative to the coordinates of the vortical region

at O(Md). This greatly simplifies the analysis that follows.

C. The flow in the vortical region at O„M2d…

At O(M 2d), conditions on the velocity and pressure in

the limit r→` are

u21→iikje ikXce2ivt; p21→2
1
2k2j2e ikXce2ivt. ~64!

The velocity is irrotational, but ~14! at O(M 2d) shows

that the expression,

]r

]t
U

O(d)

5S ]

]t
~r01dr011••• ! D U

O(d)

, ~65!

needs to be evaluated, following the procedure outlined in

~46!. The O(d) truncation of ]v/]t in ~17! is zero, because

there is no O(d) velocity field to contribute to the truncation.

The truncation of the r01 term can be calculated explicitly:
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]

]t
dr01uO(d)5

]0

]t
e ikXce2ivt

52ive ikXce2ivt, ~66!

because, even though Xc varies in time, dXc /dt5O(M ).

Therefore Eq. ~14! at O(M 2d) is

¹2f215ive ikXce2ivt, ~67!

and so u21 is compressible. Equation ~67! has the solution

f215
1
2ivj2e ikXce2ivt, ~68!

and

u215¹f215iivje ikXce2ivt ~69!

verifies that this solution is consistent with matching condi-

tions ~64!.
Following the same procedure, the equation for the pres-

sure p21 is

v2p0112
]2

]j i]j j
S u0iu21j1

1

2
r01u0iu0 j D52¹2p21 .

~70!

Using ~57! and ~69!, Eq. ~70! can be written as

¹2p21522iv
]u0

]j
e ikXce2ivt

1¹2p0 e ikXce2ivt

2v2e ikXce2ivt, ~71!

where u05u0"i. From ~31!, we have

u052

1

4p
i"E d3j8v~j8!Ã¹juj2j8u21, ~72!

and hence

p215

iv

4p
i"E d3j8v~j8!Ã¹j

]

]j
uj2j8ue ikXce2ivt

2
1
2 k2j2e ikXce2ivt

1e ikXce2ivtp0 . ~73!

In the limit r→` , this gives

p2152

1

2
k2j2e ikXce2ivt

1

iv

4p
I"jS 1

r3
2

3j2

r5 D
3e ikXce2ivt

1O~r23!. ~74!

D. The flow in the vortical region at O„M3d…

At O(M 3d), Eq. ~14! gives

¹2f3152¹"~r11u01r0u11!2

]r

]t
U

O(Md)

1v0"¹r111v11"¹r0 . ~75!

Note the presence of terms dependent on v11 in Eq. ~75!,
where v11 is given by ~63!.

We now have

]r

]t
U

O(Md)

52ivr111ikv0r01 , ~76!

since there can be change of r by the O(Md) velocity. How-

ever v0"¹r115ikv0r01 , and ¹"(r0u11)5v11"¹r0 , so ~75!
simplifies to

¹2f3152¹"~r11u0!1ivr11 . ~77!

Note that, at O(Md) and O(M 2d), the velocities ob-

tained were just the velocity associated with the incident

acoustic wave, in the absence of the vortex. However, Eq.

~75! shows that there will be an additional contribution to the

velocity at O(M 3d) because of the u0 and r0 terms.

To solve ~77!, we divide f31 as follows:

¹2f31
(i)

5ivr11 ~78!

and

¹2f31
(r)

52¹"~r11u0!. ~79!

Equation ~78! has the solution

f31
(i)

52
1
6vkj3e ikXce2ivt, ~80!

and so u31
(i)[¹f31

(i) is the velocity due to the incident wave in

the absence of the vortex:

u31
(i)

52
1
2vkj2

i e ikXce2ivt. ~81!

This matches the incident wave in the limit r→` .

The equation for f31
(r) can be simplified:

¹2f31
(r)

52iku0e ikXce2ivt. ~82!

We can solve ~82! using ~72!, giving

f31
(r)

5

ik

8p
i"E d3j8v~j8!Ã¹xuj2j8ue ikXce2ivt. ~83!

Hence, f31
(r)

5O(r21), and

u31
(r)

5O~r22!, as r→` . ~84!

In fact, the result ~84! holds whatever the value of v11 .

The Lighthill equation ~18! at O(M 3d) is

2S ]

]t
2v0"¹D 2

r11U
O(Md)

2S ]

]t
2v11"¹D 2

r0U
O(Md)

12
]2

]j i]j j
S u0iu31j1u2iu11j1r0u0iu11j1

1

2
r11u0iu0 j D

52¹2p31 . ~85!

The first term simplifies to leave v2r11 , while the sec-

ond one is given by

2S ]

]t
2v11•¹ D 2

r0U
O(Md)

52v11"¹
]0r0

]t
2ivv11"¹r0 .

~86!

Hence, we may define two contributions to p31 , namely p31
(i)

and p31
(r)m such that p315p31

(i)
1p31

(r) , and

v2r1112
]2

]j i]j j

~u0iu31j
(i)

1u2iu11j1r0u0iu11j1
1
2r11u0iu0 j!

52¹2p31
(i) ~87!
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and

2
]2

]j i]j j

~u0iu31j
(r)!12v11"¹

]0r0

]t
2ivv11"¹r052¹2p31

(r) .

~88!

Recall that u31
(i) is the velocity that would be present due to

the incident acoustic wave, in the absence of the vortex, and

u31
(r) is the remainder.

We shall show first that p31
(r) does not enter the matching

conditions at O(M 4d). In the limit r→` , we have

u0u31
(r)

5O~r25!, ~89!

and so by ~88! we have

p31
(r)

5

1

2p
E d3j8~u0iu31j

(r)!
]2

]j i]j j

uj2j8u21

2

1

8p S 2v11"¹
]0

]t
2ivv11"¹D

3E d3j8u0i~j8!u0 j~j8!
]2

]j i]j j

uj2j8ue ikXce2ivt.

~90!

In the limit r→` , ~90! implies

p31
(r)

5O~r22!, as r→` . ~91!

Thus, p31
(r) matches to terms in the wave region that are

O(M 5d) and smaller.

We turn now to p31
(i) . First, we observe that

2
]2

]j i]j j

~u2iu11j!52u11

]

]j

]

]j i

u2i52
]

]j
¹2f2e ikXce2ivt

~92!

and

2
]2

]j i]j j

~u0iu31j
(i)!522vkS u01j

]u0

]j D e ikXce2ivt.

~93!

Hence, p31
(i) satisfies

¹2p31
(i)

52vkS u01j
]u0

]j D e ikXce2ivt
22

]

]j
¹2f2

3e ikXce2ivt
22

]2

]x i]x j
S r0u0iu11j1

1

2
r11u0iu0 j D

2k2r11 . ~94!

It follows that

p31
(i)

52

vk

4p
i"E d3j8v~j8!Ã¹j

3F uj2j8u1j
]

]j
uj2j8u2

1

6

]2

]j2
uj2j8u3G

3e ikXce2ivt
1

1

2p
E d3j8S r0u0iu11j1

1

2
r11u0iu0 j D

3

]2

]x i]x j

uj2j8u21
22u2e ikXce2ivt

2
1
6 ik3j3e ikXce2ivt. ~95!

In the limit r→` , we have

r0u0u115O~r26!, r11u0u05O~r25!. ~96!

It follows that, in the limit r→` , the second line in ~95! is

O(r23), and the third is O(r22). The leading-order contri-

bution to p31
(i) in the limit uju→` therefore comes from the

fourth line of ~95!, which is O(r3). and matches to the inci-

dent wave. The next-order contribution comes from the first

line of ~95!, which is O(r21), and so matches to flow at

O(M 4d) in the wave region. The result is

p31
(i)

52

1

6
ik3j3e ikXce2ivt

2

vk

8p S I1

r
1

j2I1

r3
1

jjkIk

r3

2

3j3jkIk

r5 D e ikXce2ivt
1O~r22!. ~97!

It follows that only the superscript-(i) components

match the flow in the wave region at O(M 4d). Moreover, it

can be seen that u2 is not required in order to calculate p31
(i) .

Therefore, in the limit r→` , the superscript-(i) fields are

exactly what would be calculated by the acoustic analogy

method. We now use matched asymptotic analysis to obtain

the flow in the wave region.

IV. THE OUTER SOLUTION

The solution in the wave region is expressed as an

asymptotic expansion in M and d . We shall see that the

asymptotic expansion takes the form

F5M 2F21M 3F31•••1dF011M 4dF411••• , ~98!

P5M 3P31•••1dP011M 4dP411••• , ~99!

H5M 3H31•••1dH011M 4dH411••• . ~100!

Here we are using the fact that, in the wave region, U

5¹F to all orders required.

We start by considering the flow in the wave region in

the absence of the incident acoustic wave. This is the com-

ponent of the flow in the expansions ~98!–~100! that is inde-

pendent of d .

The leading-order velocity u0 in the vortical region de-

cays as r23 in the limit r→` . This corresponds to a velocity

potential O(M 2) in the wave region, since the velocity in the

wave region has already been scaled by one factor of M. This

explains why the expansion for F starts at O(M 2). The

leading-order pressure p0 in the vortical region also decays

as r23 as r→` , and this corresponds to a pressure O(M 3) in

the wave region. This explains why the expansions for P and

H start at O(M 3).

With the expansions for U, P, and H as given, Eq. ~20!
at O(M 2) gives

¹2F250, ~101!

and ~22! at O(M 2) gives
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]0F2

]t
50. ~102!

To determine F2 , we must use asymptotic matching to

the flow in the vortical region. Equation ~34! gived the form

of u0 in the limit r→` . Matching to ~34!, we can see that, to

leading order, ~101! implies

F25

1

4p
I"¹S 1

R
D , ~103!

where

R5uX2Xc~ t !u. ~104!

Equation ~102! is satisfied, since I is conserved by the

leading-order incompressible dynamics of the vortical

region30 ~see also Appendix B!, and so

dI

dt
U

O(1)

50. ~105!

Time dependence is nevertheless present in F2 due to mo-

tion of the center Xc(t), and the fact that I is not conserved

to all orders in the perturbation expansion, but these are

higher-order effects. Hence, although there is a contribution

to the velocity in the wave region at O(M 2), there are no

propagating acoustic waves at this order.

At the next order, O(M 3), Eqs. ~20! and ~22! give

]0H3

]t
1¹2F350, ~106!

]0F3

]t
1

]F2

]t
U

O(M )

1H350, ~107!

where

]F2

]t
U

O(M )

5

1

4p
I"¹F ]

]Xc
S 1

R
D "V0G52

1

4p
IV0 :¹¹S 1

R
D .

~108!

Taking the time derivatives of ~106! and ~107! is awk-

ward because some O(M 3) terms in the second derivatives

of F3 and H3 come from applying the general procedure of

~46! to lower-order terms in H and F . Instead, we combine

~20! and ~22! to give

]2F

]t2
2¹2F52M 2¹F"

]¹F

]t
1M 2¹"~UH !

2

]H

]t
@~11M 2H !g22

21# . ~109!

Truncating this equation at O(M 3), we have

]0
2F3

]t2
2¹2F352

]2F2

]t2 U
O(M )

5

1

4p S d0

dt
IV0D :¹¹S 1

R
D .

~110!

A particular solution to ~110! is

F3
(p)

5

1

4p
IM 21Xc :¹¹S 1

R
D . ~111!

However, this solution is unacceptable because, over long

times O(M 21), the location of the vortex, Xc , will, in gen-

eral, be O(1). This implies that F3
(p) becomes O(M 21) and

the asymptotic expansion for F would then become disor-

dered for times O(M 21). Thus, in common with many

asymptotic expansion procedures, a multiple-time-scale ex-

pansion is required for xc , so that Xc must be represented as

Xc(t ,Mt , . . . ). We then apply a nonsecularity condition to

the right-hand side of ~110!. Physically, the nonsecularity

condition is simply that any mean motion of the vortex must

not be contained in the order-unity time scale. Mathemati-

cally, this can be stated as

lim
T→`

1

T
E

t

t1T

Xc~ t8,Mt , . . . !dt850, for all times t . ~112!

In fact, we can remove the leading-order time dependence

from Xc entirely by taking a slowly varying definition of the

vortex center. Then, although V0 is taken to be O(1) in

general, dV0 /dt will be O(M ), and the right-hand side of

~110! then vanishes. Thus, F3 satisfies the unforced linear

wave equation, and the solution consistent with matching to

the vortical region in the limit R→0 is

F35

1

4p
¹¹:S 1

R
J~ t2R ! D . ~113!

The expression ~113! is the familiar ‘‘Lighthill’’ radiation

from the vortex, in the absence of any incident wave.

The expansion in the vortical region proceeds in powers

of M 2, and so it is possible that, in addition to ~113!, there

may also be a monopole term at O(M 2) in the vortical re-

gion, which would also match to a term O(M 3) in the wave

region. In fact, it can be seen from ~54! that there is no term

of the monopole type in f2 in the limit r→` , and so there is

no monopole in the acoustic wave field at O(M 2). This re-

sult is due to Crow.29 It is also possible to develop the ex-

pansion in the wave region at further powers of M, indepen-

dent of d , but we shall see that the development to O(M 3) is

sufficient here.

An expression for H3 can then be obtained from ~107!.
The result is

H352

1

4p
¹¹:S 1

R
J̇~ t2R ! D2

1

4p
IV0 :¹¹S 1

R
D , ~114!

where

J̇52

1

3
E d3jj$jÃ¹Ã@~u02v0!Ãv#% ~115!

is the O(1) time derivative of J. The form ~114! for density

or pressure is a well-known result of Möhring,34 usually

written in terms of a third-order time derivative. A lengthy

but straightforward calculation shows that ~114! matches to

p0 in the limit r→` given by ~40!.
We now turn to the incident wave and the associated

scattered fields. The outer solution at O(d) was already cho-

sen to be the incoming acoustic wave, in which

H015P015e i(kX2vt); F015

1

iv
e i(kX2vt). ~116!
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Consideration of matching to the vortical region, to p21

from ~74! and p31 from ~97!, shows that the first contribution

to the scattered wave field occurs at O(M 4d), and this is the

same as the order at which there is forcing by lower-order

terms linear in d in the wave region. Thus, as indicated in

~98!–~100!, the next order after O(d) at which the solution

in the wave region is nonzero is O(M 4d). The governing

equations at this order are

]F2

]t
U

O(M2d)

1

]F3

]t
U

O(Md)

1

]0F41

]t
1U2•U011P4150,

~117!

]H3

]t
U

O(Md)

1

]0H41

]t
1¹"~U2H01!1¹"U4150, ~118!

H415P41 . ~119!

Using the fact that H415P41 and

U25

1

4p
¹S I"¹

1

R
D , ~120!

~109! may be evaluated at O(M 4d), giving the forced wave

equation for F41 ,

]0
2F41

]t2
2¹2F4152

]2F2

]t2 U
O(M2d)

2

]2F3

]t2 U
O(Md)

1U2"¹H012U2"
]U01

]t
. ~121!

Now, the second term on the right-hand side of ~121!
vanishes because there are no O(Md) derivatives in this

analysis, since (u112v11)50, and so there is no vorticity

evolution at O(Md).

The first term on the right-hand side of ~121! takes a

simple form, and is evaluated in Appendix B. The result is

that F41 satisfies

]2F41

]t2
2¹2F4152

v2

4p
I"¹S 1

R
D e i(kXc2vt)

1

ik

2p
e i(kX2vt)

]

]X
I"¹

1

R
. ~122!

The appropriate solution to ~122! is

F415

1

4p
e i(kXc2vt)I"¹S 1

R
D2

1

4p
e i(kX2vt)I"¹

1

R
1F41

H ,

~123!

where F41
H satisfies the ~unforced! wave equation, and must

be determined by matching. Hence F41
H may be expressed as

F41
H

5S A0

iv

e ikR

R
1

A i

iv

]

]J i

e ikR

R
1

A i j

iv

]2

]J i]J j

e ikR

R
1••• D

3e ikXc2ivt, ~124!

where J5X2Xc , R5uJu, and the coefficients

A0 , A i , A i j , etc., are constants.

Using ~117!, the corresponding expression for pressure is

P415

iv

4p
e ikX2ivtI j

J j

R3
2

1

4p
e ikX2ivtI jS 2

d1 j

R3
1

3JJ j

R5 D
1A0

e ikR1ikXc2ivt

R
1A i

]

]X i

e ikR1ikXc2ivt

R

1A i j

]2

]X i]X j

e ikR1ikXc2ivt

R
1••• , ~125!

where J is the component of J in the direction of propaga-

tion of the incident acoustic wave. We have retained only

monopole, dipole, and quadrupole terms in ~125!; the higher

multipole terms are, in fact, zero, as will be made clear by

the fact the the terms displayed are sufficient to satisfy the

matching conditions derived below.

We are now in a position to determine the scattered field

completely by carrying out the matching, which determines

A0 , A i , and A i j . We are free to express the matching con-

dition in terms of either pressure P or velocity potential F .

Here we use the pressure. We take the limit for small R of the

outer expansions, expanding the term e ikX, and match to the

leading-order decaying terms from p21 and p31 rewritten in

terms of R. At this point we must also recall that the origin of

the vortical-region coordinates differs from the origin of the

wave-region coordinates by O(Md), because v115u11 ,

whereas V1150. Therefore, when the d-independent pres-

sure fields p0 , p2 are expressed in terms of the wave-region

coordinates, terms linear in d occur due to the coordinate

shift. However, because p05O(r23), and p25O(r21), as

r→` , these contribute additional terms to the wave region at

O(M 5d), and higher, but make no contribution at O(M 4d).

The matching conditions are then expressed as three

equations. The first equation, corresponding to terms in R23,

is

2

I j

4p S 2

d1 j

R3
1

3JJ j

R5 D 1A i jS 2

d i j

R3
1

3J iJ j

R5 D 50.

~126!

This determines the quadrupole coefficient,

A i j5

I jd i1

4p
. ~127!

Using ~74!, the second equation in the matching, which

comes from terms in R22, is

iv

4p
I j

J j

R3
2A i

J i

R3
2ik

I j

4p
JS 2

d1 j

R3
1

3JJ j

R5 D
5

iv

4p
IkJkS 1

R3
2

3J2

R5 D . ~128!

This gives the dipole coefficient

A i5

ik

4p
d1iI1 . ~129!

Finally, from the terms in R21 and using ~97!,
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2

vk

4p
I j

JJ j

R3
1

A0

R
2

1

2
k2A i jS d i j

R
2

J iJ j

R3 D
1

I j

4p

1

2
k2J2S 2

d1 j

R3
1

3JJ j

R5 D
5

vk

8p S 2

I1

R
2

J2I1

R3
2

JJkIk

R3
1

3J3JkIk

R5 D . ~130!

This gives the monopole coefficient,

A050. ~131!

This completes the matching of terms in the wave region

at O(M 4d) to all terms in the vortical region that depend

explicitly on d . The result is

P415

1

4p
e2ivtH e ikXc

]

]J F ~I•¹1ivI1!
e ikR

R
G

1e ikXS ]

]J
2iv D I•¹

1

R
J . ~132!

In the farfield limit R→` , the second of the two terms in

~132! is O(R22). The first of the two terms contains the

radiating waves, and in the limit R→` we have

P4152

v2

4p
cos qS I"J

R
1I1D e i(kR1kXc2vt)

R
1O~R22!, ~133!

52

v2

4p
cos q~cos q1cos m !I

e i(kR1kXc2vt)

R
1O~R22!,

~134!

where here q is the angle subtended at the vortex between

the position X and the direction of propagation of the inci-

dent acoustic wave, and m is the angle between the direction

of I and the direction of propagation of the incident acoustic

wave.

V. RELATIONSHIP TO THE ACOUSTIC ANALOGY
APPROXIMATION

The result can readily be shown to agree with the scat-

tered sound field obtained using the acoustic analogy ap-

proximation. Equation ~17! of Ref. 18 agrees with ~133!,
provided that in the former, the Fourier transform of the vor-

ticity is approximated as

E v~x!e ik•x d3x'E ik•xv~x!d3x. ~135!

This approximation is valid provided the length scale of the

vortical region is small compared to the wavelength of the

incident acoustic waves, which is precisely the condition re-

quired for our analysis to be valid. The applicability of the

acoustic analogy approximation to vortices with length scale

comparable with the wavelength of the incident waves is an

open question, which cannot be addressed by the asymptotic

analysis presented here. The present results also hold for

waves with wavelength larger than M 21, i.e., which have

frequency smaller than the vorticity.

From the analysis presented, it may appear that, to de-

termine the scattered sound, all we require is a leading-order

description of the vorticity over the time of interest, since

this enables us to determine I, and hence P41 . Moreover,

since I is conserved to leading order, we may apparently use

the value of I from the initial, undisturbed vortex.

Note, however, that the effect of scattering is present not

only in P41 , but also in the lower-order fields. The expres-

sion ~114! for H3 , and hence P3 , depends on J̇, and ulti-

mately upon v. Now, v satisfies an induction equation with

an induction velocity up to O(M 3d). Hence, the vorticity v
differs from the vorticity vU, say, that would have evolved

in the absence of any incident waves. Any resulting differ-

ence in pressure P3 should then be regarded as part of the

scattered pressure field. In particular, we see that if J departs

by O(Md) from the value JU that would have existed in the

absence of the acoustic wave, then this difference will be

O(Md), and so should be counted as part of the leading-

order scattered sound field.

Now, since u0150, and u115v11 , there is no evolution

of vorticity at O(d) and O(Md). Over times O(M 21), how-

ever, it is possible that the velocity field u21 may act to lead

to differences between v and vU, and so to differences be-

tween J and JU, of order Md . Such differences would then

imply that, over long times, the pressure P3 would contain a

contribution at O(Md), and so a contribution to the pressure

O(M 4d) due to the presence of the acoustic waves. Thus, in

order for the leading-order scattered wave field to be repre-

sented by ~132! over long times, we must assume that u21 has

no secular effect on J and so

uJ~ t !2JU~ t !u5o~Md !, ~136!

over the time interval in question. We also assume that the

same structure holds at higher orders, so that the restriction

on P3 is the most restrictive. In general, ~136! cannot be

guaranteed a priori; in Part II,28 we show that it does apply,

under certain assumptions about the magnitude of d , for the

problem of scattering from Hill’s spherical vortex. For M and

d independent, the expansion is valid under the conditions

we have just mentioned, but the detailed conditions under

which it may fail, and, in particular, the extra conditions this

may impose on M and d depend on the particular problem

under study.

VI. CONCLUSION

The problem of scattering of an acoustic plane wave by

a three-dimensional vortical structure has been solved by a

rational expansion of the equations of motion in the limit of

long waves, when the acoustic frequency is of the same order

as the vorticity. The results also hold for smaller acoustic

frequencies. The resulting solution is the same as that ob-

tained by using the acoustic analogy approximation, pro-

vided the impulse I is nonzero, and the assumption ~136!
holds. This is because only the pressure fields p01 , p11 , p21 ,

and p31
(i) from the vortical region are required to determine

matching conditions to the wave region at O(M 4d), and the

right-hand sides of the equations that these pressure fields

satisfy are all formed from the product of the velocities of
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the undisturbed vortex uU and the incident plane wave, ex-

actly as if the acoustic analogy approximation had been

made from the outset. If IU
50, then the leading-order scat-

tered field is O(M 5d), where the details for the structure of

the vortex, and not just its impulse, are required in order to

determine the scattered sound field. The situation is analo-

gous to that of FLS, where, in two dimensions, the leading-

order scattered sound field depends only upon the circulation

of the vortex.

For times longer than O(1), there is no difficulty, in

principle, in allowing the vortex to move through an order-

unity number of incident acoustic wavelengths. The use of

the acoustic analogy method for computing the scattered

sound field is then valid provided velocities O(M 2d) and

smaller do not act in a secular fashion, so that the assumption

uJ2JUu5o(Md) holds over times O(M 21). In addition, it

must be possible to define a vortex center that propagates

smoothly, with order-unity velocity but relatively smaller ac-

celeration. It is certainly possible to meet both of these con-

ditions if the flow in the vortex is both laminar and stable to

small-amplitude perturbations. However, for unstable flows,

it may be that the dynamics of the vortex is sensitive to the

perturbations introduced by the incident acoustic wave, and

so ~136! may not hold.

A further limitation of the present analysis is that the

Lighthill radiation emitted spontaneously by the vortex is

formally larger in amplitude—O(M 3) in the farfield—than

the scattered wave field which is O(M 4d). Lighthill radia-

tion is expected to occur for almost all vortical flows, and so

an attempt to measure sound scattered from a vortex is likely

to be swamped by noise being emitted by the vortex. It may

be possible to select a frequency at which Lighthill radiation

is negligible, so that the scattered wave field can be detected,

despite the fact that its magnitude is a factor O(Md) smaller

@and power a factor O(M 2d2) smaller# than that of the Light-

hill radiation. Also, if the acoustic frequency is low, the dif-

ference in time scales between generated and scattered sound

may also make distinguishing the two possible.

Vortices that are stationary, or propagate without a

change of shape, do not exhibit Lighthill radiation. One such

example is Hill’s vortex. In Part II28 we calculate the scat-

tered sound field using the full asymptotic procedure de-

scribed here. We show that, for Hill’s spherical vortex, the

assumption ~136! is valid, and so the scattered sound field for

Hill’s vortex is correctly predicted by the acoustic analogy

approximation, even for times O(M 21).

There are two principal differences between the present

case of scattering by a three-dimensional vortex and the

much studied case of scattering by a two-dimensional vortex

filament. One difference is that, in the three-dimensional

case, an expression for the scattered field in the wave region

exists that is valid for all scattering angles. This contrasts

with the two-dimensional case, in which a special parabolic-

shaped region exists about the forward scattering direction.

The other difference is that in the three-dimensional case the

scattered field can be expressed as a sum of monopole, di-

pole, and quadrupole wave fields, whereas in the two-

dimensional case all moments are present in the leading-

order scattered field.

Despite these differences, however, it is interesting to

note the similarities that exist between the two cases. The

leading-order scattered sound field in the MAE framework

depends in each case on a single integrated quantity of the

vortex, namely, the impulse I in the three-dimensional case

and the circulation in the two-dimensional case. Moreover,

forcing is present in the wave equation satisfied by the scat-

tered sound, implying that in both cases the velocity due to

the vortex is significant in the wave region. This is, at first

sight, surprising, since the velocity associated with the vor-

tex decays more rapidly with distance in three dimensions

than in two, but scattering occurs in the three-dimensional

problem at O(M 4d)—two orders in M higher than in the

corresponding two-dimensional problem—and so in both

problems there is significant scattering by flow over O(1)

acoustic wavelengths, as well as flow on the scale of the

vortex. Finally, the method presented here can be applied to

the two-dimensional case and the results match those of FLS,

showing that the leading-order result for the scattered sound

field holds also for unsteady flows in two dimensions.

The solution to three-dimensional problems is poten-

tially more important to applications and experiments than

the two-dimensional ones. The solution ~132! takes a simple

form and could form the basis for experimental work. As in

the two-dimensional problem, in which the dominant re-

sponse was determined by the circulation, any attempts to

use inverse measurements to probe the inner structure using

long-wavelength acoustic waves are limited by the fact that

the dominant response here is determined entirely by another

integrated property of the vortex, namely the vortex dipole

moment.
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APPENDIX A: FARFIELD FOR u0

In this appendix, we show that

u052

1

4p
E v~j8!Ã¹j~r21

2j8"¹jr21

1
1
2j8j8:¹j¹jr21!d3j81O~r25! ~A1!

can be expressed in the form of the gradient of a scalar field,

and determine an expression for it.

To treat the first of the two terms in ~A1!, it proves

helpful to note that

05E d3j
]

]j i

@j jjkv i~j!#5E d3j@j jvk~j!1jkv j~j!# .

~A2!

2887Phys. Fluids, Vol. 13, No. 10, October 2001 Scattering by vortices. I. General theory

Downloaded 12 Aug 2002 to 132.239.191.220. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Hence, we have

1
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e i jk
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]jk
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]

]j l

r21
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52
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4p

]

]j i
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where I is given by ~12!.
To treat the second of these two, we use a similar device.

We first observe that

05E d3j
]

]j i

@j jjkj lv i~j!#

5E d3j @j jjkv l~j!1jkj lv j~j!1j lj jvk~j!# . ~A4!

Hence
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where

J52

1

3
E j8@j8Ãv~j8!#d3x8. ~A6!

Thus

u05

1

4p
¹~I"¹r21

1J:¹¹r21!1O~r25!, as r→` ,

~A7!

as required.

APPENDIX B: EVALUATION OF ­2F2 Õ­t2 zO„M2d…

We shall first evaluate d2I/dt2 to O(M 2d). To do this,

we have

1

2

d

dt
E xÃvd3x5

1

2
E xÃ@¹Ã$~u2v !Ãv%#d3x

5E u¹"ud3x. ~B1!

This is valid provided u2
5o(r22) as r→` , which is valid

up to O(M 2d). Then

d2I

dt2
5E ]u

]t
¹"u d3x1E u¹"

]u

]t
d3x. ~B2!

Now, using ¹"u050 and u0150, we have

d2I

dt2 U
O(M2d)

5E ]0u0

]t
¹"u21 d3x1E u0¹"

]0u21

]t
d3x.

~B3!

The first of the two integrals on the right-hand side of

~B3! vanishes, because I05*u0d3x5
1
2*xÃvd3x5I is con-

served to leading order in time. The second can be simplified

to give

d2I

dt2 U
O(M2d)

5v2r01I. ~B4!

Now, recalling that R depends on time through R5uX
2Xcu, the first derivative of F2 with respect to time is

]F2

]t
5

1

4p

dI

dt
"¹S 1

R
D2

1

4p
IMV:¹¹S 1

R
D . ~B5!

Since V is independent of d by assumption, it follows that

the only contribution to ]2F2 /]t2 at O(M 2d) comes from

differentiating I again with respect to time in the first term on

the right-hand side of ~B5!, and so

]2F2

]t2 U
O(M2d)

5

1

4p

d2I

dt2U
O(M2d)

"¹S 1

R
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Dokl. Akad. Nauk SSSR 30, 616 ~1941! ~in German!.
2R. B. Lindsay, ‘‘Compressional wave front propagation through a simple

vortex,’’ J. Acoust. Soc. Am. 46, 89 ~1948!.
3R. H. Kraichnan, ‘‘The scattering of sound in a turbulent medium,’’ J.

Acoust. Soc. Am. 25, 1096 ~1953!.
4M. J. Lighthill, ‘‘On the energy scattered from the interaction of turbu-

lence with sound or shock waves,’’ Proc. Cambridge Philos. Soc. 49, 531

~1953!.
5E.-A. Müller and K. R. Matschat, ‘‘The scattering of sound by a single

vortex and turbulence,’’ Tech. Rep., Max-Planck-Institut für Strömungs-
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