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Acoustic source mapping techniques using acoustic sensor arrays and delay-and-sum beamforming techniques suffer from bad
spatial resolution at low-aperture-based Helmholtz numbers. This is especially a problem for three-dimensional map grids, when
the sensor array is not arranged around the region spanned by the grid but on only one side of it. Then, the spatial resolution
of the result map in the direction pointing away from the array is much worse than in the other lateral directions. Consequently,
deconvolution techniques need to be applied. Some of the most efficient deconvolution techniques rely on the properties of the
spatial beamformer filters used. As these properties are governed by the steering vectors, four different steering vector formulations
from the literature are examined, and their theoretical background is discussed. It is found that none of the formulations provide
both the correct location and source strength. As a practical example the CLEAN-SC deconvolution methodology is applied to
simulated data for a three-source scenario. It is shown that the different steering vector formulations are not equally well suited for
three-dimensional application. The two preferred formulations enable the correct estimation of the source location at the cost of
a negligible error in the estimated source strength.

1. Introduction

In the context of acoustic measurements, methods based on
acoustic sensor arrays can be used to locate acoustic sources
and to estimate their strength [1]. In most cases, these meth-
ods are adopted to produce acoustic source maps. In general,
such maps can be thought of as an image of the spatial
distribution of an indicator quantity of source strength.

Acoustic source mapping techniques using beamforming
methods have been widely applied for the study of acoustic
sources (e.g., for trains [2], aeroacoustic testing [3, 4],
airframe noise [5, 6], noise source characterization at a heli-
copter [7], and jet noise [8]). These methods use the signals
from an array of acoustic sensors (mostly microphones)
to filter out the signal from a source at an assumed loca-
tion. Such a spatial filter behaves like a directional sound
receiver with a directional characteristic that favours sound
emanating from the assumed source location [9]. If several
of such spatial filters are applied in parallel for a number
of different assumed source locations, an acoustic source

mapping may be generated from the filter outputs. Usually
the assumed source locations are arranged in some sort of
grid and the amplitude of the output from each individual
filter is mapped on the respective grid location. Thus, the
filters constitute a mapping device.

The map produced by this device is an image of the
spatial source distribution. Ideally, it shall have the following
properties: if a certain assumed source location in the grid
coincides with an actual source location, the map shows a
higher value at this location. If there is no coincidence of
assumed and actual source location, the map shows a lower
value. Moreover, stronger sources shall result in higher values
in the map. Thus, the map provides information about the
location of the source, and it allows to estimate the strength
of the source.

The feasibility of this approach depends on the properties
of the beamformer mapping device as given by the point
spread function. The point spread function is the spatial
impulse response of the beamformer. It can be thought of
being the map that is produced if only one single point
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source is present at a certain location. It shows the image of
the source as a spot at the source location (main lobe) that
is accompanied by a number of spots (side lobes) at other
locations and lower in level. This mapping is imperfect for
two reasons. First, the width of the main lobe limits the
spatial resolution because sources that are too close to each
other will produce a mapping very similar to that of a single
source. Second, the images of weaker sources may be masked
by the side lobes of a stronger source. The point spread
function depends on a number of factors: the number and
the geometrical layout of the array microphones, the array
aperture, the frequency, and the type and properties of the
filter. It also depends on the source location.

A number of deconvolution techniques have been devel-
oped to recover the true spatial source distribution from the
beamformer result by removing the influence of the point
spread function. Some rely on precalculated point spread
functions (e.g., DAMAS [10]), other approaches assess the
point spread function from the acoustic data recorded during
the measurement (e.g., CLEAN-SC [11]). A critical point,
especially for the latter techniques, is that they require the
maximum in the map to coincide with an actual source
position.

The beamforming source mapping approach is typically
applied using a planar two-dimensional grid. In this case,
all sources are mapped into one plane regardless of their
actual position. In situations where the acoustic sources
under test are not in a common plane (e.g., for complex
machinery parts, engines, and some aeroacoustic sources,
such as, landing gear and pantographs), this leads to an
erroneous source mapping. Therefore, a three-dimensional
mapping is desirable that allows source localisation in three
dimensions. In principle, the three-dimensional application
of beamforming techniques is straightforward and can be
easily realised by using a three-dimensional grid [12–20].
However, there appear to be some practical problems in the
application.

First, the resolution in the third dimension (depth-wise)
is much worse than in the other dimensions unless the
microphone array arrangement encloses the source region
to be mapped. The second problem is the larger number
of points in a three-dimensional grid. While for a two-
dimensional mapping some thousand grid points may be
sufficient, a three-dimensional grid can easily have some
hundred thousand points. Because one filter per grid point
is required to calculate the result, the computational effort
increases considerably. That is why most applications are
using only several ten thousand grid points.

As with two-dimensional map grids, the resolution can
be improved using deconvolution techniques also for the
third dimension. The computational effort connected with
these techniques is generally high and depends on the
number of grid points. Those deconvolution techniques that
require precalculated point spread functions (e.g., DAMAS
[10]) also require to solve a system of equations with as
many unknowns as there are grid points. The effort for the
estimation of the point spread function increases with the
fourth power of the number of grid points in the map grid.
The effort to solve the system of equations itself grows with

the second to third power. Thus, the large number (hundreds
of thousands or more) of grid points required for a three-
dimensional mapping with fine spatial resolution renders the
application of these techniques inefficient. A possible solu-
tion that has been proposed [21] is to assume that the point
spread function is assumed to be shift invariant. Thus, the
effort would reduce substantially and it would increase then
only with the second power of the number of grid points for
the estimation of the point spread function and with some-
what less than the second power for the solution of the system
of equations based on the fast fourier transform. However,
this approach is limited to cases where the source region is
small compared with its distance to the array [21]. Thus, it is
not applicable to the general case of a larger source region.

Computationally less demanding deconvolution tech-
niques, such as, CLEAN-SC that do not require solving a
huge system of equations in turn need to find sources by
maximums in the three-dimensional map. Therefore, a final
problem in the three-dimensional application of beamform-
ing mapping techniques is to find spatial filters that have
the desired properties also in three dimensions to provide
these maximums. While this problem arises specifically for
deconvolution methods that require maximums in the map
to coincide with acoustic sources, it is relevant because
the computational cost increases roughly linearly with the
number of grid points. This makes these techniques most
appropriate for three-dimensional application and allows for
practical application with several hundred thousand grid
points [17–19].

The problem of desired beamformer filter properties
shall be considered here by comparing different spatial
filter characteristics given by different steering vectors and
analysing their properties with regard to three-dimensional
beamforming with deconvolution. In the remainder of this
contribution the theoretical basis for the beamforming
methods is briefly presented, and four different spatial filter
characteristics are discussed. Their properties are demon-
strated using a single-source scenario as an example. Finally,
a slightly more realistic case is considered. Simulated data
for three-dimensional source mapping is analysed using the
different beamformers and the CLEAN-SC deconvolution
approach. The results are compared with results from two-
dimensional source mapping.

2. Theory

First, the analysis of a single sound source located at xs using
an array of N microphones is assumed. The complex-valued
sound pressure p at the i-th microphone at xi is

p(xi) = a(xi, x0, xs)q(xs). (1)

The strength of the source is characterised by the sound
pressure q at the reference location x0 due to that source.
Though in principle x0 can be freely chosen, for the purpose
of the following analysis it is set to the array centre at

(1/N)
∑N

i=1 xi. The transfer function a depends on the type of
the source, its location xs, and the environmental conditions.
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If a monopole source under free-field conditions is assumed
and no flow is present, the transfer function is given by:

a(xi, x0, xs) =
rs,0
rs,i

e− jk(rs,i−rs,0), (2)

with rs,i = |xs−xi| and rs,0 = |xs−x0| indicating the distance
between the source and the microphone location and the
distance between the source and the array centre location,
respectively, and k is the wave number. The vector of sound
pressures at the microphones due to a source at xs is given by
p = a(x0, xs)q(xs). The transfer vector a(x0, xs) contains all
respective transfer functions and accounts for the individual
time delays and attenuations of the sound that travels from
the source to the microphones.

The beamformer filter is realised by calculating the
weighted sum of the microphone sound pressures using
complex-valued weight factors. The vector h(xt) of these fac-
tors is called the steering vector and depends on an assumed
source location xt . The filter output is then:

pF(xt) = h(xt)
H

p, (3)

where the superscript H denotes the hermitian transpose.
Instead of pF , the real-valued autopower spectrum B of the
filter output can be used as a quantity to construct a source
map. Using the cross spectral matrix of microphone signals
G, it can be written as

B(xt) = E
{

pF(xt)p
∗
F (xt)

}

= hH(xt)E
{

ppH
}

h(xt)

= hH(xt)Gh(xt),
(4)

with E{} denoting the expectation operator and the super-
script ∗ denoting the complex conjugate.

Two properties of the beamformer filter are desirable
for a successful application in the case of acoustic source
mapping. First, the filter should provide maximum output
power when the assumed and the actual source position are
the same:

B(xt = xs) > B(xt /= xs). (5)

This property is essential to have a map showing the peak
value at the source position. Second, if the assumed and the
actual source coincide, the filter output should be a measure
of the source strength. This is true, if

B(xt = xs) = CE
{

qq∗
}

(6)

holds, where C is an arbitrary constant.

The properties of the beamformer filter are governed
by the steering vector. This vector depends on the assumed
source location xt also referred to as steering location. While
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Figure 1: Microphone array and distances to actual and assumed
source location.

not further considered here, it can be noted that it may
also depend on the measured data itself and adapt the filter
properties to the data. Sometimes the distance between array
and source is very large and a plane wave propagation can
be assumed. In this case, xt is replaced by the direction
of arrival and the distance between array and source is set
to be practically infinite. However, for three-dimensional
application this approach is not feasible.

An in-depth examination of the literature on acoustic
beamforming reveals that there are at least four choices
available regarding the formulation of the steering vector
elements hi under these circumstances. In the following,
these formulations are presented and analysed regarding the
desirable properties stated in (5) and (6).

2.1. Formulation I. The most basic idea is to simply com-
pensate for the phase delay [22] between assumed source
and the individual microphone. The steering vector elements
are then derived from the phase part of the transfer vector
elements for the assumed source location:

hI
i =

1

N

ai(x0, xt)

|ai(x0, xt)|
= 1

N
e− jk(rt,i−rt,0). (7)

The latter part of this equation holds if the transfer function
from (2) is assumed and rt,i = |xt−xi| and rt,0 = |xt−x0| (see
Figure 1). Given this steering vector formulation that shall be
referred to here as “formulation I”, the output power of the
beamformer filter can be derived for the case xt = xs:

B(xt = xs) =
⎛

⎝

1

N

N
∑

i=1

rs,0
rs,i

⎞

⎠

2

E
{

qq∗
}

. (8)

Because
∑N

i=1(rs,0/rs,i) ≈ N , the output is an estimate of
the source strength. However, it becomes obvious that the
condition (6) is met only approximately.

Condition (5) requires a local maximum of B(xt) at xt =
xs. A necessary condition for this is that all partial derivatives
of B with respect to the elements of xt are zero. For this, it is
sufficient to have

∂

∂rt,i
B(xt)

∣

∣

∣

∣

∣

xt=xs

= 0,
∂

∂rt,0
B(xt)

∣

∣

∣

∣

∣

xt=xs

= 0. (9)
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This holds for the partial derivatives that can be computed
when the steering vector given by (7) is applied in (4). Thus,
the necessary condition to have a maximum response at the
source location is met in this case.

2.2. Formulation II. Another formulation of the steering
vector that is frequently used in the literature (e.g., [3, 5])
aims at compensating also for the amplitude:

hII
i =

1

N

ai(x0, xt)

ai(x0, xt)a
∗
i (x0, xt)

= 1

N

rt,i
rt,0

e− jk(rt,i−rt,0). (10)

This formulation assures that condition (6) is met because
B(xt = xs) = E{qq∗}. However, this comes at the cost that
the derivatives in (9) do not vanish. There is no maximum at
xt = xs, and consequently condition (5) is not met.

2.3. Formulation III. The third formulation of the steering
vector [23] that should be discussed is based on the idea
that signals from the assumed source position should pass
undistorted through the filter, so that B(xt = xs) = E{qq∗}.
At the same time signals from all other positions should
be attenuated as much as possible. This is equivalent to
minimising the filter response to spatially white noise [24].
By solving this optimisation problem, the formulation

hIII
i = ai(x0, xt)

aH(x0, xt)a(x0, xt)
= 1

rt,0rt,i
∑N

j=1

(

1/r2
t, j

)e− jk(rt,i−rt,0)

(11)

arises. The steering vector here is parallel to a(x0, xs) when
xt = xs. Again, this formulation does not meet condition (5).

2.4. Formulation IV. Formulation IV introduces a steering
vector that is also parallel to a(x0, xs) when xt = xs but
uses a normalisation to ensure that h∗i hi remains constant.
This formulation is usually developed via a least square
minimisation of the error between modelled and measured
sound pressures at the microphones (e.g., [4, 8]). Using the
normalisation h∗i hi = 1/N , the formulation reads

hIV
i = 1√

N

ai(x0, xt)
√

aH(x0, xt)a(x0, xt)

= 1

rt,i

√

N
∑N

j=1

(

1/r2
t, j

)

e− jk(rt,i−rt,0).
(12)

In this case condition (5) is met, but the response for xt = xs

is only an approximate measure of the source strength:

B(xt = xs) =
1

N

N
∑

i=1

r2
s,0

r2
s,i

E
{

qq∗
}

. (13)

2.5. Comparison of Formulations. It can be concluded that
in theory neither of this four formulations of the steering
vector has both properties desirable for the application
of the beamformer to acoustic source mapping. The first
formulation (7) and the fourth formulation (12) provide

the correct location but produce an error in the source
strength and both the second formulation (10) and the third
formulation (6) provide the correct source strength, but
the maximum does not coincide with the correct location.
However, it should be borne in mind that for practical
application it suffices to get approximate estimates of both
location and source strength with acceptable accuracy.

In contrast to the theoretical model used up to here, in
a practical scenario there is often more than one source.
The beamformer output is then a superposition of con-
tributions from the individual sources. Thus, the presence
of multiple sources has an impact on the performance of
the beamformer filter (see [23]). If the signals from these
sources are mutually uncorrelated, B(xt) is the sum of their
nonnegative contributions. In such a case the results will
deviate somewhat from those of the mathematical analysis
presented for the one source scenario. Any conclusions that
were derived for the properties of the different formulations
regarding conditions (5) and (6) are not rigorously valid,
but only approximately. This becomes especially important
when sources are closely spaced with distances less than the
wavelength. As a consequence, the low-frequency application
of source-mapping beamforming techniques leads to results
of limited value. Appropriate deconvolution techniques may
improve the results in this case and are frequently applied for
this reason.

While for all four formulations of the steering vector
meaningful practical results have been reported for acoustic
source mapping applications, there are no results available
yet that compare the mappings produced by the appli-
cation of these different steering vectors. Moreover, the
vast majority of these applications use two-dimensional
mapping grids and assume a priori that all relevant sources
are located in the mapping plane. A three-dimensional
mapping grid does not need this assumption but will usually
require a deconvolution technique to deal with the otherwise
inadequate depth-wise resolution.

The large number of points in a three-dimensional
mapping grid calls for an deconvolution technique that is
computationally efficient. Computationally less demanding
deconvolution techniques, like CLEAN-SC, rely on the
correct estimation of the source location from the maximum
in the map. Because of this requirement, it is important to
assess the quality of the results that follow the application
of the different formulations of the steering vector for
three-dimensional source mapping. In what follows, the
effect of using different steering vector formulations shall
be analysed for both two- and three-dimensional acoustic
source mapping on the basis of simulated measurements.

3. Results

Most practical applications are concerned with sources that
are not compact but spatially extended. A usual assumption
is to assume that the sources can be seen as spatial
distributions of uncorrelated point sources. Thus, in order to
analyze the different steering vectors, no extended source is
considered here but a simple point source scenario. Results
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Figure 2: Set-up used for the simulations: 64-channel microphone array and three uncorrelated sources A, B, C with identical source
strength, coordinates, and lengths are nondimensionalised by the array aperture.

for practical cases with extended sources that use three-
dimensional mapping can be found elsewhere [18, 19, 25].

The source mappings that should be discussed here
are based on simulated data that was generated using the
set-up shown in Figure 2. It uses a 64 microphone array
to analyse three point sources. The microphone array is
planar and has a layout that consists of 7 spiral arms that
contain 9 logarithmically spaced microphones each and
an additional microphone in the centre. The aperture d
of the array, defined by the diameter of the smallest circle
containing all microphones, is used as a scaling parameter in
the analysis. All coordinates and lengths in the analysis are
nondimensionalised by the aperture. Frequencies are given
in nondimensional form as Helmholtz numbers He = d/λ =
f d/c with λ being the wavelength and c being the speed of
sound.

The positions of the sources are chosen randomly to span
a region with lateral dimensions comparable to the array
itself. The distance to the array varies between 0.75 and 1.25
apertures. This choice was made because the application
of threedimensional source mapping is most interesting
when distances of the sources to the array are somewhat
different. However, very large ratios of the distances (i.e.,
one source very close and another source far away) are not
likely to appear in a practical application. Altogether the
scenario is somewhat representative of a situation where the
object under test has dimensions comparable to the aperture.
Typically this would allow for the beamforming analysis at
frequencies with wavelengths much smaller than the object.
An aperture much larger than the object is desirable for
the analysis at lower frequencies. When the application of
large aperture arrays is not practicable, the analysis requires
deconvolution methods. As results from deconvolution are

of special interest here, a scenario representative for this case
was chosen as illustrative example.

The simulated microphone signals were calculated using
a transfer function similar to (2). The point sources were
driven by simulated white noise signals from different gaus-
sian random processes to ensure that they are not coherent.
All three sources had the same power. Nevertheless, because
of the different distances to the array plane and therefore also
to the array centre x0, the relative sound pressure levels at x0

due to the individual sources were different: 0 dB, 1.7 dB, and
−2.2 dB for source A, B, and C, respectively.

The array was placed in the plane z = 0 and two different
grids were used. The first grid used for the three-dimensional
source mapping covered a block-shaped region with −1 <
x < 1, −1 < y < 1, and 0.125 < z < 2. It had a uniform
grid spacing of 1/32 aperture and the overall number of grid
points was 257, 725. The second grid for two-dimensional
source mapping in a plane parallel to the array had the same
spacing and had the same extent −1 < x < 1, −1 < y < 1,
but for z = 1. The overall number of points in this case was
4225. The simulated microphone signals were sampled at a
rate that corresponds to He = 64. A fast Fourier transform
with prior von Hann weighting was applied for every channel
to 1000 consecutive, 50% overlapping blocks of 1024 samples
each. All 642 cross spectra were calculated and averaged over
the 1000 blocks to produce the cross spectral matrix.

The quality of an acoustic source mapping can be
determined by evaluating the errors in the source levels and
source locations that are estimated using the mapping result.
According to the definition in (1), the source level,

Ls = 10 log10

E
{

qq∗
}

p2
ref

dB, (14)
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Figure 3: Maps of sound pressure level contributions at the array centre (in dB relative to the correct value) for steering vector formulations
I–IV, Helmholtz number He = 2, y = 0, white dot: location of the maximum, cross: true source location.

of a certain source is defined as the sound pressure level
calculated from the sound pressure q at the array centre
caused by that source (pref is the reference sound pressure).
The estimated source level is then

Le = 10 log10

B

p2
ref

dB, (15)

and the error in this level is given by ∆L = Le − Ls, where Ls
is taken to be the true level.

The source location is a vector quantity and involves
three components. While the error here could be given as
the distance between the true and the estimated location, this
quantity is always positive and contains no information on
the spatial arrangement. Instead, the error in the estimated
source location shall be defined here as an error of the
distance r between source and the array centre. It is given
by ∆r = re − rs, where re and rs are the estimated and true
distances, respectively. As it is reasonable to assume that this
error will also increase with the distance, it is used here in the
normalised form ∆r/rs. As the errors in source location and
level also depend on the frequency, they are discussed here
regarding their dependence on the Helmholtz number.

3.1. Single Source. In the first test case, only source A was
operated. In this simple single source scenario it is feasible
to use the classic beamforming approach (4) and to do
without a deconvolution technique. In Figure 3, the results
for all four formulations of the steering vector (I–IV) are
compared for He = 2. The source mapping itself is three-
dimensional. However, for clarity of presentation only a slice
of the mapping along the plane y = 0 (perpendicular to
the array plane) is shown which contains the true source
location. The four formulations obviously lead to different
mapping results. In agreement with the theoretical analysis,
both formulations I and IV meet the condition (5) that
the maximum in the map coincides with the actual source
position. For both formulations II and III the maximums in
the map are situated somewhere between the actual source
position and the array centre. Thus, it would not be possible
to estimate the exact source position from the maximum in
the source mapping. The actual source position is located

on the 0 dB contour for both formulations II and III. In
agreement with theory, this shows that condition (6) is met.

While for formulations I and IV the error in source
location as shown in Figure 4(a) is zero regardless of He,
for formulations II and III; this error becomes less than
5% only above He ≈ 5. However, the estimated distance
between array centre and source is never larger than the
actual distance.

In the present case, the only option to estimate the
source level is to use the maximum in the map. Figure 4(b)
shows the error in comparison for all four formulations.
Formulations I and IV show constant, small errors that
follow the theoretical analysis in (8) and (13), respectively.
For low Helmholtz numbers, the formulations II and III
lead to larger errors because of the error in the estimated
source location (the value at the location of the maximum
in the map taken as source level). The error vanishes for
larger Helmholtz numbers which is in agreement with the
theoretical analysis.

3.2. Three Sources, Two-Dimensional Mapping. The second
test case where all three sources are operated is a slightly more
realistic scenario. In this case, the strength and the location
of all three sources are of interest. If a classic beamforming
approach with the mapping plane parallel to the array is
used, the two-dimensional beamforming maps (Figure 5)
show only minor differences for the four formulations. While
only source A is actually located in the mapping plane at
z = 1, contributions from all three sources appear in the
maps. Thus, without any further analysis the maps suggest
that all sources are located within this plane.

With the exception of source A, the maximums do
not coincide with the projected source positions for both
Helmholtz numbers shown. The reason is that sources B
and C are not located in the mapping plane. The results
show the tendency to map the sources nearer to the array
more into the direction of the projected array center, while
sources with a distance greater than that of the mapping
plane are mapped to a an apparent position further away
from the center. If there is no information available about
the true distance between source and array, there is no way
to estimate the exact source positions from the mapping
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B, and C, resp.) using classic beamforming without deconvolution for steering vector formulations I–IV, Helmholtz numbers He = 2 and 4,
z = 1, crosses mark the projected position of the sources.

result. For the same reason, it is not feasible to estimate the
source strength or to rank the sources using the result from
the two-dimensional mapping. While all sources have the
same source strength, the result shows the respective sound
pressure level contribution at the array centre. If all sources
are assumed to be within the mapping plane, B then appears
to be the strongest and C appears to be the weakest source.

At the lower frequency shown (He = 2), the sources
are less clearly distinguishable because of the large main
lobe width at this frequency. If the source spacing would be
smaller, the same would happen even at higher frequencies.

Thus, the result can be improved if the real beamformer filter
properties are taken into account by using a deconvolution
technique. In the present case, the deconvolution method
CLEAN-SC was applied (see [11] for more details) to the
beamforming map. The result is a map that shows nonzero
entries only at those grid points where a source is found.
This corresponds to a negligible main lobe width regardless
of frequency.

When applied to the two-dimensional beamforming
results from Figure 5, CLEAN-SC delivers maps that allow
for an easy separation of the sources even at the lower
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Figure 6: Maps of relative sound pressure level contributions at the array centre (correct values are 0 dB, 1.7 dB, and −2.2 dB for source A,
B, and C, resp.) using CLEAN-SC on a two-dimensional grid at z = 1, for steering vector formulations I-IV, Helmholtz numbers He = 2 and
4, crosses mark the projected position of the sources.

frequency (Figure 6). Similar to the result from classic beam-
forming, these maps show all sources as they where situated
in the mapping plane. The estimated locations of sources
B and C again do not coincide with the projected source
positions. The four different steering vector formulations
lead to some differences in the estimated source level but
show no divergent effects otherwise. To summarise, these
results allow to conclude that there are at least three sources,
but the information about the (projected) location is limited
and a ranking of the sources is not possible.

The effect on the estimated source level as a function of
frequency can also be estimated. If the source positions are
known, the source level can be estimated from the map by
simply taking the values at the grid points that are located at
source positions. To allow for small errors in the estimated
source positions, in the present case the source level was
estimated by integrating over small square regions of the
map. These regions were centred at the nominal source
positions and had a side length of 0.1 array apertures.

The results in Figures 7(a), 7(c), and 7(e) show that
the errors of the estimated source levels tend to be larger
at very low Helmholtz numbers and become smaller for
He > 2. However, for the sources B and C that are not
situated within the mapping plane, the error again increases
above He = 8, obviously as a result of the wrong mapping.
Similar to the result shown in Figure 6, the four different
steering vector formulations show only small differences,
with formulations I and IV giving somewhat smaller levels
compared to formulations II and III.

3.3. Three Sources, Three-Dimensional Mapping. More infor-
mation can be gathered when the deconvolution is applied

to a three-dimensional beamforming map. To study the
results in comparison to two-dimensional beamforming, the
analysis of a slice from the three-dimensional result is one
option. Figure 8 shows such a slice at z = 1 that is equivalent
to the mapping plane shown in Figure 2. Sources B and C
that are not situated within this plane do not appear in any
of the maps. Source A is within the plane but appears only for
formulations I and IV and in case of formulation III for the
higher frequency (He = 4). The reason for the absence of any
source in the remaining maps is that the sources are mapped
at the wrong position in the z direction. This becomes
obvious in the two-view orthographic projections (Figure 9)
of the three-dimensional map that is another option for the
graphical representation of the result.

The projections along the y-axis (x-z-plane) reveal that
the sources are indeed mapped much closer to the array as
they really are for formulations II and III and low frequencies
(He = 2). For formulations I and IV, the error in the location
is much smaller at this frequency but not zero (∆r/rs =
±0.1 · · · 0.2). This effect is present only for the multisource
scenario. It can be attributed to the fact that the location
of the maximum in the beamforming map for a certain
source is slightly shifted by the influence of other sources.
For He = 4, no error is visible in the maps with exception of
source A and formulation II. This small error also vanishes at
even higher frequencies. While the estimated source levels are
somewhat different for the different formulations, the errors
are small, and no formulation seems to produce distinctly
smaller errors than the others.

Finally, the error of the estimated source level shall be
examined. Again, the source level was estimated by integrat-
ing over regions with a side length of 0.1 array apertures
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Figure 7: Errors (in dB) in the estimated sound pressure levels for formulations I–IV: (a, b) source A, (c, d) source B, and (e, f) source C.



10 Advances in Acoustics and Vibration

I, He = 2 II, He = 2 III, He = 2 IV, He = 2

−6

−4

−2

0

2

4

−6

−4

−2

0

2

4

0.5

−0.5

y 0

0.5

−0.5

y 0

0.5−0.5 0 0.5−0.5 0 0.5−0.5 0 0.5−0.5 0

x x x x

−0.4 dB

−0.4 dB

−0.4 dB

−0.5 dB −0.2 dB

A

B

C

I, He = 4 II, He = 4 III, He = 4 IV, He = 4
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centred at the source position, but this time the regions
were cubic shaped. Figures 7(b), 7(d), and 7(f) show the
errors of the estimated source levels for all three sources. The
results for formulations I and IV are again very similar and
show a small negative error over a wide range of Helmholtz
numbers. This error is consistent with the results from the
theoretical analysis in (8) and (13) and is negligible for most
practical applications. In contrast to the theoretical analysis,
the error does not vanish completely for formulations II and
III, though it is also negligibly small. For lower Helmholtz
numbers, the beamforming and deconvolution method
maps the source to a location outside the sector used for
the integration. Thus, the estimated source level becomes
infinitely small and consequently ∆L = −∞. While this is
the case for He < 2 for all three sources and formulations I
and IV, the estimated source level for formulations II and
III vanishes already below He ≈ 3 · · · 4. The error does not
increase for higher Helmholtz numbers as it is the case for
the levels estimated from two-dimensional mapping.

It can be concluded that the principal theoretical findings
regarding the different formulations I–IV in a single-source
scenario remain true for the multiple source case: formula-
tions I and IV deliver the correct source locations already for
low Helmholtz numbers but show a small systematic error in
the estimated source level. Formulations II and III deliver a
slightly less erroneous level, but only for higher Helmholtz
numbers, when the error in the estimated source location

is small enough to place the source within the integration
sector. Thus, for the given scenario the practical differences
between the different formulations are generally small for
higher Helmholtz numbers. However, in applications where
small Helmholtz numbers arise, only formulations I and IV
can be applied.

Because the errors in source level are very small for all
formulations, formulations I and IV seem to be preferable
for the practical application of three-dimensional acoustic
source mapping using a beamforming approach. Moreover,
once the correct position of a source is estimated, the
systematic errors in the source levels for formulations I and
IV can be corrected for by taking into account the factors
in (8) and (13), respectively. Finally, formulation I has the
extraadvantage that the calculation of the steering vectors
requires less arithmetic operations.

4. Conclusion

A crucial element for the three-dimensional application of
beamforming source mapping techniques using a micro-
phone array is the formulation of the steering vectors. It was
shown here that four different formulations found in the
literature lead to different results. In theory, no formulation
produces both correct source location and strength. Two
formulations lead to the correct location at the cost of a
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Figure 9: Projections of three-dimensional maps of relative sound pressure level contributions at the array centre (correct values are 0 dB,
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small error in the estimated source strength. The other two
formulations estimate the correct strength but show an error
in the estimated location of the source. Using simulated
measurement data, it was shown that this error is relevant
especially at low Helmholtz numbers based on the array

aperture. In a simulated three-source scenario with CLEAN-
SC deconvolution, all four formulations lead to small errors
in the estimated strength of the sources. Unlike the systematic
errors in source location, the systematic errors in the level
can be corrected for in principle. Thus, the major conclusion
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is that for three-dimensional source mapping those steering
vector formulations are preferable that enable the best
estimation of the source location, for example, formulations
I or IV.
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