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S U M M A R Y

We present a new 3-D vector finite element code and demonstrate its strength by modelling a

realistic marine CSEM scenario. Unstructured tetrahedral meshes easily allow for the inclusion

of arbitrary seafloor bathymetry so that natural environments are mapped into the model

in a close-to-reality way. A primary/secondary field approach, an adaptive mesh refinement

strategy as well as a higher order polynomial finite element approximation improve the solution

accuracy. A convergence study strongly indicates that the use of higher order finite elements

is beneficial even if the solution is not globally smooth. The marine CSEM scenario also

shows that seafloor topography gives an important response which needs to be reproduced by

numerical modelling to avoid the misinterpretation of measurements.

Key words: numerical solutions; electromagnetic theory; marine electromagnetics.

1 I N T RO D U C T I O N

3-D modelling in geo-electromagnetics has been carried out for sev-

eral decades (see, e.g. the review papers by Avdeev 2005; Börner

2010), starting predominantly with the integral equation method

(Raiche 1974; Hohmann 1975; Weidelt 1975; Wannamaker et al.

1984; Newman et al. 1986; Wannamaker 1991; Xiong & Tripp

1997; Avdeev et al. 1997), followed by the finite difference method

(Mackie et al. 1993; Newman & Alumbaugh 1995; Smith 1996;

Streich 2009), and recently by the finite element method (Mogi

1996; Zunoubi et al. 1999; Zyserman & Santos 2000; Badea et al.

2001; Mitsuhata & Uchida 2004; Nam et al. 2007) and the finite

volume method (Haber et al. 2000; Haber & Ascher 2001; Weiss &

Constable 2006; Haber & Heldmann 2007). Amongst the different

numerical methods the finite element method provides the greatest

flexibility regarding model geometry, the option for a higher order

spatial approximation and a rigorous framework for the treatment

of virtually arbitrary constitutive parameter distributions. Consider

as an example the presence of seafloor topography in a marine con-

trolled source electromagnetics (CSEM) experiment. Bathymetric

data can be incorporated into its model most naturally as a surface

triangulation of the seafloor. To preserve the continuous nature of

the surface triangulation the simulation volume needs to be tessel-

lated by unstructured tetrahedral or hexahedral meshes. This sug-

gests the use of the finite element method to discretize the boundary

value problem underlying the simulation task. The finite difference

method and its tensor product grids cannot preserve the surface

triangulation but rather require that the surface is sampled and ap-
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proximated in a staircase-like manner. Aiming at the development

of an as most versatile as possible, state-of-the-art simulation code

which provides geometric flexibility and high accuracy we imple-

mented a new 3-D vector finite element code.

The use of a particular finite element type, the vector-valued

Nédélec element (Nédélec 1980, 1986), has gradually become the

established standard for discretizing the electric and magnetic field

(Monk 2003) as the Nédélec element, other than the standard La-

grange element, reflects the continuity of the tangential field com-

ponents and the discontinuity of the normal field component at

parameter discontinuities. While Mogi (1996) still employed the

scalar-valued Lagrange element, Zunoubi et al. (1999) and Nam

et al. (2007) implemented the lowest order, that is, linear Nédélec

element, also known as edge element (Jin 1993). Zyserman &

Santos (2000) followed a significantly different, domain decompo-

sition approach including a locally higher order polynomial approx-

imation. These implementations, as ours presented here, discretize

the electric or magnetic field. Badea et al. (2001) and Mitsuhata &

Uchida (2004) decompose the fields in terms of vector and scalar

potentials. Their benefit of solving for a smoother potential field

and obtaining a simpler or reduced set of equations is somewhat

weakened by having to carry out numerical differentiation to com-

pute the fields. Since the electric field is oftentimes the measured

quantity we give preference to the direct formulation in terms of the

electric field.

Our finite element code combines a list of features which, so

far, could only been found in commercial software packages like

COMSOL Multiphysics R©. Their use might be useful for a wealth

of problems (e.g. Börner et al. 2008) but involves all disadvantages

of using a black-box solver. Building on and extending existing li-

braries we have implemented a new finite element software which

features unstructured tetrahedral meshes, higher order polynomial
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64 C. Schwarzbach, R.-U. Börner and K. Spitzer

approximations and adaptive mesh refinement. The software is tai-

lored but not restricted to geophysical applications. Section 2 of

this paper will give some theoretical background and implemen-

tation details. In Section 3, we present numerical examples which

illustrate our software’s features. Firstly, a convergence study pro-

vides some numerical evidence that the use of higher order poly-

nomials might be beneficial even if the solution is not globally

smooth. Secondly, the geometric flexibility of unstructured tetrahe-

dral meshes is demonstrated by inclusion of seafloor topography into

our model. Finally, we present a comparative study on the canonical

disc model (Weiss & Constable 2006) and its extension by an air

halfspace.

2 M E T H O D

Electromagnetic phenomena are mathematically described by the

system of Maxwell’s equations. We consider the time-harmonic case

of an electric dipole oscillating at a single frequency and therefore

assume an exp(−iωt) time dependency throughout the following.

The symbol i denotes the imaginary unit, ω angular frequency and

t time.

2.1 Boundary value problem

We solve the vector Helmholtz equation in terms of the secondary

electric field Es

curl
(

μ−1curlEs

)

− iω(σ − iωε)Es

= curl
([

μ−1
p − μ−1

]

curlE p

)

− iω([σp − σ ] − iω[εp − ε])E p

(1a)

within the domain � subject to a homogeneous Dirichlet boundary

condition

n × Es = 0 (1b)

on the domain boundary ∂�. μ, σ and ε denote magnetic permeabil-

ity, electrical conductivity and electric permittivity, respectively. E p

is the primary electric field which solves Maxwell’s equations with

constitutive parameters μp, σ p, εp. n denotes the outer unit normal

vector on the boundary. We consider here only the simple case of

a homogeneous Dirichlet boundary condition to reduce complexity

of notation and to accommodate for the numerical examples of Sec-

tion 3. However, the method and implementation are not restricted

to that case. A more general setting is given in Schwarzbach (2009).

Taking the L2-inner product of the partial differential equation

(1a) with a vector test function � and carrying out partial integration

we obtain the variational form of boundary value problem (1) (Monk

2003): search Es ∈ U such that
∫

�

curl� ·
(

μ−1curlEs

)

d3r − iω

∫

�

� · ((σ − iωε)Es) d3r

=

∫

�

curl� ·
([

μ−1
p − μ−1

]

curlE p

)

d3r

− iω

∫

�

� · (([σp − σ ] − iω[εp − ε])E p) d3r (2a)

for all � ∈ U . The space of test and trial functions is defined by

U = {E ∈ Hcurl(�) : n × E = 0 on ∂�} (2b)

where

Hcurl(�) =
{

E ∈ (L2(�))3 : curlE ∈ (L2(�))3
}

(2c)

is the space of functions with a well-defined curl and L2(�) is the

space of square integrable functions on �. The notation � denotes

the complex conjugate of �.

2.2 Finite element solution

The variational problem (2) is the point of departure for the nu-

merical solution of the boundary value problem (1) using the finite

element method. For a comprehensive introduction to the finite el-

ement method the reader is referred to standard textbooks like, for

example, Jin (1993) and Monk (2003). We will only give a brief

outline here and review some details which are essential for the

understanding of our numerical experiments.

The finite element discretization of the variational problem pro-

ceeds as follows. Firstly, the domain � is tessellated by tetrahedra

(see Fig. 3 in Section 3 for an example). Secondly, the infinite di-

mensional function spaceU in (2) is replaced by a finite dimensional

function space Uh . Uh consists of vector functions which are com-

ponentwise polynomials of degree up to p within each tetrahedron

and which vanish on all but a few tetrahedra. The vector functions’

tangential components are continuous across the interface between

two adjacent tetrahedra. Note, however, that no assumptions are

made concerning the normal component which can be discontinu-

ous at the interface. Next, a finite set of basis functions {�i }
n
i=1 can

be constructed such that it spans Uh . Instead of seeking a solution

Es ∈ U we attempt to find an approximate solution Ẽs ∈ Uh such

that (2a) holds for all test functions �i , i = 1, . . . , n. Expanding

Ẽs in terms of the basis functions

Ẽs =

n
∑

j=1

e j� j (3)

produces a system of linear equations

Ae = f , (4a)

where A ∈ C
n×n , e, f ∈ C

n with components

Ai, j =

∫

�

curl�i ·
(

μ−1curl� j

)

d3r

− iω

∫

�

�i · ((σ − iωε)� j ) d3r (4b)

fi =

∫

�

curl�i ·
([

μ−1
p − μ−1

]

curlE p

)

d3r

− iω

∫

�

�i · (([σp − σ ] − iω[εp − ε])E p) d3r. (4c)

In practice, the basis functions �i are real-valued. Therefore, the

matrix A is symmetric, A = AT , but not Hermitian. Since the finite

element basis functions have small support the matrix A is sparse.

Furthermore, one can show that A is indefinite (e.g. Monk 2003).

The vector e contains the finite element basis function expan-

sion coefficients ej from (3) which are called degrees of freedom

(dofs). They are defined more precisely by a set of linear functionals

{Ai }
n
i=1 which map functions Ẽs ∈ Uh onto the vector space C

n . As

an example, consider the lowest order Nédélec/edge element with

pointwise dofs. The dofs are defined as the tangential field compo-

nent at the midpoint xi of an edge, multiplied by the edge length.

Let t i be the tangential vector of edge i with length ‖t i‖. Then,

Ai (Ẽs) := t i · Ẽs(xi ).

The linear functionals Ai can also be applied to an arbitrary

function Es ∈ U . Then, the function �Es :=
∑n

i=1 Ai (Es)�i

defines a projection of Es onto Uh under projection operator �.

C© 2011 The Authors, GJI, 187, 63–74
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3-D FE simulation for geo-electromagnetics 65

Note that for Ẽs ∈ Uh , � is the identity operator, �Ẽs = Ẽs , and

Ai (Ẽs) = ei . In general, Es ∈ U leaves ‖Es − �Es‖ �= 0.

The set of linear functionals Ai , i = 1, . . . , n, spans the so-called

dual space U∗
h of Uh . U∗

h is equipped with the discrete ℓ2-norm

‖Es‖ℓ2
=

(

n
∑

i=1

Ai (Es)Ai (Es)

)1/2

(5)

corresponding to the continuous L2-norm defined in the Hilbert

space Uh

‖Es‖L2(�) =

(∫

�

Es · Es d3r

)1/2

. (6)

These norms will be required to quantify the solution error in

Section 3.

2.3 Implementation

Assembly of the system of linear equations (4), its solution and

post-processing steps like the evaluation of the solution accord-

ing to (3) and its derivatives at arbitrary points in � have been

implemented in a C++ software package. Our implementation is

based on and extends the finite element library FEMSTER (Castillo

et al. 2005). Even though we only consider isotropic and piece-

wise constant constitutive parameters in this paper, the implemen-

tation includes anisotropic and piecewise polynomial parameters

as well as a set of transformed constitutive parameters which de-

fine a perfectly matched layer (PML, Berenger 1994; after Monk

2003). The constitutive parameters form part of the integrals in (4b)

and (4c) which are evaluated numerically using appropriate quadra-

ture rules. The system of linear equations is solved directly using

PARDISO (Schenk & Gärtner 2004, 2006) or iteratively using the

quasi-minimum residual method (QMR, Freund & Nachtigal 1994).

As a prerequisite for the finite element assembly and solution the

computational domain needs to be tessellated. We employ the tetra-

hedral mesh generator TETGEN (Si 2007).

2.4 Adaptive mesh refinement

Ad hoc construction of a mesh tailored to the solution and providing

a solution of sufficient quality is difficult. Therefore, an automated,

iterative mesh generation procedure has been implemented. Starting

from a coarse initial mesh which just takes into account the model

geometry, a sequence of meshes is constructed such that the mesh is

locally refined where the solution error is largest. The a posteriori

error indicator of Beck & Hiptmair (1999) is used to estimate the

solution error. Given the finite element approximation of the electric

field Ẽs an approximation of the magnetic field can be derived in

two different ways. First, we apply Faraday’s law directly and obtain

H̃ s = (iωμ)−1 curlẼs = (iωμ)−1

n
∑

j=1

e j curl� j . (7)

By construction the tangential components of Ẽs are continuous

across element interfaces and so is the normal component of the

magnetic flux B̃s = (iω)−1curlẼs . The finite element spaces do

not impose continuity of the tangential component of B̃s . Conse-

quently, the magnetic field computed according to eq. (7) does not

satisfy exactly the proper physical interface conditions even if μ is

constant. Note, however, that continuity of the tangential magnetic

field components is satisfied approximately because this condition

is contained in the variational formulation (2).

The second magnetic field approximation seeks a magnetic field

Ĥ s that satisfies exactly the continuity of its tangential components.

This is achieved by applying the finite element method to eq. (7) and

computing Ĥ s as the L2-projection of (iωμ)−1 curlẼs ontoVh .Vh is

a finite element subspace of Hcurl(�) similar to Uh ⊂ U except that

we do not exclude functions with n× Ĥ s = 0. The resulting system

of linear equations is about as large as the original problem but much

easier to solve since only a real, symmetric positive definite mass

matrix needs to be inverted. Inspired by the definition of magnetic

field energy, a weighted norm of the difference between the two

magnetic field approximations Ĥ s and H̃ s

ηKi
=

∫

Ki

(

Ĥ s − H̃ s

)

· μ
(

Ĥ s − H̃ s

)

d3r (8)

is computed and serves as a local error indicator for element Ki.

Assume that there are m elements which are enumerated such that

ηK1
≥ ηK2

≥ . . . ≥ ηKm . Then, element Ki is selected for refinement

if ηKi
≥ α1ηK1

or i ≤ α2m. The parameters α1 and α2 control the

refinement process. The values α1 = 0.1 and α2 = 0.001 have been

used for the numerical examples in the following section.

3 N U M E R I C A L E X A M P L E S

We present three numerical examples which illustrate the valid-

ity of our code, demonstrate the benefit of using a higher order

polynomial approximation, and show the capability for modelling

complicated geometries, here, seafloor topography. To isolate the

effects of mesh size, polynomial degree and seafloor topography,

the first two example models are variations of a very compact, basic

marine scenario which consists just of two halfspaces filled with

seawater and seabed sediments. The third example incorporates

some features required in a more realistic marine CSEM scenario

such as the air halfspace (Constable & Weiss 2006; Weidelt 2007)

and large transmitter/receiver separations.

Since the first two examples build on some common model

features we detail them here. The computational volume is � =

{(x, y, z) : −2 km ≤ x, y ≤ 2 km, −1.5 km ≤ z ≤ 2.5 km} and

divided into two subdomains representing seawater and seabed.

Electrical conductivity is 3.3 S m−1 for the seawater and 1 S m−1 for

the seabed sediments. An x-directed electric dipole radiating with

frequency 1 Hz is placed 100 m above the seafloor at x = y = 0

and z = −100 m. The primary field E p in eq. (1) is chosen to be

the electric field of an electric dipole placed within a homogeneous

fullspace filled with seawater. Sources for the secondary field are

consequently caused by the difference in electrical conductivity and

restricted to the seabed.

3.1 Convergence study

The first numerical experiment has been set up to validate our code

by comparison to a known solution and to examine the potential

benefit of using higher order polynomials. In order to be able to

compute an exact solution we consider a planar interface between

seawater and seabed. We call this model the flat seafloor model. The

solution of a horizontal electric dipole in a two-layered medium can

be computed analytically and expressed in form of Hankel integrals

(Sommerfeld 1964). The Hankel integrals are evaluated numerically

using the digital filter algorithm of Anderson (1989).

The numerical solution has been computed on a sequence of

adaptively refined meshes. Starting from the same coarse mesh

comprising 16 464 tetrahedra, three sequences have been created

C© 2011 The Authors, GJI, 187, 63–74
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66 C. Schwarzbach, R.-U. Börner and K. Spitzer

Figure 1. Various global relative error measures as a function of the number of unknowns of a sequence of adaptively refined meshes. Polynomial degrees p =

1, 2, 3 for coarse initial mesh and p = 1 for finer initial mesh.

using a finite element basis with polynomial degrees p = 1, 2, 3.

Using a higher order polynomial on the same mesh can be con-

sidered a kind of global mesh refinement (p-refinement). To see

the effect of its counterpart, h-refinement, we generate another se-

quence of meshes with p = 1 starting from a finer initial mesh of

130 025 tetrahedra. The adaptive refinement procedure was stopped

before the number of dofs exceeded half a million. The evolution of

the number of dofs can be seen in any of the three subplots of Fig. 1

by following the trace of the four differently coloured curves on the

abscissa. The main focus of the figure, though, is the summary of

the relative error for each of the four mesh sequences. We consider

three different error quantities.

The discrete ℓ2-norm error of the electric field

‖Ẽs − Es‖ℓ2
=

(

n
∑

i=1

(ei − Ai (Es)) (ei − Ai (Es))

)1/2

(9)

is derived from (5) by invoking the linearity of the dofs Ai and the

identity ei = Ai (Ẽs). Normalization by the discrete ℓ2-norm of the

true solution gives the relative error ‖Ẽs − Es‖ℓ2
/‖Es‖ℓ2

which is

plotted in the top left panel of Fig. 1. This measure only involves the

dofs and provides the most direct view on the error of the discrete

solution. Note that in particular for the case of the piecewise linear

approximation (p = 1) only one field component, the projection

of the field onto each edge at the edge’s midpoint, is compared to

the true solution at one and the same spatial location. The discrete

ℓ2-norm does not involve any interpolation, in contrast to the two

following error quantities employing the continuous Hilbert space

L2-norm (6).

The L2-norm involves integration over the entire domain and

consequently requires interpolation of the discrete solution, the dofs,

to any point in � according to eq. (3). This norm gives rise to the

absolute L2-norm error of the electric field

‖Ẽs − Es‖L2(�) =

(∫

�

(

Ẽs − Es

)

·
(

Ẽs − Es

)

d3r

)1/2

. (10)

Normalization by the continuous L2-norm of the true solution pro-

duces the relative error ‖Ẽs − Es‖L2(�)/‖Es‖L2(�) which is depicted

in the lower left panel of Fig. 1.

By applying Faraday’s law to the numerical solution, we also

obtain the absolute L2-norm error of the magnetic induction

‖B̃s − Bs‖L2(�)

=

(

∫

�

(

iω curlẼs − Bs

)

·
(

iω curlẼs − Bs

)

d3r

)1/2

(11)

Note that there is no corresponding discrete measure since the

derivative of the numerical solution is carried out on the finite

element basis functions � j involving the same linear coefficients

ej. Normalization by the continuous L2-norm of the true solution

yields the relative error ‖B̃s − Bs‖L2(�)/‖Bs‖L2(�) which is shown

in the lower right panel of Fig. 1.

All three quantities give a similar picture of the evolution of

the solution error as the mesh is locally refined. First, only few

dofs need to be added to reduce the error rapidly. In this stage, the

largest discretization errors are concentrated around the centre of the

secondary source, where the field values and gradients are largest.

They are accommodated for by a very focussed mesh refinement.

Subsequently, the error distribution becomes smoother and more

elements are involved in the refinement process. The number of

dofs consequently grows faster at this stage.

C© 2011 The Authors, GJI, 187, 63–74
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3-D FE simulation for geo-electromagnetics 67

At the finest mesh level, the piecewise cubic approximation pro-

duces the most accurate solution, the piecewise quadratic approxi-

mation the next accurate solution and the piecewise linear approx-

imations the least accurate solution. The difference between p = 1

and p = 2 is more pronounced than between p = 2 and p = 3. For

p = 1, the accuracy obtained within the limit of half a million dofs

is about the same for both the coarse and the fine starting mesh.

We conclude that a coarse starting mesh suffices for the error in-

dicator to guide the mesh refinement process such that the overall

error is reduced properly. The coarse starting mesh is more efficient

than a finer starting mesh as dofs are only added where needed.

Furthermore, the higher order polynomial approximation seems to

be highly beneficial. In practice, however, the use of higher order

finite elements might be limited when complex geometries give rise

to rather large meshes and a too large number of dofs even for the

initial mesh. The bathymetry model of the following section gives

an example where only p = 2 proves to be computationally tractable

while p = 3 is intractable.

3.2 Seafloor topography

Our second numerical example is constructed from a synthetic to-

pography data set provided by the INRIA Gamma team (2008). The

bathymetry is depicted in Fig. 2 and the derived model called the

bathymetry model. To quantify the accuracy of the solution and

to qualitatively estimate the distortion of the electromagnetic field

by the seafloor topography, the flat seafloor model from the previ-

ous section is considered for comparison. Both models have been

spatially discretized using the adaptive mesh refinement strategy.

The mesh hierarchies are listed in Table 1. To reduce the additional

computational cost of the adaptive mesh refinement procedure, the

solution of the boundary value problem for the initial and interme-

diate mesh levels is solved using a piecewise linear approximation

(p = 1). Only the final solution is computed with piecewise quadratic

finite element basis functions (p = 2). The number of electric field

dofs is also given in Table 1. The linear equation systems of the mesh

generation phase (p = 1) where solved directly using PARDISO,

those of the production runs (p = 2) iteratively using QMR. While

the number of 3 444 676 dofs for the bathymetry model production

run with p = 2 were still tractable, p = 3 would have required the

solution of a system with 12 503 729 unknowns and was considered

intractable.

The considerably larger number of elements in the initial mesh

of the bathymetry model is a consequence of the relatively dense

surface triangulation of the bathymetry data set with a regular grid

spacing of 250 m in x- and y-direction. This can be seen by compar-

Table 1. Mesh statistics. Number of elements and degrees of freedom (dofs)

for each refinement level and piecewise linear p = 1 finite element basis

functions. Piecewise quadratic p = 2 basis functions are only used for the

last mesh level.

Flat seafloor model Bathymetry model

Level Elements dofs Level Elements dofs

p = 1

1 16 545 21 016 1 380 809 447 492

2 16 717 21 216 2 382 193 449 082

3 16 937 21 472 3 390 848 459 043

4 17 499 22 124 4 416 553 488 660

5 19 281 24 181 5 468 680 548 778

6 21 292 26 509 6 542 425 633 820

7 30 892 37 610

8 55 383 65 875

9 118 793 139 063

p = 2

9 118 793 755 762 6 542 425 3 444 676

ing the initial meshes of both the flat seafloor and the bathymetry

model in the top row of Fig. 3. During the refinement process, the

mesh is refined directly beneath the primary source at the seafloor

where the secondary sources and, consequently, the secondary field

assumes its maximum magnitude. The final meshes of both models

are shown in the bottom row of Fig. 3. The smallest edge lengths of

the final meshes, 7.6 m for the flat seafloor model and 5.5 m for the

bathymetry model, are comparable.

To illustrate the spatial distribution of the solution error, we

compute the L2-norm error of the electric and magnetic field el-

ementwise. In contrast to the global measures (10) and (11) of

the previous section, the relative error here is computed separately

for each element Ki by integrating the norm ‖·‖ just over the ith

tetrahedron. The elementwise relative errors of the electric field

δ{Ẽs} = ‖Ẽs − Es‖L2(Ki )/‖Es‖L2(Ki ) and of the magnetic field

δ{H̃ s} = ‖H̃ s − H s‖L2(Ki )/‖H s‖L2(Ki ) are plotted in the top row

of Fig. 4. The relative error of the numerically computed secondary

fields within the smaller portion of the computational volume shown

is mostly less than 1 per cent. The relative error of the magnetic field

contains pronounced regions where it is significantly larger. This is

an artefact of the relative measure used since the magnetic field has

a pronounced minimum which exactly coincides with the maximum

of the relative error. This can be seen by comparing the top row of

Fig. 4 with the bottom row where the elementwise L2-norm of the

fields, ‖Es‖L2(Ki ) and ‖H s‖L2(Ki ), are shown.

Figure 2. Seafloor bathymetry, 2× vertical exaggeration. An x-directed electric dipole TX is placed 100 m above the seafloor.
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68 C. Schwarzbach, R.-U. Börner and K. Spitzer

Figure 3. Slice through the initial and final tetrahedral meshes of the flat seafloor (left-hand side) and the bathymetry model (right-hand side).

Figure 4. Flat seafloor model. Relative error of the electric and magnetic field in the x–z plane at y = 0 (top row). Compare the pattern of the relative error

with the elementwise L2-norm of E and H (bottom row) which has been used to normalize the absolute error.

Fig. 5 shows the non-vanishing secondary electric and magnetic

field components for the flat seafloor model within the x–z plane

through the dipole source at y = 0. The top row insets show the

absolute value of the complex valued field components, the bot-

tom row insets the phase. Due to the 1-D earth model geometry

the fields exhibit a symmetric pattern. The Hx, Ey and Hz compo-

nents vanish within this plane. If bathymetry is added to the model,

the symmetries are disturbed and all field components assume
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3-D FE simulation for geo-electromagnetics 69

Figure 5. Flat seafloor model. Non-vanishing secondary field components in the x–z plane at y = 0. Absolute value and phase of the complex vector

components.

non-zero values. This can be seen from Fig. 6 which shows all

three field components of the secondary electric and magnetic

field.

For a more direct comparison, the fields have been extracted

along two profiles along the x- and y-axis on the seafloor and plot-

ted together with the bathymetry in Fig. 7. The field components

which are supposed to be zero for the flat seafloor model cannot be

expected to be exactly zero when computed by the finite element

approximation. They are, however, significantly smaller than the

non-vanishing components of the same and the bathymetry model

(compare, for example, Ey on the x-profile). The influence of the

seafloor topography is strong enough to create even a visual distinc-

tion between the flat seafloor and bathymetry fields, for example,

for Ez in the x-profile and for Hy in the y-profile. Even more pro-

nounced is the effect on the field components which vanish for the

flat seafloor model, that is, Hx, Ey and Hz in the x-directed profile

and Hx, Ey and Ez in the y-directed profile.

3.3 Disc models

Our third numerical example is a variation on the canonical disc

model proposed by Weiss & Constable (2006). The canonical disc

model (Fig. 8a) comprises a disc centred 1 km beneath the interface

of a two-layered background. The two halfspaces represent seawater

(3.3 S m−1) and sediments (1 S m−1). The disc is regarded as the

simplified model of a hydrocarbon reservoir. Its parameters are 2 km

radius, 100 m height and 0.01 S m−1 conductivity. We consider four

variants (compare Fig. 8 and Table 2): (i) the canonical disc model

without disc; (ii) the canonical disc model itself; (iii) and (iv) are

derived from variants (i) and (ii) by replacing the water halfspace

by a finite, 1 km thick water layer and an air halfspace (10−8 S m−1).

Note that variants (i) and (iii) are 1-D models which allow the

comparison of our numerical results with the analytic solution.

In all cases, the transmitter, an x-directed, horizontal electric

dipole operating at a frequency of 1 Hz, is placed 100 m above the

seafloor and 1 km off the edge of the disc. We measure all electric

and magnetic field components along an inline profile running di-

rectly across the centre of the disc. Therefore, the components Hx,

Ey and Hz are expected to vanish for symmetry reasons.

The computational domain for cases (i) and (ii) without air half-

space has been chosen according to Weiss & Constable (2006) to

compare our results with those of C. Weiss’s finite volume code

FDM3D. For the variants (iii) and (iv) including the air halfspace

we had to enlarge the computational domain considerably from

11 km × 11 km × 4.5 km to 66 km × 66 km × 66 km to capture

the effect of the air halfspace well enough for a transmitter/receiver

distance of up to 8.5 km. We note that this result is largely influ-

enced by our simple choice of a fullspace background model for

the primary field. An air/seawater background model is expected to

give satisfactory results for a smaller computational domain. How-

ever, we prefer the fast evaluation of a fullspace solution to the

computationally much more elaborate evaluation of a layered earth

solution. Note that, to compute the integrals defining the right hand

side [eq. (4c)], the primary field has to be evaluated at least once for

every element whose conductivity deviates from the background

conductivity. The drawback of a larger computational domain is

alleviated by the fact that our unstructured tetrahedral mesh easily

permits both increasing the element size towards the boundary and

retaining well-shaped elements.

As in the previous examples, we generate a coarse initial mesh,

perform some steps of adaptive mesh refinement using a piece-

wise linear finite element approximation and compute a piecewise

quadratic finite element solution only on the finest mesh level. For

the model variants without air, five steps of mesh refinement pro-

duce a mesh of roughly 106 000 elements which amounts to about

675 000 dofs (Table 2). Since the starting mesh for the air half-

space variants is larger, only two steps of mesh refinement lead to

comparable numbers, about 114 000 elements and 735 000 dofs.

Interestingly enough, the two different model sizes and mesh re-

finement processes lead to a system matrix A which has a larger

elimination graph for the smaller problem with fewer dofs than for
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70 C. Schwarzbach, R.-U. Börner and K. Spitzer

Figure 6. Bathymetry model. Secondary electric (top panel) and magnetic (bottom panel) field components in the x–z plane at y = 0. Absolute value and phase

of the complex vector components.

the larger problem with more dofs. This can be seen from the solu-

tion times and memory consumption given in Table 2. The longer

run times for the first two models are not so much caused by the

three additional steps of mesh refinement and the computations in-

volved therein but rather by the factorization of the system matrix

during the production run. While the LU-factors of the first two

cases have 589 213 481 and 604 677 393 non-zeros, the LU-factors

of the air halfspace model system matrices only have 425 646 282

non-zeros.

The non-vanishing field components Ex, Hy and Ez of our finite

element solution are plotted in Fig. 9. The fields for the four different

disc model variants are indistinguishable for a transmitter/receiver

distance |x| < 2.5 km. At x ≈ 2.5 km the fields for the model vari-

ants with disc start to split from those without disc. The fields decay

slower if the resistive disc is present. The presence of the air half-

space is only detected in the horizontal field components. For the

models without disc, the influence of the air halfspace is visible

for x > 4.5 km, and for x > 6.5 km for the models with disc. The

numerical approximation of the vertical electric field of the disc

model with air halfspace incorrectly changes sign at x ≈ 7.7 km.

Here, we reach the limit of accuracy for the present mesh size and

polynomial degree. Discretization errors caused by the highly non-

uniform mesh, which is rather coarse at large distances from the

source, become significant for Ez at x > 7 km.

The fields of the model variants without air halfspace also show

an artefact at x > 8 km. This part of the profile is less than 500 m

apart from the boundary of the computational domain where the

tangential field components are forced to vanish. The numerical

solution shown in Fig. 9 consequently takes a sharp turn toward

zero.
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3-D FE simulation for geo-electromagnetics 71

Figure 7. Bathymetry model. Absolute value of the secondary electric field (top panel) and magnetic field (middle panel) along an x-directed profile at y = 0

(left-hand side) and along a y-directed profile at x = 0 (right-hand side) recorded on the seafloor. Bottom panel: seafloor bathymetry of the profile.

Figure 8. (a) Plan view of the canonical disc model by Weiss & Constable (2006). (b) Our extension by an air halfspace. The disc has a radius of 2 km, a height

of 100 m and a conductivity of 0.01 S m−1. The layers extend in y-direction perpendicularly to the drawing plane to ±5.5 km (a) and ±33 km (b). Note that

only part of the computational domain is shown in case (b). The x-directed electric dipole (TX) is placed 100 m above the seafloor and operates at a frequency

of 1 Hz.

Table 2. Disc model variants and their statistics: number of mesh levels, number of elements and degrees

of freedom (dofs) of the final mesh with piecewise quadratic basis functions (p = 2), system matrix 1-norm

condition number κ(A), run time including the mesh refinement, and peak virtual memory consumption.

We also list the statistics of the finite volume (FV) solution for the canonical disc model (FDM3D, Weiss

& Constable 2006) which is used as a reference solution.

Model variant Mesh levels Elements dofs κ(A) Time Memory

Water/sediments 6 106 020 672 878 6.7 × 106 747 s 11.7 GB

Water/sediments+disc 6 106 440 675 544 1.1 × 107 773 s 12.0 GB

Air/water/sediments 3 114 608 733 396 5.1 × 1011 400 s 9.0 GB

Air/water/sediments+disc 3 114 608 733 396 5.1 × 1011 396 s 9.0 GB

Water/sediments+disc, FV N/A 1 536 000 4 518 780 N/A 547 s 0.9 GB

This effect can be seen more clearly when the numerical solution

is normalized by the analytic solution for a layered earth as shown in

Fig. 10. The normalization coalesces the graphs of the two models

without disc. Logarithmised absolute values of 0 and phases of 0

indicate the high quality of our numerical solution. Only the vertical

electric field Ez shows significant errors at x > 7 km, as discussed

previously. The normalization also very nicely isolates the effect of

the resistive disc. The presence of the air halfspace, however, masks
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72 C. Schwarzbach, R.-U. Börner and K. Spitzer

Figure 9. Finite element (FE) solution for four disc model variants. Non-vanishing in-line field components along a profile across the centre of the disc at x =

3 km.

this effect such that fields for the air halfspace model variants with

and without disc can hardly be distinguished for x > 7 km.

Fig. 10 additionally gives a numerical solution for the canoni-

cal disc model obtained from C. Weiss’s finite volume (FV) code

FDM3D which should be compared to the finite element solution la-

belled ‘water/sediments+disc, FE’. Both numerical solutions show

a very good agreement for |x| > 1.5 km. Due to identical compu-

tational domains, they suffer from the same problem with artifical

boundary conditions. The major difference lies in the vicinity of

the source where our adaptive, unstructured tetrahedral mesh gives

superior results. While the finite element mesh is locally refined

around x = 0 on the seafloor such that the smallest edge length is

about 6.9 m, the tensor product grid for the finite volume solution

is not especially adapted to the solution and has a 10 times larger

smallest edge length. This difference in mesh size as well as the

only piecewise linear approximation account for the larger errors of

the finite volume solution around the source.

The fundamental differences between the two approaches, fi-

nite volume method, piecewise linear approximation, tensor prod-

uct grid, iterative solver (QMR) on the one hand and finite element

method, piecewise quadratic approximation, adaptive unstructured

tetrahedral mesh, direct solver on the other hand, are also reflected

by the numbers given in the second and fifth line of Table 2. De-

spite the eight times larger number of unknowns, the matrix free

implementation and the iterative solver of FDM3D clearly outper-

form our code in terms of memory consumption. At first sight, the

run time is comparable. However, we have to mention that the di-

rect solver PARDISO in our finite element code made use of four

parallel threads while FDM3D only ran on one thread.

4 C O N C LU S I O N S

This paper’s numerical experiments provide a proof-of-principle for

our new vector finite element code. Our software allows for complex

geometries as demonstrated by a marine CSEM example model fea-

turing seafloor topography. Bathymetric data can easily be included

into the simulation by solving the underlying boundary problem

by the finite element method on unstructured tetrahedral meshes.

Adaptive mesh refinement tailors the mesh to a particular solution

and reduces the solution error to an acceptable level of a few per

cent. The primary/secondary field approach restricts the numerical

approximation to the secondary field and enhances the accuracy of

the total field compared to a straightforward total field approach.

The use of a higher order polynomial finite element approximation

proved to be beneficial for the simple problems considered here.

The benefit for more complex parameter distributions still needs

to be corroborated. We encourage the use of second-order polyno-

mials which provide a good balance between mesh size, improved

accuracy and number of unknowns.

The bathymetry model shows that seafloor topography produces

a significant 3-D effect on the electric and the magnetic field on

the seafloor. When real-world marine CSEM measurements are to

be simulated and interpreted, 3-D simulation software capable of
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3-D FE simulation for geo-electromagnetics 73

Figure 10. Finite element (FE) solution for four disc model variants and finite volume (FV) solution for the canonical disc model. Normalized, non-vanishing

in-line field components along a profile across the centre of the disc at x = 3 km.

incorporating the bathymetry should be used to avoid artefacts and

their misinterpretation.

Incorporation of an air domain into a marine CSEM scenario is

challenging for at least two reasons. Firstly, the large contrast in

conductivity between seawater and air and the resulting jump of

the vertical electric field by orders of magnitude cause difficulties

for any discretization method. Secondly, at the low frequency con-

sidered here, solutions to the boundary value problem as posed by

eq. (1) can become instable if the model incorporates air. The in-

stability is caused by the large nullspace of the curl operator as the

other term iω(σ −iωε)Es becomes negligible in air. This instability

is reflected in the matrix condition number of the finite element sys-

tem matrix (Schwarzbach 2009). Even though the condition number

was large (Table 2), considerably larger for the numerical examples

including air than for the examples without air, the sparse direct

solver was able to solve the system of linear equations adequately.

A physically meaningful solution could be found in this case but a

note of caution seems advisable when similar high-contrast scenar-

ios and low frequencies are to be considered.
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