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ABSTRACT

The vertical alignment of an initially tilted geostrophic vortex is shown here to be captured by linear vortex
Rossby wave dynamics when the vortex cores at upper and lower levels overlap. The vortex beta Rossby number,
defined as the ratio of nonlinear advection in the potential vorticity equation to linear radial advection, is less
than unity in this case. A useful means of characterizing a tilted vortex flow in this parameter regime is through
a wave–mean flow decomposition. From this perspective the alignment mechanism is elucidated using a qua-
sigeostrophic model in both its complete and linear equivalent barotropic forms. Attention is focused on basic-
state vortices with continuous and monotonically decreasing potential vorticity profiles.

For internal Rossby deformation radii larger than the horizontal scale of the tilted vortex an azimuthal
wavenumber 1 quasi mode exists. The quasi mode is characterized by its steady cyclonic propagation, long
lifetime, and resistance to differential rotation, behaving much like a discrete vortex Rossby wave. The quasi
mode traps disturbance energy causing the vortex to precess, or corotate, and thus prevents alignment. For
internal deformation radii smaller than the horizontal vortex scale, the quasi mode disappears into the continuous
spectrum of vortex Rossby waves. Alignment then proceeds through the irreversible redistribution of potential
vorticity by the sheared vortex Rossby waves. Further decreases in the internal deformation radius result in a
decreased dependence of vortex evolution on initial tilt magnitude, consistent with a reduction of the vortex
beta Rossby number.

These results are believed to have relevance to the problem of tropical cyclone (TC) genesis. Cyclogenesis
initiated through the merger and alignment of low-level convectively generated positive potential vorticity within
a weak incipient vortex is captured by quasi-linear dynamics. A potential dynamical barrier to TC development
in which the quasi mode frustrates vertical alignment can be identified using the linear alignment theory in this
case.

1. Introduction

A vertically tilted vortex in the atmosphere either
resists external forcings to align or succumbs to such
influences by irreversibly shearing apart. The question
of how and under what circumstances vertical alignment
occurs has been addressed in previous studies with
large-scale atmospheric and oceanic circulations in mind
(McWilliams 1989; Polvani 1991; Viera 1995; Dritschel
and de la Torre Juárez 1996; Sutyrin et al. 1998). The
conceptual picture put forth for the evolution of an un-
forced tilted vortex is that potential vorticity (PV) at
upper levels is advected by the vertically penetrating
flow associated with the PV at lower levels, and vice
versa. In the large-tilt parameter regime emphasized in
prior studies the mutual advection and subsequent vor-
tex evolution were found to depend on the magnitude
of the initial vortex tilt. Therefore, to predict the evo-
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lution of a tilted vortex, solutions to the nonlinear equa-
tions of motion were sought. Polvani (1991) showed
that the evolution of a tilted vortex patch in a two-layer
quasigeostrophic (QG) model can be predicted on the
basis of its nearness to a geometric configuration known
as a stable V state (vortex state) in which the PV pre-
cesses without change of shape at a constant rate. The
tilted V state is an exact solution to the nonlinear equa-
tions of motion. A tilted vortex will precess when near
a V state and tend to align when initially far from any
V state. The vortex in the latter case approaches a cir-
cular barotropic configuration through filamentation and
axisymmetrization (e.g., Melander et al. 1987).

Here a new and complimentary approach to under-
standing the unforced vertical alignment process for
continuously distributed vortices is developed utilizing
the fact that for overlapping upper- and lower-level PV
cores, the vortex is meaningfully decomposed into an
azimuthal mean and departure therefrom (i.e., a wave–
mean flow partitioning). The analysis is restricted to
vortices with broad vorticity distributions, consistent
with observations of weak tropical cyclones (TCs) (e.g.,
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FIG. 1. The azimuthal-mean vortex (solid) used in all simulations
unless stated otherwise in the text. The vortices depicted by the
dashed curves are described in appendix B. The (a) tangential wind
is in units of m s21 and the (b) PV is in units of 1024 s21. The (c)
Rossby number is defined as / f , where is the azimuthal-meanV V
angular velocity.

Willoughby 1990). We explicitly simulate the linear in-
teraction of perturbation and mean flow as well as the
fully nonlinear vortex evolution to elucidate the align-
ment dynamics. Vortex Rossby waves (the vortex an-
alogue of planetary Rossby waves, but with the azi-
muthal-mean vorticity gradient serving as the restoring
mechanism and the differential rotation of the vortex
tending to shear the waves) are shown to play a key
role in the vertical alignment process, just as they do
in the two-dimensional and quasi-two-dimensional vor-
tex axisymmetrization process described by Montgom-
ery and Kallenbach (1997, hereafter MK) and later con-
firmed by Montgomery and Enagonio (1998, hereafter
ME98), Möller and Montgomery (1999, 2000) and En-
agonio and Montgomery (2001). A simple conceptual
picture of vortex alignment emerges for small vertical

tilts based solely on linear dynamics. Of course linear
dynamics can only be expected to capture alignment for
a limited range of vortex tilts, but it will be shown that
this range can be surprisingly large. A physical expla-
nation is provided for why linear thinking can be applied
to vortices exhibiting large initial tilts in certain param-
eter regimes.

Recently, Dritschel (1998) demonstrated how vortex
axisymmetrization in inviscid two-dimensional flow can
be inhibited for sufficiently steep-edged vortices. He
argued that in the two-dimensional relaxation of an ini-
tially random distribution of vorticity on an f -plane,
steep-edged vortices are more likely to form than broad-
ly distributed vortices, and therefore serve as a more
appropriate starting point for addressing the axisym-
metrization problem. If this argument is extended to
tilted vortices in three dimensions, there is the sugges-
tion that the basic mechanics of vortex vertical align-
ment will be altered in going from broad to steep-edged
vortices. We mention this possibility as a point of in-
terest, but, as discussed above, focus our attention on
the broad profiles commonly observed in developing
TCs.

Recent dynamical studies of TCs have emphasized
how such vortices resist the effects of vertical shear and
other external strains during all life cycle stages (Jones
1995; Smith et al. 2000). Jones (1995) considered the
evolution of a hurricane-like vortex embedded in a ver-
tically sheared zonal flow. Her physical interpretation
of the evolution from aligned to tilted vortex largely
follows that of Polvani (1991) and other similar studies.
As a prototype for the TC problem in vertical shear,
Smith et al. (2000) proposed a two-layer nonlinear an-
alogue model, solvable analytically. Extending Polvani
(1991), they presented a portrait of upper- and lower-
level vortex trajectories as a function of shear magni-
tude, vortex strength, and coupling between layers. The
qualitative results of the model were verified using a
two-layer QG model, but it should be noted that their
analogue model becomes singular as the initial upper-
and lower-level PV separation goes to zero. Their an-
alogue model also prohibits deformation of the vortex
core, which therefore precludes vertical alignment in
the unforced problem. Our work compliments these
studies by taking a step back and exploring the unforced
problem for small but finite-amplitude initial tilts. Ac-
cording to our interpretation of the unforced vortex dy-
namics, the addition of vertical shear simply makes the
problem a forced linear one as long as departures from
vertical alignment are not too great. In the context of
TCs, observations suggest that the small-tilt limit is the
relevant parameter regime (e.g., Marks et al. 1992; Rea-
sor et al. 2000). The extension of the current work to
the forced problem will be considered in a forthcoming
publication.

Although the alignment dynamics of mature hurri-
canes is of great interest, here we consider the simpler
problem of QG vortex alignment and its application to
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TABLE 1. Parameters used in the control simulations. For the bench-
mark basic-state vortex the two parameters that define each simulation
are the inverse internal Rossby deformation radius (g1) and tilt am-
plitude (a). Useful parameters derived from these two are the upper-
and lower-level PV intercentroid separation distance (di) and vortex
beta Rossby number (Rb). The latter is defined in section 3b.

g1 (31026 m21) a (km) di (km) Rb (km)

3.14
3.14
3.14

20.0

0.1
0.3
0.5
0.3

41
123
175
123

0.08
0.25
0.50
0.08

TC genesis as a first step. An axisymmetric view of TC
genesis has been offered by Bister and Emanuel (1997)
based on observations of TC Guillermo (1991) and sup-
porting axisymmetric numerical simulations. A reanal-
ysis of the Guillermo Doppler wind data by Bracken
(1999), however, suggests a more prominent role played
by asymmetries during the initial stages of genesis.
ME98 presented a nonaxisymmetric model for genesis
in which a preexisting midlevel vortex merges with
nearby convectively generated low-level positive PV.
Through this asymmetric process a cyclonic circulation
is established beneath the midlevel vortex and a warm
core is developed. This merger of PV within the lower
to middle troposphere is similar to the alignment of a
tilted vortex.

The paper is therefore organized as follows. In section
2 the three-dimensional and truncated equivalent bar-
otropic QG models are described. The evolution of an
initially tilted vortex is examined in section 3. In section
4 we apply the linear alignment ideas to the problem
of TC genesis via the three-dimensional merger of an
isolated PV anomaly within a preexisting vortex. As the
vortex becomes more vertically coherent in the lower
to middle troposphere, the tilted vortex ideas of section
3 and their extension to finite Rossby numbers then
become more directly applicable. In section 5 we present
conclusions and indicate directions for our future re-
search.

2. Model descriptions

a. Three-dimensional QG model

Motivated by the geostrophic nature of large-scale
flows in the middle-latitude atmosphere and ocean, the
QG system has been used extensively in the study of
vortex merger and alignment (McWilliams 1989; Pol-
vani 1991; Viera 1995; Dritschel and de la Torre Juárez
1996; Sutyrin et al. 1998). Its utility as a benchmark
model for testing basic dynamical theories also has been
exploited in recent studies of TCs (ME98; Smith et al.
2000). The PV conservation equation and invertibility
relation on an f plane in pseudo-height coordinates
(Hoskins and Bretherton 1972) are, respectively,

]q
1 J(c, q) 5 0, (1)

]t

21 ] r f ]c0 02q 5 f 1 ¹ c 1 , (2)0 h 21 2r ]z N ]z0

where q is the PV, c the flow streamfunction, the2¹h

horizontal Laplacian, r0 the pseudodensity, f 0 the con-
stant Coriolis parameter, and N 2 the static stability. In
Cartesian coordinates the Jacobian, J(c, q) 5 ]c/]x ·
]q/]y 2 ]c/]y · ]q/]x. The details of the three-dimen-
sional numerical model (henceforth referred to as
QG3D) are described by ME98. One difference from
ME98 is that in the nondimensional numerical simu-
lation of (1)–(2) we will not require the horizontal scale,
L, equal the Rossby deformation radius, LR 5 NH/ f 0,
where H is the model depth. The thermal vorticity in
the nondimensional invertibility relation (ME98, Eq. 5)
is then multiplied by the vortex Burger number, (LR/
L)2. Unless otherwise stated, no explicit diffusion is
included in the QG3D model.

b. Equivalent barotropic QG model

A tilted PV column vertically bounded by rigid lids
can be decomposed into a barotropic mode and internal
baroclinic modes. In general the interior flow results
from both interior PV and potential temperature anom-
alies on the horizontal boundaries (Hoskins et al. 1985).
Hurricane observations show that the potential temper-
ature gradients on the horizontal boundaries are weak
(e.g., Hawkins and Rubsam 1968). Consistent with these
observations and recent theoretical studies of TCs (e.g.,
Möller and Montgomery 2000), we make the simpli-
fying assumption of isothermal horizontal boundaries at
z 5 0 and H. The streamfunction and PV can then be
expressed as the sum of the vertical modes. In the Bous-
sinesq approximation in which N 2 and r0 are constant
with height the modal expansion is

` mpz
c(r, l, z, t) 5 c (r, l, t) cosO m 1 2Hm50

` mpz
q(r, l, z, t) 5 q (r, l, t) cos , (3)O m 1 2Hm50

where m is the vertical wavenumber. Substitution of (3)
into Eqs. (1)–(2) yields a system of nonlinear equations
for the time-dependent real amplitudes, cm and qm (re-
ferred to here as the equivalent barotropic (EQB) sys-
tem). The nonlinear equations truncated at m 5 1 are
given in appendix A. Because of the natural circular
geometry of the problem, the equations are evaluated
in cylindrical coordinates. For simplicity, the azimuthal
mean vortex is assumed barotropic. The semispectral
model described by ME98 and discussed in detail by
Montgomery et al. (2000), modified to allow finite LR,
is used to perform the numerical computations (see ap-
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pendix A). A 2000-km outer radius domain with radial
grid spacing Dr 5 5 km and 8-mode azimuthal trun-
cation was used. All nonlinear EQB simulations were
run with a diffusion coefficient n ranging from 100 to
200 m2 s21 in order to keep the integrations stable at
long times.

An advantage of the semispectral formulation is that
it allows easy implementation of the linearized system
of equations governing the evolution of perturbations
to a circular vortex flow. Linearizing (1)–(2) about a
barotropic circular vortex state, substituting (3), and
Fourier decomposing cm and qm in azimuth yields the
following linear equations for the Fourier coefficients:

] in dz
1 inV q̂ (r, t) 2 ĉ (r, t) 5 0, (4)mn mn1 2]t r dr

21 ] ]ĉ nmn 2r 2 1 g ĉ 5 q̂ , n $ 1,m mn mn21 2 1 2r ]r ]r r
(5)

1 d dc
r 5 z , (6)1 2r dr dr

where n is the azimuthal wavenumber, gm 5 mp/LR is the
inverse internal Rossby deformation radius for the per-
turbation, ()mn are the Fourier coefficients, is the azi-V
muthal-mean angular velocity, and is the azimuthal-meanz
geostrophic relative vorticity. The vortex evolution sim-
ulated by the linear EQB model will be compared to that
simulated by the nonlinear models in sections 3 and 4 to
gain insight into the nature of the alignment dynamics.

3. Vertical alignment of a broadly distributed
tilted vortex

a. Initial conditions

In the experiments presented here the azimuthal-mean
vortex will be assumed barotropic. The initial symmetric
PV takes the form

22(sr)q(r) 5 q e ,max (7)

where max is the maximum mean PV and s is the in-q
verse decay length of the PV profile. The mean vortex
used by ME98 with max 5 9.0 3 1025 s21 and s21 5q
167 km is depicted in Fig. 1 (solid curve). The maximum
wind speed is 5 m s21 and the radius of maximum wind
(RMW) is 200 km. The dependence of the results on
horizontal vortex scale and structure is discussed in ap-
pendix B.

The initial PV asymmetry has the vertical structure
of the first internal baroclinic mode (m 5 1), unless
otherwise stated, and is consistent with the assumption
of isothermal horizontal boundary conditions discussed
in section 2. For simplicity, the mean vortex is perturbed
with a single azimuthal Fourier mode, thus

pz
inlq9(r, l, z, t) 5 q̂ (r, t) cos e 1 c.c., (8)1n 1 2H

where c.c. denotes the complex conjugate of the pre-
ceding quantity. In the general case n can be any azi-
muthal wavenumber. Isolated anomalies composed of a
superposition of azimuthal wavenumbers are considered
in section 4 in our investigation of the merger and align-
ment of convectively generated PV within a preexisting
vortex. For the tilted vortex simulations the horizontal
structure of the PV perturbation is that of the azimuthal
wavenumber 1 (n 5 1) pseudomode (Michalke and Tim-
me 1967; Weber and Smith 1993; Smith and Montgom-
ery 1995; MK). In two-dimensional flows the pseudom-
ode represents a vortex displacement and has the radial
PV structure

dq
q̂ (r) 5 ã , (9)11 dr

where is a constant conversion factor. We define 5ã ã
a max/(d /dr)max, where (d /dr)max is the maximumq q q
mean PV gradient and a is a nondimensional amplitude
factor.

For a given mean vortex with horizontal scale L
(roughly the RMW) and vertical scale H the only two
adjustable parameters are a and g1. Variation of a
changes the angle of inclination of the PV column from
the vertical. Equations (7)–(9) best represent a tilted
vortex for values of a much less than unity. For a .
0.3 higher azimuthal harmonics are included in expres-
sion (8) and a more accurate form for q̂11 is used.

Before investigating the full a and g1 parameter
space, we begin by defining a benchmark case and com-
paring the vortex evolution simulated by the QG3D and
EQB models. The benchmark simulation using a 5 0.3
and g1 5 3.14 3 1026 m21 is shown in Fig. 2 in terms
of PV. Midlatitude values of f 0 5 1024 s21, H 5 10
km, and N 5 1022 s21 are used to define g1. To verify
that (7)–(9) is a valid approximation to a tilted vortex,
the QG3D model is initialized with a linearly tilted PV
column having an angle of inclination from the vertical
nearly identical to that of the EQB benchmark vortex.
The vortex evolution simulated with the QG3D model
(Fig. 2a) is replicated well by the nonlinear, truncated
EQB model (Fig. 2b). The vortex precesses about the
stationary midlevel centroid with no obvious sign of
alignment over the 4te period (where te denotes a mean
vortex circulation period at the RMW, which is ap-
proximately 2.9 days for this vortex). The precession
period of the vortex is approximately 12.5 days, or just
over 4te. As evident from comparison of the two sim-
ulations, the interaction between vertical modes is not
crucial to understanding the vortex evolution for the
small tilts considered here. Therefore, in our exploration
of the alignment mechanism, the EQB model will be
primarily used. All of the principle results to be shown,
however, have been verified with the QG3D model.
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FIG. 2. Evolution of vortex PV (from left to right) at t 5 0, 1.5te, 2.5te, and 4te for the benchmark run with a 5 0.3 and g1 5 3.14 3
1026 m21. Only the inner 300 km 3 300 km is shown to emphasize the vortex tilt. The vertical depth is 10 km. Results from (a) the QG3D
model with PV isosurface 8.0 3 1025 s21 and (b) the nonlinear EQB model with PV isosurface 8.5 3 1025 s21 are shown. The different
initial conditions are described in the text. To ensure conservation of domain-integrated PV in the QG3D model the mass-weighted average
of PV has been subtracted from the total field.

The dependence of the alignment process on a is
considered below. The initial horizontal distance be-
tween upper- and lower-level PV centroids (di) defined by

1/22 2    
xq dA yq dAE E    A A

    d 5 2 1 (10)i

q dA q dA   E E 
   A A 

(where the integral over the domain area A can be eval-
uated at either the upper or lower level due to the mirror
symmetry about the middle level for perturbations rep-
resenting a tilted vortex) is listed in Table 1 for each of
the primary simulations. The midlatitude value of g1 5
3.14 3 1026 m21 is used in all simulations, except in
section 3c where the g1-dependence of vortex alignment
is explored.

b. Linear vortex Rossby wave dynamics

A useful diagnostic in the study of vortex merger and
vortex axisymmetrization on a vortex with monotoni-
cally decreasing basic-state vorticity is the vortex beta
Rossby number, Rb (Möller and Montgomery 2000; En-
agonio and Montgomery 2001). Mathematically it is
defined as the ratio of the nonlinear terms in the PV
equation to the effective ‘‘beta’’ term involving the
mean PV gradient of the basic-state vortex. Whereas the
vortex itself is the perturbation in the problem of vortex
motion on a b plane (McWilliams and Flierl 1979;
Montgomery et al. 1999), here the perturbation is the
departure from vertical alignment. In studies of vortex
motion the beta Rossby number is large compared to
unity (a large ‘‘perturbation’’). The tilted vortices con-
sidered here are characterized by beta Rossby numbers
less than unity (a small ‘‘perturbation’’). In the nondiv-
ergent limit the vortex beta Rossby number scales as
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FIG. 2. (Continued )

V9
R ; , (11)b dz

2L9
dr

where V9 is the perturbation velocity amplitude, L9 the
perturbation horizontal scale, and d /dr the radial vor-z
ticity gradient of the basic-state vortex. Rb provides a
measure of how important nonlinear advection is com-
pared to the vortex Rossby wave restoring mechanism.
For Rb much less than unity perturbations on an every-
where monotonic mean vortex are expected to disperse
as vortex Rossby waves. The wave–mean interpretation
of MK usefully and accurately characterizes the dynam-
ics in this parameter regime.

In previous work unforced vortex alignment has been
described in much the same way as vortex merger in
two dimensions: The flow induced by the upper-level
PV anomaly advects the lower-level anomaly, and vice
versa. Attempts to predict the evolution of tilted vortices
given the initial vertical tilt and deformation radius have
focused on finding solutions to the nonlinear equations
of motion. We agree that this approach is the correct

one for upper- and lower-level anomalies initially sep-
arated by large distances. But is this way of viewing
the problem the most insightful one for upper and lower-
level anomalies separated by small distances? We pro-
pose that the asymptotic dynamics (i.e., when the vor-
tices are close enough together) of vortex merger and
alignment in three dimensions is more usefully viewed
as linear. This is not to say that nonlinear advection is
identically zero, but rather that its role in the evolution
of vortices with small but finite amplitude tilts is sec-
ondary to linear advection. The approach taken here is
to begin with an aligned vortex and systematically in-
crease the vertical tilt. With each progressive increase
in the separation between upper- and lower-level anom-
alies we ask the question: To what extent is the sub-
sequent vortex evolution described by linear dynamics?

A schematic illustration of what is meant by linear
dynamics is shown in Fig. 3. The tilted PV column is
decomposed into an azimuthal mean, , which for sim-q
plicity is assumed barotropic, and a departure from that
mean, q9. In the linear approximation, at upper (lower)q
levels is radially advected by the perturbation wind field
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FIG. 3. Schematic illustration of the linear vortex alignment mech-
anism. A PV column bounded by rigid lids at z 5 0 and H is tilted
from west to east with height. For small tilts this configuration is
decomposed into an azimuthal-mean barotropic vortex (with tangen-
tial wind and PV, and , respectively) and an azimuthal wavenumbery q
1 asymmetry with vertical structure of the first internal baroclinic
mode. The tilted vortex evolution is then governed by the interaction
of the perturbation with the mean flow.

associated with the upper- (lower) level PV anomaly
and, depending on the magnitude of the vertical pene-
tration depth of the vortex flow, f 0L/N, the lower- (up-
per) level PV anomaly. It is this radial advection in
conjunction with the azimuthal advection of q9 by the
mean tangential wind, , that governs the evolution ofy
the tilted vortex in the linear approximation. Of course
in the limit of large vertical tilt (and presumably large
Rb), q9 approaches the magnitude of , and linear theoryq
will no longer be valid. Our intent is to provide physical
insight into the vortex alignment process at small ver-
tical tilts and to then illustrate the range of applicability
of the linear ideas.

For the benchmark run with a 5 0.3, Rb, computed
using the strict mathematical definition stated above, is
found to be approximately 0.25 in the vicinity of the
PV perturbation maximum. Figure 4 shows the total and
wavenumber one PV at the surface (z 5 0) from the
linear and nonlinear EQB models. Although Rb is not
infinitesimally small in this case, good agreement be-
tween the linear and nonlinear simulations is neverthe-
less observed. Both vortex simulations show radially
propagating, sheared vortex Rossby waves superposed
on a quasi-discrete wavenumber 1 PV feature. The radial
vortex Rossby wave propagation is illustrated in Fig. 5
for the linear simulation. As predicted by MK, the radial
propagation speed of the wave packets decreases in time
as the waves are sheared to finer and finer radial scales.
The quasi-discrete wavenumber one PV asymmetry near
r 5 125 km persists over the 5te period with only a
10%–20% decrease in amplitude. Consistent with a qua-
si-discrete vortex Rossby wave it propagates cycloni-
cally around the vortex at a speed less than the local
mean tangential wind. Figure 4 also shows the PV evo-
lution for the same initial vortex using the QG3D model.
The azimuthal propagation and structure of the wave-
number 1 PV asymmetry are virtually identical in the
two nonlinear simulations. Both nonlinear simulations

also show less sheared vortex Rossby wave propagation
than the linear simulation.

Figure 6 shows the domain-integrated perturbation
energy (kinetic and available potential) contained in
wavenumber 1. The linear solution indicates only a 30%
decrease in energy over the 5te period. Most of the
initial asymmetry energy is trapped in the quasi-discrete
vortex Rossby wave, which slowly loses its energy
through the radial propagation of sheared vortex Rossby
waves. Due to wave–wave interactions the nonlinear
solution shows a more modest decrease in wavenumber
1 energy of 5%–10%. The use of the pseudomode to
represent the initial horizontal structure of wavenumber
1 PV is fortuitous since it projects strongly onto the
quasi-discrete vortex Rossby wave. A general initial
condition will tend to project more onto the sheared
vortex Rossby waves, obscuring the quasi-discrete
structure at early times. As demonstrated by Smith and
Montgomery (1995, and references therein) and later
extended by MK to account for the Rossby wave effects,
the energy contained in the sheared Rossby waves will
ultimately diminish with time. Thus, the quasi-discrete
wave structure will eventually emerge. It is interesting
to note that higher wavenumbers show a markedly dif-
ferent behavior than wavenumber 1 with the energy fall-
ing to near zero after only a 1–2te period. We conclude
that wavenumber 1 is unique within the parameter re-
gime under consideration. The corotation resulting from
the long-lived propagation of the wavenumber 1 asym-
metry observed in the nonlinear simulations is repro-
ducible using linear dynamics alone, validating the con-
ceptual model illustrated in Fig. 3 for finite-amplitude
vortex tilts.

To determine the range of a for which linear vortex
Rossby wave theory captures the essence of the align-
ment process we compare the intercentroid separation
distance between upper- and lower-level PV anomalies,
di, predicted by the linear and nonlinear EQB models.
Figure 7a shows the trajectories of the upper- and lower-
level centroids for the benchmark case. In both simu-
lations the centroid makes slightly more than one orbit
at a radius of approximately 60 km during the 5te period.
The discrepancy between the linear and nonlinear pre-
dictions of di increases to about 5 km during the period,
as shown in Fig. 7b. The nonlinear prediction shows a
reduced rate of alignment, although we would argue that
the linear dynamics is still capturing the essence of the
corotation and slow alignment of upper- and lower-level
PV anomalies.

For an even smaller tilt amplitude of a 5 0.1, little
discrepancy between linear and nonlinear simulations is
found. In this case Rb ø 0.08, which confirms the neg-
ligible role played by nonlinear advection. The quasi-
discrete vortex Rossby wave has essentially the same
structure and propagation speed in both simulations (not
shown).

To simulate a vortex with more exaggerated tilt the
EQB model is initialized with the mean vortex given
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FIG. 4. Evolution of total vortex PV (shaded) and wavenumber 1 component of PV (contour interval 0.5 3 1025 s21 with negative values
dashed) at z 5 0 over a 5te period for the benchmark run (see Fig. 2). From left to right are shown the results from the linear EQB, nonlinear
EQB, and QG3D models, respectively. Aside from the PV correction in the QG3D model, the initial conditions are identical.

by (7), but displaced 100 km to the east of the polar
coordinate system origin at z 5 0, and tilted linearly
with height to the west. An azimuthal and vertical wave-
number decomposition of this initial condition shows
that only four modes need to be included in the EQB
initialization: (m, n) 5 (0, 0), (1, 1), (2, 0), and (0, 2).
In keeping with the assumption of a barotropic mean
vortex, the n 5 0 component of the vortex at z 5 0 is
used at all levels. For this case the initial upper- and
lower-level PV centroids are separated by 175 km, a ø
0.5 and Rb ø 0.5.

Figure 8 shows the evolution of total and wavenumber
1 PV from the linear and nonlinear EQB models. Also
shown is the PV at the lowest level of the QG3D model
for a vortex tilted linearly with height (without the above
approximations). The two nonlinear simulations basi-
cally agree, confirming the utility of the truncated equiv-
alent barotropic approach even for relatively large vor-
tex tilts. More important is the similarity between the
linear and nonlinear simulations. Although there is con-
siderably more radial vortex Rossby wave dispersion in
the linear simulation, the rotation frequencies of the low-
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FIG. 5. Radius–time plot of the wavenumber 1 PV amplitude at z 5 0 over a 5te period for
the linear benchmark run. The dashed lines are phase lines highlighting the outward propagation
of vortex Rossby wave packets in time. The quasi-discrete vortex Rossby wave persists near
125-km radius. Contour interval is 1.0 3 1026 s21.

level vortex about the midlevel centroid are virtually
the same, as shown in Fig. 9. The details of the di

evolution over 5te and departure from that shown in
Fig. 7 can be attributed to the greater projection of the
initial PV asymmetry onto sheared vortex Rossby
waves. Overall the linear dynamics still captures the
essence of the tilted vortex evolution. Thus, while non-
linear effects increase in importance with increasing Rb

and modify the vortex structure (i.e., counteract the
sheared vortex Rossby wave dispersion), the underlying
quasi-discrete vortex Rossby wave persists in dominat-
ing the solution.

These results suggest a new interpretation for the co-
rotation of vertically separated, overlapping vortices for
internal Rossby deformation radii greater than the hor-
izontal scale of the vortex. Polvani (1991) explained the
presence of corotation geometrically as a consequence
of the initial vortex configuration being near a geo-
strophic PV equilibrium (i.e., a stable V state). Here the
corotation of continuously distributed vortices is attri-
buted to the cyclonic propagation of a quasi-discrete
wavenumber 1 vortex Rossby wave. Analytical solu-
tions to the linear QG equivalent barotropic problem are
currently unavailable for continuous PV distributions,
but may present themselves for special cases. Such a
solution would allow one, for example, to predict the
linear corotation frequency. For now we will continue

to explore this linear interpretation of the alignment
process, considering the effect of varying g1.

c. Dependence on internal deformation radius

Varying g1 can be viewed in terms of changing the
depth of the vortex, the static stability, or the planetary
vorticity. The dependence of vortex alignment on vortex
depth has been explored in recent studies motivated by
observations from QG free-decay turbulence simula-
tions (McWilliams 1989; Viera 1995; Dritschel and de
la Torre Juárez 1996). The tilted vorticity configurations
in these studies attain equilibrium at certain vertical
scales. Moist convection will increase g1 by reducing
the static stability (Emanuel et al. 1987; Montgomery
and Farrell 1992). As further discussed in section 4, for
more rapidly swirling flows, f 0 in the expression for g1

is replaced by the geometrical mean of the modified
Coriolis parameter and absolute vorticity associated
with the basic-state circular vortex (Shapiro and Mont-
gomery 1993). We may then anticipate the vortex evo-
lution for more rapidly swirling flows by increasing f 0

in the QG formulation.
The dependence of vertical alignment on internal de-

formation radius and horizontal vortex scale is known
from QG contour dynamics (CD) model simulations
(Polvani 1991). For horizontal vortex scales greater than
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FIG. 6. The QG equivalent barotropic volume-integrated energy
contained in wavenumber 1 from the nonlinear (dashed) and linear
(solid) EQB benchmark runs (see Fig. 2) as a function of time. Also
shown is the linear energy evolution for initial conditions with the
pseudomode radial structure, but azimuthal structure of wavenumbers
2 and 3. The energy is normalized by its initial value in all cases.

FIG. 7. Evolution of the EQB PV intercentroid separation between
z 5 0 and H over 5te for the benchmark run (see Fig. 2). (a) Trajectory
of the PV centroid at upper (solid) and lower (dashed) levels. The
heavy lines show the nonlinear evolution, while the fine lines show
the linear evolution. (b) Time series of intercentroid separation dis-
tance from the linear (solid) and nonlinear (dashed) models.

the internal deformation radius the vertically tilted vor-
tex tends toward alignment, while for smaller vortex
scales alignment is inhibited and corotation is observed.
The linear interpretation of the alignment mechanism
can help explain why this is so.

In the benchmark simulation (see Fig. 2) we found
that alignment was inhibited and the vortex precessed
about its midlevel centroid with a small increase in the
discrepancy between linear and nonlinear simulations
with time out to several te. Figure 10 shows the evo-
lution of the same tilted vortex, but for larger g1 5 20.0
3 1026 m21. The QG3D (not shown) and nonlinear EQB
models show nearly identical results, so we focus on
the vortex evolutions simulated by the EQB linear and
nonlinear models. In both simulations alignment of the
tilted vortex and attendant filamentation of PV are ob-
served, as found in previous studies using vortex patches
(Polvani 1991; Viera 1995; Dritschel and de la Torre
Juárez 1996). The linear results confirm that the fila-
mentation observed in the nonlinear simulation near the
core of the stable vortex monopole is primarily a con-
sequence of linear vortex Rossby wave dynamics and
not nonlinear mixing or ‘‘wave breaking.’’ Figure 11
shows that in both simulations the vortex undergoes
complete alignment within 5te at virtually identical
rates. In studies using a single vortex patch the fila-
mentation is a nonlinear process. Therefore, there is a
fundamental difference between the physical mecha-
nisms responsible for axisymmetrization (or alignment
in our case) for smooth and piecewise-continuous vor-
tices (Smith and Montgomery 1995; Bassom and Gilbert
1998). We believe the linear mechanism is more relevant
to TC-like vortices in the limit of small vertical tilts.

The increased agreement between linear and nonlin-
ear simulations for this larger value of g1 can be un-
derstood by examining the g1-dependence of Rb. Figure

12 shows the initial Rb in the vicinity of the maximum
perturbation PV for various a as a function of g1. In
section 3b it was shown that for a given value of the
internal deformation radius, Rb decreases with decreased
perturbation amplitude (recall Rb ; V9) leading to in-
creased agreement between linear and nonlinear simu-
lations. The naive scaling (11) would not predict a de-
pendence on g1, contrary to Fig. 12, which clearly
shows Rb decreasing with increasing values. Farge and
Sadourny (1989) explained the dependence of their QG
shallow water turbulence simulations on deformation
radius from the perspective of energy and enstrophy
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FIG. 8. As in Fig. 4 but for a ø 0.5. See text for details on the initial conditions.

spectra. For large rotation rates (i.e., large g1) they dem-
onstrated that the cascade of potential enstrophy to
smaller scales is inhibited. This behavior can also be
explained geometrically by examining the dependence
of the QG (baroclinic) perturbation PV inversion on g1.
For small g1, the Green function decays slowly with
radius and PV over a broad area is incorporated into
the inversion for streamfunction at a point. In this case
the streamfunction field is unable to replicate strong
curvature of the PV field. For much larger g1, the Green
function decays rapidly with radius and the stream-
function field is better able to reproduce the curvature
of the PV field over the entire domain, leading to near-

parallel PV and streamline contours as illustrated in Fig.
13, that is,

J(c9, q9) → 0 as g → `.1 (12)

Thus, for g1 → `, Rb tends to zero and the linear and
nonlinear simulations converge. An additional conse-
quence of this dependence of Rb on g1 is that the linear
vortex Rossby wave dynamics will accurately capture
the alignment process for a wider range of amplitudes
the larger g1 is. Although our focus here is on small to
moderate tilts from the vertical, even vortices for which
di/L ; 2 (i.e., the RMWs of the upper and lower vortices
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FIG. 9. As in Fig. 7 but for a ø 0.5.

just overlap) the alignment process could still fall within
the linear regime as long as g1 is large enough.

The complete picture of the dependence of vortex
alignment on g1 for small initial tilts (a 5 0.1) is shown
in Fig. 14. The intercentroid distance after 5te for both
linear and nonlinear simulations is plotted as a function
of g1. As expected, no discernible difference between
the simulations is observed. After 10te the curve is es-
sentially the same, except the transition region between
small and large g1 is steeper (not shown). Three regions
are clearly identifiable in the g1 phase space.

For g1 $ 10.0 3 1026 m21 complete vertical align-
ment takes place. The corresponding threshold internal
deformation radius is 100 km which is smaller than the
scale of the current vortex. The presence of vertical
alignment at small a (or equivalently small initial di)

should be contrasted with the two-layer CD results of
Polvani (1991). There, corotation was observed for all
g1 in this range. As discussed in appendix C, this is a
consequence of using a single PV interface in the CD
model. Dritschel (1998) found that sufficiently steep-
edged vortices in two-dimensional flows can also resist
axisymmetrization, but such vortices are not typically
observed in the weak TC context. Utilizing the fact that
the dynamics is fundamentally linear in this regime we
can demonstrate why continuously distributed vortex
alignment must occur for all small initial di. The ar-
gument is essentially that when g1 is large, the effective
‘‘beta’’ term in the linearized PV equation can be ne-
glected. The perturbation PV to leading order is then
materially conserved following the local mean tangen-
tial winds, leading to simple spirals around the vortex
and algebraic decay of the perturbation streamfunction
in the limit of long times (see appendix C for details).
It is the sheared vortex Rossby waves which provide
the irreversible deformation of the PV field needed for
alignment.

The small-amplitude version of the benchmark run
(g1 5 3.14 3 1026 m21; a 5 0.1) falls within the
transition zone in what we call the slowly aligning re-
gime. The horizontal vortex scale lies close to the mid-
point of this regime. It should be noted that the vortex
does not actually align here according to our definition
which requires di 5 0. At longer times this transition
region becomes narrower. Vortices at the large g1 end
of the transition region enter into the alignment regime
after a sufficiently long period of time, while little
change in the structure of the curve at small g1 is ever
observed during longtime integrations of the model.

The behavior of a tilted vortex for which g1 # 2.5
3 1026 m21 is unlike that found in the rest of the g1

phase space. Recall that the initial value of di is ap-
proximately 41 km (see Table 1). Thus, there is virtually
no tendency for alignment (even after 10te) in this re-
gime. The vortex corotation is accounted for by the
azimuthal propagation of the quasi-discrete vortex Ross-
by wave first noted in the benchmark simulation. In the
limit of vanishing g1 (the nondivergent limit) the sta-
tionary pseudomode discussed by MK is recovered. As
g1 is increased from the nondivergent limit, the longtime
radial structure of azimuthal wavenumber 1 PV still
closely resembles the pseudomode, but rotates at a non-
zero frequency. If g1 becomes too large, the quasi-dis-
crete feature ceases to exist, as discussed above. The
origin and characteristics of this quasi-discrete vortex
Rossby wave are discussed below.

Figure 14 also shows the dependence of di on g1 for
a 5 0.3. There is a more noticeable discrepancy be-
tween linear and nonlinear simulations for this larger
value of tilt, although the difference is small. The tilted
vortex evolution is still captured by linear dynamics for
all values of g1. While a decrease in discrepancy with
increasing g1 in the alignment regime is expected based
on vanishing Rb, the decrease in discrepancy with de-
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FIG. 10. Evolution of vortex PV (from left to right) at t 5 0, 1.5te, 2.5te, and 4te for a 5 0.3 and g1 5 20.0 3 1026 m21. Only the inner
600 km 3 600 km is shown to emphasize the vortex tilt. Results from (a) the nonlinear EQB model with PV isosurface 5.0 3 1025 s21 and
(b) the linear EQB model with PV isosurface 5.0 3 1025 s21 are shown. The contours shown are (0.1, 1, 3, 5) 3 1025 s21.

creasing g1 in the strict nonalignment regime was not
entirely anticipated. We believe that the continued good
agreement between linear and nonlinear simulations in
the latter regime is a consequence of the robustness of
the quasi-discrete vortex Rossby wave.

d. Quasi-mode interpretation of three-dimensional
vortex corotation

For an initially tilted vortex satisfying Rb , 1 and
small g1, the longtime solution is an azimuthal wave-
number 1 asymmetry with vertical structure of the first
internal baroclinic mode propagating on the mean vor-
tex. Although the rotation rate of the asymmetry is ap-
proximately constant, and the radial structure appears
largely unaffected by differential rotation, the slow, al-
most imperceptible decay of the asymmetry for g1 #

2.5 3 1026 m21 suggests that it is not a discrete or
neutral mode. In the nondivergent limit wavenumber 1
does in fact become a smooth stationary mode, but it

loses this modal characteristic once the Rossby defor-
mation radius becomes finite. To understand this be-
havior of wavenumber 1, consider stable solutions to
Eq. (4) of the form

2iv tmnĉ (r, t) 5 f̂ (r)e ,mn mn (13)

where vmn is a constant rotation frequency. Substitution
into Eq. (4) yields

2 2d f̂ 1 df̂ n ndz /drmn mn 21 2 1 g f̂ 2 f̂m mn mn2 21 2dr r dr r r(nV 2 v )mn

5 0. (14)

This is an eigenvalue problem with eigen-streamfunc-
tion amplitudes, mn, and corresponding eigenfrequen-f̂
cies, vmn. In the nondivergent case an exact solution to
(14) for n 5 1 is 5 c with v 5 0, where c is af̂ y
constant (Michalke and Timme 1967). This is the afore-
mentioned stationary pseudomode solution. For higher
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FIG. 10. (Continued )

azimuthal wavenumber perturbations to a two-dimen-
sional vortex with monotonically decreasing mean vor-
ticity, there are no smooth eigenfunction solutions. Only
singular eigenfunction (continuous spectrum) solutions
exist, that decay to zero algebraically in the limit of
long times (Sutyrin 1989; Carr and Williams 1989;
Smith and Montgomery 1995; MK; Bassom and Gilbert
1998). Thus, based on two-dimensional axisymmetri-
zation experiments involving continuously distributed
mean vortices like the Gaussian, one might not expect
a long-lived asymmetry to be supported in three di-
mensions.

According to the three-dimensional QG numerical
simulations at small g1, the rotation frequency of wave-
number 1 is small, but nonzero. The intrinsic frequency,

2 v, will therefore pass through zero at some largeV
but finite value of r. Since the simulated wavenumber
1 streamfunction is not observed to pass through zero
and d /dr is nonzero for all r away from the origin andz
r 5 `, solutions to (14) must reside in the continuous
spectrum of discrete singular eigenfunctions. Why, then,

do we observe a smooth, long-lasting wavenumber 1
asymmetry in the numerical simulations?

An answer is found through close examination of the
(m, n) 5 (1, 1) eigenfunctions of (14) for the benchmark
mean vortex (7) and g1 5 1.25 3 1026 m21. The ei-
gensolver following Gent and McWilliams (1986) and
discussed by Reasor et al. (2000) is used, modified so
as to permit finite deformation radius. Figure 15 shows
the PV eigenfunctions surrounding the eigenfunction
whose eigenfrequency is closest to the numerically sim-
ulated wavenumber 1 rotation frequency. A grouping of
eigenfunctions with slightly different eigenfrequencies
is found centered on the numerically observed rotation
frequency with both a smooth structure and small-am-
plitude singular spike. The smooth structure is identical
to that found in the numerical simulation at long times.
The spikes occur at critical radii where the intrinsic
frequency associated with each eigenfunction equals
zero and (14) becomes singular. Although there is a
continuum of these singular eigenfunctions for fre-
quencies between min and max (Case 1960), only theV V
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FIG. 11. As in Fig. 7 but for g1 5 20.0 3 1026 m21.

FIG. 12. Dependence of vortex beta Rossby number at z 5 0 on
tilt (a) and g1. For consistency only (m, n) 5 (1, 1) is used to define
the perturbation. The simulation for a ø 0.5 does contain a small
barotropic wavenumber 2 component that will elevate Rb slightly for
all g1.

aforementioned grouping of eigenfunctions resembles
the numerically simulated solution.

If d /dr is set to zero outside some radius, ra, therez
is a possibility of the vortex supporting a smooth, dis-
crete eigenfunction since (14) is nonsingular for r . ra.
Schecter et al. (2000) demonstrated this in the nondiv-
ergent context for two-dimensional vortex monopoles
and n 5 2 by taking a profile with d /dr everywherez
nonzero and setting the gradient to zero outside some
radius. A discrete eigenfunction was found in this case.
Upon replacing the zero vorticity gradient region with
a profile having small, but nonzero gradient, an eigen-
analysis showed eigenfunctions similar to the discrete
eigenfunction for eigenfrequencies near the discrete val-
ue, but with small singular spikes, as in Fig. 15. The
superposition of these weakly singular eigenfunctions

with nearly identical phase speeds is referred to as a
quasi mode because of the tendency for the eigenfunc-
tions to interfere yet still maintain a near-discrete struc-
ture in the presence of shear. Previous studies have in-
vestigated quasi modes in the upper-tropospheric flow
(Rivest and Farrell 1992) and in two-dimensional non-
divergent vortex flows (Schecter et al. 2000 and refer-
ences therein). The singular eigenfunctions that com-
pose the quasi mode move with slightly different phase
speeds, so the quasi mode slowly decays in time as
observed. From the current perspective of linear vor-
ticity dynamics, we view this decay as occurring through
the ‘‘leaking’’ of energy via the radial propagation of
sheared vortex Rossby waves. Corotation of a geo-
strophic vortex with small tilt is therefore more accu-
rately explained as the azimuthal propagation of a three-
dimensional quasi mode.

The longevity of the quasi mode can be assessed by
considering its spectral distribution. To illustrate this,
recall that in the linear approximation an arbitrary PV
perturbation can be expanded in a weighted sum of the
PV eigenfunctions,

iv tkq̂(r, t) 5 A e ĵ (r), (15)O k k
k

where Ak is the expansion coefficient for the kth PV
eigenfunction, k(r), and vk is the corresponding eigen-ĵ
frequency. The right-hand side of Eq. (15) is the discrete
equivalent of a Fourier transform from the frequency
domain to the time domain. For the PV perturbation
given by Eq. (9), inversion of (15) at t 5 0 yields the
Ak. The expansion coefficients are plotted as a function
of eigenfrequency in Fig. 16 for various values of g1.
A discrete mode would be represented here as a d func-
tion in eigenfrequency space. The quasi mode is clearly
identified at small g1 as the narrow spike in the expan-
sion coefficient spectrum. As g1 increases, the quasi-
mode spectral peak broadens and takes on a more di-
polar structure. The broader the peak, and therefore the
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FIG. 13. Comparison of the initial perturbation PV (heavy) and
streamfunction (light) for the benchmark run. Negative values are
dashed. (a) g1 5 2.5 3 1026 m21 (b) g1 5 20.0 3 1026 m21. The
perturbation PV isolines and streamlines become more parallel with
increasing g1. The PV contour interval is 0.5 3 1025 s21. Stream-
function contour interval is 5 3 104 m2 s21 in (a) and 1 3 104 m2

s21 in (b).

FIG. 14. The PV intercentroid separation between z 5 0 and H
after 5te as a function of g1. The diamonds represent linear EQB
simulations and the squares nonlinear EQB simulations.

broader the distribution of phase speeds of the individual
eigenfunctions that make up the quasi mode, the faster
a given initial wavenumber 1 asymmetry will find itself
in the continuous spectrum of sheared vortex Rossby
waves. In nondivergent analyses of two-dimensional
vortex monopoles, Schecter et al. (2000) were able to
relate the decay rate of the quasi mode to the half-width
of the spectral peak in the special case where only a
single narrow peak exists. The presence of the dipole
structure in the expansion coefficient spectrum found

here (for g1 $ 2.5 3 1026 m21) prohibits an identifi-
cation with a single decay rate.

According to these results we see that for a vortex
monopole with small but finite-amplitude tilt and non-
zero mean vorticity gradient at all radii (excluding the
origin and r 5 `), alignment technically will always
occur as t → `, regardless of the nonzero value of g1.
But for application to the atmosphere on meteorologi-
cally relevant timescales of a few te, it is useful and
insightful to make the distinction between the quasi
mode and the rest of the singular continuum of eigen-
functions, and therefore corotation and alignment.

4. Application to tropical cyclones

a. Vortex alignment during TC genesis

A small fraction of all tropical disturbances develop
into TCs. For example, on average 100 tropical distur-
bances are observed in the Atlantic during hurricane
season, yet only about 10–15 achieve tropical storm
status (Frank 1975). In addition to the existence of low-
to midlevel cyclonic vorticity, environmental factors
like weak vertical shear and warm sea surface temper-
atures are generally regarded as necessary conditions
for development. The role of vertical shear in inhibiting
TC genesis and development has been explored both in
observational studies (Gray 1968; Zehr 1992) and in
numerical and theoretical works (Jones 1995; DeMaria
1996; Bender 1997; Frank and Ritchie 1999). According
to Zehr (1992) the 200–850 mb vertical shear threshold
above which development is severely inhibited is 12.5–
15 m s21.

Before the underlying mechanisms for the inhibition
of TC genesis by vertical shear can be understood, the
unforced vortex dynamics must first be examined. We
begin with the conceptual framework for TC genesis
laid out by ME98. There, convectively generated low-
level positive PV merges within an incipient midlevel
vortex (e.g., mesoscale convective vortex), strength-
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FIG. 15. The PV eigenfunction solutions to Eq. (14) for the benchmark mean vortex and (m,
n) 5 (1, 1). Eigenfrequencies centered on the numerically simulated rotation frequency are shown
as well as 2 v for the central frequency. The units of v are 1026 s21.V

FIG. 16. Expansion coefficient Ak as a function of eigenfrequency
vk for values of g1 in the quasi-mode and transition regimes. The
wavenumber 1 asymmetry given by Eq. (9) and eigenfunctions shown
in Fig. 15 were used to obtain Ak.

ening the cyclonic circulation beneath the midlevel vor-
tex and initiating warm-core development. The merger
of the low-level PV and midlevel vortex is similar to
the vortex alignment described in section 3, although
the isolated nature of the convectively generated PV
makes for a less vertically coherent vortex structure
through the lower to middle troposphere. Nevertheless,
the linear alignment ideas discussed in section 3 can be
applied to the nonaxisymmetric genesis model of ME98
to elucidate the underlying dynamical mechanisms.
ME98 suggested the role of vortex Rossby waves in the
merger process by showing good agreement between
nonlinear and quasi-linear predictions of the mean flow
change resulting from the interaction of a barotropic
wavenumber 2 asymmetry with a barotropic mean vor-

tex. Quasi-linear estimates of the mean flow change for
a baroclinic two-cluster PV anomaly on a barotropic
vortex also agreed with nonlinear simulations. Here we
explicitly compare linear and nonlinear simulations of
the merger of a single-cluster convectively generated
PV anomaly within a weak vortex to demonstrate the
role of vortex Rossby waves. Although a midlevel vor-
tex is a more physically relevant mean state than a bar-
otropic vortex in the context of TC genesis, we use the
latter to convey the basic dynamics of the merger pro-
cess.

The same barotropic mean vortex as ME98 is used
(see Fig. 1). The single-cluster isolated anomaly with
positive (negative) PV at lower (upper) levels is given by

pz22(bdr)q (r, l, z) 5 kq e cos , (16)sc 0 1 2H

where k is an amplitude factor, b is the inverse decay
length of the asymmetry, and (dr)2 5 (x 2 xc)2 1 (y
2 yc)2. The parameters xc and yc denote the Cartesian
location of the asymmetry center. In the experiment pre-
sented here k 5 0.5 and b 5 1.0 3 1025 m21. In order
to initialize the EQB model with a barotropic mean
vortex, as in the previous section, the azimuthal wave-
number zero component of the anomaly at z 5 0 is
added to the preexisting mean vortex at all heights. The
resulting mean PV still monotonically decreases with
radius. In contrast to section 3 we do allow the gen-
eration of azimuthal-mean vertical wavenumber 2 in the
nonlinear EQB model through the wave–mean inter-
action of (m, n) 5 (1, 1), but it is incorporated into the
barotropic mean vortex (see appendix A). No modifi-
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cations to (16) were made in the QG3D model, so the
mean vortex contains a small baroclinic component. The
grid spacing for the QG3D model simulation is 7.5 km
and the domain is now 1500 km 3 1500 km. Horizontal
‘‘del-squared’’ diffusion of PV has also been included
with n 5 100 m2 s21.

The isolated anomaly is placed inside the RMW of
the preexisting vortex at xc 5 125 km and yc 5 0 km
to simulate an outbreak of convection near the vortex
core. Figure 17 shows the PV evolution over 2.5te sim-
ulated by the QG3D and linear EQB models for g1 5
3.14 3 1026 m21. Although we are now considering
tropical conditions, a value of f 0 5 1.0 3 1024 s21 was
used as a crude way of including the vorticity of the
vortex in the definition of g1 (see ME98). The linear
and nonlinear simulations agree well, consistent with
small Rb (;0.2). Because of the greater departure of the
horizontal structure of the initial PV asymmetry from
the barotropic pseudomode, more sheared vortex Ross-
by wave dispersion is evident than in the tilted vortex
experiments. At longer times the sheared waves sym-
metrize, leaving just the quasi mode, which appears to
frustrate the complete merger of the isolated PV anom-
aly within the incipient vortex.

While complete merger is not expected during the
time period considered here due to the presence of the
quasi mode, forward Lagrangian trajectories from the
linear simulation do show that PV from the low-level
positive anomaly is transported radially inward into the
vortex core (see Fig. 18). Of course total PV is not
materially conserved as parcels move toward the vortex
center in the linear approximation, as evidenced by the
reduction in peak PV in Fig. 17. Nevertheless, the linear
vortex Rossby waves do irreversibly transport PV. The
radially inward transport of cyclonic eddy vorticity and
eddy PV implies a strengthening of the low-level mean
tangential winds in the vortex core by Stokes’s theorem,
and vice versa. This is illustrated in Fig. 19 for the above
experiment. Over 2.5te the QG3D model shows an in-
crease in low-level tangential winds of approximately
0.21 m s21 radially inside the location of the initial PV
asymmetry. The nonlinear EQB simulation produces a
similar structure for the tangential wind change, d , buty
with a maximum value of 0.18 m s21.

It is not surprising that the QG3D and nonlinear EQB
models should agree as well as they do given that the
low-level PV evolution is largely captured by linear
vortex Rossby wave dynamics. Since wave–wave in-
teractions are small (recall Rb ; 0.2), the bulk of the
mean flow change is effected by the self-interaction of
vertical wavenumber 1 (i.e., wave–mean interaction) as
shown in Fig. 19. Montgomery and Kallenbach pre-
dicted, and it was later confirmed in a nondivergent
model for small but finite-amplitude disturbances
(ME98) and for near order 1 amplitude disturbances
(Enagonio and Montgomery 2001), that in such a sit-
uation one can use the linear solution to estimate the
mean flow change that would occur in a model where

the wave–mean interaction was computed explicitly.
The so-called quasi-linear approximation is an estimate
because the mean flow is prohibited from changing in
the linear model. The feedback on the wave dynamics
is not captured as it is in the wave–mean model.

The quasi-linear formulation in the QG context is
obtained following Held and Phillips (1987) and Holton
(1992, section 12.4). The change in mean PV is given by

1 ]
dq 5 (dA), (17)

r ]r

where A(r, z, t) [ r /(2d /dr) is the wave activity (or2q9 q
pseudo angular momentum) and d denotes the difference
between a mean quantity at t → ` and t 5 0.

Given the PV perturbation,

pz
q9 5 q (r, l, t) cos , (18)1 1 2H

the wave activity can be written as

Ã 2pz
A 5 1 1 cos , (19)1 2[ ]2 H

where Ã 5 r /(2d /dr). Therefore dA has both a bar-2q q1

otropic and vertical wavenumber 2 component. The
mean angular momentum change due to the barotropic
component is obtained directly as

1 ˜d(ry ) 5 dA, (20)0 2

while the wavenumber 2 component is obtained by first
solving the invertibility relation,

˜1 ] ] 1 ] dA
2r (dc ) 2 g dc 5 , (21)2 2 21 2 1 2r ]r ]r r ]r 2

and then differentiating the incremental streamfunction

]
dy 5 (dc ). (22)2 2

]r

The total mean angular momentum change is the sum
of these two contributions:

2pz
d(ry ) 5 d(ry ) 1 d(ry ) cos . (23)0 2 1 2H

Since g 2 is relatively small in our case, we may assume
d 2 5 d 0 to provide an upper bound on d . The quasi-y y y
linear result derived from the linear EQB simulation is
shown in Fig. 19. It not only replicates the general radial
structure of the nonlinear d predictions, but is also ofy
the correct magnitude.

b. Alignment of vertically coherent TCs

Once the developing TC becomes vertically coherent,
the linear alignment model can be directly applied to
determine whether or not the vortex will remain aligned.
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FIG. 18. Forward Lagrangian trajectories of parcels originating
within the isolated anomaly at z 5 0 computed using winds simulated
by the linear EQB model over 2.5te. Note that high PV is transported
in toward the vortex center.

FIG. 19. Change in azimuthal-mean tangential velocity at z 5 0 over 2.5te as a function of
radius for the isolated anomaly experiment. Shown are results from the QG3D and EQB models
illustrating the quasi-linear nature of the low-level intensification of the mean flow by vortex
Rossby waves.

One can interpret the tilted vortex of section 3 as having
resulted from some external forcing, such as environ-
mental vertical shear or horizontal strain associated with
nearby vortices. Depending on the horizontal scale of
the vortex and g1, the vortex will either return to a
vertically aligned state through the sheared vortex Ross-
by wave mechanism or precess about its midlevel cen-
troid due to the wavenumber 1 quasi-mode propagation.

For tropical conditions f 0 5 5 3 1025 s21, H 5 15 km,
and N 5 1022 s21, resulting in g1 5 1.0 3 1026 m21.
For the mean vortex depicted in Fig. 1, g1 , L21, well
within the nonalignment regime shown in Fig. 14. In
the nonaligned state the vortex is especially vulnerable
to further external forcing.

Recently Dritschel and de la Torre Juárez (1996), us-
ing a linear stability analysis and a multilayer QG CD
model, found that a vortex column subjected to two-
dimensional strain will become unstable and reduce its
vertical scale if the ratio of vortex height to width is
greater than about 3 f /N, or equivalently g1 , p/6L. For
the benchmark vortex with L 5 200 km, the vortex
breakdown criterion is g1 , 2.5 3 1026 m21. Recall
that this range of g1 was identified using linear theory
in section 3 as the nonalignment regime. Therefore, a
weak tropical vortex supporting a quasi mode will tend
to reduce its vertical scale in the presence of external
shear until the alignment regime is reached.

In the case of TCs, the asymmetric transverse cir-
culation required to maintain thermal wind balance in
the small-g1 tilted configuration may actually help de-
velopment. If the persistent asymmetric low-level con-
vergence and enhanced convection in the down-tilt
quadrant of the storm (Jones 1995; Reasor et al. 2000)
is larger than would be produced through symmetric
mechanisms alone, an enhanced strengthening of the
primary vortex circulation through symmetrization of
convectively generated PV may occur (MK; ME98;
Möller and Montgomery 2000). According to the QG
vortex alignment mechanism, even though the vortex
has strengthened, it would continue to precess about its
midlevel centroid since g1 has not changed. If one crude-
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ly extends the findings of section 3 to include finite
Rossby number effects by replacing in the expression2f 0

for with the product of the modified Coriolis param-2g1

eter and absolute vorticity of the associated vortex flow,
the increase in vortex strength will increase g1. The
vortex could potentially leave the non-alignment regime
and realign itself without changing its vertical scale.
Preliminary experiments using the asymmetric balance
(AB) model (Shapiro and Montgomery 1993) in which
the standard Rossby number approaches unity show
good agreement with the QG results of section 3 (Reasor
2000). More recent results using a linear primitive equa-
tion model suggest that alignment of a tilted vortex ini-
tially in a corotation regime can indeed occur by in-
creasing the vortex strength. Further results regarding
the alignment of rapidly rotating vortices will be re-
ported upon in a forthcoming publication.

5. Summary and discussion

The evolution of an initially tilted PV column for
which the nonlinear advective PV tendency is small
compared to the linear radial advective tendency (i.e.,
Rb K 1) is captured by linear vortex Rossby wave pro-
cesses. This condition is generally met for vortices with
overlapping upper- and lower-level PV cores. In this
situation the vortex is meaningfully decomposed into
azimuthal-mean and perturbation components. Numer-
ical vortex simulations based on the linear equivalent
barotropic QG system, and validated with a nonlinear
three-dimensional QG model, show a dependence on
the internal Rossby deformation radius consistent with
previous studies. The physical explanation for the tilted
vortex evolution, however, departs from these studies.

In the nondivergent limit (i.e., infinite internal de-
formation radius) the stationary pseudomode is recov-
ered (MK). For large but finite internal deformation radii
the upper and lower PV anomalies slowly corotate. As
the deformation radius is decreased, the corotation fre-
quency increases. An azimuthally propagating quasi
mode with the vertical structure of the first internal bar-
oclinic mode and wavenumber 1 azimuthal structure is
responsible for the corotation and inhibits vortex align-
ment on meteorologically pertinent timescales. The qua-
si mode, defined here as a superposition of weakly sin-
gular eigenfunctions sharply peaked in the phase speed
spectrum, decays slowly in the presence of differential
rotation due to radial energy propagation by sheared
vortex Rossby waves. A transition region centered near
the horizontal vortex scale separates this regime from
the alignment regime at smaller internal deformation
radii. The transition is accounted for by the spectral
broadening of the quasi mode. In the alignment regime
the quasi mode is not present and initial perturbations
project primarily onto the (non-quasi-modal) continuous
spectrum of vortex Rossby waves whose integrated per-
turbation energy decays algebraically to zero in the limit
of long times. Alignment is defined here as when the

intercentroid separation distance between upper- and low-
er-level PV anomalies is zero. We believe this to be a more
accurate definition than used by Polvani (1991) who de-
fined alignment as a net decrease in the intercentroid sep-
aration distance over one precession period of the vortex.
In the single-interface CD model, Rossby edge waves per-
sist where complete alignment is observed for broad, con-
tinuously distributed vortices. Sheared linear vortex Ross-
by waves promote the irreversible redistribution of PV
necessary for complete alignment.

We argued that linear theory captures the essence of
corotation even as Rb approaches unity due to the ro-
bustness of the quasi mode. In this regime nonlinear
advection simply tries to counteract the sheared vortex
Rossby wave dispersion. As the internal deformation
radius is decreased within the alignment regime, Rb for
the baroclinic portion of the asymmetry decreases rap-
idly. Thus, linear theory will tend to capture the vortex
alignment process for a wider range of initial tilts the
smaller the internal deformation radius. The largest tilt
considered here was when the RMW of the upper-level
vortex overlapped the vortex center at lower levels. For
an internal deformation radius near 50 km we estimate
that Rb is less than 0.2 for this tilted configuration. It
is possible that alignment can still be approximately
described with linear dynamics even for vortices with
barely overlapping upper- and lower-level PV cores.

These ideas are believed to have practical application
to the problem of tropical cyclogenesis. One of the basic
questions in TC research is how a weak vortex with
nearby convection resists the effects of external shear
and strengthens. The Rossby wave interpretation of the
asymmetric TC genesis mechanism of ME98 was further
clarified here by explicitly demonstrating that the merg-
er and alignment of small but finite-amplitude convec-
tively generated low-level positive PV within the RMW
of a preexisting vortex is captured by linear vortex Ross-
by wave processes. The attendant strengthening of the
low-level mean vortex was also captured by wave–mean
dynamics. In typical tropical conditions this process is
frustrated by vertical shear. Smith et al. (2000) found
that a tilted TC-like vortex will either break apart under
the influence of vertical shear or corotate. Depending
on the value of the internal deformation radius, the linear
alignment mechanism discussed here suggests that the
tilting of a vertically aligned vortex by shear will either
project perturbation energy primarily onto the wave-
number 1 quasi mode or entirely onto sheared vortex
Rossby waves. In the latter case axisymmetrization of
the perturbation PV through the interaction of vortex
Rossby waves with the mean flow will tend to resist the
tilting by shear. In this regard, vertical shear acts as a
sheared vortex Rossby wave generator. This interpre-
tation of the interaction of a vortex with vertical shear
is another way of viewing the vortex tilt evolution de-
scribed by Jones (1995) for Rb , 1.

In addition to adding vertical shear to the linear prob-
lem, the next step is to extend the QG results to more
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rapidly rotating flows. The vertical penetration depth
will not only become a function of radius, but will also
increase over the QG value. This was clearly demon-
strated by Shapiro and Montgomery (1993) in the con-
text of the AB formulation for hurricane-like flows,
where the local penetration depth is proportional to the
square root of the product of the modified Coriolis pa-
rameter and absolute vorticity of the associated vortex
flow. Preliminary simulations in which the linearized
equivalent barotropic AB model is initialized with our
tilted benchmark vortex agree with the corresponding
QG simulations (Reasor 2000). Further work is required
to understand the effect of variable penetration depth
on the evolution of stronger tilted vortices. It is possible
that a quasi mode in quasi-gradient balance exists at
higher swirl speeds. Its characteristics and relevance to
hurricane-like flows (e.g., track wobbles) would be of
great interest. This will be the subject of future inves-
tigation.
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APPENDIX A

Nonlinear QG Equivalent Barotropic Model

For the tilted vortex (section 3) and m 5 1 isolated
anomaly (section 4) experiments, it is sufficient to sim-
ulate the vortex evolution using only the barotropic
mode (m 5 0) and first internal baroclinic mode (m 5
1). Truncating (3) at m 5 1 and then substituting into
the PV equation (1) yields the following nonlinear PV
tendency equations for m 5 0 and 1, respectively:

] 1 ]c ] 1 ]c ]0 0
1 2 q (r, l, t)01 2]t r ]r ]l r ]l ]r

1 1 ]c ] 1 ]c ]1 1
1 2 q (r, l, t) 5 0 (A1)11 22 r ]r ]l r ]l ]r

and

] 1 ]c ] 1 ]c ]0 0
1 2 q (r, l, t)11 2]t r ]r ]l r ]l ]r

1 ]c ] 1 ]c ]1 1
1 2 q (r, l, t) 5 0. (A2)01 2r ]r ]l r ]l ]r

This system of equations will tend to underestimate the
magnitude of the azimuthal mean flow change since the
m 5 2 tendency associated with the self-interaction of
(m, n) 5 (1, n) is excluded.

In section 3, where the wave–mean interaction is not
critical to understanding the vortex evolution, the above
truncated system is solved. The ( )m are first expanded
in a truncated azimuthal Fourier series following ap-
pendix B of ME98:

N

inlc (r, l, t) 5 ĉ (r, t)e and (A3)Om mn
n52N

N

inlq (r, l, t) 5 q̂ (r, t)e , (A4)Om mn
n52N

where n is the azimuthal wavenumber and N is the az-
imuthal mode truncation. This semispectral formulation
is advantageous for swirling flows where the mean flow
dominates the asymmetric component of the flow. Be-
cause the radial and azimuthal resolutions are indepen-
dent, one can choose the minimum azimuthal resolution
needed to simulate the vortex evolution, and thus reduce
computational time. Substitution of (A3) and (A4) into
the flux form of Eqs. (A1)and (A2) yields, respectively,

]ĉ0n 22 ˆ5 ¹ F (r, t) and (A5)0n 0n
]t

]ĉ1n 22 ˆ5 ¹ F (r, t), (A6)1n 1n
]t

where

1 ] ]ĉ 1 ] ]ĉ dz ]c0,k 1,kF̂ (r, t) 5 ik (ĉ q̂ ) 2 inq̂ 1 ik (ĉ q̂ ) 2 inq̂ 1 in ĉ 2 in q̂O0n 0,k 0,n2k 0,n2k 1,k 1,n2k 1,n2k 0,n 0,n1 2[ ]r ]r ]r 2 ]r ]r dr dr5 |k |#N 6
|n2k |#N

21 n¹ q̂ ,0n 0,n (A7)

1 ] ]ĉ ] ]ĉ dz ]c0,k 1,kF̂ (r, t) 5 ik (ĉ q̂ ) 2 inq̂ 1 ik (ĉ q̂ ) 2 inq̂ 1 in ĉ 2 in q̂O1n 0,k 1,n2k 1,n2k 1,k 0,n2k 0,n2k 1,n 1,n1 2[ ]r ]r ]r ]r ]r dr dr5 |k |#N 6
|n2k |#N

21 n¹ q̂ , (A8)0n 1,n
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FIG. B1. As in Fig. 14 (a 5 0.3), but for Gaussian vortices smaller
and larger than the benchmark vortex. Also shown are results for a
vortex having an algebraic dependence of PV on radius given by Eq.
(B1). The RMW in the latter case is 200 km.

and 5 (1/r)]/]r 1 ]2/]r2 2 n2/r2 2 . The last2 2¹ gmn m

term in both equations is the explicit diffusion. Note
that the linear terms involve only the barotropic com-
ponent of the azimuthal mean vortex, that is, (r, t) 5c

00(r, t) and (r, t) 5 q̂00(r, t). Consistent with theĉ q
barotropic mean vortex constraint, we impose F̂10 5 0.

In section 4 where the mean flow change predicted
by the QG3D and EQB models is compared, we wish
to include the full effect of the self-interaction of (m,
n) 5 (1, n), that is, both the (0, 0) and (2, 0) contri-
butions. The wave–mean terms that contribute to the
tendency in (0, 0) are in fact the same terms that con-
tribute to the tendency in (2, 0). Thus, to account for
the m 5 2 tendency we simply double the wave–mean
terms in the (0, 0) equation. This approximation is
equivalent to assuming m 5 0 in the inversion of po-
tential vorticity for streamfunction, and will tend to
overestimate the magnitude of the mean-flow change.
The inclusion of m 5 2 in this way is consistent with
the quasi-linear approximation presented in section 4.

APPENDIX B

Sensitivity to Horizontal PV Profile

Changing the width of the horizontal PV profile does
not alter the basic results presented here. Figure B1
shows the PV intercentroid separation distance after 5te

as a function of g1 for mean vortices smaller and larger
than that used in our benchmark simulation (see Fig.
1). Recall that the vortex Burger number (LR/L)2 is the
parameter that appears in the nondimensionalized in-
vertibility relation and determines the partitioning be-
tween vortical and thermal PV. We observed in section
3c that as the Burger number decreases from the non-
divergent limit (i.e., g1 increases from zero) the vortex
moves from the quasi-mode to alignment regime. For a
value of g1 within the transition regime an increase
(decrease) in L will decrease (increase) the vortex Bur-

ger number, bringing the vortex closer to (further from)
the alignment regime. As Fig. B1 shows, the result is
that the quasi-mode regime contracts with increasing
vortex scale.

Also shown in Fig. B1 is the separation distance using
a PV profile that decreases algebraically with radius:

qmaxq(r) 5 , (B1)
2 2(1 1 (r/R) )

where R 5 200 km and max 5 1.0 3 1024 s21 . Theq
alignment, transition, and corotation regimes are evi-
dent, but their location in g1 space differs from that of
the benchmark Gaussian vortex in spite of similar in-
ner-core structures. The region of nonnegligible vor-
ticity gradient associated with the algebraic profile ex-
tends to larger radius than in the benchmark Gaussian
case. Thus, the scale of the vortex is larger in the for-
mer case, accounting for the more extensive alignment
regime.

According to arguments presented in section 3d, the
existence of the quasi mode depends on there being a
region of near-zero mean vorticity gradient beyond
some radius. As the scale of the vortex monopole in-
creases, the radial region of small, but nonzero vortic-
ity gradient decreases. Thus, there is a smaller range
of frequencies for which Eq. (14) will support the weak
singularity associated with the quasi-mode solutions.
Precisely how this translates into the g1 dependence
shown in Fig. B1 will depend on how vortex structure
and g 1 determine the quasi-mode frequency. This, we
currently do not know, but hope to understand through
ongoing work.

APPENDIX C

Simulating Vortex Alignment: Vortex Patches
versus Continuous TC-like Profiles

Closed-form EQB solutions to the linear tilted vortex
problem can be obtained for mean vortices whose radial
structure is that of a vortex patch, that is,

z , 0 $ r , amax
z(r) 5 (C1)50, a , r # `.

Solutions to Eqs. (4)–(6) are sought of the form

ĉ (r, t) 5 ĉ (r, t) 1 ĉ (r, t),mn cs ew

q̂ (r, t) 5 q̂ (r, t) 1 q̂ (r, t), (C2)mn cs ew

where ‘‘cs’’ denotes the continuous spectrum and ‘‘ew’’
the Rossby edge-wave component. The solution method
follows Smith and Montgomery (1995).

The continuous spectrum solution is given by
`

2inVtĉ (r, t) 5 G(r, r)q̂ (r)e r dr, (C3)cs E 0

0

where
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I (g r)K (g r), r $ rn m n mG(r, r) 5 2 (C4)5I (g r)K (g r), r # rn m n m

is the Green function and q̂0 is the initial PV pertur-
bation. In and Kn are the modified Bessel functions.

The edge-wave solution is found by solving the mod-
ified Bessel equation on both sides of the basic-state
discontinuity. In both regions the mean vorticity gra-
dient is identically zero. It follows that

ĉ (r, t) 5 C (t)f̂ (r),ew n ew (C5)

where

I (g r)K (g a), r # an m n m
f̂ (r) 5 2a (C6)ew 5I (g a)K (g r), r $ a.n m n m

The dynamic condition requires pressure continuity
at r 5 a. From this condition Cn(t) can be determined,
completing the solution

`nz G(a, r)q̂ (r)max 0 2inVtC (t) 5 2 e rdr (C7)n Ea s 2 nVn0

`nz G(a, r)q̂ (r)max 0 2is tn1 C 1 rdr e ,0 E5 6a s 2 nVrn0

(C8)

where C0 is a constant of integration and

s 5 nz [1/2 2 I (g a)K (g a)]n max n m n m (C9)

is the edge-wave rotation frequency. A similar expres-
sion for sn generalizable to mean vortices with multiple
piecewise-continuous regions was derived by Waugh
and Dritschel (1999).

This solution is intended to mimic the single-interface
CD solution in the limit of infinitesimal vertical tilt.
There are two points worth making regarding the linear
solution. First, note that sn is nonzero for all n . 0 and
g1 . 0. Therefore, as t → `, oscillatory edge wave
solutions exist for all wavenumbers. For continuous,
relatively broad vortex monopoles, wavenumbers great-
er than 1 symmetrize within a couple te (see Fig. 6).
Second, note that as g1 → ` (Abramowitz and Stegun
1972),

p
2ag1K ; e and (C10)1 !2ag1

1
ag1I ; e , (C11)1 Ï2pag1

so s1 approaches max/2 and wavenumber 1 propagatesz
around the vortex indefinitely. This is consistent with
the CD simulations of Polvani (1991) where corotation
was found in this parameter regime. Continuous vortex
monopoles do not exhibit this behavior except for the
very steep-edged vortices discussed by Dritschel (1998)
and Schecter et al. (2000).

As g1 increases, the Green function involved in the
inversion of perturbation PV for streamfunction decays
rapidly with radius. The convolution of perturbation PV
and Green’s function, which defines the streamfunction,
will yield smaller values the larger g1 is. The radial
advection of mean vorticity by the perturbation radial
wind can then be neglected at zeroth order compared
to the azimuthal advection of perturbation PV by the
mean tangential wind (which does not depend on g1).
The resulting linear PV tendency equation is

]
1 inV q̂ (r, t) 5 0. (C12)mn1 2]t

Thus, the perturbation PV is materially conserved fol-
lowing the mean tangential winds and will take on a
spiral pattern around the vortex in time since

2inV tq̂ (r, t) 5 q̂ (r, 0)e .mn mn (C13)

The streamfunction is given by cs above, and decaysĉ
algebraically in the limit of long times. Therefore, con-
tinuous vortices always align in the small-tilt, large g1

limit.
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