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Abstract 

Laminated carbon fibre-reinforced polymer (CFRP) composites are already well established in 

structural applications where high specific strength and stiffness are required. Damage in these 

laminates is usually localised and may involve numerous mechanisms, such as matrix cracking, 

laminate delamination, fibre de-bonding or fibre breakage. Microstructures in CFRPs are non-

uniform and irregular, resulting in an element of randomness in the localised damage.  This 

may in turn affect the global properties and failure parameters of components made of CFRPs. 

This raises the question of whether the inherent stochasticity of localised damage is of 

significance in terms of the global properties and design methods for such materials. 

This paper presents the numerical modelling based analysis of the effect of material 

randomness on delamination damage in CFRP materials by the implementation of stochastic 

cohesive-zone model (CZM) within the framework of the finite-element (FE) method. The 

initiation and propagation of delamination in a unidirectional CFRP double-cantilever beam 

(DCB) specimen loaded under mode-I was analyzed, accounting for the inherent 

microstructural stochasticity exhibited by such laminates via the stochastic CZM.  Various 

statistical realizations for a half-scatter of 50% of fracture energy were performed, with 

probability a distribution based on Weibull’s two-parameter probability density function. The 

damaged area and the crack lengths in laminates were analyzed, and the results showed higher 

values of those parameters for random realizations compared to the uniform case for the same 

levels of applied displacement. This indicates that deterministic analysis of composites using 

average properties may be non-conservative and a method based on probability may be more 

appropriate. 
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1. Introduction 

An important factor affecting the localised damage evolution in carbon fibre-reinforced 

laminates is the randomness exhibited by these laminates at the microstructure level. In most 

of the analyses of fibre-reinforced composite materials, they are treated in a deterministic way 

i.e., the material has (or is implicitly assumed to have) an ordered (deterministic) distribution 

of fibres. However, in reality, the microstructure of fibre- reinforced composites is far from 

ordered as there is significant variability in the distribution of the fibres in the matrix. The 

manufacturing processes of fibre-reinforced laminates lead to macroscopic heterogeneity of 

the resultant materials. As a result of this non-uniformity, variations in the local properties of 

these laminates arise, which affect the localised processes of damage initiation and evolution. 

Baxevanakis et al. [1] demonstrated a high level of spatial non-uniformity in a composite, using 

an image analysis technique to study fibre distributions in cross-sectional areas of T300/914 

specimens. The effect of such microstructural randomness on the localised failure mechanisms 

was demonstrated by Silberschmidt [2], who demonstrated that cross-ply carbon–epoxy 

laminates exhibit a considerable extent of randomness in the distribution of transverse cracks 

and discussed the effect of microstructural randomness on the distribution of matrix cracks in 

hese laminates [3]. It was concluded that the behaviour of specimens with multiple matrix 

cracks cannot be always reduced to the analysis of a single traditional unit cell as an area 

limited by two neighbouring cracks under the assumption of equal crack spacing.  In agreement 

with this observation, Trias et al. [4] showed from a comparison of stress and strain 

distributions obtained with periodic and random models of a carbon fibre-reinforced polymer, 

that periodic models can be used to assess effective properties but random ones must be 

considered for the simulation of local phenomena such as damage accumulation or matrix 

cracking. A further contribution by Silberschmidt [5] presented a lattice model which was used 

to study damage and fracture evolution in laminates, linking microstructural randomness with 

macroscopic properties and demonstrating that a random character in the fibres’ distribution 

results in fluctuations of local elastic moduli, the bounds of which depend on the characteristic 

length scale. Yanga et al. [6] simulated two-dimensional crack propagation in quasi-brittle 

materials considering both uniform and randomly variable fracture properties. They concluded 

that the use of the homogeneous model leads to erroneous predictions of crack patterns and 

load–displacement curves whereas the models where the variable fracture properties were 

taken into account, presented a more realistic representation.  Khokhar et al. [7] studied the 

effect of microstructural randomness in a cross-ply laminate beam under bending with the 

introduction of matrix cracks with varying spacings and delamination zones. A considerable 



difference in the values of reduction in stiffness between cases with different crack spacings 

suggested that the assumption of averaged distributions of defects can lead to unreliable 

predictions of structural response. In another work by Khokhar et al. [8], based on two-

dimensional DCB models, it was concluded that the variation in the fracture properties 

undertaken to analyze the effect of material randomness using stochastic cohesive zone 

elements had a potentially significant effect on the predictions of the performance of CFRP 

laminates.  

 

The results from the studies described above work provide a case that the material 

randomness observed in laminates needs to be accounted for when designing with these 

materials, particularly when designing against failure. In addition, the previous literature in this 

area indicates the need for a more detailed analysis based on three-dimensional simulations. In 

the previous two-dimensional analysis [8], the variation of fracture parameters within the 

cohesive layer was only one-dimensional, i.e., only along the length of the double-cantilever 

beam. To have a more complete picture of the effect of material randomness on the specimen 

under study, a three-dimensional analysis is necessary in order to investigate the effect of two-

dimensional variations in the microstructure in the plane of delamination. This is supported by 

a previous study that showed that fibres are aligned in their longitudinal direction in most 

unidirectional laminates but if we look at the transverse cross-sections the arrangements of 

these fibres in the matrix are usually found to be random [9].  

 

Recently, the authors [10] presented their initial investigations using three-dimensional 

analyses where the effects of a statistical variation of the critical load for a DCB were reported. 

This work indicates that scatter in the results from testing CFRPs is an inevitable consequence 

of the microstructural randomness and that this can be investigated through the use of 

stochastic cohesive zone elements. It was also been shown that the median value of results 

from models with stochastic variation in properties does not necessarily coincide with the 

results from using uniform, mean properties. The current study will undertake the three-

dimensional analysis in more detail and statistical analysis of various output parameters will be 

presented in addition to the critical load. 

 



The term 'uniform model' is used in this paper for models that are implemented using uniform 

fracture properties throughout the cohesive layer. For all the models, where simulations were 

based on variations of fracture parameters, the models will be referred to as 'random model'. 

 

Initially, the results from a uniform model will be presented, where there is no variation in the 

fracture energy. Following this, the results from the random models are presented, where the 

variations in the fracture energy are introduced. Three models are used to analyse the shape of 

crack fronts, track the delamination crack paths, analyse the variation in damage within the 

cohesive layer in the plane of delamination, and determine the critical loads and delamination 

crack lengths. The output statistics of parameters from various statistical realizations will be 

presented, using spatially random levels of fracture energy in the cohesive-zone model, and 

the results from random model will be compared with those for the uniform model. 

 

2. Finite Element Analysis of DCB 

Three dimensional finite element analysis (FEA) of a double cantilever beam (DCB) with 

unidirectional composite adherends was carried out using the commercial software MSC Marc, 

the boundary conditions of the model being shown in Fig. 1. The specimen was 125 mm long 

and 20 mm wide with twenty four 0.125 mm thick plies giving a total thickness of 3 mm. An 

initial crack length of 35 mm was introduced into the model. 

 

The element edge length used for the mesh was 0.15 mm and the total number of elements for 

this model was 77,300 (including 6010 cohesive elements). Owing to symmetry, half of the DCB 

model, could be analyzed for the deterministic (uniform) case but as we later introduce 

material randomness in the model a full model was used for consistency.  The element used for 

the cantilever arms was MSC Marc Type 7, which is an eight-node, iso-parametric, arbitrary 

hexahedral element. The cohesive zone element (CZE) used was Type 188.  The mechanical 

properties of the unidirectional CFRP are shown in Table 1.  The specimen was 125 mm long 

and 20 mm wide with twenty four 0.125 mm thick plies giving a total thickness of 3mm. An 

initial crack length of 35 mm was introduced into the model. 



 

Fig. 1 3D model of double-cantilever beam 

The cohesive elements were defined using a bilinear traction-separation law, which is 

described in more detail in [10].  The material properties used in the model are summarized in 

Table 1. 

 

Parameter Value 

CFRP Properties 

Elastic moduli 

E11 = 137 GPa 

E22, E33 = 8 GPa 

G12,G13 = 4 GPa 

G32 = 3.2 GPa 

Poisson’s ratios 

ν 12, ν1 3= 0.31 

ν 23 = 0.52 

CZM Properties 

Fracture energy, FG  0.257 kJ/m
2 

Tripping traction, max  50 MPa 

Initial stiffness, K  1.6 x 10
6
 N/mm

3 

Critical displacement, 
c  2.19 x 10

-5
 mm 



Maximum displacement, f  0.01 mm 

 

Table 1 Material parameters used in uniform model 

 

3. Implementation of material variability in cohesive zone model 

The inherent material stochasticity exhibited by CFRP laminates was introduced by spatially 

varying the fracture energy in the CZE based on a two-parameter Weibull’s distribution 

function. This was achieved by first representing the fracture energy of cohesive elements by a 

distribution with a constant probability density for a defined scatter width [
min

FG ,
max

FG ]; in 

this case with a set of magnitudes between the two extreme values (0.5 FG  and 1.5 FG ) was 

produced using a random number generator. The choice of the bounds for fracture energy for 

this composite is defined by the extent of fluctuations of its local volume fraction of fibres at 

the given length scale (see more in [5]). The random numbers generated were then 

transformed to comply with the Weibull’s distribution, producing a set of random fracture 

energies based on that distribution. The two-parameter Weibull probability density function 

for a random variable  FG  is given by 
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where 0   is the shape parameter and 0   is the scale parameter of the distribution. The 

corresponding cumulative distribution function is given by the function 
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A choice of the Weibull’s parameters, in general case, should be based on statistics of the 

experimental fracture data for the length scale of interest. The lack of this information resulted 

in a selection of the probability distribution function that covers [
min

FG ,
max

FG ], with its peak 

coinsiding with FG  (thus defining β) and a moderate decline towards the ends of this interval. 

The same parameters were retained in all the simulations for comparability. The number of 

data points N  in the set was equal to the number of nodes in the cohesive layer of the finite-



element model, to which it was assigned. The same average magnitude of the fracture energy, 

given by  
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which equal to the fracture energy used in the uniform model (i.e.  FG = 0.257 kJ/m2), was used 

in each statistical realisation. Any small deviations arising from this average magnitude due to 

the discretization of the Weibull’s distribution function were removed by a renormalization 

based on FG . A number of statistical realizations were studied using this method where 

random numbers were generated with different seeds. A similar distribution has been used by 

other researchers to introduce spatially non-uniform fracture energies in non-linear fracture 

mechanics problems, one of them being the work by Yang and Frank Xu [11]. 

 

The fracture energy scatter was introduced with a view to investigate the effect of varying the 

fracture energy (mode-I fracture energy in this case) on delamination initiation and 

propagation in a DCB specimen. It can be seen from the Fig. 2 that for the same values of the 

opening displacements, by changing the value of fracture energy from FG  to 0.5 FG , the initial 

stiffness of the cohesive law, and the tripping traction decreases (Fig. 2). Varying fracture 

energy from FG  to 1.5 FG  leads to an increase in the values of both the tripping traction and 

initial stiffness, keeping the values of both the displacements constant.  

 

Fig. 2 Bilinear traction-separation law: (a) standard formulation; (b) bounds for fracture energy 

(random formulation) 

 



4. Analysis of results 

Analysis of the results was based on comparison of a number of different parameters obtained 

in the numerical simulations. These included: 

o Strain ahead of the crack tip at delamination initiation; 

o Effect of crack propagation on stress distribution; 

o Shape of crack fronts; 

o Crack lengths; 

o Damaged area and its variation across the width of the DCB; 

o Critical loads and displacements 

Detailed analyses of the output statistics for all these parameters are presented in the form of 

probability density functions (PDFs) and cumulative distribution functions (CDFs). The 

probability density function describes the relative probability of a random variable to occur at a 

given point, in the area focused for the observation. The cumulative distribution function (CDF) 

completely describes the probability distribution of a real-valued random variable. These 

analyses are described in the following sections. 

4.1 Analysis of strain at delamination initiation 

Strain in the loading direction, i.e. 22 , ahead of the crack tip was analysed, as shown in Fig. 3, 

where the DCB model and the enlarged part of the specimen ahead of crack tip are shown with 

the strain contours. The value of strain ( 22 ) at delamination initiation was defined by 

complete failure of the first element in the cohesive layer. The output statistics of this 

parameter are shown in the probability plot in Fig. 4. The plot demonstrates that the values of 

strain at delamination initiation vary between 0.35% and 0.45% in the various realizations of 

the random model, with the majority of the values concentrated in the upper half of these 

bounds (i.e. between 0.4% and 0.45%).  This compares with a value of 0.37% in the uniform 

model. 

 



 

Fig. 3 Location for value of strain ( 22 ) at delamination crack initiation: (a) deformed DCB 

model; (b) zoomed area ahead of crack tip 

 

Fig. 4 Probability density plot for strain ( 22 ) at delamination initiation 

 

The probability density function for the strain at delamination initiation is shown in Fig. 5 (a). 

The value obtained from the uniform model (0.37%) and the mean (0.41%) of the data 

obtained from the random statistical realizations are also indicated on the figure and it can be 

seen that there is a shift in the mean value between the uniform and random models. The PDF 

is negatively-skewed (skewed left), as there are relatively less low values, concentrating the 

mass of the distribution to the right. The cumulative distribution function (CDF) for the strain at 



delamination initiation is shown in Fig. 5 (b). This function shows that only around 10% of the 

values obtained from the random statistical realizations were less than that obtained for the 

uniform model. The descriptive statistics of the distribution for strain are presented in Table 2, 

where percentile ranks are also shown. These results clearly show that using the mean value of 

a parameter doesn’t necessarily result in a mean output when localised damage phenomena 

are involved. 

 

 

Fig. 5 Probability density function (PDF) (a) and cumulative distribution function (CDF) (b) for 

strain level at delamination initiation (=19.4  and =0.42) 

 

Table 2 Descriptive statistics for strain at delamination initiation 

Percentile 
Min 

 
10% 

 
25% 
(Q1) 

50% 
(Median) 

75% 
(Q3) 

90% 
 

Max 
 

Value 0.35 0.384 0.39 0.42 0.43 0.44 0.44 

 

4.2 Analysis of stresses 

The critical stress component in the case of the DCB is the stress in the direction of application 

of displacement i.e. 22 . In order to highlight the effect of material randomness on the stress 

distribution, a contour plot of 22 is shown in Fig. 6 for one of the random statistical 

realizations. The stresses ahead of the crack front can be observed in the magnified plot in Fig. 



6 (b), to exhibit non-symmetric patterns about the centre-line of the DCB, unlike those 

observed in the uniform properties model. 

 

Fig. 6 Contour plot of stress 22 for a random model (a) and area magnified ahead of crack 

front (b) ( 22 0.004  ) 

Contour plots of stress 22 for the uniform model for strains ranging from 0.4% to 0.6% are 

shown in Fig. 7 (the view being a plan view of the delamination plane). It can be seen that the 

stress distribution and crack front are both symmetric about a line through the centre of the 

sample width.  The areas of maximum stress are indicated by the star symbols (☼) and the 

crack propagation can be seen to follow these areas. 

 

 

Fig. 7 Plots of stress 22 for increasing values of applied strain ( 22 = 0.4% to 0.6%) – uniform 

model. Areas of maximum stress indicated by ☼ 

 



Contour plots of 22  for the one of the random realizations are shown in Fig. 8.  As with the 

uniform model, the potential areas for crack propagation in the random model can be readily 

identified with the areas of high stress (shown by ☼ symbol on Fig. 8), however, in this case the 

stress distribution and crack front are not symmetric. 

 

 

Fig. 8 Plots of stress 22 for different values of applied strain ( 22 = 0.4% to 0.6%) - random 

model. Areas of maximum stress indicated by ☼ 

 

4.3 Analysis of crack fronts 

A contour plot of damage in the cohesive-zone layer after crack initiation is shown in Fig. 9, for 

one of the random cases studied. The non-symmetric nature of the crack front and the 

propagating process zone is clearly visible, and can be contrasted with the symmetric 

behaviour seen in the uniform model. Also, fast and comparably slow propagations of 

delamination ahead of the crack front can be seen in Fig. 9. Plan views of the crack fronts 

obtained for different statistical realizations (i.e. different spatial distribution of fracture energy 

for the same Weibull’s parameters) are shown in Fig. 10. One of these cases demonstrates a 

symmetric crack, as shown in Fig. 10 (b). During the course of crack propagation, it was 

observed that the crack fronts in the random models changed between symmetric and non-

symmetric shapes. After every four to five non-symmetric propagations, the crack became 

symmetric and then returned to non-symmetric behaviour. This transition between symmetric 



and non-symmetric configurations can be observed in the 2D plot of propagation of 

delamination with increasing displacement in Fig. 11 for one of the random realizations. 

 

Fig. 9 Delamination crack propagation in random model ( 22 = 0.004) 

 

Fig. 10 Delamination propagation for same macroscopic deformation ( 22 = 0.004) for four 

different statistical realizations  

 



 

Fig. 11 Evolution of crack front shape for one statistical realization 

4.4 Analysis of crack lengths 

Three different crack length parameters, namely minimum (Min), mean (Mean) and maximum 

(Max) crack length were investigated, as defined in Fig. 12. The results from some of the 

various statistical realizations of the random model are compared with the uniform model in 

Fig. 13, Fig. 14 and Fig. 15.  It can be seen in Fig. 13 that the crack length in the random models 

is initially lower than that in the uniform model, however, after approximately 2.3 mm applied 

displacement, a faster crack growth was experienced by the random models compared to the 

uniform model, and hence, higher values of crack length were observed compared to the 

uniform model. It is notable that although there are differences between the behaviour of the 

various random models, they all show this same trend with respect to the uniform model. 

Similar trends were also seen with the mean and maximum crack lengths, as seen in Figs. 14 

and 15. Another feature that can be seen in the Figure 13 is that the crack development for 

uniform as well as for random models showed a stepped propagation pattern, which is a 

feature of the element based CZM used.  However this is less evident for the mean crack length 

for the uniform model at low applied displacements, which can be attributed to the stable and 

progressive, symmetric crack growth, as shown in Fig. 7, and the averaging effect of taking the 

mean crack length.  

 



 

Fig. 12 Different crack lengths analysed 

 

Fig. 13 Min crack length as a function of applied displacement 
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Fig. 14 Mean crack length as a function of applied displacement 

 

Fig. 15 Max crack length as a function of applied displacement 

 

It was noticed in Fig. 13, Fig. 14 and Fig. 15 that at higher values of displacement, the value of 

crack length in the random models was always found to be higher than the uniform model. 

When comparing only the random realizations, the scatter within those was around 20-25% for 

the crack lengths.  Statistical analyses of the values of crack length for the same level of high 

applied displacement (4 mm) were analyzed for various random statistical realizations. The 

values taken were for the Min length shown in Fig. 12, i.e. the row of elements that occupied 
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the full width of the specimen. The probability distribution function based on the two-

parameter Weibull’s probability distribution function for the crack length values is presented in 

Fig. 16 (a). This function is negatively-skewed as the mean (13.4) and median (13.1) lie on the 

left of the mode. The mass of the distribution is concentrated towards the right, which raises 

concerns, as a higher percentage of the values of crack length lies in this area far away from 

the value obtained for uniform model. The cumulative distribution function (CDF) is shown in 

Fig. 16 (b).  The descriptive statistics of the distribution are presented in Table 3. 

 

  

Fig. 16 Probability density function (a) and cumulative distribution function (b) for “Min” crack 

length in a DCB (=21.8 and =13.6) with applied displacement of 4mm. 

 

Table 3 Descriptive statistics for PDF for “Min” crack length  

Percentile Min 
 

10% 
 

25% 
(Q1) 

50% 
(Median) 

75% 
(Q3) 

90% 
 

Max 
 

Value 11.9 12.5 13.1 13.1 13.8 14.4 15 

 

4.5 Analysis of damage area and its variation across width of DCB 

In this section, the damage induced in the DCB specimen is analyzed for various random 

statistical realizations and a comparison is made with the uniform case. Also presented is the 

variation of damage across the width of the specimen. To study the variation in damage with 

displacement, the damage was quantified as the area of failed cohesive elements. The 

variation in the damaged area (normalized by its maximum magnitude obtained from one of 



the random models), as a function of normalized load is plotted in Fig. 17. The initiation point 

of each curve corresponds to the critical point, i.e. the moment when the specimen sustained 

the maximum load on the load-displacement plot. So these curves depict the unstable phase of 

delamination crack propagation with the decreasing load accompanying an increase in the 

prescribed displacement. The variations in a number of different parameters, such as the 

damaged area corresponding to the critical point and the maximum damaged area are readily 

noticeable in this plot. Comparing the uniform model case with the random models, it is 

observed that the uniform model showed a significantly higher load-bearing capacity than all 

the random realizations. Quantitatively, that value was about 12% higher than the lowest value 

of critical load in one of the random models. A maximum spread of 20% was obtained when 

comparing the values for the maximum damaged area for the uniform model with various 

statistical realizations. A comparative analysis of only random realizations returned a maximum 

scatter of around 7% in the maximum value of the damaged area for the same value of 

prescribed displacement. A maximum scatter of 10% in the values of critical load was observed.  

 

 

Fig. 17 Load as a function of damage propagation 
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Next the variation of damage across the width of the DCB was analysed, as shown in Fig. 18. It 

can be observed from the figure that the damage variation path for the uniform case (solid 

line) is a smooth concave curve symmetric about the beam’s centre-line of width while the 

dashed lines represent damage variations for some of the random cases (statistical 

realizations). In the uniform case, damage initiated from the middle of the width and then 

propagated towards the edges. A non-smooth fluctuating behaviour was obtained with the 

random models due to the scatter of the fracture properties within the cohesive layer. These 

variations were also non-symmetric about the centre-line. Some regions of the cohesive layer, 

due to a lower value of fracture energy, experienced a fast growth of damage compared to 

others, as can be seen in Fig. 18. 

 

Fig. 18 Variation of damage across DCB width (applied displacement: 2.5 mm) 

4.6 Analysis of critical loads and displacements 

From the comparison of the uniform model case and the random models in the previous 

sections, we saw that the uniform model showed a higher load-bearing capacity than all the 

random realizations. The output statistics for the critical loads and displacements will be 

presented in this section for the various random statistical realizations analyzed. The 

probability plot for the critical load is shown in Fig. 19. The plot demonstrates that the values 

of critical load vary between 73 N and 78.5 N.  
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Fig. 19 Probability density plot for critical load 

 

The probability density function for the values of critical load obtained from the analysis of 

various statistical realizations is shown in Fig. 20. The value obtained from the uniform model 

(83.6 N) and the median of the PDF are indicated on this figure. It can be seen that the 

introduction of stochasticity has the effect of shifting the median (50th percentile) downward, 

i.e. reducing the critical load compared to uniform model. In the probability density function 

for random statistical realizations, the distribution function is negatively-skewed (skewed left), 

depicting a sharply declining tail to the left. This tail end of this distribution function presents 

values that pose a concern, as these values show the maximum difference compared to the 

uniform model. The cumulative distribution function (CDF) and descriptive statistics of the 

distribution are presented in Fig. 21 and Table 4, respectively. The output statistics for the 

displacement corresponding to the critical load are plotted in Fig. 22. Similar behaviour was 

obtained for the critical displacement, as seen with the critical load; however, in this case 

approximately 5% of the values obtained from the random models were higher than the value 

for the uniform model. The descriptive statistics of the distribution for output data of critical 

displacements is given in Table 5.  

 

 

 



 

Fig. 20 Probability density function for critical load in a DCB (=67.7 and   =76.3) 

 

Fig. 21 Cumulative distribution function for critical load in a DCB 

 

Table 4 Descriptive statistics for critical load for various statistical realizations 

Percentile Min 
 

10% 
 

25% 
(Q1) 

50% 
(Median) 

75% 
(Q3) 

90% 
 

Max 
 

Value 73 74.1 74.7 75.7 76.7 77.7 78.2 



 

Fig. 22 Probability density function (a) and cumulative distribution function (b) for critical 

displacement in a DCB (=31.9,  =2.54) 

 

Table 5 Descriptive statistics for critical displacement 

Percentile Min 
 

10% 
 

25% 
(Q1) 

50% 
(Median) 

75% 
(Q3) 

90% 
 

Max 
 

Value 2.4 2.4 2.44 2.5 2.59 2.63 2.8 

 

5. Conclusions 

The underlying objective of this study was to model the delamination failure in CFRP laminated 

composites in order to highlight the effect of microstructural randomness. One of the models 

was based on the assumption of uniform microstructure, in which the material properties were 

constant along the entire cohesive layer. The other model was simulated by directly 

incorporating the effect of material randomness in which a variation/scatter of cohesive 

properties (fracture energy and tripping traction) was introduced. More detailed analyses were 

performed based on three-dimensional models and a number of statistical realizations based 

on a half-scatter of 50% of fracture energy were presented. In contrast to the two-dimensional 

analyses reported previously [8], the results here showed lower load-bearing capacities for 

most of the random models than that in the uniform model. Also, the damaged area and the 

crack lengths also showed higher values in the random realizations compared to the uniform 

case above a certain value of applied displacement. The initiation points for delamination 



cracks also exhibited a considerable uncertainty; delamination initiated at the edges of the 

specimen and approached the centre-line (across the width) in a uniform model while for 

random statistical realizations various initiation locations/scenarios were observed. The stress, 

stress 22 , also showed random variations ahead of the crack front. 

 

The computational investigation of the effects of material randomness presented 

demonstrates the need to consider the spatial non-uniformity of properties when analysing 

damage scenarios and load-carrying capacities in CFRP laminates. Also three-dimensional 

models need to be employed since in two-dimensional models the variations in fracture 

properties is only introduced in single dimension, losing the significant effects of variations in 

properties and subsequent behaviour across the crack/damage front. 

 

In summary, the material randomness in CFRPs can induce randomness in localised damage 

and this can affect the global properties of laminates and critical failure parameters. These 

effects can be effectively investigated computationally through the use of stochastic cohesive-

zone elements. 
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