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Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, 
defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore 
becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future 
use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or 
for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moie-
ties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. 
This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the 
current challenges faced by 3D bio-printing. 
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Three-dimensional (3D) printing, also called rapid proto-
typing (RP), can be used to model and fabricate a 
three-dimensional object layer by layer. This involves 
computer or software aided design (CAD) and the printer 
transferring the signals into actions to fabricate the desired 
items with inkjet materials. Three-dimensional printing 
emerged from stereolithography (SLA) [1]. With SLA ma-
terials are sensitive to light or laser undergoing photon initi-
ated solidification. The whole model is accomplished after 
all layers are formed [2]. Other 3D printing technologies are 
now available, including fused deposition modelling (FDM), 
selective laser sintering (SLS), digital light processing 
(DLP), three-dimensional printing (3DP), laminated object 
manufacturing (LOM), and polyjet (Table 1). Whatever the 
technology is, the basic theory is that the object consists of 
finite layers, and the greater the numbers of layers, the 
higher the resolution required [3]. There are different 

methods to fix the layers, some materials can be melted and 
coagulated easily, some can be laser moulded, and some can 
be easily coagulated. A complete 3D printing system con-
tains software, to design moulds and operate, and a printer, 
the main part of the system. The printer can achieve inkjet 
and fabrication [46]. In China, it has been reported that the 
house could be printed, so the time, cost and pollution 
would be reduced (http://www.theguardian.com/). Addi-
tionally, 3D printing technique has been used to print bat-
teries to precisely control the morphology of electrodes and 
to improve the capacity of the battery (http://3dprint.com/). 
Compared to traditional fabrication technology, the ad-
vantage of 3D printing is high resolution and individuation 
and it has been widely used in various  areas including 
consumer products, film making and games [7].  

With the development of biomaterials and cell biology, 
bionic medicine and regenerative medicine are becoming 
important research fields with fast growth. Bionic bones and 
cochlear have come into the market already and bionic eyes  
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Table 1  Types of 3D printing technology 

Names Description Materials Ref. 

SLA Stereolithography: light sensitive materials could be solidified to a thin layer. Thermoplastics [2] 

FDM 
Fused deposition modelling: a fundamental 3D printing technology and is used 

extensively. 
Plastics and some foods [8] 

SLS Selective laser sintering: similar to SLA, but solidify materials with the aid of 
infrared laser. 

Plastics, wax, ceramic and metal materials [9] 

DLP 
Digital light processing: similar to SLA, but is faster because of whole layer 

fabrication after laser scanning. 
Photopolymer [10] 

3DP 
Three-dimensional printing: using binder, the powders are bond together to 

format a whole layer. Plaster [11] 

LOM Laminated object manufacturing: the materials are fused by heating roller. Paper, ceramic and metal materials [12] 

Polyjet 
Similar to SLA, many tips and ultraviolet lights work together. Inkjet and solid-

ification could be accomplished simultaneously with higher resolution. Thermoplastics [13] 

 
and hearts are in development. 3D printing has been used in 
fabricating hard-tissues which suit the damaged sites indi-
vidually. With the involvement of cells, more complex or-
gan could be printed. Here we review the application of 3D 
printing in biological and medical fields, summarize print-
ing strategies and analyze the current issues of 3D 
bio-printing. Finally, we discuss the challenges of 3D 
bio-printing for future research. 

1  3D bio-printing 

3D printing technology used in biomedical field is denoted 
3D bio-printing and it has a great potential for future regen- 
erative therapy. An ideal 3D bio-printing system is shown 
schematically in Figure 1. Firstly, accurate information of 
tissues and organs should be collected for designing the 
model. Secondly, the server should be able to transfer the 
information into electrical signal to control the printer to 
print the tissues, and the printer should be able to maintain 
the cell viability during the fabrication process (Figure 1B 
and C). Usually, a tissue is composed of many types of cells 
and the cells will be mixed with some substances to be bet-
ter fused (Figure 1C) [1416]. At present, some hard tissues 
can be fabricated with bionic materials by 3D printer [17], 
and have been used in clinical trials. A real complicated 
tissue cannot be constructed from 3D printer at the moment. 
In the future, 3D bio-printer could be used to print organs 
for repairing the damaged body part, and to simulate some 
functional tissues for research, therapy and drug screening. 
Furthermore, 3D bio-printing can be used for personalized 
therapy that could reduce the cost of therapy. Biocompatible 
and biodegradable materials can be combined with 3D 
bio-printing to reduce the incompatibilities caused by mate-
rials [15,18]. Therefore, 3D bio-printing will lead to a novel 
technology revolution. 

1.1  History of 3D bio-printing and types of 3D 
bio-printing technology 

3D printing is being acknowledged by more and more peo-
ple, and that in turn will promote the development of the 

technology. 3D printing can benefit the bio-therapy field as 
well. It has been reported that only 20% of patients who 
wait for organ donation for grafting therapy can have organs 
to transplant, and the other patients have to keep waiting or 
are treated by alternative and often less appropriate therapy 
(http://www.unos.org/index.php). The history of tissue and 
organ culture in vitro is nearly 30 years old [19]. Langer and 
Vacanti [20] invented the technology of combining cells 
and materials. Tissue engineered organs would be a source 
of organs for transplantation in the future, but at present 
there have been no acceptable artificial organs for clinical 
trial. There are some successful cases in skin allograft trials, 
and tissues simply constructed in vitro, such as bladder, 
myocardial membrane and trachea, have also been used 
clinically [2124]. But these tissues are two-dimensional 
cell sheets rather than 3D structure of dermis or epidermis 
[25]. Current 3D tissue fabrications have been achieved by 
adding cells to the specially formatted scaffolds [2629]. 
3D scaffolds can provide extracellular matrix to improve 
cell growth and interactions. The bio-degradable and bio-
compatible solid freeform fabrication (SFF) scaffolds have 
been used in tissue fabrication in vitro. Some SFF scaffolds 
can be built up with the help of computers to improve their 
accuracy and personalization [30]. Fusion of materials and 
cells can produce simple 3D dermis-like tissues, which, 
however, are only used in animal models [27]. With ad-
vanced equipment and formulation protocols, some tissues 
containing vessels can now be fabricated [31].  

3D printing can do a better job than the above mentioned, 
with the printed-out scaffolds being able to accurately de-
pict the complicated bio-tissues and the cells being planted 
on them after fabrication is completed. Cells and tissues can 
also be printed simultaneously after encapsulating cells in 
materials. 3D bio-printing is a super multi-discipline tech-
nology involving tissue biology, cell biology, computer 
technology, materials science and medical sciences. The 
printed organs should meet the requirements of all these 
disciplines. At present, there are four types of 3D 
bio-printing technology which are derived from basic 3D 
printing techniques for depositing cells: valve-based, direct 
inkjet, acoustic and laser-mediated (Figure 2). 

A valve-based 3D bio-printer controls the droplets size  
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Figure 1  The diagram of ideal 3D bio-printing. A, Server, which is responsible for designing the model. B, 3D bio-printer, the main facility responsible for 
printing. C, The sources of different types of cells. 

 

Figure 2  Four types of 3D bio-printing technology for depositing cells. A, Valve-controlled 3D bio-printing. B, Direct inkjet 3D bio-printing. C, Acoustic 
3D bio-printing. D, Laser-mediated 3D bio-printing. 

by modifying pulses (Figure 2A). Its resolution and 
throughput are both at moderate level. At present, it is 
mainly used in single cell sequencing and minute cell sam-
ple analysis [32].  

Inkjet is a non-contact image reconstruction technology. 
The signals can reappear on the platform through ink drop-
lets (Figure 2B). The technology has been widely used in 
electrical materials and integrated circuits [33]. Printing 
accuracy and specificity may be improved by manipulating 
ink droplets from microliter to picoliter. The technology has 
been applied to printing tissue-scaffolds and bio-materials. 
The difficulty is how to control the size and the flow conti-
nuity of the ink droplets [34,35]. Hydrodynamics needs to 
be considered here. Methods used by inkjet technology in-
clude piezoelectric ceramics and thermal conductivity. The 
technology can be used in high-throughput bio-printing but 
it is difficult to achieve control over single cells [36]. 

Laser-mediated bio-printing is a technology mediated by 
laser to position the cells of cell suspensions and tissue sus-
pensions (Figure 2C). It is a commonly used 3D printing 
method and can be divided into the following sub-types: 
laser-guided bio-printing (LGB), biological laser processing 
(BIoLP), laser-induced forward transfer (LIFT), and ma-
trix-assisted pulsed laser evaporation direct writing 
(MAPLEDW). LGB has low throughput but high resolution, 
and can control single cells. LIFT has higher throughput 
than LGB but a poor control of single cells. Heat generated 
by laser pulse is transmitted to the thin films that coat the 
cells and cut out cell droplets of particular sizes and shapes, 
which attach to the movable basement. The heat might af-
fect the viability of cells [37]. 

There is no nozzle on the acoustic bio-printer (Figure 2C). 
The pressure of sound radiation can shake the cell ink and 
controls the droplet size by adjusting acoustic frequency and 
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amplitude. It generates little energy thus does not harm cells 
[38]. At present, it has been used with many types of cells 
and cell suspensions, and has been used in some other fields 
such as manipulation of single cell DNA and RNA [39]. 

1.2  Bio-active scaffolds from 3D printing 

Extracellular matrix (ECM) provides structural and bio-
chemical support for cell growth and is composed of many 
types of proteins and glycans. The alteration of ECM would 
influence cell state and function [40,41]. With high resolu-
tion, 3D printing could be used to print scaffolds that mimic 
in vivo structure and environment of tissues, and there are 
many reports that scaffolds from 3D printing have been 
used in drug delivery, tissue engineering and cell viability 
tests [14,15]. Model fabrication is the first 3D printing ap-
plication, with optimization of the technique and material 
modification, some bio-active hard tissues have been print-
ed [42]. In 2012, the first clinical trial of 3D bio-printing 
was performed at a hospital in the Netherlands. A bionic 
jaw printed using 3D printer was transplanted into a patient  
(http://www.bbc.com/news/technology-16907104). Since  
then, more trials have been performed in Japan, Poland and 
some other countries (http://3dprint.com/19617/osteo3d- 
3d-print-mouth/ and http://www.3ders.org/). The grafted 
materials can specifically interact with vocal organs without 
affecting the hearing and the vocality of patients [43]. 

To directly print the live tissues, many printed scaffolds 
were used for cell culture. Cells obtain higher viability and 
function when cultured on 3D scaffolds compared to 
two-dimensional environments [44,45]. Ploy caprolactone 
(PCL) scaffolds from printing have been used in culturing 
different types of cells, as shown in Table 2. However, this 
is just the combination of scaffolds with cells at the 
two-dimensional level, and is therefore called indirect 3D 
bio-printing. Actually, the interaction between cells and 
materials in the indirect 3D printing is still two-dimensional 
because only one side of the cell surround is scaffolds. Ta-
ble 2 shows progress of application of 3D printing scaffolds 
on cell culture and another bio-printing called direct 3D 
bio-printing compared to indirect 3D bio-printing and the 
direct 3D bio-printing shows that the cells are encapsulated 
in materials and then are used as bio-ink.  

1.3  Cell 3D bio-printing  

There are more than 200 cell types in a human body, and 
these cells form different and complicated tissues and or-
gans. That makes it difficult to replicate complex and func-
tional 3D tissues and organs in vitro. 3D bio-printing may 
solve this problem. The ink droplets can deposit live cells 
and fabricate the tissues and organs as desired. Despite a 
promising future for organ transplantation, at the moment 
there has been no biologically active organ fabricated by 3D 
bio-printing. Each tissue and organ of the human body is 

sophisticated in construction, and the combinations of vari-
ous types of cells require not only in vitro tests of viability 
and functionality but also in vivo tests of interactions with 
other tissues and organs. 3D printing has been widely used 
in the manufacturing industry. It has also been used in the 
bio-therapy field with hard and vessel-free structures. Gabor 
Forgacs and colleagues [46] printed short blood vessels and 
beating cardiac valves, demonstrating that cell-printing is 
possible. They later established a company named Organo-
vo, dedicated to bio-printer development and marketing. 
Fibroblasts have been successfully printed by improving 3D 
printers [47]. Cell sources have been extended to adult stem 
cells and endothelial cells, and after printing, some cell-cell 
interactions can be observed. These pave the way for future 
3D organ-printing [48].  

When the cells are encapsulated into the materials and 
used for ink, we call this 3D bio-printing as direct 3D 
bio-printing as shown in Table 2. One disadvantage of cell 
encapsulated in materials is the loss of cell viability. Hy-
drogel is the first candidate for cell printing. To maintain 
cell viability and cell-cell interactions, some hydrogel mate-
rials can be added into the ink. Hydrogels can also work as 
substrates and scaffoldings [49]. Hydrogels have special 
chemical and physical properties, and can be degraded in 
vivo sometime after grafting. The initial materials used as 
scaffoldings were electrospun fibers, for substituting blood 
vessels [50]. Now collagen, ployanhydride and fibronectin 
have been widely used. It is still a hot field nowadays 
[51,52]. Below are some hydrogels having been used suc-
cessfully in 2D fabrication via 3D printing technology and 
the functions of the fabricated products could also be de-
tected: culture medium [53], agarose [54], alginate [55], 
collagen [56], matrigel [5759], fibrin [60], k-70 series [61] 
and polyvinyl alcohol (PVA) [62]. After extruded from the 
printer tips, hydrogels would be polymerized by cross-linker 
[63]. It is a challenge to protect cells and to maintain the 
resolution during hydrogel’s stabilization. Therefore, many 
new modified-hydrogels and methods are being explored 
[6466]. 

Hydrogel is a type of polymer that could contain much 
water in the 3D structure. The mechanical properties and 
bio-properties of hydrogel need to be modified for printing 
and cell survival. At present, during printing and crosslink-
ing there will be some cell death with a wide range 
(~2%–40%) because the cells are outside various natural 
environment [65,67,68]. There are chemical and physical 
ways to crosslink hydrogels. Gelatin is water soluble protein 
and has high biocompatibility [69]. With methacrylamide 
group modified, the gelatin (gelMA) could be cross-linked 
using ultraviolet rays [70]. The adding of hyaluronic acid 
(HA) improves gelMA printable properties [65]. Calcium 
could crosslink alginate and alginate-gelatin blends have 
been reported as potential materials for extrusion printing 
living cells [71,72]. Single cell printing has high resolution 
and could be used for cell patterning and material-cell 
blends precise control. Present technique “Block-Cell-   
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Table 2  Examples of 3D bio-printing 

Types Materials Cells Morphology Ref. 

Indirect PCL Myoblast cell line C2C12 

 

[74] 

Indirect Calcium phosphate modified PCL 
(PCL-CaP) treated with fibrinogen

Mesenchymal stem cells 
(MSCs) 

[75] 

Indirect PCL MSCs [76] 

Indirect Glycerol with soy protein MSCs 
[77] 

 

Indirect PCL and alginate 
Osteoblast cells and  chon-

drocyte 
[78] 

Indirect Collagen and gelatin There is no cell [79] 

Direct Cell culture medium 
Mouse embryonic stem cells 

(mESCs) [80] 

Direct 
Cells printed on PEUU immersed 

in Matrigel 
Human umbilical vein endo-

thelial cells (hUVECs), MSCs [81] 

Direct HA and gelMA Chondrocyte [65] 

Direct gelMA Live cancer cell line, HepG2 [82] 

Direct Single cell pattern A few breast cancer cell lines [73] 
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Printing” even makes cell 100% living after printing [73]. 

2  The future of 3D bio-printing 

It takes a long time and needs lots of cells when accom- 
plishing an organ-printing [83]. During such a long period 
of time, how to ensure the accuracy of printing and the cell 
viability have become the crucial questions. The jet nozzle 
can be enveloped with aluminium alloy to prevent exposure 
to the radiations from laser [84]. At present, complicated 
tissue scaffoldings can be fabricated using hydrogels by 
laser-mediated 3D bio-printer and inkjet 3D bio-printer 
[79,8588]. Yet in the process of 3D fusion, the use of high 
temperature and high pressure and some solvents may lead 
to the death of cells [89]. Three-dimensional tissue printed 
from a mixture of cells and hydrogels [78,90] possesses 
mechanical properties similar to natural structures but with 
limited cell expansion capabilities and function. This is one 
of the major limitations faced by 3D bio-printing at the 
moment [91]. Although many reports demonstrated the cells 
could be printed, there is still no report about the function of 
printed cells. At present, we could keep cells living in mate-
rials but we cannot direct the future state of cells [92]. Cell 
states are dependent on the varied substrates, many materi-
als are developed to mimic the ECM [9395], native tissue 
derived bio-ink is also proposed to simulated the in vivo 
environment [96]. Therefore, how to optimize the materials 
for cells’ customization is one of future work. 

Another issue of bio-printing is how to print organs con-
taining blood vessels. Every organ needs the network of 
vessels and capillaries to supply oxygen, cytokines and nu-
trients, as well as to remove the wastes which are noxious to 
cells. It has been reported that cardiac muscle tissue con-
taining vessel-like structure was obtained from endothelial 
cells through tissue culture [31]. Fabrication of functional 
3D tissues containing blood vessels is still a great challenge 
faced by 3D bio-printing [97].   

The key problem faced by 3D bio-printing is cell sources, 
as cells are the basic units of an organ. Stem cells may be-
come the primary source for bio-printing. Stem cells have 
high viability and short cell cycle time, and can differentiate 
into other cell types in defined conditions. This may reduce 
the number of cells required in bio-printing, save printing 
time, and create conditions for printed organs to function. 
At present, initial trials have been performed in 3D 
bio-printing with stem cells. Embryonic stem cells were 
used in 3D printing to form embryoid bodies (EBs) [80]. 
Human mesenchymal stem cells (hMSCs) and human um-
bilical vein endothelial cells (hUVECs) were utilized to 
print fabricated patches to repair cardiac muscles [81]. 
However, there is still a long way to go in choosing the 
right stem cells for bio-printing the right organs. 

Ideally 3D bio-printing involves in situ printing of cells 
at the site of injury. This requires rapid model construction, 

rapid printing and sufficient cell sources. Fulfilment of such 
requirements would lead to a revolution in regenerative 
medicine. For example, a quick repair of the skin wound 
with 3D bio-printing would increase the recovery rate and 
reduce permanent scarring. 

In the quest for optimised 3D bio-printing of tissues and 
organs, how we characterize and evaluate the functions of 
the printed organs is also an area that requires development 
[98]. Relevant analyses shall include tests of cell viability, 
cell tracking, functional marker detection and animal model 
experiments. To accomplish 3D bio-printing of larger tis-
sues structural scaffolds need to be utilised. Materials such 
as degradable poly caprolactone (PCL) have been used 
[7476,78].  

Establishment of safety evaluation systems for testing 3D 
bio-printed structures is another issue to be considered 
[99,100]. Appropriate regulatory frameworks are yet to be 
developed. 3D bio-printing is a new and complicated tech-
nology, and the process involves cell preparation, cell ex-
pansion, graft, materials and observation after grafting, and 
safety and efficiency evaluation. 

In summary, 3D bio-printing holds a great promising fu-
ture. Real clinical advances require parallel advance in 
many fields to occur. 
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