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[1] Fault processes involve complex patterns of seismic events and aseismic slip. This
work develops a three-dimensional (3-D) methodology for simulating long-term history of
spontaneous seismic and aseismic slip on a vertical planar strike-slip fault subjected to
slow tectonic loading. Our approach reproduces all stages of earthquake cycles, from
accelerating slip before dynamic instability, to rapid dynamic propagation of earthquake
rupture, to postseismic slip, and to interseismic creep, including aseismic transients. We
use the developed 3-D methodology to study interaction of fault slip with a small patch of
higher normal stress over long-term slip history. For uniform initial prestress, dynamic
rupture is significantly affected by the stronger patch in the first simulated event but not in
subsequent ones. The change in behavior is due to redistribution of shear stress by prior
slip, which demonstrates that distributions of fault strength and stress are related and
illustrates the importance of simulating long slip histories even in studies of dynamic
rupture. Despite no long-term effect on dynamic rupture, the small patch of higher normal
stress influences nucleation processes and hence long-term slip patterns in the model.
Comparison of the fully dynamic simulations and a widely used quasi-dynamic approach
shows that the quasi-dynamic approach modifies long-term slip patterns in addition to
resulting in much smaller slip velocities and rupture speeds during dynamic events. We
show that the response of quasi-dynamic formulations with reduced radiation damping
terms can be scaled to match the results of the standard quasi-dynamic formulation and
hence cannot improve the comparison.

Citation: Lapusta, N., and Y. Liu (2009), Three-dimensional boundary integral modeling of spontaneous earthquake sequences and

aseismic slip, J. Geophys. Res., 114, B09303, doi:10.1029/2008JB005934.

1. Introduction

[2] Fault processes involve both seismic events or earth-
quakes and complex patterns of quasi-static aseismic slip.
Understanding physics and mechanics of this behavior in its
entirety is a fascinating scientific problem. However, even
for the more pragmatic goal of understanding only the
behavior of destructive large dynamic events, it is still
important to consider the entire earthquake cycle, since
aseismic slip may determine where earthquakes would
nucleate as well as modify stress and other initial conditions
before dynamic rupture. Modeling long-term slip histories
of faults is quite challenging because of the variety of
temporal and spatial scales involved. Slow loading requires
hundreds to thousands of years in simulated time and fault
zone dimensions are in tens to hundreds of kilometers. At
the same time, rapid changes in stress and slip rate at the

propagating dynamic rupture tip occur over distances of
order meters and times of order a small fraction of a second.
[3] Several approaches to modeling long-term histories

of fault slip have been proposed [e.g., Shibazaki and
Mastsu’ura, 1992; Cochard and Madariaga, 1996; Kato,
2004; Duan and Oglesby, 2005; Liu and Rice, 2005;
Hillers et al., 2006; Ziv and Cochard, 2006] but all of
them adopted simplified treatments of either slow tectonic
loading and hence aseismic slip, or inertial effects during
dynamic rupture, or transition between interseismic periods
and dynamic rupture. Lapusta et al. [2000], on the basis of
prior studies [Tse and Rice, 1986; Rice and Ben-Zion, 1996;
Ben-Zion and Rice, 1997], developed a methodology capa-
ble of capturing both seismic and aseismic slip and the
gradual process of earthquake nucleation. However, the
model of Lapusta et al. [2000] is two-dimensional (2-D)
and neglects variations in the along-strike fault dimension.
Therefore, it cannot be directly compared to observations
and cannot be used to study a number of important prob-
lems such as interaction of fault slip with compact fault
heterogeneities. In 2-D models, the fault is simplified to a
line, and any heterogeneity in stress or friction properties
blocks the entire fault. In 3-D models, the fault is repre-
sented as a surface that can include local heterogeneities and
complex patterns of frictional and other properties.
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[4] In this work, we develop a 3-D methodology for
simulating long-term history of spontaneous seismic and
aseismic slip on a vertical planar strike-slip fault subjected
to laboratory-derived rate and state friction and slow
tectonic loading. The algorithm is able to resolve all stages
of earthquake cycle in detail, including gradual nucleation
processes, dynamic rupture propagation, postseismic slip,
and aseismic processes throughout the loading period. Our
approach builds on the model of Lapusta et al. [2000],
with a number of modifications required in three dimen-
sions such as a different truncation procedure, and uses a
boundary integral method. The dynamic part of our 3-D
methodology has been validated through the Southern
California Earthquake Center (SCEC) code comparison
exercise and additional studies [Day et al., 2005; Harris
et al., 2008].
[5] Our methodology is described in section 2. Section 3

illustrates its potential by presenting simulations of long-
term slip on a fault segment with relatively simple dis-
tributions of fault properties. The slip response of the fault
model combines a range of seismic and aseismic phenom-
ena. That example is used to explore the effect of several
physical and numerical parameters (sections 3 and 4). We
then consider two more application examples that demon-
strate (1) the importance of conducting long-term simu-
lations even if the main emphasis is on the behavior of
dynamic rupture (section 5) and (2) the necessity of
including inertial effects in long-term simulations of slip
(section 6).
[6] In section 5, we consider how fault slip interacts with

compact heterogeneity in the form of a patch of higher
normal stress over many earthquake cycles. This kind of
problem cannot be considered in a 2-D fault model. Such
patches can result on natural faults from slight local non-
planarity of the fault surface. Three-dimensional simulations
of single dynamic events suggest that such fault hetero-
geneities can strongly influence the development of dynam-
ic ruptures, e.g., inducing supershear rupture speeds [e.g.,
Dunham et al., 2003; Liu and Lapusta, 2008]. However, in
simulations of single dynamic events, specified initial con-
ditions, such as initial shear stress, have a determining effect
on the resulting dynamic rupture. Our methodology allows
us to simulate the interaction of slip with heterogeneity
under conditions that naturally develop in the model due to
prior seismic and aseismic slip, and to compare that evolved
behavior with the one due to arbitrarily chosen initial
conditions. We do find significant differences between
dynamic rupture behavior in the first and subsequent events,
demonstrating the importance of simulating long-term slip
histories.
[7] Section 6 compares the fully dynamic formulation

developed in this work with quasi-dynamic approaches
[e.g., Rice, 1993], which have been widely used in earth-
quake studies [e.g., Rice, 1993; Ben-Zion and Rice, 1995;
Rice and Ben-Zion, 1996; Hori et al., 2004; Kato, 2004;
Hillers et al., 2006; Ziv and Cochard, 2006]. Quasi-dynam-
ic approaches significantly simplify the treatment of inertial
effects during simulated earthquakes by ignoring wave-
mediated stress transfers. Results of our comparison under-
score the importance of including full inertial effects. We
also explore the possibility of improving the standard quasi-

dynamic formulation by decreasing the radiation damping
term, as suggested by Lapusta et al. [2000].
[8] Our findings are summarized in section 7.

2. Methodology

2.1. Spectral Representation of Elastodynamic
Relations

[9] We extend the spectral boundary integral method
[Perrin et al., 1995; Geubelle and Rice, 1995; Ben-Zion
and Rice, 1997; Lapusta et al., 2000; Day et al., 2005] to
3-D simulations of long deformation history of a planar
strike-slip fault. Consider two identical elastic half-spaces
separated by a planar fault interface. The fault coincides
with the y = 0 plane of a Cartesian coordinate system xyz.
Let us define displacement discontinuities di(x, z; t), i = x, y,
z on the fault y = 0 as di(x, z; t) = ui(x, y = 0+, z; t) � ui(x, y =
0�, z; t), where ui(x, y, z; t) are displacement components
along the i direction. In the following discussion, we refer to
tangential displacement discontinuities dx and dz as compo-
nents of slip and to the time derivative of tangential
displacement discontinuities Vx and Vz, Vi(x, z; t) = @di(x,
z; t)/@t, i = x, z, as components of slip velocity. In this
study, we consider problems that do not involve opening
(dy(x, z; t) = 0) and contain only slips dx and dz.
[10] The tractions tyi(x, z; t) � ti(x, z; t), i = x, y, z on the

interface y = 0 can be expressed as

ti x; z; tð Þ ¼ toi x; z; tð Þ þ fi x; z; tð Þ � hiVi x; z; tð Þ: ð1Þ

In the elastodynamic relation (1), hx = hz = m/(2cs) and hy =
mcp/(2cs

2), where m is the shear modulus and cp and cs are
the pressure and shear wave speeds, respectively; ti

o(x, z; t)
are loading tractions, i.e., tractions that would be induced on
the fault due to external loading if the fault were restricted
against any displacement discontinuities; and fi(x, z; t)
account for wave-mediated stress transfers. The terms
�hiVi(x, z; t) represent radiation damping [Rice, 1993;
Cochard and Madariaga, 1994]. If there is no opening of
the interface, or dy(x, z; t) = 0 for all x, z, t, then fy(x, z; t)
vanishes and ty(x, z; t) = ty

o(x, z; t) according to equations
(1). This means that slips dx and dz on a planar fault
separating identical elastic solids do not alter normal
traction on the fault and, without opening, the normal
traction is only determined by the external loading.
[11] The linear functionals fi(x, z; t), i = x, z incorporate

much of the elastodynamic response and, in the space-time
formulation, involve convolution integrals of di(x, z; t), i = x,
x, z over space variables x, z and time t [e.g., Cochard and
Madariaga, 1994; Perrin et al., 1995]. In the spectral
representation, fi(x, z; t) and di(x, z; t) are expressed as
Fourier series in space, truncated for the purpose of numer-
ical computation [Geubelle and Rice, 1995]:

di x; z; tð Þ ¼
X

Nx=2

k¼�Nx=2

X

Nz=2

m¼�Nz=2

Di k;m; tð Þ exp 2pi
kx

lx

þ mz

lz

� �� �

;

fi x; z; tð Þ ¼
X

Nx=2

k¼�Nx=2

X

Nz=2

m¼�Nz=2

Fi k;m; tð Þ exp 2pi
kx

lx

þ mz

lz

� �� �

: ð2Þ
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In equations (2), lx and lz are the sizes of the fault domain
under consideration, which is periodically repeated along
both x and z directions. The fault domain is discretized into
Nx by Nz square cells with the side Dx:

Dx ¼ lx=Nx ¼ lz=Nz: ð3Þ

Let us define the wave vector q̂ = (k̂, m̂) as

k̂ ¼ 2pk=lx; m̂ ¼ 2pm=lz; q̂ ¼ jq̂j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k̂2 þ m̂2

q

: ð4Þ

Then the Fourier coefficients Fi(k, m; t) and Di(k, m; t),
i = x, z, are related by the following expressions:

(

Fx k;m; tð Þ
Fz k;m; tð Þ

)

¼� m

2q̂

k̂2 m̂k̂

m̂k̂ m̂2

" #

2 1� c2s
c2p

 ! 

Dx k;m; tð Þ
Dz k;m; tð Þ

!(

�
Z t

0

KII q̂cs t � t0ð Þð Þ
_Dx k;m; t0ð Þ
_Dz k;m; t

0ð Þ

 !

dt0
)

� m

2q̂

m̂2 �m̂k̂

�m̂k̂ k̂2

" #( 

Dx k;m; tð Þ
Dz k;m; tð Þ

!

�
Z t

0

KIII q̂cs t � t0ð Þð Þ
_Dx k;m; t0ð Þ
_Dz k;m; t

0ð Þ

 !

dt0
)

; ð5Þ

where KII(r) and KIII(r) are integral kernels for mode II
and III problems, respectively. These kernels have
analytical expressions given in Appendix A. The
relations (5) reflect the well-known fact that the general
3-D shear problem involves a combination of mode II
and mode III slip.

2.2. Truncation of Elastodynamic Response

[12] Elastodynamic response expressed by the convolu-
tion integrals in (5) can be truncated for problems that
involve long deformation histories with short periods of fast
slip. During slow, interseismic periods, the deformation
process is quasi-static and there is no need to keep track
of inertial effects. Truncation procedures for antiplane
(mode III) problems were given by Ben-Zion and Rice
[1997] and Lapusta et al. [2000]. Here we develop the
appropriate modifications for our 3-D model.
[13] To implement the truncation, we compute the con-

volutions in (5) from t � Tw to t only, where Tw is the
truncation time window. Convolution kernels KII(r) and
KIII(r) oscillate with decaying amplitude for larger r
(Appendix A). Slip velocities, and hence their Fourier
coefficients _Dx and _Dz, are near zero for most of the fault
history, except during simulated earthquakes, which have
durations of the order of the time for the shear wave to
propagate through the simulated domain. Hence, following
Lapusta et al. [2000], Tw is expressed in the form

Tw ¼ al=cs; ð6Þ

where l is the largest extent of the seismogenic zone and a
is a truncation parameter of order 1. We call this truncation
scheme ‘‘frequency-independent,’’ as the truncation win-
dow does not depend on the frequency of Fourier modes.
Larger truncation windows make the problem closer to the

one without truncation but they also increase the computa-
tional expense. In our simulations, we find that the choice
a = 1 gives results that do not change for larger truncation
windows (section 4.2).
[14] The truncation procedure can be made more efficient

by making the truncation window Tw dependent on Fourier
modes. Fourier coefficients for higher frequencies are
generally smaller. Even more importantly, the kernel argu-
ment r = q̂cs (t � t0) scales with the mode frequency q̂ and,
for larger q̂, the same time window corresponds to longer
integration intervals in terms of the kernel argument r.
Since the kernels oscillate with decaying amplitude for
larger r, one can limit the length of kernel windows, making
the corresponding time windows shorter.
[15] The truncation procedure and parameters used by

Lapusta et al. [2000] resulted in approximately Tw(q̂) /
q̂�1. That scheme was efficient and accurate for 2-D anti-
plane (mode III) problems considered by Lapusta et al.
[2000], but in 3-D problems, we find that it produces much
lower slip velocities and rupture speeds than frequency-
independent truncation. This is because both mode III and
mode II kernels are involved in the 3-D formulation and the
mode II kernel is more oscillatory and decays slower than
the mode III kernel. From Appendix A, for r 
 1, KII �
O(r�1/2), while KIII � O(r�3/2).
[16] We have developed a new scheme that truncates less

at low frequencies than the scheme and parameter choices
of Lapusta et al. [2000]. For low-frequency modes, the time
windows are constant, Tw(q̂) = al/cs, as in the frequency-
independent truncation, with the kernel windows increasing
for those modes. However, the kernel windows cannot be
larger than a given value rc, which becomes a truncation
parameter. Let us denote by q̂c the frequency at which the
kernel windows reach the length rc. Then the frequency-
dependent truncation windows expressed in terms of time
are given by

Tw q̂ð Þ ¼ al=cs; q̂ � q̂c;
al=cs q̂c=q̂; q̂ 
 q̂c:




ð7Þ

Hence, Tw(q̂) � q̂�1 for higher frequencies. Note that
the lowest-frequency mode q̂ = (0, 0) with q̂ = 0
corresponds to the uniform slip over the fault interface and
has no contribution to stress transfers, so we set Tw(0) = 0. In
equation (7), q̂ varies between the lowest nonzero frequency
q̂min = 2p/lx (assuming, without loss of generality, that
lx 
 lz) and the highest-frequency q̂max =

ffiffiffi

2
p

p/Dx. In
terms of the kernel argument r = q̂cs(t � t 0), the time
windows (7) correspond to the following kernel windows
rw(q̂) = q̂csTw(q̂):

rw q̂ð Þ ¼ alq̂; q̂ � q̂c;
rc ¼ alq̂c; q̂ 
 q̂c:




ð8Þ

In our simulations, rc 
 100 result in the same slip
response as that with frequency-independent truncation
(section 4.3). Such values of the kernel argument
correspond to the kernel amplitudes smaller than
0.0008 for mode III and 0.08 for mode II.
[17] Let us estimate how much more efficient the fre-

quency-dependent truncation is by comparing the memory
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requirements for the two truncation procedures. For sim-
plicity, let us assume that l = lx = lz and Nx = Nz =N = l/Dx.
Dx. For convolution computations, each time window Tw(q̂)
is discretized with the time intervalDtmin = gDx/cs, where g
is a constant parameter discussed in Appendix B, resulting
in NT(q̂) intervals. For the frequency-independent trunca-
tion, this number is given by

NT q̂ð Þ ¼ Tw q̂ð Þ
Dtmin

¼ aN

g
: ð9Þ

For each frequency mode, we need four arrays of the size
NT(q̂) to store kernels and Fourier coefficients of slip
velocities. The total size of the arrays are

Ntot ¼
X

N=2

k¼�N=2

X

N=2

m¼�N=2

4NT q̂ð Þ ¼ 4aN

g
N2 � O N3

� �

: ð10Þ

For the frequency-dependent truncation, the total size of the
arrays storing convolution values changes to

Nmod
tot ¼

X

N=2

k¼�N=2

X

N=2

m¼�N=2

4NT q̂ð Þ �
Z N=2

�N=2

Z N=2

�N=2

4NT q̂ð Þdkdm

< 2
ffiffiffi

2
p

rc �
r2c

paN

� �

N2

g
� rcO N2

� �

: ð11Þ

For small values of rc � alq̂max, the required memory is
significantly smaller for the frequency-dependent trunca-
tion. To compute the estimate in equation (11), the
summation over discrete k and m is replaced by the
continuous integration over dk and dm; for N 
 1, the error
induced by this approximation is negligible. Then, to obtain
an upper bound of the resulting integral, the square domain
of the integration [�N/2, N/2] � [�N/2, N/2] is replaced by
a larger circular domain, with the integration variables and
their limits being 0 � q̂ � q̂max and 0 � q < 2p.

2.3. Fault Constitutive Response: Rate and State
Friction Laws

[18] The fault resistance to sliding is described by labo-
ratory-derived rate and state friction laws which have been
widely used to model earthquake phenomena [Dieterich,
1979; Ruina, 1983; Dieterich, 2007, and references therein].
A general form of rate and state friction laws is

t ¼ f V ; q; sð Þ;
_q ¼ 8 V ; q;sð Þ;




ð12Þ

where t =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2x þ t2z
p

is the magnitude of shear traction

vector t = (tx, tz), V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2
x þ V 2

z

p

is the magnitude of the
slip velocity vector V = (Vx, Vz), s = �ty is the normal
traction (positive in compression), and q is the state variable.
It has been experimentally established that shear traction
instantaneously increases (decreases) in response to a sudden
increase (decrease) of slip velocity [e.g., Dieterich, 1979;
Ruina, 1983; Marone, 1998], which implies @f(V, q, s)/
@V > 0, the feature commonly referred to as the positive

direct effect. As discussed by Lapusta et al. [2000], the
presence of this instantaneous positive response is essential
for the numerical procedure to be able to adopt large time
steps during quasi-static deformation processes while
yielding stable numerical results.
[19] Several specific forms of rate and state friction laws

have been proposed. Here we adopt the aging law [Dieterich,
1979, 1981; Ruina, 1983] in the form appropriate for
constant normal stress s:

t ¼ s fo þ a ln
V

Vo

þ b ln
Voq

L

� �

; ð13aÞ

_q ¼ 1� Vq

L
; ð13bÞ

where fo and Vo are the reference friction coefficient and slip
velocity, a > 0 and b > 0 are rate and state parameters of
order 0.01, and L is the characteristic slip distance. At
constant slip velocity V, the state variable q, and hence the
shear traction t, evolve toward steady state values qss(V)
and tss(V), respectively, with qss(V) = L/Vand tss(V) = s[fo +
(a � b) ln(V/Vo)]. The friction law is said to exhibit steady
state velocity strengthening if a � b > 0, and steady state
velocity weakening if a � b < 0. In equation (13a), t is not
defined for V = 0. To remedy that, we use a regularized
version of the law [Rice and Ben-Zion, 1996; Ben-Zion and
Rice, 1997; Lapusta et al., 2000] described in Appendix B.
[20] Dynamic instability (i.e., an earthquake) is able to

develop only if the steady state velocity-weakening region
of the fault exceeds the nucleation size h* [e.g., Rice and
Ruina, 1983; Rice, 1993; Rubin and Ampuero, 2005]. Two
theoretical estimates of the earthquake nucleation size for
2-D problems are given by

hRR* ¼ p

4

m*L

b� að Þs ; ð14Þ

hRA* ¼ 2

p

m*bL

b� að Þ2s
; ð15Þ

where m* = m for mode III and m* = m/(1 � n) for mode II.
The estimate h*RR was derived from the linear stability
analysis of steady sliding by Rice and Ruina [1983], while
h*RA was obtained for the parameter regime a/b > 0.5 by
Rubin and Ampuero [2005] using the energy balance for a
quasi-statically extending crack. Three-dimensional esti-
mates would be larger by a factor of two to three; h*RA
needs to be increased by a factor of p2/4 (A. Rubin, private
communication, 2008). Chen and Lapusta [2009] have
found that the resulting estimate,

h* ¼ p2=4
� �

hRA* ; ð16Þ

matches nucleation sizes in their 3-D simulations quite well.
Hence, we adopt that estimate in our study.
[21] The rate and state friction laws (13) behave similarly

to standard linear slip-weakening laws during dynamic
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rupture propagation processes [e.g., Cocco and Bizzarri,
2002]. As dynamic rupture arrives at a point along the fault,
slip velocity rapidly increases with negligible slip, leading
to Vq/L 
 1. With that condition, equation (13b) can be
approximately rewritten as dq/dt = �Vq/L and integrated to
express the state variable in terms of slip. From equation
(13a), one then gets

dt

dt
¼ sa

d lnVð Þ
dt

� sb

L

dd

dt
: ð17Þ

In (17), V is already in the seismic range and ln V does not
change much, making the term sa d(ln V)/dt much smaller
than (sb/L)(dd/dt). Hence, equation (17) describes linear
decrease of shear stress with slip, with the slip-weakening
rate W:

W ¼ � dt

dd
� sb

L
: ð18Þ

During this process, the state variable evolves with slip and
the steady state is eventually reached, with shear resistance
that has logarithmic dependence on slip velocity and hence
does not vary much as long as slip velocity remains in the
seismic range. That corresponds to the constant dynamic
resistance of linear slip-weakening formulations.
[22] Note that alternative rate and state formulations have

been proposed, with different equations for the evolution of
the state variable, such as the slip law [Dieterich, 1979,
1981; Ruina, 1983], the combined law of Kato and Tullis
[2003], and the law of Perrin et al. [1995]. Recent experi-
ments by Bayart et al. [2006] suggest that the slip law is a
better description of the friction response in velocity jump
experiments. The methodology developed in this work can
be easily adopted to the alternative rate and state formula-
tions, as well as to laws with variable normal stress
[Dieterich, 2007] and modified formulations that include
more significant weakening at seismic slip rates [Rice, 2006].

2.4. Criteria for Spatial Discretization

[23] In numerical simulations, the spatial cell size Dx
needs to be small enough to capture the model response. A
number of studies [Rice, 1993; Ben-Zion and Rice, 1997;
Lapusta et al., 2000] proposed that h*RR is the crucial
length scale to resolve in 2-D antiplane earthquake cycle
modeling, with h*RR/Dx being an important parameter. The
length scale h*RR gives the critical size of a cell that cannot
become unstable on its own on a quasi-statically sliding
interface [Rice and Ruina, 1983; Lapusta et al., 2000], and
hence, it is an important length scale governing interseismic
processes and, in particular, earthquake nucleation.
[24] However, earthquake cycle simulations also involve

dynamic rupture, and that introduces another resolution
criterion, L/Dx, where L is the cohesive zone size [Palmer
and Rice, 1973; Day et al., 2005, and references therein].
The cohesive zone size gives the spatial length scale over
which the shear stress drops from its peak to residual values
at the propagating rupture front. This length scale controls
the numerical resolution during dynamic rupture. Let us
denote by L0 the size of L at the rupture speed c = 0+

(L decreases for larger rupture speeds). For the fault inter-

face governed by linear slip-weakening law, L0 can be
expressed as [Palmer and Rice, 1973; Day et al., 2005]

L0 ¼ C1

m*

W
; ð19Þ

where W is the slip-weakening rate and C1 is a constant
which is equal to 9p/32 if the stress traction distribution
within the cohesive zone is linear in space. For the rate-and-
state friction laws we use, W = bs/L (sections 2.3 and 3),
and hence, L0 is given by

L0 ¼ C1

m*L

bs
: ð20Þ

Through 3-D dynamic rupture simulations, Day et al.
[2005] established that L0/Dx of 3 to 5 are required to
resolve dynamic rupture.
[25] Hence, the cell size Dx has to be small enough to

resolve both L0 and h*RR. How are the two resolution
criteria related? Ignoring the constants of order 1, the ratio
of the two length scales for the constitute law used in this
work is

L0=hRR* ¼ b� að Þ=b: ð21Þ

The typical values are 0.015 to 0.02 for b and 0.002 to 0.004
for (b � a), making the ratio L0/h*RR vary from about 0.1 to
0.25. Hence, the resolution criterion based on L0 dominates
for these typical parameters. In this work and in the work by
Lapusta et al. [2000], b = 0.019 and b � a = 0.004 are used,
giving L0/h*RR � 0.2. Hence, resolving L0 with 3 to 5
spatial cells as suggested by Day et al. [2005] corresponds
to resolving h*RR with 15 to 25 cells. This explains why the
fully dynamic simulations of earthquake sequences by
Lapusta et al. [2000] showed that h*RR needs to be
discretized with about 20 cells in order to obtain resolution-
independent results; that discretization was dictated by the
size of the cohesive zone.
[26] Hence, resolving the cohesive zone size L0 is the

more stringent requirement for the aging formulation of rate
and state friction and typical rate and state parameters. This
is true even for quasi-dynamic simulations (section 6), in
which L0 needs to be resolved with at least one cell size.
For other fault constitutive relations, similar consideration
should apply, in that the cell size Dx should be small
enough to resolve all the relevant length scales in the
problem, including the length scale governing the evolution
of quasi-static deformation and nucleation of instability as
well as the length scale governing the evolution of the
rupture front. For different laws, different length scales
would dominate the resolution requirements. For example,
in a law that combines rate and state friction with a dynamic
weakening mechanism, such as pore pressure evolution,
either the nucleation length scale or the rupture front length
scale may be the smallest one, depending on the values of
parameters chosen for the two mechanisms.

2.5. Computational Procedure

[27] The response of faults to tectonic loading is charac-
terized by long periods of quasi-static deformation com-
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bined with short bursts of fast slip. To simulate such
response, we adopt the variable time stepping of Lapusta
et al. [2000], in which the time step is set to be inversely
proportional to slip velocity on the fault interface as
described in Appendix B. As the result, relatively large
time steps, a significant fraction of a year, are used in the
interseismic period, while small time steps, a fraction of a
second, are used to simulate the evolution of each dynamic
rupture. Note that the stability of the stepping procedure
relies on the presence of the positive direct effect in the rate
and state formulation, the feature that has ample laboratory
confirmation.
[28] At each time step, we find updated values of the field

variables by equating the elastodynamic tractions on the
fault interface represented by equations (1) and the frictional
strength of the fault given by equations (13). Appendix B
describes the details of the updating procedure. Since 3-D
simulations are computationally expensive, parallel coding
is an indispensable ingredient in our computations. We use
the message passing interface (MPI) techniques to spread
the storage of field variables into multiple processors.
Calculation of the dynamic response, update of field vari-
ables, and fast Fourier transforms (FFTs) are also done in
parallel.

2.6. Model of a Strike-Slip Fault

[29] The elastodynamic formulation (2)–(5) is valid for a
planar interface y = 0 embedded in an infinite elastic
homogeneous medium. Because of the spectral representa-
tion, the finite domain of interest is periodically replicated
in both x and z directions. Hence, the simulated domain
needs to include buffer zones that would prevent dynamic
ruptures on each replication from interacting with each
other. An example is shown in Figure 1a, where a poten-
tially seismogenic zone (shown in white) is surrounded by
the fault region (shown in grey) that can stop dynamic
ruptures. Such region can have steady state velocity-
strengthening properties and/or prescribed slip velocity
(e.g., slip velocity equal to the plate rate or to zero). The
methodology developed in this work has been used in such
a model to study small repeating earthquakes [Chen and
Lapusta, 2009].
[30] Here, we would like to study the behavior of a strike-

slip fault embedded in an elastic half-space, with a free

surface at z = 0, as shown in Figure 1b. To fit this model
into the formulation (2)–(5), we use the image method [e.g.,
Lapusta et al., 2000]. The domain that we would like to
study on the fault interface is x 2 [�lx/2, lx/2], z 2 [�lz/2,
0], where z = 0 is the free surface. We add a mirror image of
that domain by imposing the following conditions in the
region x 2 [�lx/2, lx/2], z 2 [0, lz/2]:

dx x;�z; tð Þ ¼ dx x; z; tð Þ; Vx x;�z; tð Þ ¼ Vx x; z; tð Þ
dz x;�z; tð Þ ¼ �dz x; z; tð Þ; Vz x;�z; tð Þ ¼ �Vz x; z; tð Þ:




ð22Þ

The resulting simulated domain becomes x 2 [�lx/2, lx/z],
z 2 [�lz/2, lz/2], and it is that domain that is periodically
repeated along both x and z directions to form an infinite
interface in a homogeneous elastic space, making the
formulation (2)–(5) applicable.
[31] The mirror image method induces the boundary

conditions on z = 0 as tzx = tzy = 0 and uz = 0, which
are not exactly the traction free boundary conditions tzx =
tzy = tzz = 0. However, this approximation works quite well
for strike-slip faults, which slip mostly in the along-strike
direction x. In the code comparison exercise organized by
the Southern California Earthquake Center (SCEC), simu-
lations of dynamic rupture on a slip-weakening strike-slip
fault in an elastic half-space have been compared for
different numerical methods [Harris et al., 2004, 2008].
The comparison of our approach with other methods that
can represent the true traction-free surface showed that this
approximation captures most effects of the free surface and
that the errors induced are relatively small and restricted to
the region right next to the free surface. Recently, Zhang
and Chen [2006a, 2006b] derived a boundary integral
formulation with analytical kernels for a planar fault of an
arbitrary dipping orientation embedded in an elastic half-
space. These kernels have more complex representations
and using them in the context of long-term calculations is a
goal for future work.
[32] To incorporate tectonic loading, we assume that the

far-field plate motion results in the deeper extension of the
fault moving with constant slip rate equal to the plate rate
Vpl [Tse and Rice, 1986], as illustrated in Figure 1b. Hence,
we assign a constant slip rate Vpl in the corresponding part

Figure 1. (a) A model of a planar interface embedded in an infinite and homogeneous elastic medium.
(b) A vertical strike-slip fault in an elastic half-space. The top part of the fault is governed by rate and
state friction, and the bottom part is steadily moving due to tectonic loading.
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of our domain, and solve for slip rate everywhere else on
the fault.

3. Simulation Example: Fault With
a Homogeneous Seismogenic Region

3.1. Parameters of the Fault Model

[33] Let us use the developed methodology to simulate
long-term slip history of a strike-slip fault segment which
contains a potentially seismogenic region with steady state
velocity weakening properties surrounded by steady state
velocity-strengthening region (Figure 2a). The seismogenic
region incorporates gradual variations of rate and state
parameters at the top and bottom rheological transitions
but we call the region homogeneous in comparison to the
model of section 5 where the seismogenic region incorpo-
rates a compact heterogeneity in the form of higher normal
stress. Model parameters are given in Figure 2 and Table 1.
The fault segment is 60 km long and 30 km deep. With the
mirror image, the simulated domain is lx = lz = 60 km. Rate
and state friction acts on the top 24 km of the fault, while
the bottom fault segment, �30 < z < �24 km, slips with the
plate rate of Vpl = 10�9 m/s or 32 mm/a. The potentially
seismogenic velocity-weakening region is located at �15 <
x < 15 km and�14.34 < z <�2.67 km and it is Lseis = 30 km
long and Wseis = 11.7 km wide. Within the seismogenic
region, the depth distributions of rate and state parameters a,
(a � b), and L are given in Figure 2b. L linearly increases at
shallow depths, qualitatively modeling the plausible situa-
tion of larger frictional energy resisting sliding at shallow
depths due to wider gouge layers or multiple slip surfaces.
Normal traction on the fault interface is space- and time-
independent, s(x, z) = �ty(x, z; t) = �ty

o(x, z; t) = 50 MPa.
The constant value of s close to the free surface is chosen
for numerical tractability, to explore several issues unrelated
to the free surface such as interaction of rupture with
heterogeneity over several earthquake cycles (section 5)
and quasi-dynamic and other simplified formulations
(section 6). In section 3.4, we compare fault behavior with

other distributions of L and s, including smaller values of s
at shallower depths and depth-independent L.
[34] The characteristic slip L shown in Figure 2 is equal to

8 mm over most of the fault; we also use the distribution
with twice smaller values of L for comparison, resulting in
L = 4 mm over most of the fault. We consider two values
of L to illustrate changes in the fault behavior due to
selection of L. The chosen values of L result in much larger
3-D estimates of nucleation sizes, h* = 9 km for L = 8 mm
and h* = 4.5 km for L = 4 mm, than what would be obtained
on the basis of laboratory values of L = 10–100 mm. Such
large values of h* may be realistic under some conditions,
e.g., if effective normal stress s is very low due to fluid
overpressure [e.g., Liu and Rice, 2005; Suppe and Yue,
2007] or if steady state velocity-weakening properties are
close to velocity neutral. We need such large values of L to
be able to resolve the dynamic propagation of seismic
events that arise in the model. As discussed in section 2.4,
h* should be smaller than the size of the velocity-weakening
region in order for the model to produce dynamic events.

Table 1. Parameters of Our Simulations

Parameter Symbol Value

Fault length along strike lx 60 km
Fault depth lz/2 30 km
Velocity-weakening region, length Lseis 30 km
Velocity-weakening region, width Wseis 11.7 km
Loading slip rate Vpl 32 mm/a
Shear wave speed cs 3.0 km/s
Poisson’s ratio n 0.25
Reference slip velocity Vo 10�6 m/s
and friction coefficient fo 0.6

Rate-and-state parametersa a 0.015
in the velocity-weakening region b 0.019

Effective normal stressa s 50 MPa
Characteristic slipa L 8 mm/4 mm
Cell size Dx 100 m/50 m
Minimum time step Dtmin 0.0112 s/0.0056 s

aThe typical value over the velocity-weakening (potentially seismogenic)
region is specified.

Figure 2. Properties of the simulated fault segment. (a) Rate and state friction acts on the top 24 km of
the fault. A potentially seismogenic region of velocity-weakening properties (shown in white) is surrounded
by velocity-strengthening regions (shown in yellow). Below z = �24 km, steady motion of 32 mm/a is
imposed. (b) Depth dependence of friction parameters (a � b), a, and L in the seismogenic region. The
distributions are piecewise linear between the following points: (a� b)jzj=0 = 0.008, (a� b)jzj=4 =�0.004,
(a� b)jzj=13.5 =�0.004, (a� b)jzj=17.5 = 0.015, (a� b)jzj=24 = 0.024, ajzj=0 = 0.019, ajzj=4 = 0.015, ajzj=17.5 =
0.015, ajzj=24 = 0.024, Ljzj=0 = 24 mm, Ljzj=4 = 8 mm, Ljzj=24 = 8 mm.
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Hence, the parameter h*/Wseis that relates the estimated
nucleation size to the width of the velocity-weakening
region is an important indicator of how unstable the
behavior of the model would be [Liu and Rice, 2005; Rubin,
2008]. h*/Wseis 
 1 predicts quasi-static behavior, while
smaller values point to unstable behavior. For L = 8 mm, h*/
Wseis = 0.8, a value close to 1. For L = 4 mm, h*/Wseis = 0.4,
a value appreciably smaller than 1. Hence, the two cases
may exhibit qualitative differences.
[35] The simulation starts with a dynamic event that

initiates on the left edge of the fault and propagates through
the entire fault. This is achieved by setting higher initial
shear stress tx

o = 1.02fos for �15 km < x < �10 km than for
the rest of the fault where tx

o = 1.00fos. The initial values of
field quantities affect only the first few events, as the model
evolves toward behavior dictated by the model geometry,
loading, and friction properties. The fault is discretized into
square elements Dx = Dz = 100 m (Nx = Nz = 600) for
simulations with L = 8 mm and Dx = Dz = 50 m (Nx = Nz =
1200) for simulations with L = 4 mm. The numerical
resolution is discussed in section 4.1. The time step during
dynamic events is Dtmin = 0.0112 s for (L = 8 mm) and
Dtmin = 0.0056 s (L = 4 mm). Simulations have been done
in parallel on 20 processors for L = 8 mm and 100
processors for L = 4 mm, each with the memory of 2 GB.

About one billion data points are manipulated at each time
step for L = 8 mm, and each earthquake cycle requires of the
order of 10,000 variable time steps.

3.2. Fault Response: Dynamic Events and Aseismic
Slip, Including Transients

[36] As expected from stability properties of rate-and-
state interfaces, the velocity-strengthening region steadily
slips with velocities comparable to the plate rate, while the
velocity-weakening region accumulates most of its slip
through earthquakes. Histories of slip velocity and slip for
two representative points are shown in Figure 3. At point P1
from the velocity-weakening region (x = 9 km, z = �8 km),
slip velocity is 3 orders of magnitude smaller than the
loading plate rate for most of the simulated time, indicating
that the fault is typically locked at this location (Figure 3a).
Occasionally, slip velocity of P1 goes up to seismic values
of the order of 1 m/s, indicating the occurrence of seismic
slip. Slip accumulation of P1 has the corresponding step-
like nature (Figure 3c). In contrast, point P2 (x = 18 km, z =
�8 km) from the velocity-strengthening region has slip
velocity that never deviates too much from the plate rate of
10�9 m/s (Figure 3b). Relatively small increases of slip
velocity at P2 after each earthquake correspond to post-

Figure 3. Long-term histories of (a and b) slip velocity and (c and d) slip at two representative fault
locations, P1 from the velocity-weakening region and P2 from the velocity-strengthening region. Slip
velocity is plotted on the logarithmic scale. In Figures 3a and 3c, point P1 (9 km, �8 km) exhibits stick-
slip behavior. It is virtually locked for most of the time (with slip velocity 3 orders of magnitude below
the plate rate) but occasionally slips very fast, with maximum slip velocity of the order of 1 m/s. In
Figures 3b and d, point P2 (�18 km, �8 km) moves throughout the simulated time. After each dynamic
event, it has postseismic slip, with maximum slip velocity of the order of 10�6 m/s.
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seismic slip. Slip at P2 increases steadily in time, with faster
accumulation after each dynamic event (Figure 3d).
[37] Typical earthquake cycles are illustrated in Figures 4

and 5 through snapshots of slip-velocity distribution on
the fault at several times between two successive dynamic
events. For the case of L = 8 mm and h*/Wseis = 0.8
(Figure 4), the ninth earthquake nucleates on the left side of
the seismogenic region, and propagates bilaterally first and
then mostly to the right (Figures 4a–4c). The seismic slip
causes positive static stress changes in the surrounding
velocity-strengthening area, which responds with increased
aseismic slip rates that decay over time (Figures 4d and 4e).
This is postseismic slip. During the interseismic period
(Figure 4f), the velocity-weakening region is locked, while
the surrounding velocity-strengthening region moves with
slip velocity of the order of the plate rate. That aseismic slip
creates stress concentration at the boundary between the
locked and slipping regions, causing slip there and hence
continuously moving the boundary into the locked region.
For L = 8 mm, the locked region almost disappears
(Figure 4j), consistently with the large estimate of the
nucleation zone h* = 9 km which approximates how far slow
slip can penetrate into velocity-weakening region without
nucleating a dynamic event. That interseismic slip contains a
slip episode faster than the plate rate, i.e., an aseismic
transient, which is shown in Figure 6 on a different slip

velocity scale. The transient develops on the left side of
the locked region (snapshot G8) and propagates around the
locked region (snapshots G8, H8, and I8), decreasing the
locked part in the process. Maximum slip velocity during this
aseismic transient is about 10�7 m/s, and its propagation
speed is about 8 km/a. Between the times of 480.43 and
481.52 years, the average slip of the seismogenic region is
0.061 m and the corresponding moment is 6.4 � 1017 N � m,
an equivalent of a Mw = 5.8 earthquake. These values are
consistent, in the order of magnitude sense, with some
observations of aseismic transients [e.g., Kawasaki, 2004].
At the end of the transient, the next dynamic event nucleates
on the right side of the seismogenic region (Figure 4k) and
propagates bilaterally first (Figure 4l) and then mainly to the
left.
[38] For the smaller value of characteristic slip L = 4 mm

and hence for the smaller h*/Wseis = 0.4, the seismogenic
region is more unstable and experiences less aseismic slip in
the interseismic period (Figure 5). Events nucleate closer to
the rheological transition (Figure 5a) and propagate more
unilaterally (Figures 5b and 5c). Right after postseismic slip
(Figures 5d and 5e), most of the seismogenic region is
locked and the fault behavior for both values of L is quite
similar (Figures 4f and 5f). In the interseismic period,
aseismic transients still occur for L = 4 mm (Figure 6,
snapshots G4, H4, and I4), but now it is clear that they are
mostly confined to the areas of the velocity-weakening

Figure 4. Snapshots of spatial slip velocity distribution during a typical earthquake cycle for L = 8 mm
(h*/Wseis = 0.8). Slip history between the ninth and tenth events is illustrated. Colors represent slip
velocity on the logarithmic scale. White and bright yellow correspond to seismic slip rates, orange and
red correspond to aseismic slip, and black corresponds to locked portions of the fault. The time t of the
snapshot in years (in the top right corner) and the corresponding time step Dt in seconds (at the bottom)
are shown. Figures 4a–4c also show the time in seconds elapsed since the time of Figure 4a. The
simulations reproduce dynamic events (Figures 4a–4c, 4k and 4l), postseismic slip (Figures 4d and 4e),
and the interseismic period (Figure 4f). Aseismic transient slip occurs between Figures 4f and 4j, and it is
shown in snapshots G8, H8, and I8 of Figure 6 on a different slip velocity scale.
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region close to rheological transitions that experience slow
slip penetration from the nearby velocity-strengthening
region. Further discussion of aseismic transients is given
in section 7. When the next dynamic event nucleates
(Figures 5j–5l), much of the velocity-weakening region
remains locked.
[39] To visualize slip accumulation on the fault through

several earthquake cycles, we plot slip along the horizontal
line z = �8 km (Figure 7). The solid green lines are plotted
every 5 years, representing slip accumulations during inter-
seismic periods. The dashed red lines are plotted every
2 seconds when the maximum slip velocity on the fault
exceeds 1 mm/s, illustrating the end of earthquake nucle-
ation and the accumulation of seismic slip. Only a part of
the fault, from x = �20 km to x = 20 km, is shown. The
spacing of the green lines indicates that the fault outside
the velocity-weakening region moves steadily for most of
the time and experiences faster postseismic motion after
dynamic events. Densely spaced red lines correspond to the
end of the nucleation phase, while more sparse red lines
illustrate dynamic rupture propagation. For L = 8 mm and
h*/Wseis = 0.8 (Figure 7a), this relatively homogeneous
model produces a periodic two-event pattern. For L =
4 mm and h*/Wseis = 0.4 (Figure 7b), the model settles into
periodic behavior, with all events starting on the left side of
the fault. This is because events have larger slip at the other
end of the fault and relieve more stress there, resulting in the
nucleation of the next event on the same side of the fault.

The behavior is more complex for h*/Wseis = 0.8 due to
aseismic transients. The aseismic transients also always start
on the side of the fault that nucleated the previous dynamic
event. However, they do not initiate dynamic slip but rather
propagate toward the other side of the fault, initiating a
dynamic event there.

3.3. Parameters of Simulated Earthquakes

[40] The model produces realistic dynamic events, with
maximum slip velocity over the fault exceeding 1 m/s and
rupture speeds reaching 2.5 km/s. Let us define the seismic
moment M0 of each event as the moment released on the
fault when maximum slip velocity exceeds 0.1 m/s:

M0 ¼
Z tend

tini

Z

W

mV x; z; t0ð ÞdWdt0; ð23Þ

where W is the seismogenic (velocity-weakening) region
with the area jWj = WseisLseis and tini and tend are times, for
each dynamic event, between which maximum slip velocity
on the fault stays larger than Vseis = 0.1 m/s. Similarly, we
compute the static stress drop Dt as

Dt ¼ tx tinið Þ � tx tendð Þ

¼ 1

jWj

Z

W

tx x; z; tinið ÞdW� 1

jWj

Z

W

tx x; z; tendð ÞdW:

Figure 5. Snapshots of spatial slip velocity distribution during a typical earthquake cycle for L = 4 mm
(h*/Wseis = 0.4). Slip history between the second and third events is illustrated. Colors and time markings
have the same meaning as in Figure 4. Compared with the case with L = 8 mm (Figure 4), dynamic events
in the case with L = 4 mm have smaller nucleation size, nucleate closer to the rheological transition
(Figures 5a and 5l), have more unilateral propagation, and develop faster rupture speeds (Figures 5a–5c).
Consistent with the smaller value of h*/Wseis, the velocity-weakening region experiences less aseismic
slip, with large portion of the region still locked when a seismic event nucleates (Figures 5a and 5j–5l).
Smaller aseismic transients still occur between Figures 5f and 5j; they are shown in snapshots G4, H4,
and I4 of Figure 6.
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Figure 6. Snapshots of spatial slip velocity distribution illustrating aseismic transients. White dashed
rectangles show the extent of the velocity-weakening region. Snapshots G8, H8, and I8 correspond to L =
8 mm. The aseismic transient travels around the locked portion of the fault. The average rupture speed
between snapshots G8 and I8 is of the order of 10 km/a, and the maximum slip velocity is about 10�7 m/s.
The aseismic slip accumulated in the seismogenic region is equivalent to that of a Mw = 5.8 earthquake.
Snapshots G4, H4, and I4 correspond to L = 4 mm. The spatial extent of the transients is smaller. Again,
the transients travel around the locked portion of the fault. Comparison of the two cases shows that the
transients are confined to the band of the velocity-weakening region next to rheological transition which
experiences slow slip in the interseismic period. The width of the band scales with the nucleation size and
its estimate h* and that is why smaller values of h*/Wseis lead to smaller and more localized aseismic
transients.

Figure 7. Slip accumulation along the line z = �8 km for the case of the homogeneous seismogenic
region. Red dashed lines illustrate fast slip; they are plotted every 2 s when maximum slip velocity over
the fault exceeds 1 mm/s. Green solid lines are plotted every 5 years, representing slip accumulation in
interseismic periods. (a) The case with L = 8 mm settles into periodic two-event pattern. (b) The case with
L = 4 mm results in periodic events. In the latter case, dynamic ruptures propagate faster and are more
pulse-like. In both cases, points at the nucleation zones accumulate less slip seismically than points
elsewhere on the fault.
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For L = 8 mm, M0 = 1.1 � 1019 N m for each event,
corresponding to the moment magnitude Mw = 6.6, tx(tini) =
31.2 MPa, tx(tend) = 27.8 MPa, and Dt = 3.4 MPa. For L =
4 mm, M0 = 9.9 � 1018 N m, Mw = 6.6, tx(tini) = 31.2 MPa,
tx(tend) = 28.0 MPa, and Dt = 3.2 MPa. The average
seismic slip on the seismogenic part of the fault per event is
dseis = Mseis/mjWj = 1.01 m for L = 8 mm and 0.94 m for L =
4 mm. Since the plate loading rate is Vpl = 32 mm/a and the
earthquake period is T = 52.4 years for L = 8 mm and
37.4 years for L = 4 mm, slip accumulation per earthquake
cycle is d = VplT = 1.65 m for L = 8 mm and 1.18 m for L =
4 mm. Therefore, 61% and 80% of fault slip in the
seismogenic region is accumulated seismically for L = 8 mm
and L = 4 mm, respectively.
[41] Each point ruptured dynamically exhibits effective

stress slip dependence that closely resembles linear slip-
weakening laws, as discussed in section 2.3. This is illus-
trated in Figure 8, which shows the behavior of three
velocity-weakening points and one velocity-strengthening
point. The velocity-strengthening point is located close to
rheological transition. For all curves, the weakening slope is
well approximated by W = �sb/L. For L = 8 mm, we find
that the effective slip-weakening behavior is similar for
different points but not identical, with the peak stress and
effective slip-weakening distance increasing with the rup-
ture propagation. This is because the rupture accelerates as
it propagates along the fault, and the associated increase in
peak slip velocity causes increases in the peak stress and
effective slip-weakening distance. For L = 4 mm, the
dependence of stress on slip is nearly identical for the
velocity-weakening points, because the rupture accelerates

early in the event and, afterward, the relatively homoge-
neous fault properties and conditions ensure that the rupture
behavior does not change much as the rupture propagates
along the fault.

3.4. Effect of Parameter Distributions Near the Free
Surface

[42] In the presented simulations, effective normal stress
s = 50 MPa is constant throughout the fault and the
characteristic slip L is depth-dependent near the free surface.
Because of the relatively large s, and hence large velocity-
strengthening effect s(a � b), dynamic rupture arrests
shortly upon encountering the shallow velocity-strengthen-
ing region and does not reach the free surface (Figure 9a).
While constant s at depth can be motivated by fluid
overpressure [Rice, 2006], s should decrease to near-zero
values at the free surface. To investigate the effect of s and
L near the free surface, we consider the case of Lapusta et
al. [2000], in which normal stress is depth-dependent near
the free surface, s = min[2.8 + 18jzj/km, 50] MPa, and the
characteristic slip L is constant and equal to the value at
depth. In this case, the rupture propagates all the way to the
free surface (Figure 9b), as it did in the 2-D simulations of
Lapusta et al. [2000]. However, even with the depth-
variable normal stress, we can prevent the rupture from
reaching the free surface by modifying rate and state
parameters a and b so that as and bs are the same as in
our original example (Figure 9c). For the problems consid-
ered in this work, it is not essential whether slip does or
does not propagate to the free surface, and we use the

Figure 8. Shear stress as a function of slip during a representative dynamic event (the ninth one in the
sequence) for four locations on the fault with (a) L = 8 mm and (b) L = 4 mm. In both cases, dynamic
rupture propagates from the left side of the fault to the right side, passing the velocity-weakening
locations (�3 km, �8 km), (3 km, �8 km), (9 km, �8 km), and then influencing the velocity-
strengthening location (18 km, �8 km) as the rupture arrests in the velocity-strengthening region. Zero
slip for each point is chosen as the slip when shear stress at the point reaches its peak during the dynamic
event. We see that the effective dependence of stress on slip is similar to linear slip-weakening friction,
with the slip-weakening rate W � sb/L. The velocity-strengthening point has a smaller values of b than
the other three points and hence a smaller slope. In the case with L = 8 mm, rupture accelerates while
propagating through the points shown (Figure 7a), leading to different effective peak strength and slip-
weakening distances for the three velocity-weakening points. In the case with L = 4 mm, the rupture has
nearly reached its limiting speed and it is almost steady (Figure 7b), leading to similar behavior of the
velocity-weakening points.
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parameters of section 3.1 in simulations presented in the
following.

4. Parameter Validation

4.1. Spatial Discretization

[43] For the model with L= 8mm, we have h*RR = 1.26 km
and L0 = 233 m for the mode II direction; this theoretical
estimate of L0 is close to the value of 300 m obtained in our
simulations. Hence, as discussed in section 2.4, L0 = 233 m

is the smaller length scale and the one we should aim to
resolve. To make sure our simulations produce resolution-
independent results, we run a series of simulations with cell
sizes Dx = 50 m, 100 m, 200 m, and 400 m. Figures 10a
and 10b show slip accumulation along z = �8 km for
Dx = 50 m and Dx = 400 m. Comparing with the results
for Dx = 100 m in Figure 7, we find that Dx = 50 m
and Dx = 100 m produce virtually indistinguishable slip
patterns over earthquake cycles. The value Dx = 400 m
produces a completely different slip pattern, indicating

Figure 10. Fully dynamic simulations with different cell sizes Dx. (a and b) Slip accumulation along
the line z = �8 km for Dx = 50 m and 400 m, respectively. The results can be compared with Figure 7a
that shows slip accumulation forDx = 100 m. (c) Slip velocity history of the fault location (9 km, �8 km)
during the fifth event for Dx = 50 m, 100 m, 200 m, and 400 m. Zero in time corresponds to rupture
arrival at the location (6 km, �8 km). The values Dx = 50 m and 100 m are both several times smaller
than the quasi-static cohesive zone size L0 = 300 m and produce resolution-independent results. Dx =
200 m provides less adequate resolution, and Dx = 400 m leads to very different results. The numerical
resolution in our simulations is dictated by the cohesive zone size, as the nucleation size h*, another
important length scale, is several times larger.

Figure 9. Slip accumulation along the line x = 3 km for the fault with the homogenous seismogenic
region and the case of L = 8 mm. Lines have the same meaning as in Figure 7. Different near-surface
parameter distributions are explored. (a) In the case of sections 3.1 and 3.2 and Figures 3–8 with constant
normal stress and depth-dependent L, dynamic events do not reach the free surface, arresting in the
velocity-strengthening region. The free surface accumulates large slip deficit, which is compensated by
aseismic slip. (b) For depth-independent L and normal stress decreasing toward the free surface (the same
distributions as in the 2-D model of Lapusta et al. [2000]), dynamic ruptures propagate all the way to the
free surface, consistently with the results of Lapusta et al. [2000]. (c) When distributions of parameters
a and b in the case of Figure 9b are modified to match the distributions of sa and sb of the case in
Figure 9a, the near-surface behavior becomes very similar to the case of Figure 9a.
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poor numerical resolution. The simulation with Dx = 200 m
(not shown) produces a slip pattern which is similar to that
of Dx = 50 m and Dx = 100 m but has notable differ-
ences, such as deeper nucleation regions and 2% smaller
slip per cycle.
[44] Figure 10c shows slip velocity history of the fault

location (9 km, �8 km) during the fifth event. Zero time is
chosen as the arrival time of rupture at the point (6 km,
�8 km). Again,Dx = 100 m andDx = 50 m produce similar
results during dynamic rupture propagation, although slip
velocity has some oscillations for Dx = 100. These oscil-
lations are due to the kernel discretization, as discussed in
Appendix A. For Dx = 200, rupture time is noticeably
larger, slip velocities are smaller, and the profile is more
oscillatory. As the rupture propagates, the cohesive zone
becomes smaller, making Dx = 200 m inadequate. For Dx =
400 m (insert), the result is completely different, indicating
numerical problems. Hence, we confirm the finding of Day
et al. [2005] that the quasi-static cohesive zone in 3-D
simulations needs to be resolved by about three cells.

4.2. Frequency-Independent Truncation

[45] To determine the suitable value of parameter a in the
frequency-independent truncation window Tw = al/cs, we
do a series of simulations with a = 2, 3/2, 1, 1/2, and 1/3.
Simulations with a = 2, 3/2, 1 all produce virtually indistin-
guishable results in terms of both earthquake patterns and
slip velocity histories during individual events (Figures 11
and 7a), indicating that either of them can be used in the
truncation procedure. We use a = 3/2 in most of our
simulations. Simulations with a = 1/2 and 1/3 produce
somewhat different behavior. For example, the rupture speed
is 2% smaller for a = 1/2 and 9% smaller for a = 1/3.

4.3. Frequency-Dependent Truncation

[46] As discussed in section 2.2, frequency-dependent
truncation can save a lot of computational resources,

including memory. It has two parameters, a and rc. We
fix a = 3/2, a value that performs well in the frequency-
independent truncation, and compare results for several
values of rc. For Nx = Nz = 600 and Dx = 100 m,
frequency-independent truncation implies rc = alq̂max �
2000. To activate frequency dependence, we need to choose
a smaller value of rc. We try rc = 250, 200, 150, 100, 50,
25, and 3p/2. The last value approximately reproduces the
truncation scheme used by Lapusta et al. [2000]. We find
that simulations that use frequency-dependent truncation
with rc 
 100 produce the same results as simulations with
frequency-independent truncation. Figure 12 shows slip
velocity history of the fault location (12 km, �8 km) during
the first event for different values of rc. The simulation with
rc = 100 has the same rupture time at this location as the
simulation with frequency-independent truncation, and the
difference in peak velocity between the two simulations is
less than 5%. Hence, truncation with rc = 100 gives
adequate results while using only 9.7% of the memory
required for frequency-independent truncation. The memory
savings would be more significant for smaller cell sizes or
larger fault dimensions. The simulation with r = ap = 3p/2,
which worked well in 2-D antiplane models [Lapusta et al.,
2000], produces rather poor results, with much slower
rupture speeds and slip velocity. The difference between
2-D antiplane and 3-D problems arises due to properties of
mode II kernel as discussed in section 2.2.

5. Long-Term Interaction of Slip With Compact
Heterogeneity

[47] As an application example, let us investigate long-
term behavior of a fault segment in the presence of compact
heterogeneity. This study requires the fully dynamic 3-D
approach for simulating long-term slip developed in this
work, as the existing 2-D dynamic and 3-D quasi-dynamic
methodologies may not be able to capture all features of the

Figure 11. Fully dynamic simulations with different values of the truncation parameter a. (a and b) Slip
accumulation along the line z = �8 km for a = 2 and 1/3, respectively. The results can be compared with
Figure 7a that shows slip accumulation for a = 3/2. (c) Slip velocity history of the fault location (12 km,
�8 km) during the fifth event for a = 1/3, 1/2, 3/2, 1, and 2. Zero in time corresponds to rupture arrival at
the location (6 km, �8 km). Larger values of a lead to inclusion of longer slip histories in the dynamic
response calculation; a = 2, 3/2, and 1 produce similar results, while a = 1/2 and 1/3 cause differences as
discussed in the text.
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response as explained in section 1. We use the model of
section 3.1 with a stronger circular patch of 20% larger
effective normal stress s. The patch is centered at the
location (x = 3 km, z = �8 km) and has the radius of
1 km. The other model parameters are the same as in section
3.1, including L = 8 mm, with the exception of initial shear
stress outside the strip �15 km < x < �10 km. The value
1.00fos of section 3 results in the first event that is slower
than subsequent events (Figure 7a). Since we would like to
compare interaction of dynamic rupture with the stronger
patch in the first event with the interaction in subsequent
events, it is important for the first event to be more dynamic.
To achieve that, we use initial shear stress of 1.01fos outside
the strip �15 km < x < �10 km.

5.1. Supershear Burst in the First Event

[48] The first event nucleates in the region of higher
initial shear stress on the left side of the seismogenic region
and propagates toward the location of the patch. Since the
patch is stronger than the surrounding fault but the initial
shear stress is uniform, the front of dynamic rupture is
delayed at the asperity during the first event (Figure 13, top
left). Note that the slip velocity scale in Figure 13 is
different than in previous figures with slip velocity snap-
shots; the scale in Figure 13 is chosen to illuminate the
rupture front. Slip in the surrounding areas concentrates
shear stress at the patch, breaking it and creating a super-
shear burst over a part of the rupture front (Figure 13, to
middle and top right). Along the horizontal line z = �8 km,
the rupture front advances 3.4 km in 0.84 s, with the
average rupture speed of c = 4.0 km/s, which is larger than
the shear wave speed cs = 3 km/s. Such supershear bursts
were studied byDunham et al. [2003] in simulations of single
earthquakes on faults governed by linear slip-weakening
friction. In our simulation, the supershear part of the front
transitions back to sub-Rayleigh speed shortly afterward.

5.2. No Supershear Burst in Subsequent Events

[49] The supershear burst observed in the first event is
due to interaction of dynamic rupture with the normal stress

heterogeneity. Will this interaction repeat in subsequent
events? The second earthquake also nucleates on the left
side of the seismogenic region and propagates toward the
stronger patch. Figure 13 (bottom) shows the snapshots of
slip velocity distribution during the second event as the
rupture front passes through the patch. The snapshots show
that there is no interaction of the rupture front with the
stronger patch. In Figure 13 (top), corresponding to the first
event, the patch location is obvious; in Figure 13 (bottom),
corresponding to the second event, we need to mark the
patch with a red circle to indicate its location. The rupture
front smoothly propagates through the patch with sub-
Rayleigh speeds. The average horizontal rupture speed in
the time period between the first and the third snapshot is
c = 2.0 km/s or about 0.7 of the Rayleigh wave speed.
Rupture continues to accelerate as it propagates further
along the fault interface. Note that the concave rupture
front profile in Figure 13 (bottom) is also present in the
case without the patch during the second event, and it is
not related to the presence of the stronger patch. Rather, it
is caused by higher rupture speeds close to the boundary
between creeping and locked regions due to shear stress
concentration there.
[50] Hence, dynamic rupture does not ‘‘notice’’ the patch

during the second event and, in fact, during all subsequent
events. This is due to redistribution of shear stress on the
fault after the first event. Figure 14 shows two shear stress
distributions along the horizontal line z = �8 km, which
passes through the center of the patch, during the first and
second events. The distributions correspond to the time
when the rupture front that propagates toward the patch is
about 2 km away from the patch. Before rupture propagates
through the patch in the first event, shear stress inside the
patch is approximately equal to the initial shear stress of
30.3 MPa. The ratio of shear stress and effective normal
stress t/s is 0.505 inside the patch and 0.606 in the
surrounding region. Therefore, the patch delays the rupture
and then produces a supershear burst. However, before
rupture propagation over the patch in the second event,
shear stress inside the patch is higher, about 37.2 MPa, and

Figure 12. Slip velocity history of the fault location (12 km, �8 km) during the first event in fully
dynamic simulations with different values of the truncation parameter rc. Zero in time corresponds to the
rupture arrival at the location (3 km, �8 km). Larger values of rc make the frequency-dependent
truncation closer to the frequency-independent one. Our frequency-dependent truncation with rc = 3p/2
approximately corresponds to the truncation parameters of Lapusta et al. [2000]; rc 
 100 produce the
same results as the frequency-independent truncation.
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the ratio t/s is 0.62 inside the patch and 0.63 outside of it.
In other words, before the second event, shear stress is
proportionally higher at the patch, compensating for its
higher strength.
[51] This simple example illustrates the necessity of long-

term simulations of fault behavior for understanding effects
of fault heterogeneity, even if one is concerned with
dynamic events only. While any prestress can be assumed
for simulations of a single dynamic rupture, stress distribu-
tion before events in long-term simulations as well as on
natural faults is the result of complicated history of seismic
and aseismic slip, which depends, in part, on the strength
distribution. Our results suggest that distributions of fault
stress and strength are related and cannot be assumed
independently.

5.3. Effect of Heterogeneity on Long-Term Behavior

[52] The 20% stronger patch occupies less that 1% of the
fault area, yet it changes the long-term behavior of slip in
this model. We compare the homogeneous fault case of
section 3.2 and the case of one small heterogeneity consid-
ered here using plots of slip accumulation along the hori-
zontal line z = �8 km (Figures 7a and 15a). We see that
while the sequence of large events maintains its two-event

periodicity, the stronger patch destroys the symmetry in
fault properties between the left and right sides of the fault,
resulting in asymmetric behavior. In the homogeneous case,
aseismic transients alternate the direction of their propaga-
tion, moving from left to right before one event and the
other way before the next one. In the case with the stronger
patch, all aseismic slip propagates from left to right. Once
the slow slip reaches the stronger patch, an event nucleates.
This is because larger effective normal stress corresponds to
a smaller nucleation size, favoring rupture nucleation there.
Correspondingly, the nucleation process at the right side of
the fault is modified and shifted to occur at the asperity.

6. Quasi-Dynamic Approach

[53] If the fully dynamic formulation is replaced with the
quasi-dynamic one [e.g., Rice, 1993], simulations become
much simplified and computational resources needed are
significantly reduced. The quasi-dynamic formulation has
been widely used in earthquake studies [e.g., Rice, 1993;
Ben-Zion and Rice, 1995; Rice and Ben-Zion, 1996; Hori et
al., 2004; Kato, 2004; Hillers et al., 2006; Ziv and Cochard,
2006]. It ignores wave-mediated stress transfers expressed
through convolutions integrals in equation (5) by setting

Figure 13. Snapshots of slip velocity distribution during the (top) first and (bottom) second events for
the case with a stronger patch. The slip velocity range shown is different from Figures 4–6 and chosen to
emphasize the rupture front. The number in the top right corner of each snapshot indicates the elapsed
time (in seconds) since the first snapshot for each event. During the first event, dynamic rupture interacts
with the stronger patch and produces a supershear burst. During the second event, no interaction or
supershear propagation occurs; the stronger patch is indicated by a red circle in this case. Rupture
behavior of the first event does not repeat in the slip history of the fault due to redistribution of shear
stress.
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Tw = 0 for all Fourier modes. Any increment of slip
induces instantaneous static stress changes everywhere
on the fault. However, the quasi-dynamic formulation
differs from the quasi-static one in that it retains dynamic
radiation terms hiVi(x, z; t) in equation (1), capturing some
dynamic effects and allowing the solution to exist during
dynamic instabilities.
[54] Here we compare the results of quasi-dynamic 3-D

calculations with the fully dynamic ones and explore the
suggestion of Lapusta et al. [2000] that smaller radiation
damping terms in the quasi-dynamic formulation can make
the comparison more favorable. For this study, we use the
model with a stronger patch from section 5.

6.1. Generalized Quasi-Dynamic Formulation

[55] Let us generalize the quasi-dynamic formulation to
allow for smaller radiation damping coefficients. Shear
components of tractions can be written as

ti x; z; tð Þ ¼ toi x; z; tð Þ þ fi x; z; tð Þ � m

2csbs

Vi x; z; tð Þ; ð24Þ

where i = x, z, bs is a constant, and the convolution integrals
in fi(x, z; t) are ignored. For the standard quasi-dynamic
formulation, we have bs = 1, and we are interested in bs 
 1.
Wave speeds enter the quasi-static formulation through the
radiation damping terms in (24) and through the static stress
transfers in (5) which use the ratio cp/cs. Therefore, the
generalized quasi-dynamic formulation (24) with bs > 1

corresponds to the standard quasi-dynamic approach with
faster wave speeds:

cs ¼ bscs; cp ¼ bscp: ð25Þ

Because of the faster wave speeds, we need to use smaller
time steps Dtmin in calculations with bs > 1:

Dtmin ¼ g
Dx

cs
¼ g

Dx

bscs
¼ Dtmin

bs

: ð26Þ

We have confirmed conclusion (26) in our simulations. This
means that simulating quasi-dynamic problems with smaller
radiation damping terms is more challenging, as it requires
smaller time steps and more computational time. This
consideration is also consistent with the fact that the quasi-
static formulation cannot be used to model dynamic rupture.
For the quasi-static formulation, bs = +1 and, according to
equation (26), the time steps should be infinitely small.

6.2. Similarity of Quasi-Dynamic Solutions and Their
Differences With Fully Dynamic Results

[56] Let us compare the fully dynamic simulation of
section 5 with several quasi-dynamic simulations that use
different values of bs. Figure 15 shows slip accumulation
along the horizontal line z = �8 km for the fully dynamic
simulation and the quasi-dynamic simulations with bs = 1,
2, and 4. We choose a part of slip history that already
reflects the long-term behavior of the model. The first
observation is that the rupture speed and slip velocity,
which are related to the horizontal and vertical spacing of
red dashed lines, respectively, are much lower for the
standard quasi-dynamic simulation (bs = 1) than for the
fully dynamic one. However, the rupture speed and slip
velocity increase for larger bs and, for bs = 4, look
comparable to that of the fully dynamic simulation.
[57] Hence, it is tempting to conclude that larger values of

bs result in a better match. However, further examination
reveals a problem. All quasi-dynamic simulations share
a qualitatively similar one-event slip pattern. The fully
dynamic simulation has a different slip pattern that consists
of two events, as discussed in section 5.3. Hence, it seems
that differences that accumulate during dynamic events are
sufficient to change long-term fault behavior even in this
relatively simple model.
[58] Comparison of individual events in Figure 16 further

demonstrates the similarity among quasi-dynamic simula-
tions and their differences with the fully dynamic one. Slip
and slip velocity histories of one point on the fault (x = 9 km
and z = �8 km) during the first event are shown in Figures
16a and 16b. Zero for each time history is chosen as the
time of rupture arrival at the point with x = 6 km and z =
�8 km. From Figure 16a, we can get the average rupture
speed between locations x = 6 km and x = 9 km along the
line z = �8 km, which is 0.96 km/s for quasi-dynamic
simulation with bs = 1, 1.92 km/s for bs = 2, 3.79 km/s for
bs = 4, and 2.65 km/s for the fully dynamic simulation.
Hence, the rupture speed in the quasi-dynamic simulation
with bs = 4 is faster than the fully dynamic simulation. At
the same time, slip velocity for bs = 4, while substantially
higher than that for bs = 1, is still much smaller than slip

Figure 14. Distribution of shear stress along the line z =
�8 km during the first and second events, at the time when
the horizontal rupture front (at this depth) arrives approxi-
mately at the center of the fault (x = 0 km). In the first event,
the patch has shear stress t similar to the surrounding area
but 20% larger normal stress s, resulting in smaller
nondimensional prestress t/s than the rest of the fault.
However, in the second event, t inside the patch is about
20% larger than in the surrounding area, resulting in
homogeneous nondimensional prestress t/s. This redis-
tribution of shear stress due to prior slip history eliminates
the interaction of dynamic rupture with the patch observed
in the first event.
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velocity of the fully dynamic calculation. Furthermore, the
final slip is smaller for all quasi-dynamic simulations
(Figure 16b) than for the fully dynamic one; this is also
true about average slip per event and static stress drop.
Increasing bs further is not a productive approach to
increasing slip velocity and slip rates, as the rupture speed
would also increase, and the rupture speed for bs = 4 is
already too high, as demonstrated in Figure 16c. For points
between x = 6 km and x = 15 km, the rupture speed of the
quasi-dynamic simulation with bs = 4 is higher than that of
the fully dynamic run. Note that the standard quasi-
dynamic approach (with bs = 1) fails to reproduce the
supershear burst during the first dynamic event discussed
in section 5.1.
[59] We find that quasi-dynamic simulations with differ-

ent values of bs can be scaled to match each other. The
insets in Figures 16a and 16b show rescaled slip velocity V*
= V/bs and slip d as functions of the rescaled time t* = bst.
Figure 16d plots rescaled rupture speeds c/(bscs), with the
fully dynamic result for comparison. We see that all quasi-
dynamic curves fall almost on top of each other in rescaled
plots. Hence, quasi-dynamic simulations with different bs

are similar to each other during dynamic rupture, provided

we use rescaled time t* = bst, slip velocity V* = V/bs, and
rupture speed c* = c/bs (with stress t, slip d, and spatial
coordinates x, z unchanged).

6.3. Cohesive Zone Size and Numerical Resolution
in Quasi-Dynamic Simulations

[60] We find that the cohesive zone size in quasi-dynamic
calculations is always equal to the quasi-static cohesive
zone size L0. It does not decrease as rupture propagates and
it is independent of bs. Figure 17 shows stress distribution
along parts of the line z = �8 km during the first event for
the quasi-dynamic simulations with bs = 1 and bs = 4. The
simulated events are shown in Figure 17 (bottom). Note that
we use Dx = 50 m in these simulations, instead of 100 m, to
better capture the size of the cohesive zone. In Figure 17a of
bs = 1, the rupture front is at x = �7.9 km and the average
rupture speed before that location is only 0.12 km/s, which
is less than 5% of the shear wave speed. The cohesive zone
size in that situation, which is equal to 6 cell sizes or 300 m,
should be very close to the quasi-static cohesive zone size.
The theoretical estimate in section 4.1 gives a similar value
of 233 m. At the later stages of this rupture, the cohesive
zone size stays equal to 300 m. For the quasi-dynamic

Figure 15. Accumulation of slip along the line z = �8 km for the case with a stronger patch. Lines have
the same meaning as in Figure 7. (a) Results for the fully dynamic simulation. The slip pattern of the fault
with a small stronger patch (which occupies less than 1% of the seismogenic area) is different from the
one with the homogeneous seismogenic region (Figure 7a). (b) The standard quasi-dynamic formulation
(bs = 1) results in a modified slip pattern, smaller slip velocity, slower rupture speeds, and smaller slip per
event. (c and d) Larger values of bs or smaller radiation terms in the quasi-dynamic formulation
accelerate rupture speed and increase slip velocity. However, all quasi-dynamic simulations produce
similar slip patterns that are qualitatively different from the fully dynamic one.
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simulation with bs = 4, the cohesive zone size is still 300 m
(Figure 17b). At the time shown in Figure 17b, the rupture
speed is 2.45 km/s, more than 80% of the shear wave speed.
[61] The fact that the cohesive zone does not change in

quasi-dynamic simulations simplifies choosing proper spa-
tial discretization. In our study, any cell size below the
quasi-static estimate of the cohesive zone size have pro-
duced well-resolved quasi-dynamic calculations (we have
tried Dx = 50 m, 100 m, and 200 m; recall that Dx = 200 m
was not adequate for the fully dynamic simulation). But
larger cell sizes lead to inaccurate solutions; for example,
Dx = 400 m changes the results significantly, just like in the
fully dynamic case. How much more advantageous is the
quasi-dynamic simulation in terms of the spatial discretiza-
tion depends on how much the cohesive zone shrinks during
the corresponding fully dynamic simulation.

7. Conclusions

[62] We have developed, on the basis of prior studies, a
3-D methodology for simulating long-term history of spon-
taneous seismic and aseismic slip on a vertical planar strike-

slip fault subjected to slow tectonic loading. Our approach
reproduces all stages of earthquake cycles, from accelerat-
ing slip before dynamic instability, to rapid dynamic prop-
agation of earthquake rupture, to postseismic slip, and to
interseismic creep, including aseismic transients. We have
extended the existing 2-D methodology [Lapusta et al.,
2000] to 3-D, proposed a numerical resolution criterion that
combines findings for long-term histories and dynamic
rupture, developed a new frequency-dependent truncation
procedure, determined the values of numerical parameters
that lead to results independent of numerical procedures in
three dimensions, developed a parallel implementation of
the 3-D code, and applied the developed methodology to
several examples.
[63] In 2-D studies of earthquake sequences [e.g., Rice,

1993; Lapusta et al., 2000], the numerical discretization
was based on the need to resolve the nucleation process and
the associated spatial scale h*. However, in both fully
dynamic and quasi-dynamic simulations, seismic events
propagate as dynamic ruptures with rapid variations of field
variables at their tip. We have shown that the resolution
criterion based on the near tip cohesive zone and quantified

Figure 16. Comparison of fully dynamic and quasi-dynamic simulations of one dynamic event (the first
event in the sequence). (a and b) Slip velocity and slip histories of the fault location (9 km, �8 km). Zero
time corresponds to the time of rupture arrival at the point (6 km, �8 km). Slip velocity and slip per event
in quasi-dynamic simulations are significantly smaller than in the fully dynamic one. Simulations with
larger bs produce faster rupture speeds, larger slip velocity, and larger slip per event. However, when
scaled appropriately, the quasi-dynamic results all collapse onto the same curves (insets in Figures 16a
and 16b). (c and d) Rupture speed as a function of rupture tip location along z = �8 km. The quasi-
dynamic simulation with bs = 4 has larger rupture speeds than the fully dynamic simulation. All quasi-
dynamic simulations have nearly identical scaled rupture speed c/(bscs), as shown in Figure 16d.
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in our previous collaborative work [Day et al., 2005] is
more restrictive for the parameters typically used in earth-
quake sequence simulations. Once the cohesive zone size is
resolved with several spatial cells, the nucleation-related
scale h* is resolved as well, since it is several time larger.
This consideration explains the finding of Lapusta et al.
[2000] that h* needs to be resolved by 20 spatial cells, a
relatively large number; that level of discretization was
actually required for resolving the much smaller size of
the cohesive zone.
[64] We find that the frequency-dependent truncation

procedure developed for 2-D antiplane problems by Lapusta
et al. [2000] is inadequate in three dimensions. This is
because 3-D problems involve elastodynamic kernels for
mode II, and those kernels decay much slower than the
mode III kernels. We have developed a new frequency-
dependent truncation procedure that is based both on con-
siderations of Lapusta et al. [2000] and on the decay of the
kernel amplitude.
[65] Slip response in the presented fault models, which

have relatively simple distributions of friction properties,
involves aseismic transients, i.e., episodes of spontaneous
aseismic fault slip faster than the plate rate. These transients
arise in the areas of velocity-weakening regions close to
rheological transitions and constitute propagating nucleation
attempts. Their extent depends on the nucleation size. In our
simulations, we choose parameters that make nucleation
sizes a significant fraction of the fault width, to make the
problems numerically tractable. Large nucleation sizes may
be realistic for certain fault conditions such as highly
elevated pore pressure or velocity-weakening properties
close to velocity-neutral. In fact, Liu and Rice [2005]
obtained aseismic transients in a subduction model with

occasional highly elevated pore pressure next to rheological
transition. It is possible that aseismic transients occur only
under conditions that result in large nucleation sizes, in
which case the mechanism of aseismic transients presented
by Liu and Rice [2005] and reproduced here is a viable one.
However, note that many areas on natural faults should have
small nucleation sizes to produce small events. Other
mechanisms have been proposed to explain aseismic tran-
sients, such as inelastic dilatancy and complex dependence
of friction on slip velocity [e.g., Segall and Rubin, 2007;
Shibazaki and Shimamoto, 2007].
[66] We have used the developed methodology to inves-

tigate interaction of slip with a stronger fault patch of 20%
higher normal stress over many earthquake cycles. The
patch significantly affects the dynamic rupture in the first
event, causing rupture delay followed by a supershear burst.
However, the patch becomes ‘‘invisible’’ to dynamic rup-
ture in subsequent events due to redistribution of shear
stress. Our results show that while simulations of single
dynamic events play an important role in exploring earth-
quake dynamics, long-term simulations are also important
as they can help us understand how assumptions about the
distribution of fault strength influence the distribution of
fault stress before large events. Our results have consequen-
ces for studies that attempt to determine parameters of
strong ground motion by considering many potential sce-
narios of earthquake rupture on a given fault, primarily by
choosing different distributions of fault strength and fault
initial conditions. Our results suggest that the two distribu-
tions are related owing to prior fault slip. Note that the small
stronger patch, which occupies only 1% of the fault areas,
significantly influences the long-term behavior of the fault

Figure 17. Cohesive zones in quasi-dynamic simulations. (a) (top) Shear stress distribution along the
horizontal line z = �8 km at the time of rupture front arrival at point (�7.9 km, �8 km) during the first
event in the simulation with bs = 1. Crosses indicate locations of spatial cells (Dx = 50 m). The rupture
speed at that time is 0.12 km/s. The cohesive zone size is 0.3 km. (bottom) Accumulation of slip in that
case, with the double arrow indicating the distance plotted in Figure 17a (top). (b) Shear stress
distribution along the horizontal line z = �8 km at the time of rupture front arrival at (0.24 km, �8 km)
km during the first event in the simulation with bs = 4. The rupture speed at that time is 2.45 km/s.
Despite the different value of bs and the different rupture speed, the cohesive zone size is still 0.3 km. In
quasi-dynamic simulations, the cohesive zone size does not shrink during rupture propagation and its size
is independent of the parameter bs.
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in our model, moving nucleation locations and causing
asymmetric behavior.
[67] Comparison of the fully dynamic and the standard

quasi-dynamic approaches shows that the quasi-dynamic
approach results in smaller slip per event and significantly
smaller slip velocities and rupture speeds, confirming the
results of 2-D comparisons [Lapusta et al., 2000]. The new
observation in 3-D models is that the long-term slip pattern
of the model is also different between the fully dynamic and
quasi-dynamic simulations, even for the simple distributions
of fault properties considered. Hence, the discrepancies
between the fully dynamic and quasi-dynamic simulations
accumulated during inertially controlled ruptures have long-
term influences over earthquake cycles in three dimensions.
The quasi-dynamic approach also fails to reproduce the
supershear burst in the first dynamic event of the simulation
with a stronger patch. We have explored the possibility of
improving the comparison by decreasing radiation damping
terms of the quasi-dynamic formulation. We find that such a
change is equivalent to the standard formulation with higher
wave speeds and it only rescales the resulting solution
without changing it qualitatively.
[68] The developed methodology can be used to study a

number of fault slip phenomena, such as postseismic slip,
earthquake nucleation in heterogeneous fault regions, slip
response of faults with complex patterns of velocity-weak-
ening and velocity-strengthening properties, and interaction
of fault slip with heterogeneity in normal stress or other
fault properties. Application of this approach to small
repeating earthquakes explained the scaling of their seismic
moment with recurrence time [Chen and Lapusta, 2009].
The methodology can be easily adapted to rate and state
formulations other than the aging formulation considered in
this work, and to combinations of rate and state friction with
dynamic weakening mechanisms. Recent improvements in
availability and quality of seismic and geodetic data have
revealed complex interactions of seismic and aseismic slip,
with more heterogeneous fault coupling than previously

believed, slow earthquakes, and aseismic transients that are
often accompanied by seismic tremor. Interpreting this rich
information through forward modeling developed in this
work can help us determine the constitutive behavior and
properties of natural faults.

Appendix A: Convolution Kernels

[69] The elastodynamic convolution kernels KII and KIII

from equation (5) can be expressed as [Geubelle and Rice,
1995]

KII rð Þ ¼ 2 1� c2s=c
2
p

� �

�
Z r

0

CII hð Þdh;

KIII rð Þ ¼ 1�
Z r

0

CIII hð Þdh; ðA1Þ

where

CII ¼
J1 rð Þ
r

þ 4r W
cp

cs
r

� �

�W rð Þ
� �

� 4
cs

cp
J0

cp

cs
r

� �

þ 3J0 rð Þ;

ðA2Þ

CIII ¼
J1 rð Þ
r

; ðA3Þ

W rð Þ ¼
Z 1

r

J1 hð Þ
h

dh ¼ 1�
Z r

0

J1 hð Þ
h

dh; ðA4Þ

and J0(r) and J1(r) denote Bessel functions. Kernels KII(r)
and KIII(r) have the following property:

Z 1

0

KII hð Þdh ¼
Z 1

0

KIII hð Þdh ¼ 1: ðA5Þ

The asymptotic form of Bessel functions Jn(r) for r 
 n is

Jn rð Þ �
ffiffiffiffiffiffi

2

pr

s

cos r� 1

2
np� 1

4
p

� �

; ðA6Þ

and KIII(r) can be expanded for r 
 1:

KIII rð Þ ¼
Z 1

r

J1 hð Þ
h

dh

�
ffiffiffi

2

p

r

cos r� p=4ð Þ
r

3
2




þ 3

2

sin r� p=4ð Þ
r

5
2

þ O r�
7
2

� �

�

:

ðA7Þ

The leading term of the expansion is given by

K
app
III rð Þ ¼

ffiffiffi

2

p

r

cos r� p=4ð Þ
r

3
2

: ðA8Þ

Similarly, the asymptotic expansion of KII(r) for r 
 1 is

KII rð Þ ¼
ffiffiffi

2

p

r

sin r� p=4ð Þ
r

1
2

þ 4 cs=cp
� �7

2 cos cpr=cs � p=4
� �

� 3 cos r� p=4ð Þ
r

3
2

þ O
1

r
5
2

� �

( )

; ðA9Þ

with the leading term

K
app
II rð Þ ¼

ffiffiffi

2

p

r

sin r� p=4ð Þ
r

1
2

: ðA10Þ

The kernels and their comparison with the leading terms are
shown in Figure A1. The slower decay of KII(r) has
important implications for the frequency-dependent trunca-
tion, as discussed in sections 2.2 and 4.3.
[70] In our simulations, slip velocity histories exhibit

some small oscillations (e.g., Figure 12). For both Dx =
100 m and Dx = 50 m, the oscillations have the period of
6 time steps, or 0.0672 s for Dx = 100 m and 0.0336 s for
Dx = 50 m. The amplitude of the oscillations gets smaller
for Dx = 50 m. Hence, the oscillations are not physical. We
find that they are due to kernel discretization. As shown
above, kernels KII(r) and KIII(r) have the period of 2p
for r 
 1. In simulations, time t is discretized with the
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minimum time step Dtmin = gDx/cs and hence the kernel
argument r is discretized with the kernel interval given by

Drmin ¼ q̂csDtmin: ðA11Þ

Therefore, for each frequency mode q̂, the number of points
resolving one period of the kernel is

Nr ¼
2p

Drmin

¼ 2p

q̂gDx
: ðA12Þ

Nr is smaller for larger q̂.
[71] For the highest-frequency magnitude q̂max =

ffiffiffi

2
p

p/
Dx, we get Nr =

ffiffiffi

2
p

/g = 4.2 for g = 1/3 that we use in
simulations. Therefore, one period of the kernel is resolved
by only 4.2 points for the highest frequency. However, only
four modes (k = ±Nx/2, m = ±Nz/2) have such high
frequency. If one considers all the modes as a rectangular
array, �p/Dx � k̂ = 2pk/lx � p/Dx and �p/Dx � m̂ = 2pz/

lz � p/Dx with q̂ = k̂2 + m̂2, and draws a circular ring of
unit width centered at zero frequency, then the radius of the
ring that covers the largest area is p/Dx. Hence, the largest
contribution to oscillations likely comes from modes with
the frequency magnitude q̂ = p/Dx. For these modes, Nr =
2/g = 6, which explains the observed period of the oscil-
lations. Smaller cell sizes Dx help reduce the amplitude of
oscillations, as frequencies p/Dx become much higher for
smaller Dx, and hence, they have smaller Fourier coeffi-
cients _Dx(k, m; t

0) and _Dz(k, m; t
0).

Appendix B: Updating Field Variables

[72] Modeling of long deformation histories with periods
of fast slip requires variable time stepping. We employ the
time stepping scheme developed by Lapusta et al. [2000]
for 2-D antiplane problems. The scheme works quite well in
our 3-D models. The variable time step Dt is chosen as

Dt ¼ max Dtmin;Dtevolf g; ðB1Þ

where Dtmin is the minimum time step chosen for good
resolution of dynamic rupture propagation and Dtevol varies
with slip velocity as discussed below. The value of Dt is
always adjusted to be an integer multiple of Dtmin, as this
simplifies computation of convolution integrals. The
minimum time step is given by

Dtmin ¼ gDx=cs; ðB2Þ

where g is a constant. We use g = 1/3, as this is the value
suggested by our previous study of dynamic rupture in three
dimensions [Day et al., 2005]. The time step Dtevol is set to
be inversely proportional to slip velocity:

Dtevol ¼ min
i;j

x i; jð ÞL i; jð Þ=V i; jð Þ½ �; ðB3Þ

where L(i, j), V(i, j), and x(i, j) are the characteristic slip,
slip velocity, and a prescribed parameter for the cell (i, j),
i = 1, 2, .., Nx and j = 1, 2, .., Nz. x(i, j) is a function of
friction properties obtained from linear stability analysis
[Lapusta et al., 2000]. In addition, x(i, j) is constrained to
satisfy x(i, j) � xc, where xc is a constant, to ensure that slip
at each time step does not exceed xcL(i, j). Lapusta et al.
[2000] used xc = 1/2. In our 3-D models, we do a series of
comparison with xc = 1/2, 1/3, 1/4, and 1/5. We find that
values xc � 1/3 produce virtually indistinguishable results,
but xc = 1/2 results in small differences. In the simulations
presented in this work, we use xc = 1/5; however, xc = 1/3
would have produced the same results.
[73] To update field variables, we extend to 3-D the

scheme developed by Lapusta et al. [2000] for 2-D anti-
plane problems. Instead of updating state variable q directly,
we use the quantity f = log(Voq/L). From equation (12), the
evolution equation for f is

df

dt
¼ Vo

L
e�f � V

L
: ðB4Þ

Figure A1. Elastodynamic kernels KIII(r) and KII(r). (a and b) Values of the kernels for relatively
small kernel arguments. (c and d) Comparison of kernels with the leading terms in their asymptotic
expansions. For r 
 1, KIII(r) � O(r�3/2) and KII(r) � O(r�1/2). KII(r) decays much slower than
KIII(r) as r increases.

B09303 LAPUSTA AND LIU: THE 3-D MODELING OF SEISMIC AND ASEISMIC SLIP

22 of 25

B09303



[74] Suppose that at time t, the discretized values of
tangential slips dn(i, j; t), slip velocities Vn(i, j; t), n = x, z
and state variable f(i, j; t) are known for the cell (i, j), i = 1,
2, .., Nx, j = 1, 2, .., Nz. In addition, we also have the Fourier
coefficients of tangential slips Dn(k, m; t

0), and the history of
Fourier coefficients of slip velocity _Dn(k, m; t

0), jkj � Nx/2,
jmj � Nz/2 for the (discretized) prior time t0, t � Tw < t0 < t,
where t is the current time and Tw is the truncation time
window. To advance the field variables by one time step Dt
and determine the quantities at the time t + Dt, we proceed
in the spirit of a second-order Runge-Kutta procedure as
follows (for compactness, all explicit references to the
indices (i, j) for physical space and (k, m) for Fourier space
are suppressed):
[75] 1. Determine the evolution time step Dt using

equation (B1).
[76] 2. Make the first predictions of the values of the slips

d*n(t + Dt), their Fourier coefficients D*n(t + Dt) and the
state variable f*(t + Dt) for each cell, assuming that slip
velocities are constant and equal to Vn(t) throughout the
time step t. Hence, we have

dn* t þDtð Þ ¼ dn tð Þ þDtVn tð Þ; ðB5Þ

Dn* t þDtð Þ ¼ Dn tð Þ þDt _Dn tð Þ; ðB6Þ

f* t þDtð Þ ¼
log ef tð Þ 1� VDt=Lð Þ þ V0Dt=L
� �

; VDt=L � 10�6;

log V0=V þ ef tð Þ � Vo=V
� �

e�VDt=L
� �

; VDt=L > 10�6: ðB7Þ

(

where V =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2
x tð Þ þ V 2

z tð Þ
p

is the resultant slip rate. The
update of f distinguishes between small and large values
of VDt/L for the following reason. For small V, (ef(t) �
Vo/V) ¼: �Vo/V and e�VDt/L ¼: 1 in the numerical sense,
and then f*(t + Dt) ¼: log(0), which leads to an error in
computation. Using the Taylor expansions for small
values of VDt/L avoids the problem. Then we compute
the first predictions of the Fourier coefficients of stress
transfer functionals F*n (t + Dt), using equation (5):

(

Fx* t þDtð Þ
Fz* t þDtð Þ

)

¼� m

2q̂

k̂2 m̂k̂

m̂k̂ m̂2

" #

2 1� c2s
c2p

 ! 

Dx* t þDtð Þ
Dz* t þDtð Þ

!(

�
Z t

tþDt�Tw

KII q̂cs t þDt � t0ð Þð Þ
_Dx t0ð Þ
_Dz t

0ð Þ

 !

dt0

�
Z

Dt

0

KII q̂cst
0ð Þdt0

_Dx tð Þ
_Dz tð Þ

 !)

þ similarly rewritten second term of ð5Þ:ðB8Þ

For Dt 
 Tw, the second term on the right hand side of the
above expression is set to be zero. For Dt < Tw, the term

can be computed because slip velocity history is known.
The third term is an approximation of the convolution on
the time interval corresponding to the current time step.
We then obtain the first prediction of stress functionals

f *n(t + Dt) through the inverse fast Fourier transform
(FFT) of F*n(t + Dt).
[77] 3. Find the prediction of slip velocities V*n(t + Dt)

corresponding to the predicted values of the state variable
f*(t + Dt) and stress functionals f *n(t + Dt). The direction
of the slip velocity vector V = (Vx, Vz) should coincide with
the direction of the shear traction vector t = (tx, tz):

Vz* t þDtð Þ
Vx* t þDtð Þ ¼

tz* t þDtð Þ
tx* t þDtð Þ : ðB9Þ

Combining (B9) with (1), we get

Vz* t þDtð Þ
Vx* t þDtð Þ ¼

Fz* t þDtð Þ
Fx* t þDtð Þ ; ðB10Þ

t* ¼ F*� m

2cs
V*; ðB11Þ

where F*n(t + Dt) = tn
o(t + Dt) + f *n(t + Dt), F* =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fx*
2 t þDtð Þ þ F

�
z
2 t þDtð Þ

q

, V* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vx*
2 t þDtð Þ þ Vz*

2 t þDtð Þ
q

,

and t* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tx*
2 t þDtð Þ þ tz*

2 t þDtð Þ
q

. Equating the shear

traction (B11) to the strength given by the regularized form
of the rate and state friction law [e.g., Rice and Ben-Zion,
1996; Ben-Zion and Rice, 1997; Lapusta et al., 2000;
Lapusta and Rice, 2003] results in

F*� m

2cs
V* ¼ asarcsinh

V*

2Vo

exp
fo þ bf* t þDtð Þ

a

� �� �

:

ðB12Þ

Newton-Rhapson search is used to solve equation (B12) for
V*. Once V* are obtained, V*n(t +Dt), n = x, z can be readily
found from equation (B10).
[78] 4. Make the second predictions of the values of the

slips d**n (t + Dt), their Fourier coefficients D**n (t + Dt),
and the state variable f**(t + Dt):

dn** t þDtð Þ ¼ dn tð Þ þDt Vn tð Þ þ Vn* t þDtð Þ½ �=2; ðB13Þ

Dn** t þDtð Þ ¼ Dn tð Þ þDt _Dn tð Þ þ _Dn* t þDtð Þ
� �

=2; ðB14Þ

f** t þDtð Þ ¼
log ef tð Þ 1� V*Dt=Lð Þ þ V0Dt=L
� �

; V*Dt=L � 10�6;

log V0=V*þ ef tð Þ � Vo=V*
� �

e�V*Dt=L
n o

; V*Dt=L > 10�6;

(

ðB15Þ

where _D*n(t + Dt) are Fourier coefficients of V*n(t + Dt),
n = x, z. Then we can find the corresponding prediction of
stress transfer functionals, f **n (t + Dt), using d**n (t + Dt)
and assuming the slip velocities are constant and equal to
[Vn(t) + V*n(t + Dt)]/2 throughout the evolution time step.
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The computational procedure is analogous to (B8) in stage
2. Note that the second term on the right-hand side of (B8)
stays the same in this stage, and hence, we do not need to
compute it again.
[79] 6. Find the second prediction of slip velocities

V**n (t + Dt) that corresponds to the predicted state
variables f**(t + Dt) and stress functionals f **n (t + Dt).
The computational procedure is analogous to stage 3.
[80] 7. Declare the values of the second prediction as the

values of field quantities at the time t + Dt. Store the
values of slips dn(t + Dt), their Fourier coefficients Dn(t +
Dt), slip velocities _dn(t + Dt), and state variable f(t + Dt)
for use in the next time step. In addition, store _Dn(t

0) =
[ _Dn(t) + _D*n(t + Dt)]/2, n = x, z as the Fourier coefficients
of slip velocity history for time t < t0 < t + Dt. Go back to
stage 1 to advance another time step.
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